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Abstract

Image metrics based on Human Visual System (HVS) play a remark-
able role in the evaluation of complex image processing algorithms. How-
ever, mimicking the HVS is known to be complex and computationally
expensive (both in terms of time and memory), and its usage is thus lim-
ited to a few applications and to small input data. All of this makes
such metrics not fully attractive in real-world scenarios. To address these
issues, we propose Deep Image Quality Metric (DIQM ), a deep-learning
approach to learn the global image quality feature (mean-opinion-score).
DIQM can emulate existing visual metrics efficiently, reducing the compu-
tational costs by more than an order of magnitude with respect to existing
implementations.
Keywords. Convolutional Neural Networks (CNNs), Objective Metrics,
Image Evaluation, Human Visual System, JPEG-XT, and HDR Imaging.

1 Introduction

The quality evaluation of image processing algorithms is an essential step that
can be carried out either through a user study or using an objective metric. User
studies are time-demanding and often impractical due to the large number of
users and images required to guarantee the results to be statistically significant
[1].

This issue has partially been overtaken by limiting the application of user
studies to a subset of all test conditions. In this way, user studies provide a
ground-truth reference for the choice of the most appropriate complex objective
metric among a large set of candidates. This is typically achieved by identify-
ing which among the objective metrics presents the highest correlation to the
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results of user studies, as evaluated on the same subset of test conditions [2, 3].
Although this helps to ease the tedious process of user studies, it does not cope
with the fact that the findings extracted during such studies are often difficult to
generalize. Notwithstanding this, the use of objective metrics is known to suffer
from high computational complexity that derives from the complexity of simu-
lating the many aspects of the Human Visual System (HVS) [4, 5]. De facto,
this precludes such metrics from being applied to several quality assessment
scenarios such as standardization, real-time quality assessment, etc.

This altogether motivates the need for more efficient (yet effective) computa-
tional metrics that can predict visually significant differences between any test
image and its reference. A further desideratum is for this metric to be differen-
tiable, so that it can be directly optimized for. In this regard, traditional error
functions as, e.g., the squared L2 norm of the pixel differences, are known to be
poorly correlated with the image quality as perceived by the HVS [6].

The main focus of this work is to provide a practical solution to the afore-
mentioned issues. In this paper, we investigate the use of deep learning to
predict visual metric features of popular implementations, like the quality in-
dex Q for the High Dynamic Range Visual Differences Predictor (HDR-VDP),
which is known to be correlated with the mean-opinion-score (MOS) [4] , and
the probability index for the Dynamic Range Independent Metric (DRIM) met-
ric, defined as the percentage of pixels that are above the probability detection
threshold (probability index ) [5].

We propose Deep Image Quality metric (DIQM ), a model for learning vi-
sual metric features similar to other well-known existing objective metrics (e.g.,
HDR-VDP [4] and DRIM [5]) at a fraction of their computational costs (more
than an order of magnitude faster).

We tested DIQM on a variety of scenarios designed to demonstrate its ro-
bustness and flexibility. Its real-time performance makes it suitable to be in-
tegrated as the main optimization component into different scenarios including
the optimization of parameters of tone mapping, reverse tone mapping, and
High Dynamic Range (HDR) compression (that we test in our experiments).
Furthermore, the computational costs of our framework will allow standardiza-
tion bodies (e.g., JPEG and MPEG) to employ substantially larger datasets
than the ones being used today.

The main novelties and contributions of our work are summarized below:

• The task of evaluating image processing is formalized as an optimization
problem aiming at learning visual metric features.

• DIQM generalizes to a variety of visual metrics producing results that are
comparable to the ground-truth metric.

• DIQM significantly reduces the computational cost of current visual met-
rics, thus making visual metrics appealing for various real-world quality
assessment scenarios.

• The code implementing DIQM is available online 1.

Note that, in this work, we do not attempt to predict probability maps
of distortion. One reason for this decision is technical: as will be seen, the

1https://github.com/fabiocarrara/diqm
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Figure 1: The proposed DIQM architecture for computing the quality metric
value Q for HDR-VDP (DIQM-Q). A sequence of convolutional layers is used
to extract the image features, followed by a global average pooling and two
fully connected layers that produce the final Q value for the HDR-VDP metric
simulation. For the DRIM metric, the DIQM architecture (DIQM-P) changes
only in the output layer, where we have 6 output nodes. Each pair of nodes
output the number of pixels above the probability threshold of 75% and 95%
for the three types of contrast distortions: A - contrast amplitude; L - contrast
loss; R - contrast reversal.

model we propose is based on a convolutional architecture. While convolutional
processing of images is particularly robust to capturing global information in
the input (thus useful in predicting a global scalar quality value), it typically
presents some limitations in dealing with fine-grained aspects (that might be
crucial for predicting distortion maps). Overcoming said limitations is possible,
but only at the cost of sensibly augmenting the number of model parameters,
and hence the number of training examples. This additional cost might not be
worthwhile. The reason for this (and the main reason why we are reluctant to
predict probability maps) is not merely technical: the utility of the distortion
maps is recently becoming a focus of heated debate in the community. The main
motivation behind this dismissal regards its high cost (i.e., from the point of
view of computational cost and human effort). A typical scenario where these
aspects arise concerns the comparison of several algorithms for standardization
on huge image/video datasets. With the growing number of parameters and
configurations to be tested, computing the distortion maps of DRIM and/or
HDR-VDP might promptly become computationally intractable. Moreover, the
evaluation of the distortion maps has to be carried out manually for each image
or video frame. This implies the evaluation is a tedious and error-prone task.
The human resources (economical and of time) this all implies rapidly becomes
unaffordable, and this explains the general trend in the field (e.g., by the eval-
uation committees of JPEG and MPEG) of preferring scalar quality metrics to
distortion maps; this is especially true in large-content datasets. This makes a
natural choice for DIQM to predict the quality index Q for HDR-VDP and the
probability index for DRIM, respectively.

2 Related Work

Techniques for image quality evaluation represent a cornerstone in the perfor-
mance assessment of many processing algorithms spanning different areas in-
cluding image encoding, acquisition, HDR imaging, or enhancement, to name
a few. Image metrics can mainly be categorized into Image Quality metrics
(IQMs) and visibility metrics (VMs). The former predict a single global quality
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score for the entire image. The latter instead predict the probability that a hu-
man observer could detect differences between a pair of images. Their output is
a visibility map, in which each pixel value encodes the probability of detection.

This work focuses on learning image metrics of type IQM (i.e., a scalar
value for the entire image). In this section, we will thus mainly concentrate on
the discussion of state-of-the-art IQMs approaches. In general, IQMs can be
subcategorized into two main classes: Fully-Reference (FR) and No-Reference
(NR). FR-metrics receive as input a pair of images (the ground-truth and the
distorted images), while the NR-metrics receive as input only the distorted
image (i.e., without any prior information of how the free-distortions image
should appear).

2.1 Full-Reference Metrics

Techniques within the FR class are differently characterized based on the type of
approach they implement, e.g., those that directly measure differences between
pixels, those that detect structural changes in the image (i.e., implement a local
spatial measure of pixels value correlation), and those that model human vision
aspects like contrast sensitivity, luminance adaptation, visual masking, etc.

Examples of the first category are the root mean square error (RMSE) and
peak-signal-to-noise-ratio (PSNR) metrics, color based differences such as CIE-
Lab color-space and its extension sCIE-Lab [7], which are typically used for
comparing Standard Dynamic Range (SDR) content. The above objective met-
rics, which have been developed for SDR content, can be easily extended to work
with HDR content as well by either using the Perceptually Uniform (PU) [8] or
the Perceptual Quantizer (PQ) EOTF [9] to convert absolute display-referred
HDR color values into perceptually uniform units.

Image structure-based quality measures are based on the observation that
the Human Visual System (HVS) detects structural changes from scenes as part
of the visualizing comprehension. One of the first image structure quality index
are the SSIM [10] and its extension CW-SSIM [11]. While both of them focus
on SDR content, the tone-mapped image quality index (TMQI) [12] can evaluate
HDR content versus its tone mapped version.

HVS-based techniques can detect the visible differences between pixels so as
to measure their magnitude in terms of the so-called Just Noticeable Difference
(JND). They have been developed for SDR [13] and HDR [4, 5] images.

2.2 No-Reference Metrics

Several NR metrics in imaging applications have been proposed in the literature.
Here, the main difficulty regards the absence of a ground-truth image as a
reference. To overcome this issue, a possible approach is to model the image
statistics. In this case, the assumption is that the ground-truth image occupies
a subspace of the entire space of possible images, and the goal is thus to compute
the distance from the distorted image [14, 15].

Other approaches have employed scene statistics of locally normalized lumi-
nance coefficients to quantify possible losses of naturalness in the image due to
the presence of distortions [16].

Yet another approach is to extract specific characteristics of the distortion
that needs to be detected/measured. This specific knowledge can be derived
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from the existing know-how of the specific type of artifact and its unique char-
acteristics; i.e., using local gradient [17], saliency map and Support Vector Re-
gression (SVR) [18], measuring the power of the blocking signal [19], etc.

Finally, learning-based approaches can be used where extracted images’ fea-
tures are used to learn to distinguish from undistorted images. These techniques
are further discussed in the next Section 2.3.

2.3 CNNs-based Metrics

In this section, we discuss relevant CNN-based models for IQMs that have been
recently proposed.

Amirshahi et al. [20] introduced a FR image quality metric based on features
extracted from CNNs. Using a pre-trained AlexNet model, they first extract
feature maps of test and reference images at multiple layers and then compare
their feature similarity at each layer. Finally, the similarity scores are pooled
across layers to obtain an overall quality value.

More recently, Bosse et al. [21] proposed a network architecture that can
be used both in NR and FR settings for IQMs. Their approach is purely data-
driven and does not rely on hand-crafted features or other types of prior domain
knowledge about the HVS or image statistics.

Hou et al. [22] investigated how to blindly evaluate the visual quality of an
image by learning rules from linguistic descriptions. The qualitative evaluations
are then converted into numerical scores to fairly benchmark objective IQMs.
A discriminative deep learning model is trained to classify the features into five
ordinal grades, corresponding to five explicit mental concepts: excellent, good,
fair, poor, and bad. Finally, a quality pooling converts the qualitative labels into
scores.

Two approaches to address FR [23] and NR [24] were proposed by Kim and
Lee. The former uses CNNs to learn the HVS behavior from the underlying data
distribution of IQMs databases. The latter approach tries to alleviate differences
in quality between FR and NR approaches. The absence of ground truth in
the online deployment of the NR model is solved by employing local quality
maps derived by FR-IQMs as intermediate regression targets. This requires to
pre-train the FR-IQM model with training datasets where the ground truth is
available.

Liu et al. [25] applied a support vector regression approach to fuse scores
obtained from multiple quality indices into one score. The approach is compu-
tationally expensive since it requires to compute multiple methods. These may
be mitigated by reducing the number of quality indices. However, the method
may fail when the input image has multiple distortions.

In a similar vein, Kang et al. [26] introduced an NR image quality metric
based on CNNs. Within the network structure, feature learning and regression
are integrated into one optimization process that leads to a more effective model
for estimating image quality. To increase the size of the training dataset, input
images are subdivided into 32 × 32 non-overlapping patches and labeled with
a quality score. This may work well when distortions are distributed homoge-
neously in an image, but issues may arise when this hypothesis is not met (and
this is expected to happen in many real cases).

Ye et al. [27] proposed a trained perceptually transform, similar in concept
to PU or PQ EOTF, combined with PSNR for quality assessment of HDR
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images and video. v̧ad́ık et al. [28] presented an analysis of feature descriptors
for objective image quality assessment and proposed a data-driven FR-metric.
Using this framework they optimized the parameters of popular existing metrics.

Recently, Kundu et al. [29] introduced Higrade, a NR metric for tone
mapped images based on a large dataset of HDR images and their tone mapped
versions. The method extracts different gradient-based features of the input
image, which are processed by a support vector machine (SVM). This SVM is
trained using a very large subjective experiment and outputs a scalar value that
represents the perceptual quality of a tone mapped image.

3 Deep Image Quality Metric

3.1 Problem formulation and constraints

Given a pair of reference and distorted images as input, we train DIQM to
produce two types of outcomes: (i) a prediction of the number of pixels above
the probability threshold (probability index) of pixels changes, and (ii) to predict
a single value that quantifies the quality of a processed (distorted) image with
respect to the original (reference) image. Furthermore, we use this visibility
information to detect structural changes as in [5].

In order to achieve this, we selected two popular existing visual objective
metrics: HDR-VDP [4] and DRIM [5]. In principle, it would be possible to
train a model to predict the spatially varying probability map of the per-pixel
probability of distortions as generated by HDR-VDP and DRIM. However, pre-
liminary experiments using fully convolutional networks proved that capturing
fine-grained aspects, as those encountered in high frequency pixel areas of the
ground-truth probability map, were difficult to reproduce; e.g., large saturated
areas prevent the model to accurately infer structures and details.

It is very likely that this problem could be countered by sensibly increasing
the number of training images.

Although the predicted map can still provide meaningful high-level under-
standing about distortions, its usage is often neglected in image quality estima-
tion applications where a unique parameter to define the overall quality of an
image is preferred. There are two main reasons for this. First, its high cost (from
the point of view of computational cost and human effort) might easily become
intractable in standardization activities of large content datasets. Second, the
evaluation of the distortion maps needs to be done manually for each image.
This means the evaluation is tedious and error-prone since the probability of
miss-interpreting the data is large.

HDR-VDP also outputs a value Q that quantifies the overall quality of the
distorted image in terms of visibility [4]. Q can additionally be mapped to the
mean-opinion-score (MOS) [4]. As described in [4], a single probability score for
the entire image can be computed as the maximum value of the probability map
P. HDR-VDP produces also further outputs, including the threshold normalized
contrast map (Cmap) and its maximum value. However, we argue these outputs
are often not required when the main goal is to evaluate the overall quality of
an image, in which case the Q value represents a more reliable choice.

Concerning the DRIM metric, we follow the same design principle adopted
for the HDR-VDP. In this case, we train DIQM to estimate the probability
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index (as defined above) for the three types of contrast distortion: A – con-
trast amplitude, L – contrast loss, and R – contrast reversal. Note that our
model can in principle be easily extended to produce additional outputs (such
as TMQI[12] or HDR-VQM[30]) without any loss in generality; something we
plan to investigate in future research.

3.2 DIQM: Deep Image Quality Metric

We formalize the task of approximating the overall quality value Q and the
probability indexes of DRIM as a regression problem.

As the model architecture, we adopted a Convolutional Neural Network
(CNN) model, as this family of architectures is particularly envisioned for im-
age related tasks [31]. Among the main advantages of CNNs in the realm of
image processing, CNNs are extremely efficient because all intermediate steps
are highly parallelizable. Among the broad set of variants of CNN architectures,
we took the U-Net [32] as a starting point due to its proven success in tackling
tasks similar to the one we are considering here.

U-Net is a CNN model initially introduced for image segmentation in
biomedical contexts, and it is designed to make the most of the augmented
training samples. We argue that solutions to the problem we are tackling here
and fine-grained image segmentation are naturally interrelated as long as both
are constrained to deal with similar aspects of the problem; i.e., the need to si-
multaneously deal with high- and low-level information of the image (commonly
referred to as context and location in [32]).

We propose DIQM, a variant of the U-Net architecture, which is capable of
predicting visual metric features with a high level of confidence. Loosely speak-
ing, its architecture consists of an encoding path, which subsequently extracts
higher-level features from the input images so as to embed the input images
into a latent representation that (differently from the original U-Net) is then
followed by a regressor path to produce the quality values.

The regressor consists of 5 downsampling blocks, each of which is composed
by two 3×3 convolutions with Rectified Linear Unit (ReLU) activation functions
followed by a global average pooling and two fully connected layers with 256
and 1 neurons, respectively; see Figure 1 (DIQM-Q). In the case of DRIM, the
output layer consists of 6 neurons, representing the two probability indexes P75

and P95 for each of the three types of contrast changes (A, L, and R). The
suffixes 75 and 95 indicate the threshold detection probability. This variant of
our DIQM will be referred throughout the whole paper as DIQM-P.

The optimization procedure of DIQM is formalized as an iterative descent
of gradients in the loss function quantifying the error in predictions. As an
approximation to the true gradients (whose exact computation turns out to
be infeasible due to hardware limitations), we use the mini-batch stochastic
gradient descent (with the Adam update rule [33]). As the loss function for a
batch of n examples, we use the Mean Square Error (MSE):

L(Y, Ŷ ) =
1

n

n∑
i=1

(
Ŷi − Yi

)2
, (1)

which is known to be a good default choice (and one that has become the
standard in scalar regression). Note that, in the case of HDR-VDP, Ŷi and Yi
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(a) Gaussian Blur (b) Gaussian Noise

(c) Color Quantization (d) Sinusoidal Grate

Figure 2: An example showing the types of distortions selected for the Scenario
2. The distortions in this figure are enhanced for visualization purposes.
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(a) HDR Image (b) Drago et al. [34] (c) Durand and Dorsey [35]

(d) Kim and Kautz [36] (e) Mertens et al. [37] (f) Reinhard et al. [38]

Figure 3: An example showing the different TMOs selected for the Scenario 4.

are single scalars, whereas for DRIM Ŷi and Yi are vectors of length 6.

4 Images Dataset

In order to set a testbed to fairly train and compare our DIQM against HDR-
VDP and DRIM metrics, we generated different datasets of images to cover
several relevant use cases involving both HDR and SDR content. Albeit DL
techniques can excel in many tasks, they typically require large quantities of
training data to do so. In order to fed our model with enough data, we selected
an initial number of images from available datasets including HDR and SDR
images. For each type of content (HDR and SDR), we generated 6 different
datasets, each of which specialized in a different use-case scenario.

In the case of HDR content, the initial dataset was composed by 387 im-
ages extracted from various available datasets [39, 40, 41] covering a variety
of dynamic ranges from indoors to outdoors, from photographs to computer-
generated images, and frames from 30 different videos. Since consecutive frames
in the video sequence are likely very similar, we extracted a frame every 4 sec-
onds (i.e., we skipped 96 frames, this is nine times more than in previous
work [42]) as a means to prevent almost identical images from being included in
the dataset. We performed data augmented to enlarge this initial HDR dataset.
We applied 3 types of rotations (90◦, 180◦, and 270◦) and horizontal flipping
(also applied to each rotated image). We thus apply a total of six transfor-
mations for each image, obtaining 2, 709 HDR images (including the original
ones).
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In the case of SDR content, we started from an initial set of 9, 227 images
extracted from [43] (i.e., the subsets SanMarco7K and TimeSquare6K ). Due to
a large number of images available for the SDR, data augmentation was not
applied in this case.

Both HDR and SDR images were downsampled to a manageable size of
512 × 512 in order to speed up the network training. Note that our network
is fully-convolutional and, once trained, it can process images at lower and
higher resolutions than 512 × 512; we show this possibility in Section VI.A;
see Figure 11 and Figure 12. Furthermore, we conduct experiments on images
of varying resolution (up to 16 Mpixel) in order to clock execution times; see
Figure 19 and Figure 20.

Note that both HDR-VDP and DRIM require physical values to process a
couple of images in a meaningful way. Therefore, we converted SDR images’
values into physical ones using the specification of a standard SDR sRGB LCD
monitor [44]. To this aim, we linearized pixel values using the inverse sRGB
curve, and we scaled these values in the range of a standard SDR LCD monitor
(i.e., [1, 250] cd/m2 [44]).

We took these two datasets as a starting point to create a series of datasets
representing 6 different use-case scenarios, as described in detail in the following
subsections. Tables 1 and 2 summarize the sizes of the generated datasets.

4.1 High Dynamic Range Visual Differences Predictor
(HDR-VDP)

In this section, we define two different settings to test the Q score in representa-
tive scenarios, encompassing both HDR and SDR contents, for which HDR-VDP
is well suited. The first scenario reproduces standardization in HDR content
(Section 4.1.1), while the second scenario is devoted to representing distortions
in SDR content (Section 4.1.2)

4.1.1 Scenario 1

In the last few years, academia and industry have been actively working on the
definition of standards for the emerging HDR features added to several digital
products. Valuable objective metrics have thenceforth become a fundamental
tool for the standard evaluation. We used the recently proposed JPEG-XT
standard coding system [2, 3] for still HDR images as a representative example.

Starting from the initial dataset of 2, 709 HDR images, we simulated the
compression artifacts produced by JPEG-XT, leaving all encoding parameters
set as specified in [2]. We decided to use a local TMO [38] since, as shown in [2],
the compression capability of JPEG-XT is not strongly influenced by a specific
tone mapping operator. The compression factor for the tone mapped image was
fixed to 80, while the residual compression factor was varied from 1 to 100 at
steps of 20 (we did not observe significant changes at smaller steps). We used
all the three profiles available in the Part-7 of the standard, where each profile
is selected randomly for all possible combinations.
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4.1.2 Scenario 2

HDR-VDP can likewise be used to evaluate distortions for SDR content. There-
fore, we selected four common types of distortions that are representative of
various image processing tasks and randomly applied them to our set of SDR
images. The distortions we considered are listed below:

• Blur - we selected Gaussian Blur distortion, where the sigma parameter
is randomly chosen within the range [0.5, 4].

• Quantization - we randomly applied two types of quantization distortion:
JPEG compression with random quality values in the range [10, 75], and
bit reduction applied to each color channel of the input image by reducing
encoding bits in the range [2, 6].

• Noise - we used two types of noise: Gaussian noise and salt-and-pepper
noise (or Impulse Noise). For the Gaussian noise, we considered the sigma
parameter in the range [0.0001, 0.005]. For the salt-and-pepper noise, the
intensity parameter is varied in the range [0.001, 0.01]. The type of noise
to be applied and its parameters are decided randomly.

• Sine gratings - we randomly applied either a vertical or horizontal sine
grates using a randomly selected intensity in the range [0.005, 0.01] and a
randomly selected frequency in the range [0.008, 0.65].

An example of these distortions is depicted in Figure 2.
Typical image datasets used in the development of quality image metrics,

such as TID20132 [45], Live IQA3 Release 2 [46], and the ESPL Synthetic Image
24 could be used as training data for our model. However, as pointed out in
the recent work of Kim et al. [47], they are too small for being used to train
CNN-based models. We have thus decided to enlarge our original datasets by
integrating the aforementioned datasets. These common datasets consist of
4,492 distorted images. In particular, the first dataset has 25 reference images
at 512× 384 resolution with 3,000 distorted images. The second dataset has 29
reference images at different resolutions (from 640× 512 to 768× 512) with 992
distorted images. Finally, the third dataset has 21 reference images at full HD
resolution (1920 × 1080) with 500 distorted images. Note these images, which
were larger than 512× 512, were randomly cropped.

4.2 Dynamic Range Independent Metric (DRIM)

To evaluate the ability of our approach in approximating the contrast changes
prediction of the DRIM, we defined four different scenarios that, also, in this
case, include both HDR and SDR content. Given that DRIM is robust to
differences in dynamic range, we distributed the scenarios of interest across two
main categories: different dynamic range (Section 4.2.1), and similar dynamic
range (Section 4.2.2).

2http://www.ponomarenko.info/tid2013.htm
3www.live.ece.utexas.edu/research/quality/subjective.htm
4http://signal.ece.utexas.edu/~bevans/synthetic/
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(a) Huo et al. [48] (b) Akyuz et al. [49]

(c) Kovaleski and Oliveira [50] (d) Masia et al. [51]

Figure 4: An example showing the different iTMOs selected for the Scenario 3.
The inverse tone mapped images in this figure are divided by their maximum
luminance value and gamma encoded for visualization purposes.
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Table 1: Datasets generated for for the scenarios where the HDR-VDP[4] metric
is used.

HDR-VDP[4]
Scenario Training Evaluation Test Total

Scenario 1 12,768 1,596 1,638 16,002
Scenario 2 11,536 1,441 1,441 14,418

4.2.1 Different Dynamic Range

We identified two possible scenarios where SDR content is evaluated against its
corresponding HDR content:

• Scenario 3 - This scenario takes into account the comparison of existing
SDR content with respect to its expanded dynamic range version. We
expanded the original SDR dataset used for the HDR-VDP simulation by
randomly applying 4 inverse tone mapping operators (iTMOs) [49, 48, 50,
51]; we used the implementations of the HDR Toolbox [52] with the default
parameters from the original papers. We set the maximum luminance as
3000 cd/m2 (the typical output of an HDR display) in this case. Figure 4
shows an example of applying these operators.

• Scenario 4 - This scenario covers the comparison of existing HDR content
with respect to its tone mapped version. Taking the augmented HDR
dataset as a starting point, we randomly applied 5 tone mapping operators
(TMOs) [38, 35, 34, 36, 37] using the HDR Toolbox [52] implementations
with the default parameters of the original papers. Figure 3 shows an
example of applying these operators.

4.2.2 Similar Dynamic Range

Akin to the HDR-VDP simulation, we considered two scenarios, each of which
meant to evaluate a different type of distortion in SDR and HDR contents. In
this case, though, the images have a similar dynamic range. The scenarios we
investigated include:

• Scenario 5 - This scenario is analogous to Scenario 1 for the case of
HDR-VDP, with the sole difference that the residual compression factor
was varied from 1 to 100 at steps of 10 (unlike in Scenario 1, differences
were noticeable at a smaller step).

• Scenario 6 - In this scenario, we generated the probability indexes using
DRIM in the same SDR content dataset and the same type of distortion
described for Scenario 2.

5 Training

In this section, we turn to describe the implementation details concerning the
preprocessing of the network input and the training procedure. We implemented
DIQM in Python using PyTorch as the deep-learning environment.
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Table 2: Datasets generated for the scenarios where the DRIM[5] metric is used.
DRIM[5]

Scenario Training Evaluation Test Total
Scenario 3 7,379 922 923 9,224
Scenario 4 2,128 266 273 2,667
Scenario 5 23,408 2,926 3,003 29,337
Scenario 6 11,536 1,441 1,441 14,418
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Figure 5: An example of plots of the loss function over epochs for the training
and the validation datasets for DIQM. (a) and (b) are plots for scenarios 1 and
2.

5.1 Input Preprocessing

We pre-process HDR and SDR contents differently. In the case of SDR images,
we linearly scale the pixel values from the range [0, 255] to [0, 1] before feeding
the net. For HDR images, we work on the logarithmic HDR pixel values x′,
obtained from the original values x as

x′ = log10(x+ 1). (2)

By doing so, we obtain an equilibrate scale in the positive only real values that is
not biased towards large differences in high luminance values [42]. The reference
and the distorted images are concatenated along the channel axis and given to
the network as a unique input tensor.

5.2 Optimization Details

We initialized all network weights following the Xavier initialization [53]. We
used stochastic optimization relying on the Adam optimizer [33] with learning
rate 0.001 (leaving the rest of the parameters set to their default value; i.e.,
β1 = 0.9, β2 = 0.999, and ε = 1e−8). The learning rate is decreased by a factor
of 0.2 every time the loss function plateaus.

We set the batch size of DIQM to 32 samples, which was the largest pa-
rameters for which enough memory could be allocated in our NVIDIA GeForce
GTX 1080 GPU. The training set was shuffled whenever an epoch is completed
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Figure 6: Histograms for the prediction of the quality scalar value Q of HDR-
VDP with the DIQM. The MSE for DIQM in Scenario 1 is 0.144, while for
Scenario 2 is 0.275.

to diminish the impact of order-based biases during training. We set the max-
imum number of epochs to 30; the training time varies from approximately 6
hours to 3 days depending on the size of the training set.

In all cases, the final models for which results are reported to correspond
to those obtaining the minimum loss as measured in a held-out validation set
(described in details in Section 6).

6 Results

In this section, we report the experimental results we obtained to validate
DIQM. In particular, we trained our approach to predict the well known vi-
sual metrics HDR-VDP [4] and DRIM [5]. The aim here is to demonstrate
the extent to which DIQM produces high-quality approximations of the quality
factor (scalar Q) of HDR-VDP. Another goal is to show also the capability of
DIQM to predict with high quality, the probability index of the DRIM contrast
change maps. In both cases, we achieved significantly reduced computational
cost when compared to one of the original metrics.

In Sections 6.1, we turn to describe the qualitative and quantitative evalua-
tion of our framework in simulating HDR-VDP and DRIM metrics in 6 different
scenarios that cover both HDR and SDR content. In Section 6.2, we show the
evaluation process followed by tests of the computational performances of the
proposed DIQM. Finally, in Section 6.3 we show some possible applications
where DIQM can be used to select the optimal parameters of an algorithm; e.g.,
TMO, iTMO, compression scheme, etc.

6.1 Learning Performances

6.1.1 HDR-VDP

Figure 5 shows the progress of the loss function as computed on the training
and validation sets throughout the learning process. Figures 5(a) and 5(b)
display examples (for Scenarios 1 and 2) of convergence trends, in which both
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(a) Ground truth image (b) Distorted image - σ = 1.0

(c) Distorted image - σ = 2.5 (d) Distorted image - σ = 4.0

Figure 7: An example of different levels for the blur distortion applied to the
ground truth image (a).

the training and validation MSE smoothly approach zero within 30 epochs. This
is also reflected on the results obtained on the test sets, depicted in Figure 6,
for which DIQM-Q predictions differ only a few units from the ground-truth.

DIQM-Q model is capable to predict the scalar quality value Q of the ground
truth HDR-VDP metric with high accuracy in both scenarios. Only for a few
images the predicted Q value shows an absolute error greater than 1% in Sce-
nario 1; see Figure 6(a). Furthermore, the absolute error is less than 1% for
images in Scenario 2 that is far below the perceived difference by a standard
observer; see Figure 6(b). This appealing feature of DIQM-Q is of the utmost
importance in several applications where the interest resides in predicting the
quality of an image through a unique value (e.g., image standards compression
evaluation, imaging algorithms evaluation, iterative image quality improvement,
image fusion, etc.) while, at the same time, the computational time required to
perform this prediction is real-time (42ms) for images at 512 × 512 resolution.
As will be shown in Section 6.2, DIQM-Q significantly reduces the computa-
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(a) Ground truth image (b) Distorted image - q = 4

(c) Distorted image - q = 28 (d) Distorted image - q = 60

Figure 8: An example of different levels for the quantization distortion applied
to the ground truth image (a). In this case, higher quantization levels mean
better quality.
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Figure 9: Plot of the average over 5 images of the estimated Q values vs. the
ground truth Q values computed using HDR-VDP varying the blur distortion
using a σ value in [0.5, 4.0].

tional cost of HDR-VDP in predicting the Q value. This brings the opportunity
to expand the use of HDR-VDP to more challenging scenarios for which only
modest-sized datasets are currently affordable.

We also evaluated the capability of the DIQM-Q to be consistent with the
level of degradation of the image. To perform this experiment, we selected a
subset of images and applied different type of distortions at different level. Ex-
amples of blur and quantization distortion at different levels of degradation are
shown in Figure 7 and Figure 8, respectively. Then we compared the predicted
Q values of the DIQM-Q with the ground truth value of the HDR-VDP metric.
The results are shown in Figure 9 and Figure 10 for the blur and quantization
distortion, respectively. For all image and type of distortions, the plots show
the consistency of the DIQM-Q in predicting the trend of the applied distortion
with the trend of the ground truth Q value of the HDR-VDP metric.

Finally, we evaluated the capability of the DIQM-Q to be consistent with
HDR-VDP when varying the image resolution. To perform this experiment, we
used 30 high resolution images from a dataset 5 from DIV2K [54]. We scaled
the original images at different resolutions; i.e, from 3.3 Mpixels down to 0.3
Mpixels, obtaining 180 images. Then, we applied the quantization distortion
with 8 levels for color channel to all the images generated. At this point, we ran
both DIQM-Q and HDR-VDP on this set. This test reveals that both DIQM-Q
and HDR-VDP follow similar trends when varying image resolution. DIQM-Q
slightly overestimates HDR-VDP of 1-2 percentage points on average, which is
a negligible error in practical applications. As an example, Figure 11 shows
the average of Q values at different resolutions for both DIQM-Q and HDR-
VDP; we can notice that both follow a similar trend. Similarly, we evaluated
the capability of DIQM-P to be consistent with DRIM at variations of image
resolution. We used 102 randomly picked images from the evaluation set of
Scenario 4, and we tone mapped them using Kim and Kautz’s TMO [36]. The

5http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_HR.zip visited in June 2019

18

http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_HR.zip


0 10 20 30 40 50 60
Quantization level

73

74

75

76

77

78

79

80

81

Q
 v

al
ue

DIQM-Q
HDR-VDP

Figure 10: The plot of the average over 5 images of the estimated Q values vs.
the ground truth Q values computed using HDR-VDP varying the quantization
levels with value in [4, 60]. Note that in this case quantization levels are directly
proportional to quality.

resolution of these images ranges from 0.8 Mpixel to 2.8 Mpixel. By running
both DIQM-P and DRIM on this set, we found out that even in this case DIQM-
P and DRIM follow similar trends. Figure 12 shows the average of L values at
P95 at different resolutions for both DIQM-P and DRIM.

6.1.2 DRIM

For DRIM, we opted for predicting the number of pixels of an image that are
above the probability threshold of detecting a distortion (probability index) and
cast aside the idea of predicting the per-pixel probability maps for the reasons
discussed in Section 3.1. To show the capability of our approach in predicting
this value, we considered two different probability thresholds 75% (P75) and
95% (P95), respectively.

We trained the DIQM-P independently for each of the 4 scenarios described
in 4.2. Figures 13–16 show the correlations between the ground truth and the
predicted values in the 4 scenarios. In all plots, the top row shows the results
for the probability thresholds P75 and the bottom row the results for P95, while
each column shows the results for the three detected contrast changes A, L, and
R.

In an additional experiment, we turn to test whether training one unique
model on the union of the datasets concerning scenarios 3 to 5 (that share
the same input range) instead of using separate datasets could have lead to
some improvement. Figure 17 shows the DRIM correlations to the ground
truth. Despite this leading to a unified model, which simultaneously can tackle
problems coming from any of the three scenarios, the unification comes at a cost,
as witnessed by the deterioration of the correlations. This comes as a surprise
since a DL model trained on much more examples shall as expected deliver
better performance. Likely, the reason for this failure can be explained by the
fact that the unified model has now to divide its capacity (i.e., its parameters)
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Figure 11: Averaged Q values over 180 images as estimated by DIQM-Q vs. the
ground truth Q values as computed by HDR-VDP at different image resolutions.
DIQM-Q and HDR-VDP show comparable trends.
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vs. the ground truth computed by DRIM at different image resolutions. DIQM-
P and DRIM show comparable trends.
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Figure 13: Scatter plots for the DIQM predictions for scenario 3, for both
probability thresholds: (top row) P75 - (bottom row) P95 and for all three types
of contrast distortions detected by the DRIM (i.e., A - contrast amplitude; L -
contrast loss; R - contrast reversal).
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Figure 14: Scatter plots for the DIQM predictions for scenario 4, for both
probability thresholds: (top row) P75 - (bottom row) P95 and for all three types
of contrast distortions detected by the DRIM (i.e., A - contrast amplitude; L -
contrast loss; R - contrast reversal).
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Figure 15: Scatter plots for the DIQM-P predictions for scenario 5, for both
probability thresholds: (top row) P75 - (bottom row) P95 and for all three types
of contrast distortions detected by the DRIM (i.e., A - contrast amplitude; L -
contrast loss; R - contrast reversal).
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Figure 16: Scatter plots for the DIQM-P predictions for scenario 6, for both
probability thresholds: (top row) P75 - (bottom row) P95 and for all three types
of contrast distortions detected by the DRIM (i.e., A - contrast amplitude; L -
contrast loss; R - contrast reversal).
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Figure 17: Scatter plots for the DIQM-P predictions, training on all the data
comprised from scenario 3 to scenario 6, for both probability thresholds: (top
row) P75 - (bottom row) P95 and for all three types of contrast distortions
detected by the DRIM (i.e., A - contrast amplitude; L - contrast loss; R -
contrast reversal).

in dealing with different types of distortions (which may not generalize well)
while, at the same time, is constrained to understand which among the types of
distortions is dealing with.

We also compared our DIQM-P (Scenario 4; i.e., tone mapped images)
against Higrade [55] using its public available implementation6 to study pos-
sible connections between reference and non-reference metrics. Unfortunately,
we could not use the very large dataset provided by Kundu et al. [29] 7 because
this dataset does not provide publicly available HDR images (note that DIQM-P
does not generate probability maps from which MOS could be estimated).

We tried to find a correlation between the two metrics. As a first step, we
tone mapped our dataset of 387 HDR images with six tone mapping opera-
tors [35, 38, 56, 57, 58, 59] used by Kundu et al. [55], thus obtaining 2,322 tone
mapped images. We then ran DIQM-P on each pair of HDR and tone mapped
images. We also ran Higrade1 and Higrade2 models on the tone mapped
images. Figure 18 reveals there is no evident correlation between DIQM-P and
Higrade (we however found out that Higrade1 and Higrade2 are linearly
correlated).

This may suggest that features extracted by DIQM-P and the original DRIM
as amplitude/reversal/loss of contrast may not convey the same result of Hi-
grade when evaluating the image quality of tone mapping images without a

6http://users.ece.utexas.edu/~bevans/papers/2018/noreference/index.html visited
in May 2019

7http://signal.ece.utexas.edu/~debarati/ESPL_LIVE_HDR_Database visited in May
2019
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Figure 18: Scatter plot between Higrade1 and DIQM-P for 3,378 tone-mapped
images.

reference. This may be because the task varies from finding differences in con-
trast changes to no-reference image quality.

6.2 Timings

In order to assess the efficiency of the proposed method, we compared the com-
putational time DIQM requires to deliver its predictions with the computational
costs of the ground-truth HDR-VDP and DRIM implementations.

In these tests, we varied the size of the input images from QVGA to 16-
Mpixel resolution. All experiments were run on a Linux machine equipped with
an Intel CPU Core i7-7800X (3.50 GHz) with 64 Gb of memory and an NVIDIA
GeForce GTX 1080 GPU with 8 Gb of memory.

For HDR-VDP and DRIM metrics, we used the available MATLAB imple-
mentations provided by their authors. For the sake of fairness, we modified their
code to exploit GPU acceleration using the highly optimized NVIDIA CUDA
libraries 8 for convolutions and FFT (which account for most of the computa-
tional time).

As shown in Figure 19 and Figure 20, DIQM drastically reduces the compu-
tational costs of HDR-VDP and DRIM. For example, while the (original) CPU
version of HDR-VDP takes 8.08s to process an image at 1024×1024 resolution,
and its CUDA version takes 1.46s, DIQM requires only 0.14s to undertake the
same task. This represents a 57× speed-up compared to the original version and
a 10× speed-up compared to the CUDA version. Similar gains are obtained also
for DRIM. Furthermore, DIQM can process images at much higher resolutions
than the CUDA versions of HDR-VDP and DRIM, which ran out of memory.

6.3 Applications

In order to show the usefulness of DIQM, we designed and implemented three
applications that exploits it. The first one (HDR Comp.) is a simple compres-

8https://www.mathworks.com/solutions/gpu-computing.html visited in May 2019.
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Figure 19: Timings for the prediction of the quality value Q of DIQM with
respect to the ground-truth HDR-VDP 2.2 [4] metric. The HDR-VDP CUDA
version ran out of memory when processing images with a resolution equal or
higher than 4-Mpixel. Note the log scale.
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2-Mpixel. Note the log scale.
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(a) (b)

Figure 21: An example of a developed application, TMO Opt., for optimizing
the parameters of a TMO (i.e., Reinhard et al. [38]): (a) An HDR image tone
mapped using the default parameters of Reinhard et al.’s TMO [38]. (b) An
HDR image tone mapped using optimized parameters using DIQM. Note that
the look of this rendering looks more natural than (a).

sion scheme, which reduces the file size of an HDR image based on a companding
scheme (tone-mapping for compressing the signal and inverse tone mapping for
expanding it) followed by a choice compression, e.g. JPEG. The application
uses a perceptual metric (both HDR-VDP or DRIM) to determine the best
parameters during the companding steps to achieve high quality. The second
application (TMO Opt.) is a TMO based on Reinhard et al.’s TMO [38] in
which parameters of the global tone curve (i.e., a and Lwhite) are optimized
using DRIM for reducing all possible distortions that the metric can detect.
The third application (iTMO Opt.) is an iTMO based on Masia et al.’s TMO
[51] in which the gamma parameter is optimized using DRIM as for the second
application.

Figure 21 shows a tone mapping result of TMO Opt; note that optimizing
parameters using DIQM lead to more natural images than those obtained using
the standard parameters of TMO. The parameters of Figure 21 were optimized
in only 2.5 seconds using DIQM, while DRIM takes 150 seconds with the original
MATLAB implementation and 29 seconds with the CUDA version.

We gained similar results for the other two applications. For example, HDR
Comp. can compress high-quality 512 × 512 images with JPEG-XT in only
5.38 seconds instead of 151.83 seconds of the original implementation. Finally,
iTMO Opt. can expand the dynamic range of SDR 512 × 512 images in only
5.23 seconds instead of 187.82 seconds of the original implementation.

7 Conclusions and Future Works

Object visual metrics based on the HVS mechanisms provide a useful tool in
the quality assessment of image/video processing techniques. However, their
usage is precluded or limited in certain relevant applicative scenarios due to
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their high computational costs. To overcome this problem, we have presented
DIQM, a deep-learning-based objective metric which can predict scalar quality
values comparable to those obtained by the traditional HDR-VDP and DRIM
algorithms.

DIQM has been tested on a large dataset covering 6 different representative
scenarios, including standardization and distortions, both for HDR and SDR
contents. We have empirically demonstrated DIQM can predict the quality
value Q and the probability index with high accuracy. DIQM is also significantly
computationally cheaper, thus making it feasible to apply such visual metrics
to scenarios that remained out of reach up to date.

Examples of applications that can benefit from the use of DIQM include
optimization processes for selecting optimal parameters for TMOs, iTMOs, and
JPEG-XT.

As future work, we plan to apply this approach in the domain of video
content, where providing fast predictions is of the utmost importance. Typi-
cally, video metrics can be extremely cumbersome in terms of computational
resources; e.g., 5 minutes for a video of 2 seconds [60]. Finally, we plan to
investigate novel edge-aware network architectures such as the bilateral neural
networks [61]. This may improve the quality of the predictions and might enable
a reliable computation of per-pixel probability maps.
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