
Standing on the Shoulders of Software Product Line
Research for Testing Systems of Systems
Antonia Bertolino

ISTI–CNR
Pisa, Italy

antonia.bertolino@isti.cnr.it

Francesca Lonetti
ISTI–CNR
Pisa, Italy

francesca.lonetti@isti.cnr.it

Vânia de Oliveira Neves
Universidade Federal Fluminense

Niterói, Brazil
vania@ic.uff.br

Abstract—The complex and dynamic nature of Systems of
Systems (SoSs) poses many challenges on their validation and
testing, but so far few effective test strategies exist to address
them. On the other hand, extensive research has been conducted
in the testing of Software Product Lines (SPLs), which present
interesting convergence points with SoSs, as both disciplines
aim at reducing development costs and time-to-market thanks
to extensive reuse of existing artifacts. In this paper, we out-
line commonalities and differences between the SoS and SPL
paradigms from the point of view of testing and investigate how
existing methods and tools from SPL testing could be leveraged
to address the challenges of SoS testing.

Index Terms—System of Systems; Software Product Line;
Testing

I. INTRODUCTION

More than a decade ago, the highly-cited FOSE roadmap
of software testing research [1] listed among a few transversal
challenges the need to identify proper testing approaches that
could be applicable within the next emerging development
paradigm. This challenge perpetually continues to trouble
software testing researchers as new paradigms of development
catch on that to pose conceptual and technical issues and
demand appropriate testing methods and tools. The challenge
is further exacerbated by the fact that usually at each new
paradigm launch, the cost and complexity of testing activities
grow [2]. In fact, the new software development processes
are generally conceived as the means for achieving higher
flexibility, dynamism, and adaptation within faster time-to-
market, though without reducing the expectations in terms of
quality and reliability requirements.

Among relatively new paradigms, a System of Systems
(SoS) [3] is developed by combining previously existing
constituent systems, aiming at achieving some global goal, or
mission, which is beyond their individual scopes. Although
the early literature on SoSs can be dated back to the 90’s [4],
not much research on SoS testing has yet been carried out.
Concerning SoS testing, though, do we actually need to invent
new strategies, as previously asked by the authors of [5]? Or,
can we maybe leverage existing methods and tools from other
paradigms?

Along with such questions, in this paper we examine the
literature produced by software testing researchers in the
Software Product Line (SPL) area, who in the last twenty years
have proposed a rich collection of approaches. We believe, in

fact, that –after pointing out the needed distinctions between
respective goals and concepts– there exist quite interesting
convergences.

Aiming at reducing development costs and time-to-market,
while increasing quality, both SPL and SoS paradigms are
strongly centered on reuse of existing artifacts: in SPL, the
components are customised and integrated into a specific
product exhibiting the desired features; in SoS, the constituent
systems cooperate to achieve some global goal. Hence our
investigation aims to ascertain whether researchers in SoS
testing, which is a younger topic, could usefully learn from
the more mature SPL testing literature, and more specifically,
which methodologies and technical approaches could be im-
ported and adapted.

The paper is structured as follows: in Section II, we present
SoS testing challenges at different testing levels, while in Sec-
tion III we present an overview of SPL research on functional
testing. Then in Section IV, we outline commonalities and
differences between the SoS and SPL paradigms from the
point of view of testing, pointing out how existing methods and
tools from SPL testing could be leveraged for each different
SoS testing level. Finally, we draw conclusions and future
work in Section V.

II. CONCEPTS AND CHALLENGES IN SOS TESTING

According to [4], [6], SoSs are classified into four types of
architectures that take into account the existence of a central
governing unit and the way in which the Constituent Systems
(CSs) relate to it to meet the SoS missions. In directed SoSs,
the normal mode of operation of the constituent systems is
subordinate to a central unit, although these systems are ca-
pable of operating independently; despite constituent systems
are subordinated to a central authority, in acknowledged SoSs,
they maintain their independent ownership and objectives; in
collaborative SoSs, the systems are not forced to follow the
central unit, that is, they collaborate voluntarily to attend SoS
missions; finally, in virtual SoSs there is no central unit and
the SoS has no explicit purpose.

SoSs are usually very large systems, which exhibit char-
acteristics of operational and managerial independence, geo-
graphic distribution, evolutionary development, and emergent
behaviour. For these reasons, SoS testing at all levels present
significant challenges, as we briefly discuss in the following.



At the unit level of SoS testing, each individual CS should
be tested in the SoS environment. However, the unavailability
of the CS source-code and of its test cases could make it
difficult to ensure that the CS has the adequate quality to
participate in the SoS. Even if the constituent system’s supplier
provides the original test cases for testing the CS, their number
can be very high, and in addition many of them could aim
at testing features that are not used by SoS, and hence not
in scope [7]. Also, SoS can be composed of different types
of CSs, not always deterministic, such as in cyber-physical
systems or artificial intelligence applications using machine
learning approaches, making it difficult to establish a common
quality criterion for all of them.

To ensure that each CS cooperates properly with its peers,
the SoS must be tested at the integration testing level. The
large number of CSs, which can join or leave the SoS at
any time, can generate an exponential number of interactions
and execution flows that need to be tested, requiring an even
higher efficiency for test cases generation and orchestration
strategies. The authors of [8], [9] propose frameworks to ad-
dress these problems. In particular, the authors of [8] identify
all relevant SoS entities and their interfaces and the flow of
information between the CSs, then they define combinatorial
testing strategies for optimizing the testing and SoS evaluation.
The work in [9] uses a randomization approach to design a
test plan for SoS that minimizes the number of possible test
cases during the integration of the CSs. CSs can also vary
in terms of the offered functionality and can use different
protocols for communication and data transmission, bringing
up interoperability issues that should be also considered during
the integration testing. Also, there may exist interdependences
between the CSs and, depending on the integration strategy
used, it may be necessary to create mocks, which may not be
straightforward.

To verify that the SoS fulfills its missions, we proceed
with the SoS system testing. In this phase, the absence of
requirements models and the scarce documentation makes it
difficult to define the scope of what needs to be tested and
undermines the application of formal verification methods.
CSs may show wrong behaviour when operated in a particular
SoS configuration due to emergent properties insufficiently
captured during the requirements gathering phase. Also, the
number of states and settings that a SoS can reach prevents
the use of exhaustive or exploratory testing. The work in [10]
defines an approach similar to white-box testing to generate
test case suites for a SoS. They use a basic path testing
approach, modelling the CSs as the nodes of a control flow
graph; however they do not carry out case studies and do not
discuss how their approach can scale up in a scenario with
many CSs.

Due to the highly dynamic and evolutionary nature of SoSs,
it is impossible to obtain a permanent state as well as to
foresee all the possible changes. In fact, the individual CSs
can evolve, and the whole SoS can change its composition,
or even start using new features. Hence, in the context of
SoS testing, regression testing should be used to ensure that

TABLE I
SPL TESTING CONCEPTS

Group of strategies [14]

Product specific testing
Incremental testing
of SPL
Reusable asset instantiation
Division of
responsibilities

Investigation topic [18], [17], [19] Domain engineering
Application engineering

SPL testing interest [20], [17] Feature-based
Product-based

each new SoS configuration does not cause any inappropriate
emergent behaviour. However, once again, the large number
of CSs can make existing regression testing techniques not
scalable [11]. The authors of [12], [13] present the PATFrame
framework that aims to predict when a test system needs to be
adapted using the information learned during the test process.
The proposal of [11] deals with a conceptual framework to
govern regression testing for collaborative and acknowledged
SoS, based on the regression test objectives for each phase of
the SoS and using an orchestration graph.

III. SOFTWARE PRODUCT LINE TESTING APPROACHES

Testing software product lines represent a consolidated
research direction as evidenced by the wide variety of test-
ing strategies and several surveys published in the last two
decades, e.g., [14], [15], [16], [17]. In the following we provide
a brief overview of main concepts: for readability, these are
also summarised in Table I.

The work in [14], published in 2004, represents one of the
initial analyses on existing SPLs testing practices and has been
considered for a long time a reference work in the field. It
investigates how to make use of the special characteristics of
product families for testing purposes and identifies four dif-
ferent groups of strategies for integrating testing into product
family engineering that are: i) product specific testing, which
focuses on the validation of a specific product and does not
exploit the benefits of reuse in product families. In this strategy
group, the tests for each derived application are developed
independently from each other, but this is extremely costly;
ii) incremental testing of product families, in which the first
product is tested individually and the following products are
tested using regression testing techniques; iii) reusable asset
instantiation, in which extensive test assets and abstract test
cases are created; iv) division of responsibilities, in which the
different testing activities are distributed among the different
engineering units.

More recent surveys [15], [16] present similar general test
strategies and use them for classifying the analysed primary
studies. According to [18], [17], [19], studies on SPL testing
can belong to two investigation topics: domain engineering
or application engineering. The former focuses on the entire
software product line while the latter focuses on individual
system applications (i.e., the members of the SPL). In domain



engineering, extensive variable test assets are created taking as
input the variability defined for the product line. In application
engineering, where an application is instantiated according to
the requirements, the abstract test cases are extended or refined
to test the product-specific aspects. A lot of research in SPL
testing has been conducted at both levels, but only a few works
span over both topics.

The main interests of SPL testing can be summarised as
feature-based and product-based [20], [17]. The approaches
following the first interest are based on feature interaction
coverage, namely they aim to check that every feature com-
bination is consistent with the specification and does not
violate the stated constraints. In this context, Combinatorial
Interaction Testing (CIT) [19] supports the selection of the
test set covering the combinations of features that will be
present in most products or in which the interaction faults are
more likely to occur. Towards this goal, t-wise feature coverage
has been applied in conjunction with SAT solvers, to reduce
the set of possibilities to a reasonable and representative set
of product configurations. In particular, many of the works
analysed in [17] applied pairwise as a test case reduction
heuristic: instead of combining all the features, they describe
the input model as a combination of a couple of features and
try to satisfy the constraints between them, so to reduce the
test set and find inconsistencies.

The approaches following the product-based interest aim
to check the correctness of functionalities of each product.
Testing approaches following this second interest define test
cases and test scenarios by leveraging two main features that
are: variability and asset reuse. In the former case, model-
based strategies in which test models are able to capture
variability among products [21] can be used. For instance,
parameterised UML models can be adopted annotating the
variability, by means of parameters or stereotypes. In the latter
case, approaches aim to reuse test cases, test scenarios, test
results, and test data, either among products or from a core
asset base. The main idea is to consider a SPL as a core
module, that is an implementation of a valid product, and a
set of delta modules that represent changes to be applied to
the core module to obtain further products. Testing is focused
on these changes and on the differences between product
instances; this allows for an increased reuse of test assets
and test results among products, based on regression testing
principles.

Finally, the authors of [19] investigate the usage of Search-
Based Software Engineering (SBSE) techniques into SPL and
identify testing as the main application of SBSE. In partic-
ular, greedy algorithms and genetic algorithms are the most
common SBSE techniques used for domain testing. The same
authors also address prioritisation and optimisation problems
of SPL test suites, aiming at the minimisation of their sizes
and the maximisation of their t-wise coverage.

IV. FROM SPL TESTING TOWARDS SOS TESTING

Based on the above overviews, it should be evident how
SPL and SoS paradigms share several underlying principles:

i. large scale reuse of software components or constituent
systems;

ii. reduced development costs and time-to-market;
iii. capability of dynamic and fast (re)configuration and

customisation.
Due to such characteristics, one of the major problems in

SPL testing is the unfeasibly large number of variations that
should be executed. In fact, several SPL testing approaches
are conceived to avoid the exhaustive testing of each single
product independently. Similarly, many of the challenges in
SoS testing are due to a large number of possible behaviours
that an SoS can expose when considering all possible ways
in which its constituent systems could interact. We can under-
stand each entry, exit, replacement, or even evolution of a CS
as a new SoS configuration that we need to test.

However, there also exist notable differences: while vari-
ability is a fundamental aspect of SPL, in SoS it can happen
but is not central. Indeed, both in SPL and SoS a same compo-
nent/CS can be used in more collaborations (product/mission).
However, in each new product, a SPL component is used
under differing configurations using differing features; in SoS
a same existing individual is reused as it is, usually without
customisation, but relying on different functionalities among
the offered services, depending on the mission.

In SoS a fundamental aspect is the autonomy of the CSs,
whereas in SPL the components are generally provided by a
central owner. In this sense, SPL appears more similar to the
case of directed or acknowledged SoS architectures.

In Section II, we identified four testing levels for SoS:
unit, integration, system, regression. In Table II we attempt a
speculation of how some of the results in SPL testing research
could be considered and adapted to the testing of SoSs.

Concerning testing SoS at the unit level, this entails the
testing of each single CS independently from the SoS in which
it is involved and traditional testing strategies apply. At this
level, we do not see neither peculiar SoS testing concerns, nor
specific techniques from SPL testing literature [22], [17] that
would be relevant. Hence, the table does not include a row
for unit level, and in the following, we focus on integration,
system and regression testing.

Concerning SPL feature-based testing interest, as explained
in [17], “...when checking the properties or configurations of a
SPL, every feature combination have to be consistent with the
specification and must not violate the stated constraints”. In
the context of SoS, similar concerns apply for SoS integration
and system testing levels.

In SoSs, the number of possible combinations of all func-
tionalities of the involved CSs increases exponentially with the
number of involved CSs. Then, testing all possible combina-
tions is, therefore, time-consuming and costly.

Specifically, at integration testing level, as evidenced in
Table II (second row), an important challenge is to reduce the
vast potential configurations in which CSs could collaborate.
For this, we envisage that the broad SPL literature on Combi-
natorial Interaction Testing (CIT) and Search-Based Software
Engineering (SBSE) targeting the domain engineering scope



TABLE II
FROM SPL TESTING TOWARDS SOS TESTING

SoS testing level SoS goal SoS challenge Related SPL testing
research scope Related SPL strategies SPL approaches that

could be adapted
Adoption of SPL
approach in SOS testing

Integration
testing the integration of
all possible combinations
of all variations of CSs

reducing the set of possi-
bilities to a reasonable and
representative set of SoS
configurations

domain engineering feature-based
combinatorial interaction
testing (CIT)

compute test suites for all
possible combinations of
t selected and
(un)selected
functionalities of CSs

search-based software
engineering (SBSE)

select a smaller test set
for a subset of possible
SoSs

creating CSs mocks - - - -

System
testing the proper be-
haviour or mission of a
whole SoS

difficulty of pro-
viding a system
model

domain engineering product-based variability model
define reusable test assets
for SOS

application engineering asset reuse

instantiation of the test
asset for deriving test
cases for the specific SoS
mission

Regression
ensure that updates and
evolution of the CSs or
of their interactions do not
cause unintended emer-
gent behaviours

orchestration of test cases domain engineering feature-based prioritization

reordering SoSs to be
tested and their test cases
for early fault detection

finding those test cases
for the specific SoS that
are more likely to spot
inappropriate or
unexpected behaviours

application engineering product-based asset reuse
instantiation of the test
asset for deriving test
cases for the specific SoS

and proposing feature-based solutions, could be considered
and adapted. In the former case, the goal is to derive test suites
for all possible combinations of t features of a SPL feature
model, corresponding to a set of products where the interaction
faults are most likely to occur. In particular, pair-wise feature
coverage (in which the value of t is 2) in conjunction with SAT
solvers represents the most used technique for deriving test
cases. For instance, the authors of [23] provide a constraint-
based testing tool for automatic generation of test configura-
tions that cover all pairwise interactions in a feature model.
Similar approaches could be used in SoS testing context for
reducing the number of combinations of CSs configurations
to be tested in SoSs. In the latter case, greedy algorithms or
genetic algorithms are used for keeping as small as possible
the number of tests that are generated for the product line.
As an example of such category, the work in [24] leverages
an objective function based on cyclometric complexity metric
adapted to feature models. Similar approaches could be used
for searching the possible configuration space of a set of CSs
and then selecting a limited number of the most effective
configurations to be addressed by the tests in the derived test
suite.

As sketched in Table II, another challenge of SoS testing
at integration testing level is the creation of mocks that could
be used to test the interaction of a specific CS with other CSs
that are not available at testing stage. The creation of mocks or
stubs is also needed in SPL testing for replacing undeveloped
modules of absent variants [25]. However, at the best of our
knowledge, no specific technique tailored at the SPL context
is adopted for the mocks creation.

Concerning product-based testing, this would entail [17]
“...to check the set of correctness properties of each product.
Given that a built software artifact can be used by a range of
products, an uncovered defect may be propagated to the many
products that include it”. In the SoS context, the research

aims at approaches for validating the proper behaviour of each
CS when interacting within the emerging SoS architecture. At
SoS system testing level, this amounts to derive from the SoS
model a set of end-to-end test cases for verifying the SoS
missions.

At system testing level, for the purpose of testing, each
unique mission for a SoS can be understood as a different
product in a SPL. Therefore, we can assimilate testing ap-
proaches investigated by SPL researchers for application en-
gineering to mission-oriented testing research in SoS. Further,
we can use a same set of CSs to compose different SoS
pursuing other missions. An example is presented in [26],
in which we show how the same collection of CSs can be
organised in different ways in order to fulfil different missions
from three SoSs.

Therefore, as sketched in Table II (third row), a challenge
of SoS system testing is that of having a system model
expressing all variable functionalities of CSs, ensuring that
only the required functionalities are included in the resulting
SoS. Moreover, a common functionality in different SoSs may
require different tests. In the context of SPL domain engineer-
ing, feature-based modelling approaches are used to enable the
annotation of commonalities and variability of products in test
models. Some approaches, such as [27], [28], [29] propose test
case derivation from requirements modelled using enhanced
UML use cases, and allow to specify variability in the test
cases and test scenarios [30]. In the context of SPL application
engineering, the key idea is to develop the domain models of
the product line and then instantiate them to a given product.
These approaches could be exploited for defining reusable test
assets (test cases or test scenarios) for all SoSs in which a set
of CSs in involved and then instantiating these assets so to
derive the test cases for the specific SoS.

With reference to the SoS regression testing level (see the
fourth row of Table II), the main goal is to identify, select,
and possibly combine regression test cases in order to assess



if SoSs keep working correctly even after changes have been
introduced either in their CSs or in the interactions among
CSs [11]. Specifically, considering the testing of different SoSs
emerging from the collaboration of several CSs, one important
challenge is defining an orchestration framework in order to
select and compose the existing test cases of SoSs according
to a dependency graph and automate the regression testing
activities [11]. In the context of SPL domain engineering
testing, starting from a feature model, the set of products to
be tested is selected (e.g., by using t-wise), and then, this
set of products is prioritised according to multiple criteria
determining the execution order of the test cases. The work
in [31] provides a comparison of prioritisation approaches that
could be leveraged in the SoS context for providing an ordered
set of SoSs to be tested aiming to detect critical faults as soon
as possible, e.g., those causing failures in a higher number of
SoSs (corresponding to the products of a SPL).

Concerning the regression testing of a specific SoS instead,
the challenge is to identify those test cases that are more likely
to spot inappropriate or unexpected behaviours. However,
due to a large number of SoS configurations, to ensure its
correctness, in general, it is not feasible to design and conduct
the testing of a specific SoS in isolation. In the context of SPL
application testing, reuse approaches for testing [32] exist that
focus on the differences of product instances with respect to a
core module represented by a valid product. In the same way,
as also showed in [26], a set of SoSs can be originated by
a core SoS and a set of additional CSs or variations in the
existing CSs able to originate new and valid SoSs. Then, the
approaches of SPL variability models and asset reuse could be
adopted for deriving test cases for a new SoS only focusing
on the deltas and reusing the test assets of missions and
configurations already tested for other SoSs.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated how the research on SoS
testing could benefit from the extensive literature on SPL
testing. We identified several commonalities and convergences
among SPL and SoS paradigms, due to the high configurability
and reusability of the components of both types of systems.
After analysing the literature on SPL testing, we identified
the main strategies that could be leveraged to address the
challenges at the different levels of SoS testing. The most
challenging testing levels in which we identified potential SPL
testing approaches that could be leveraged for improving SoS
testing are integration, system and regression, whereas neither
peculiar SoS testing issues, nor specific SPL techniques have
been found for unit testing level.

In this paper, we focused on functional testing. However,
also non-functional testing is very relevant in the system level
of SoS, for instance, also related to the availability, security
concerns, and reputation of the CSs. On the other hand,
testing of well-known quality attributes, such as response time,
performance, availability, and scalability is crucial in SPL for
any derived resource-constrained product [15].

It is worth mentioning that the application of SPL testing
approaches and tools for SoS testing is not straightforward,
and it is necessary to adapt them to the SoS particularities. As
future work, we plan to extend our work offering guidelines
on how these approaches can be adjusted as well as deriving
an SoS case study in which we will show the practical
applicability of specific SPL testing approaches at different
testing levels.

In the future, we are also interested in investigating more
about non-functional test approaches adopted in SPL and
how they can be leveraged for non-functional testing of SoS.
Moreover, we speculate that perhaps the cross-fertilisation
could happen in the opposite direction: SPL research could
learn approaches used for non-functional testing of SoS, e.g.
as in [33], to enhance their security.

In this paper, after a very quick review of the literature,
we identified a significant set of papers useful to detect a
possible correlation between SoS and SPL from the point of
view of testing. Moreover, it would be interesting in the future
to conduct a Rapid Review (RR), following the approach
presented in [34] that also involves the collaboration of prac-
titioners, in order to investigate more about the convergence
and differences between SPL and SoS testing and provide in
a timely way evidence of our findings.

VI. ACKNOWLEDGEMENTS

This paper has been partially supported by the Italian MIUR
PRIN 2017 Project: SISMA (Contract 201752ENYB).

REFERENCES

[1] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering, ser. FOSE ’07.
USA: IEEE Computer Society, 2007, p. 85–103. [Online]. Available:
https://doi.org/10.1109/FOSE.2007.25

[2] A. Bertolino and P. Inverardi, “Changing software in a changing world:
How to test in presence of variability, adaptation and evolution?”
in From Software Engineering to Formal Methods and Tools, and
Back, ser. LNCS, M. H. ter Beek, A. Fantechi, and L. Semini,
Eds., vol. 11865. Springer, 2019, pp. 56–66. [Online]. Available:
https://doi.org/10.1007/978-3-030-30985-5_5

[3] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys, vol. 48,
no. 2, pp. 1–41, 2015.

[4] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[5] V. O. Neves, A. Bertolino, G. De Angelis, and L. Garcés, “Do we need
new strategies for testing systems-of-systems?” in Proc. Int. Workshop
on Software Engineering for Systems of Syestems, 2018, p. 29–32.

[6] J. S. Dahmann and K. J. Baldwin, “Understanding the current state
of US defense systems of systems and the implications for systems
engineering,” in Systems Conference. IEEE, 2008, pp. 1–7.

[7] B. Miranda and A. Bertolino, “Testing relative to usage scope: Revisiting
software coverage criteria,” ACM Trans. Softw. Eng. Methodol., vol. 29,
no. 3, Jun. 2020. [Online]. Available: https://doi.org/10.1145/3389126

[8] S. Luna, A. J. Lopes, H. Y. S. Tao, F. Zapata, and R. Pineda, “Integration,
Verification, Validation, Test, and Evaluation (IVVT&E) Framework for
System of Systems (SoS).” in Complex Adaptive Systems, ser. Procedia
Computer Science, C. H. Dagli, Ed., vol. 20. Elsevier, 2013, pp. 298–
305.

[9] Q. Liang and S. H. Rubin, “Randomization for testing systems of
systems,” in 2009 IEEE International Conference on Information Reuse
Integration, Aug 2009, pp. 110–114.

https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1007/978-3-030-30985-5_5
https://doi.org/10.1145/3389126


[10] F. Zapata, A. Akundi, R. Pineda, and E. Smith, “Basis path analysis
for testing complex system of systems,” Procedia Computer Science,
vol. 20, pp. 256–261, 2013.

[11] A. Bertolino, G. De Angelis, and F. Lonetti, “Governing regression
testing in systems of systems,” in Proc. of Int. Symposium on Software
Reliability Engineering Workshops. IEEE, 2019, pp. 144–148.

[12] J. T. Hess and R. Valerdi, “Test and evaluation of a SoS using a
prescriptive and adaptive testing framework,” in 2010 5th International
Conference on System of Systems Engineering, June 2010, pp. 1–6.

[13] S. Ferreira, R. Valerdi, N. Medvidović, J. Hess, I. Deonandan,
T. Mikaelian, and G. Shull, “Unmanned and autonomous systems of
systems test and evaluation: Challenges and opportunities,” in IEEE
Systems Conference, 2010, p. 15.

[14] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product family testing: a
survey,” ACM SIGSOFT Software Engineering Notes, vol. 29, no. 2, pp.
1–6, 2004.

[15] P. A. d. M. S. Neto, I. do Carmo Machado, J. D. McGregor, E. S.
De Almeida, and S. R. de Lemos Meira, “A systematic mapping study
of software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407–423, 2011.

[16] E. Engström and P. Runeson, “Software product line testing–a systematic
mapping study,” Information and Software Technology, vol. 53, no. 1,
pp. 2–13, 2011.

[17] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S.
De Almeida, “On strategies for testing software product lines: A sys-
tematic literature review,” Information and Software Technology, vol. 56,
no. 10, pp. 1183–1199, 2014.

[18] K. Pohl, G. Böckle, and F. J. van Der Linden, Software product line
engineering: foundations, principles and techniques. Springer Science
& Business Media, 2005.

[19] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed, “A systematic map-
ping study of search-based software engineering for software product
lines,” Information and software technology, vol. 61, pp. 33–51, 2015.

[20] I. do Carmo Machado, J. D. McGregor, and E. Santana de Almeida,
“Strategies for testing products in software product lines,” ACM SIG-
SOFT Software Engineering Notes, vol. 37, no. 6, pp. 1–8, 2012.

[21] K. L. Petry, E. Oliveira Jr, and A. F. Zorzo, “Model-based testing of
software product lines: Mapping study and research roadmap,” Journal
of Systems and Software, p. 110608, 2020.

[22] B. Pérez, M. Polo, and M. Piatini, “Software product line testing-a
systematic review,” in 4th International Conference on Software and
Data Technologies (ICSoft 2009), Sofia, Bulgaria, 2009.

[23] A. Hervieu, B. Baudry, and A. Gotlieb, “Pacogen: Automatic generation
of pairwise test configurations from feature models,” in Proc. of IEEE
22nd International Symposium on Software Reliability Engineering.
IEEE, 2011, pp. 120–129.

[24] F. Ensan, E. Bagheri, and D. Gašević, “Evolutionary search-based test
generation for software product line feature models,” in Proc. of In-
ternational Conference on Advanced Information Systems Engineering.
Springer, 2012, pp. 613–628.

[25] J. Lee, S. Kang, and D. Lee, “A survey on software product line
testing,” in Proceedings of the 16th International Software Product Line
Conference-Volume 1, 2012, pp. 31–40.

[26] A. Bertolino, G. D. Angelis, F. Lonetti, V. O. Neves, and
M. A. Olivero, “EDUFYSoS: A factory of educational system of
systems case studies,” in 15th IEEE International Conference of
System of Systems Engineering, SoSE 2020, Budapest, Hungary,
June 2-4, 2020. IEEE, 2020, pp. 205–210. [Online]. Available:
https://doi.org/10.1109/SoSE50414.2020.9130551

[27] A. Bertolino and S. Gnesi, “Use case-based testing of product lines,”
ACM SIGSOFT Software Engineering Notes, vol. 28, no. 5, pp. 355–358,
2003.

[28] E. Kamsties, K. Pohl, S. Reis, and A. Reuys, “Testing variabilities in use
case models,” in International Workshop on Software Product-Family
Engineering. Springer, 2003, pp. 6–18.

[29] C. Nebut, Y. Le Traon, and J.-M. Jézéquel, “System testing of product
lines: From requirements to test cases,” in Software Product Lines.
Springer, 2006, pp. 447–477.

[30] S. Kang, J. Lee, M. Kim, and W. Lee, “Towards a formal framework
for product line test development,” in CIT 2007: 7th IEEE International
Conference on Computer and Information Technology, 11 2007, pp. 921
– 926.

[31] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés, “A comparison of test
case prioritization criteria for software product lines,” in 2014 IEEE

Seventh International Conference on Software Testing, Verification and
Validation. IEEE, 2014, pp. 41–50.

[32] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity, “Incremental model-
based testing of delta-oriented software product lines,” in International
Conference on Tests and Proofs. Springer, 2012, pp. 67–82.

[33] M. A. Olivero, A. Bertolino, F. J. D. Mayo, M. J. Escalona,
and I. Matteucci, “Addressing security properties in systems of
systems: Challenges and ideas,” in Software Engineering for Resilient
Systems - 11th International Workshop, SERENE 2019, Naples,
Italy, September 17, 2019, Proceedings, ser. Lecture Notes in
Computer Science, R. Calinescu and F. D. Giandomenico, Eds.,
vol. 11732. Springer, 2019, pp. 138–146. [Online]. Available:
https://doi.org/10.1007/978-3-030-30856-8_10

[34] B. Cartaxo, G. Pinto, and S. Soares, “The role of rapid reviews in
supporting decision-making in software engineering practice,” in Proc.
of the 22nd International Conference on Evaluation and Assessment in
Software Engineering, 2018, pp. 24–34.

https://doi.org/10.1109/SoSE50414.2020.9130551
https://doi.org/10.1007/978-3-030-30856-8_10

