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Recent experiments with strong THz fields in unconventional cuprates superconductors have
clearly evidenced an increase of the non-linear optical response below the superconducting criti-
cal temperature Tc. As in the case of conventional superconductors, a theoretical estimate of the
various effects contributing to the non-linear response is needed in order to interpret the experimen-
tal findings. Here we report a detailed quantitative analysis of the non-linear THz optical kernel in
cuprates within a realistic model, accounting for the band structure and disorder level appropriate
for these systems. We show that the BCS quasiparticle response is the dominant contribution for
cuprates, and its polarization dependence accounts very well for the third-harmonic generation mea-
surements. On the other hand, the polarization dependence of the THz Kerr effect is only partly
captured by our calculations, suggesting the presence of additional effects when the system is probed
using light pulses with different central frequencies.

I. INTRODUCTION

The recent technological advances in the generation of
strong THz pulses triggered an intense activity aimed
at using light to selectively excite fundamental modes in
condensed-matter systems[1–3]. In particular, the THz
range is the relevant frequency window for phononic exci-
tations and collective modes in broken-symmetry states,
like e.g. magnons in the magnetically-ordered phase and
complex (amplitude and phase) fluctuations of the super-
conducting (SC) order parameter. In the case of phonons,
it has been rapidly understood that experiments with
THz pulses[4, 5] closely mirror the experiments done
with intense near-infrared (NIR) and visible (VIS) light
fields[6]. This is e.g. the case for pump-probe protocols,
where a weak probe pulse with a variable time delay tpp
with respect to the pump detects the relative changes
in the reflectivity or transmission through the sample,
which can be periodically modulated due to the excita-
tion of Raman-active phonons. In the case of eV light,
the interaction between ultrashort optical pulses and lat-
tice degrees of freedom in non-absorbing materials has
been unambiguously interpreted[6, 7] as an impulsive-
stimulated Raman scattering (ISRS) process, where the
phonon generation occurs at the difference frequency of
two high-energy photons taken from the pump field. In
close analogy, experiments done with THz pulses achieve
the same goal by a sum-frequency process[4, 5], lead-
ing to a sharp response whenever the pump frequency Ω
matches half of the phonon energy ωph, i.e. Ω = ωph/2.

The case of Raman-active phonons provides a bench-
mark example of a more general mechanism allowing
for the impulsive excitation of many different modes
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with a Raman-like symmetry. Indeed, as we will dis-
cuss in details in this manuscript, the experimental find-
ings can be understood in a rather general way by con-
sidering that a Raman-active phonon leads to a strong
resonance in the non-linear optical kernel K(ω) at the
phonon frequency ωph. As a consequence, one would ex-
pect the same reasoning to hold also for e.g. SC collec-
tive excitations[8, 9], once that ωph is replaced by the
characteristic energy scale ωres where the correspond-
ing non-linear kernel is resonant. However, even within
this scheme the interpretation of experiments in this class
of materials has been much more controversial[10]. The
reason is that even though all measurements in conven-
tional superconductors[11–17] can be reconciled with a
non-linear kernel peaked at ωres = 2∆, where ∆ is the
SC gap, the identification of the relevant excitations re-
sponsible for such resonance has been debated. Indeed
in a superconductor both the BCS response probing the
quasiparticle continuum and the amplitude fluctuations
of the SC order parameter, also named Higgs mode, are
resonant at 2∆. As a consequence, only a precise theo-
retical estimate of the relative intensity of the two con-
tributions, or the analysis of their dependence on the
polarization of the pump field with respect to the main
crystallographic axes, can be used to disentangle the ori-
gin of the 2∆ resonance.

Trying to understand which one, among the BCS
and the Higgs contribution, is the main source for this
nonlinear effects has been the subject of an intense
experimental[11–17] and theoretical work[8, 13–15, 18–
25] in the last few years. In the attempt to resolve such
a controversy, it turned out that despite both VIS and
THz pulses can trigger collective excitations via an ISRS
excitation process, one finds that in a superconductor
the non-linear optical kernel K controlling the response
is different in the two cases, i.e.

KTHz
Raman 6= KeV

Raman. (1)
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In other words, even though in both cases only Raman-
like excitations are involved, the microscopic fermionic
processes mediating the light-mode coupling are different
in the case of a difference-frequency (in the visible) or of
a sum-frequency (in the THz) excitation. More specif-
ically, while KeV

Raman in the widely used effective-mass
approximation[26] essentially probes the BCS continuum
via lattice-modulated charge fluctuations, as given by
diamagnetic-like coupling of electrons to light, KTHz

Raman
also probes the BCS continuum via paramagnetic-like
coupling of the electron current to light. Such a difference
arises once impurity effects are taken into account[22–
25], since current is no more conserved in the presence
of disorder. Such a difference in turns leads to distinct
selection rules for THz-driven or VIS-driven excitations,
making eventually the Higgs-mode excitation, irrelevant
in the clean limit[8, 26], sizeable in the strong-disorder
limit[22–25].

The above result is particularly relevant in the con-
text of recent experiments in unconventional cuprate su-
perconductors. So far, the only observation of marked
2∆ oscillations in cuprates has been done using visible
light[27], and it has been ascribed to the BCS response, in
agreement with the usual interpretation of conventional
Raman measurements in cuprates[8, 26]. Nonetheless,
the specular experiments performed with THz light have
been almost exclusively interpreted so far as a response of
the Higgs mode[28–31], despite the lack of a theoretical
calculation of KTHZ

Raman for these systems. The aim of the
present manuscript is to provide such a quantitative anal-
ysis, by means of the direct computation of the non-linear
THz Raman tensor within a realistic microscopic model
for cuprates. In particular, we will take advantage of the
numerically-exact calculation in the presence of disorder
recently discussed in Ref. [25] to provide a quantitative
estimate of KTHZ

Raman as a function of the band parameters
and/or the doping level. As we shall see, for the band
structure and disorder level of cuprates the contribution
of the Higgs mode is still fairly subdominant with respect
to the BCS response, whose polarization dependence can
be well understood by taking into account both diamag-
netic and paramagnetic processes at an appropriate dis-
order level. While this result completely accounts for
the polarization dependence observed for third-harmonic
generation experiments in transmission[29, 31], where the
signal is pretty much isotropic, it leaves nonetheless some
open questions for the polarization observed via THz
pump-optical probe experiments[28, 30], that report in-
stead a sizeable anisotropy of the signal for overdoped
samples. We will argue below that such a difference can
be ascribed to the peculiar role of paramagnetic-like pro-
cesses when THz and VIS light pulses act simultaneously,
leading in principle to an intermediate effect between the
two extreme cases encoded in Eq. (1).

II. NON-LINEAR RESPONSE FROM
RESONANT MODES

Before discussing the specific case of cuprates, let us
provide a general interpretative scheme to understand
how the measured quantity in different unconventional
THz spectroscopic techniques can be related to the same
non-linear optical response, setting the basis for a more
rigorous understanding of the experimental results. Since
a detailed discussion has been already provided in Ref.
[9], here we will recast the main results only. In general,
one can distinguish between two classes of experiments
(see Fig. 1): (a) measurements of third-harmonic gener-
ation (THG) in transmission and (b) pump-probe pro-
tocols, both in transmission and reflection configuration.
In the former case one excites the sample with an in-
tense THz laser pulse Epump(t) and records the transmit-
ted electric field Eout(t). These experiments are usually
performed with multi-cycle laser pulses, such that the
spectrum of the incoming radiation Epump(ω) is strongly
peaked around a central frequency ω = Ω. In this situ-
ation, the THG process manifests as significant spectral
component of Eout(ω) at 3Ω, with different amplitudes
according to the incoming Ω value or to the specific tem-
perature of the sample. In the case (b), instead, the
system can be excited either with a single-cycle or with
a multi-cycle THz laser pulse. Single-cycle pulses last for
less than 1 ps, and are thus associated with a relatively
broad spectrum around the central frequency Ω. The
subsequent detection process occurs using a weak THz
or NIR/VIS probe pulse. In both cases the probing field
is delayed by tpp with respect to the pump laser pulse
and the recorded signal is usually a differential change
δEprobe in the transmitted or reflected probe field mea-
sured with and without the pump, recorded as a function
of tpp.

Following the field-theory approach developed e.g. in
Refs. [8, 9, 15], in order to reproduce the experimen-
tal findings one has to compute the third-order current
flowing inside the sample, given in full generality by the
partial derivative with respect to the external e.m. field
of the fourth-order action S(4) written in terms of the
e.m. vector potential A, where E ≡ −∂tA, i.e.

S(4)[A] = e4

∫
dΩ1dΩ2dΩ3

∑
αβγδ

Aα(Ω1)Aβ(Ω2)×

×Kαβγδ(Ω1,Ω2,Ω3)Aγ(Ω3)Aδ(−Ω1 − Ω2 − Ω3),

(2)

with e the electron charge and Kαβγδ a third-order ten-
sor, which depends in the most general case on four spa-
tial indexes and three incoming frequencies. While Eq.
(2) accounts for all the possible third-order processes con-
tributing to the nonlinear current, we will focus for the
moment on the sub-set of processes allowing us to rewrite
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Figure 1. Schematics of unconventional THz spectroscopic
techniques in transmission. In a typical THG experiment
(a), the sample is perturbed using a multi-cycle (narrowband)
THz pump pulse at Ω and one collects the induced transmit-
ted component of the field at 3Ω. In pump-probe measure-
ments (b), instead, one first perturbs the sample with an in-
tense (multi-cycle or single-cycle) pump field and then records
the differential transmitted component, with and without the
pump, of a weak probe pulse, as a function of the time delay
tpp between the two pulses at fixed observation time tg.

the effective action as

S(4)[A] =

∫
dΩ

∑
αβγδ

Ā2
αβ(Ω)Kαβ;γδ(Ω)Ā2

γδ(−Ω) =

=

∫
dtdt′

∑
αβγδ

A2
αβ(t)Kαβ;γδ(t− t′)A2

γδ(t
′), (3)

where we defined Ā2
αβ(Ω) ≡

∫
dωAα(Ω)Aβ(Ω−ω) as the

Fourier transform of Aα(t)Aβ(t) and we put the semi-
colon between spacial indices in K to underline that the
nonlinear kernel has a Kubo-like structure, with two ver-
tices carrying two field components each. The nonlinear
current along the generic direction α then reads

JNLα (t) = −2e4
∑
βγδ

Aβ(t)

∫
dt′Kαβ;γδ(t−t′)Aγ(t′)Aδ(t

′).

(4)
When dealing with THG measurements only the
Apump(t) field is present, meaning that, if light is shed
along e.g. the y crystallographic axis and one collects
the transmitted field component at 3Ω along the same
direction (see Fig. 1a), the resulting THG intensity is
proportional to

∣∣JNLy (3Ω)
∣∣2, since the linear response

to the incoming field does not contain additional har-
monics. In particular, by approximating the incident
multi-cycle incoming field with a monochromatic one
Ay(t) = A0 cos(Ωt), the intensity of the THG signal can
be written as

ITHG(Ω) ∼
∣∣∣∣∫ JNLy (t)ei3Ωt

∣∣∣∣2 ∝ |Kyy;yy(2Ω)A3
0|2, (5)

showing that ITHG scales as the squared modulus of the
nonlinear kernel evaluated at twice the frequency of the
incoming pump field.
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Figure 2. THG with a narrow-band pulse. (a) Spectral com-
ponent of the non-linear kernel K(ω) resonant at ωres/2π '
1.4 THz (grey line) along with the squared pump pulse Ā2(ω)
for two values of the central frequency, Ω1/2π = 0.3 THz
(τ = 9.5 ps, red line) and Ω2/2π = 0.6 THz (τ = 4.8 ps, blue
line). (b) Corresponding spectrum of the non-linear current
JNL(ω) computed using Eq. (6). The dashed area represents
the spectral region not relevant for the THG.

For realistic multi-cycle band pulses the pump field can
be described by periodic oscillations convoluted with a
gaussian decay [9], i.e. Ay(t) = A0e

−(2t
√

ln 2/τp)2 cos(Ωt).
In this case the non-linear current JNL is given by the
more general convolution[8, 9]

JNLy (ω) = −
∫
dω′Ay(ω − ω′)Kyy;yy(ω′)Ā2

y(ω′). (6)

A typical spectrum of JNL(ω) is shown in Fig. 2b, with
the blue and red lines corresponding to two possible val-
ues of the central frequency Ω of the pump. Here the
non-linear kernel K(ω) is taken with a marked resonance
at ωres ' 1.4 THz, and its form is the one expected
for a superconductor (see below). As one can see, since
Ā2(ω) has spectral components both around ω ' 0 and
ω ' 2Ω, see Fig. 2a, the non-linear current JNL(ω) has
components around ω ' Ω, weighted approximately[8]
with 2K(0) +K(2Ω), and around ω ' 3Ω, weighted ap-
proximately with K(2Ω), see also Eq. (5) above. As
a consequence, the maximum value of the intensity of
JNL(ω) around ω ≈ 3Ω is obtained when Ω ≈ ωres/2, so
that the overlap of Ā2(ω ≈ 2Ω) with K(ω ≈ ωres) is the
largest, see Fig. 2b. In other words, THG is maximized
when two photons of the pump field resonantly excite the
collective mode responsible for the divergence of K(ω).

The connection with THz sum-frequency two-photon
processes is also evident in the typical experimental set-
up behind pump-probe protocols. For what concerns this
kind of experiments, indeed, the differential transmitted
field δEprobe can be related once more to the nonlinear
current (4), where now both the pump and probe pulses,
as well as their relative time delay tpp, must be taken into
account. In particular, by explicitly rescaling the pump
field as Apump(t) = Ãpump(t + tpp), in such a way that
both Ãpump and Aprobe are centered around t = 0, and by
fixing the observation time at tg, it can be easy shown[9,
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Figure 3. Difference-frequency vs sum-frequency excitations
in pump-probe protocols, for a generic non-linear kernel K(ω)
resonant at ωres (grey line). (a) When VIS pump pulses are
applied (inset), the kernel overlaps with the ω ' 0 peak in
Ā2

pump(ω) (green line). (b) Two photons at energies ω1, ω2,
taken from the (relatively broad) pump spectrum, lead to
the difference-frequency excitation of the mode, i.e. ωres =
ω1 − ω2. (c) When THz pump pulses are applied (inset),
the kernel overlaps with the ω ' 2Ω peak in Ā2

pump(ω) (red
line). (d) The two ω1, ω2 photons lead to the sum-frequency
excitation of the mode at ωres = ω1 + ω2.

15] that in the cross-polarized configuration depicted in
Fig. 1b the measured quantity reads

δEprobe(tpp) ∝ Aprobe(tg)
∫
dt′Kxx;yy(tg + tpp − t′)×

×
[
Ãpump(t

′)
]2
.

(7)
Since the acquisition time tg is fixed, the previous ex-
pression shows that the probe field simply acts as a mul-
tiplying factor, setting the overall amplitude and phase
of the oscillations, while the time-evolution of the signal
is controlled by the convolution between the kernel and
the squared pump field. More interestingly, if we Fourier
transform Eq. (7) with respect to tpp we find a very com-
pact expression for the power spectrum of the differential
transmitted field:

δEprobe(ω) ∝ Kxx;yy(ω)Ā2
pump(ω). (8)

Eq. (8) allows one to predict the presence of oscillations in
δEprobe(tpp) at the ωosc frequency which dominates the
convolution between the kernel and the squared pump
pulse. In addition, Eq. (8) provides a simple way to
understand what marks the difference between pump-
probe experiments performed using a pump pulse with
a central frequency Ω in the NIR/VIS or in the THz
range. For the sake of clarity, let us focus again on a
non-linear kernel K(ω) which displays a marked maxi-
mum at a given frequency ωres in the THz range, see

Fig. 3. When dealing with NIR/VIS pulses 2Ω � ωres,
so the only relevant overlap in Eq. (8) occurs between
K(ω) and the ω ' 0 peak of Ā2

pump(ω). This means that
the mode is excited via a difference-frequency process, in
which two photons taken from the pump have energies
ω1 ' Ω and ω2 ' Ω − ωres (see Fig. 3a-b), in full anal-
ogy with stimulated Raman scattering. On the contrary,
for THz pump pulses designed to have 2Ω ∼ ωres, what
matters in Eq. (8) is the overlap of the non-linear kernel
with the 2Ω peak in Ā2

pump(ω) and one is dealing with a
sum-frequency excitation, where ω1,2 ' ωres/2 (see Fig.
3c-d). The basic mechanism is then the same already
highlighted before, when discussing THG processes with
multi-cycle THz pulses.

-0.2 0 0.2 0.4 0.6

�E
pr
ob
e

� A
�
pump
2 (tpp)

-1 -0.5 0 0.5 1 1.5 2

tpp [ps]

�E
pr
ob
e

�2�1

�2�2

0 5 10 15 20 25

In
te
ns
ity

2� �res

0 5 10 15

In
te
ns
ity

2� �res

-0.2 0 0.2 0.4 0.6

�E
pr
ob
e

� K(tpp)

0 5 10 15

�/2� [THz]

In
te
ns
ity

2�12�2 �res

(a)

(c)

(e)

(b)

(d)

(f)

Figure 4. Pump-probe experiments with THz fields. When
using single-cycle pump pulses, if the resonance in the nonlin-
ear kernel (grey line) is close to ω = 2Ω (a), the squared pump
field (τ = 0.2 ps, red line) is well approximated by a con-
stant in Eq. (8), and the differential transmitted probe field
δEprobe(tpp) oscillates at ωres, following K(tpp) in time (b).
When instead ωres � 2Ω (c), the convolution is dominated
by Ā2

pump(ω) and the differential probe field δEprobe follows
the squared pump field in the tpp time domain, leading to the
so-called THz Kerr effect (d). Analogously, for multi-cycle
pump fields only the response at 2Ω dominates (e), and due
to stronger duration of the pulse (τ1,2 = 1 ps) one can clearly
identify in Ã2(tpp) marked oscillations at 2Ω (f), with an am-
plitude that is strongly enhanced when Ω ' ωres/2 (red line)
as compared to the case when Ω� ωres/2 (blue line).

Once established the general mechanism, it is useful to
further distinguish between three different cases which
determine the final time evolution of the δEprobe(tpp)
signal. Let us first consider the case of short single-
cycle THz light pulses whose duration τp is much shorter
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than the time scale τres of the ωres resonance, as set
by the inverse width of the ωres peak in the non-linear
kernel K(ω), i.e. τp < τres, and having a central fre-
quency 2Ω ' ωres. In this case, that is usually named as
"quench", one finds that Ā2

pump(ω) is rather flat around
ωres (Fig. 4a) and the spectrum of the differential trans-
mitted field (8) essentially follows the optical kernel, i.e.
δEprobe(ω) ∼ K(ω). Notice that this condition is also
fulfilled for eV light pulses, since their typical duration
τp ∼ 10 fs makes τp � τres. As a consequence, one still
obtains that Ā2(ω ≈ 0) is very flat around the resonance,
see Fig. 3a, and consequently δEprobe(ω) ∼ K(ω). In
both cases the main outcome is that in the time domain
the differential electric field is expected to oscillate at
the resonance frequency of the kernel, i.e. ωosc ≈ ωres,
see Fig. 4b. Notice also that for THz light pulses the
possibility to observe ωres oscillations strongly relies not
only on the antiadiabatic condition τp < τres but also
on the matching condition 2Ω ' ωres of the pulse cen-
tral frequency. Indeed, when the pump field moves out
of resonance, as it happens e.g. for Ω � ωres, the only
relevant overlap in Eq. (8) is between Ā2(ω ≈ 0) and
K(ω ' 0), leading to a nearly instantaneous contribu-
tion in δEprobe(tpp) following the squared pump field in
time, also referred to in the literature as THz Kerr effect
(Fig. 4d). An analogous effect is found when the system
is driven by a narrow multi-cycle pump pulse, such that
τp > τres. Such a condition, that is usually named as
a "drive" pulse, translates in a Ā2

pump(ω) narrower than
the ωres peak in K(ω), see Fig. 4e. As a consequence, the
convolution (8) is dominated by the spectral components
of Ā2

pump(ω) and δEprobe(tpp) is once more proportional
to the squared field in time, oscillating at ωosc ≈ 2Ω, i.e.
at twice the central frequency of the narrow-band light
pulse, see Fig. 4f.

III. SUPERCONDUCTING MODES AND THE
ROLE OF DISORDER

The results discussed in the previous Section are rather
general, since they only require the existence of a marked
resonance in the non-linear kernel K(ω) at a given fre-
quency ωres, whatever is its origin. Thus, the same
scheme can be used to understand non-linear excitation
of phonons as well as of electronic collective modes[9], as
they emerge across a phase transition to a SC or a charge-
density-wave (CDW) state. Let us then see how one can
interpret the experiments in conventional superconduc-
tors, like e.g. NbN[11–14], Nb3Sn[16] and MgB2[15, 17],
on the light of such a general paradigm. THG exper-
iments have been performed in disordered NbN[13] by
fixing the central frequency Ω of a multi-cycle pulse while
changing the temperature of the sample. The general re-
sult is an enhancement of the THG below Tc, with a
maximum at the temperature where Ω = ∆(T ). In the
light of the previous discussion, see Eq. (5) and Fig. 2,
this implies that the SC non-linear optical kernelKSC(ω)

has a maximum at ωres = 2∆(T ). Analogously, pump-
probe protocols with the same multi-cycle pulse have
reported[13] 2Ω oscillations, as for the case shown in Fig.
4f. When instead the system is quenched with a single-
cycle THz pulse[11, 12], the δEprobe(tpp) signal shows os-
cillations at ωosc = 2∆, leading again to a kernel KSC(ω)
resonant at 2∆, as explained while discussing Fig. 4b
above. When other collective modes are present, as it
is the case for e.g. the Leggett mode in MgB2, one can
selectively see the resonance at twice the gap[17] or at
the Leggett-mode frequency[15] by tuning the pump fre-
quency. In the latter case, it has been also tested[15]
the strong increase of 2Ω oscillations in the pump-probe
signal when Ω ' ωres/2, as shown in Fig. 4f.

Focusing now on the case of NbN, the experimental
findings are all consistent with a SC non-linear optical
kernel KSC(ω) resonant at ωres = 2∆(T ). However,
as mentioned in the Introduction, there has been for a
while a debate in the literature about the identification of
the relevant excitations responsible for such a resonance.
Since this issue has been discussed at length in several
manuscripts[8, 10, 14, 19–25], here we just summarize
the main points in a schematic way. On very general
grounds, to derive the non-linear kernel appearing in Eq.
(2) one needs to integrate out all the electronic degrees
of freedom of a model system where interacting electrons
are coupled to the external gauge field A. Let us start
from the case of a clean system. Assuming that interac-
tion terms are gauge-invariant, the gauge field only cou-
ples to the kinetic term of the Hamiltonian, so one can
expand the HamiltonianH(A) in the presence of the e.m.
field as:

H(A) ' H(A = 0) + j ·A + ραβAαAβ +O(A3), (9)

where j is the electronic paramagnetic current and ραβ
simply reduces to δαβn/m for free electrons, where n
is the electron density and m the mass. Notice that
in a lattice model the simple expression (9) should be
extended to include all the bands describing electrons
moving in a periodic potential. To derive S(4)[A] one
needs to sum over all possible electronic processes, lead-
ing to a response of order A4. In terms of the usual
Feynman-diagrams expansion, this leads to all possible
electronic loops with four external e.m. legs, as exem-
plified in Fig. 5. In general, terms of order A4 can be
obtained e.g. with correlation functions including four
paramagnetic-like terms j · A or two diamagnetic-like
terms ραβAαAβ from Eq. (9), plus all possible mixed
combinations. When dealing with high-energy NIR/VIS
light pulses interband transitions should be also consid-
ered, as for the usual Raman response. In the case of
non-resonant excitations, a very popular description for
the overall non-linear response of metals relies on the so-
called effective-mass approximation[26], that reduces the
sum of all possible interband processes to the compu-
tation of lattice-modulated density fluctuations for the
band at the Fermi level:

KeV
Raman = 〈ρi,sR ρi,sR 〉, (10)
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where ρi,sR =
∑

k,σ γ
i,s(k)c†k,σck,σ is a lattice-modulated

density-like electronic operator, c(†)k,σ being the annihi-
lation (creation) operator for an electron with momen-
tum k and spin σ. The form factor γi,s(k) is propor-
tional to the momentum derivatives of the band disper-
sion ε(k) along the crystallographic axes, in a combina-
tion dictated by the polarization of the incident (i) and
scattered (s) light. Within this scheme, that has been
widely used in the past to interpret Raman experiments
in cuprates[26], the enhancement of the non-linear re-
sponse at 2∆ in the SC state is simply a consequence
of the fact that the density-like response evaluated at
BCS level probes the quasiparticle continuum at q = 0,
that is pushed at 2∆ below Tc. On the other hand, the
Higgs response appears as a vertex corrections of such
a density-like response in the amplitude channel, and it
turns out to be quantitatively negligible[8, 21], since am-
plitude fluctuations are weakly coupled to density fluc-
tuations in the particle-hole symmetric BCS case[8, 26].
In short, whenever the non-linear kernel KSC(ω) reduces
to a density-like response as in the case of Eq. (10), the
Higgs contribution is quantitatively subdominant with
respect to the BCS one.
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Figure 5. Schematic of some of the Feynman diagrams con-
tributing to the non-linear optical response in an electronic
systems. Here solid lines denotes electronic Green’s functions
and wavy lines the e.m. gauge field, α, β, γ, δ being spatial
indexes. The dotted line denotes the derivative with respect
to one field component, as needed to compute the current ac-
cording to Eq. (4). (a) Paramagnetic-like processes are built
with current-like e.m. field insertions, denoted by a full circle.
(b) Diamagnetic-like processes are built with density-like e.m.
field insertions, denoted by an empty circle. Diagrams with
two diamagnetic vertexes have the form of Kubo-like response
functions. (c)-(d) Mixed terms.

In the case of experiments with a THz driving pump
field a similar approach has been followed so far. Since
in this case the energy of the field is comparable to in-
traband transitions, the non-linear response has been de-
rived by coupling the gauge field directly to the elec-
tronic band at the Fermi level, via a Peierls-like sub-
stitution in the kinetic term of the Hamiltonian[8, 13,
14, 18, 19, 21, 22, 24, 25]. The expansion of the
Hamiltonian then leads again to a structure similar
to Eq. (9), provided that the diamagnetic term is re-
placed directly with a density-modulated Raman opera-
tor ρR,αβ =

∑
k,σ Γαβ(k)c†k,σck,σ, where the modulation

prefactor Γαβ(k) ∼ ∂2εk/∂kαkβ depends on the direction
of the applied field with respect to the crystallographic
axes. In the clean case only diamagnetic-like processes

are relevant[8, 21], so the non-linear kernel KTHz,clean
Raman

has the same behavior of Kev
Raman and it is dominated by

the BCS response:

KTHz,clean
Raman = 〈ρRρR〉. (11)

However, as shown by several authors in the very last
years[22–25], once disorder is taken into account the
paramagnetic current is no more conserved at BCS level
and also contributions mediated by the paramagnetic-like
coupling term j ·A in Eq. (9) are finite, becoming quanti-
tatively larger than diamagnetic ones already at interme-
diate disorder level. As a consequence, for a realistic SC
system the THz response is controlled by intraband exci-
tations mediated by both diamagnetic and paramagnetic
correlation functions, i.e.

KTHz,dirty
Raman ∼ 〈ρRρR〉+ 〈jP jP jP jP 〉, (12)

where the precise dependence on frequencies and spa-
tial indexes has been omitted for simplicity. As far as
the Higgs contribution is concerned, it turns out that
paramagnetic-like processes can mediate a sizeable cou-
pling of the e.m. field to Higgs fluctuations, such that
at strong disorder the Higgs contribution can even dom-
inate over the BCS one. For thin films of conventional
NbN it seems now plausible to ascribe the 2∆ resonance
of the non-linear kernel to an excitation of the Higgs
mode[22–25]. However, cuprates are much cleaner sys-
tem, and preliminary studies in Ref. [25] suggest that
the BCS response is still dominant for this level of dis-
order, and that collective SC phase-density fluctuations
can give a bigger contribution to the non-linear response,
as compared to the Higgs one. In the next Section we will
see how detailed quantitative calculations with a realistic
band structure support a predominant role of the BCS
response.

IV. NON-LINEAR RESPONSE IN CUPRATES

So far, THz-induced non-linear response in cuprates
has been investigated via THG experiments in
transmission[29, 31], focusing on several classes of ma-
terials, and by means of pump-probe protocols aimed at
measuring the THz Kerr effect in Bi-based compounds
as a function of doping[28, 30]. In analogy with pre-
vious work in conventional superconductors, the experi-
ments are performed by varying the temperature at fixed
pump frequency. While all experiments clearly show a
strong enhancement of the non-linear response below Tc,
that is then naturally ascribed to the SC phase transi-
tion, the present data do not allow one to clearly iden-
tify a resonance of KSC(ω) at twice the gap maximum.
This is in part understood by noting that in cuprates the
pump pulse has a central frequency much smaller that
twice the gap. More specifically, a multi-cycle pulse with
central frequency Ω = 0.7 THz has been used for THG
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Figure 6. (a) Definition of the polarization dependence for
THG experiments in cuprates, with the square lattice formed
by Cu atoms in the CuO2 planes. For a generic angle θ be-
tween the applied field A and the x direction, the measured
THG response is in the field direction, so it depends on the
component jNL

‖ of the non-linear current in the θ direction.
(b) THG results for a optimally doped La11.84Sr0.16CuO4 (Tc

= 45 K) sample at two temperatures below Tc, taken from
Ref. [29]. (c) Polarization dependence of THz-Kerr effect in
an optimally-doped Bi2212 compound (Tc=90 K) from Ref.
[28]. The inset shows the measured instantaneous response
at a function of tpp, while the main panel shows the recorded
intensity at tpp= 2 ps (marked by a vertical grey bar in the
inset) as a function of θS for θP = 0◦. According to Eq.
(13) a KB1g component appears as a minimum at θs = π/2.
(e) Doping dependence of the ratio KB1g/KA1g in Bi2212 as
a function of doping, taken from Ref. [28]. The dashed gray
line denotes the corresponding Tc values, referring to the right
vertical axis. The gray vertical line indicates the optimal dop-
ing.

measurements[29, 31], and a single-cycle THz pump field
with central frequency Ω = 0.6 THz, and a probe in
the VIS, have been used for the THz Kerr effect[28, 30].
In both cases the pump frequency (' 3 meV) is much
smaller than the gap value at T = 0, that lies around
10-20 meV in cuprates. As a consequence, the resonance
condition Ω = ∆(T ) only occurs very near to Tc, making
it difficult in general to observe the resonant enhance-
ment of the non-linear response. In addition, d-wave
symmetry of the order parameter can in part smear out
the divergence of the response at 2∆, with ∆ gap maxi-
mum, in analogy with what observed in Raman[26]. On
the other hand, polarization results are rather robust,
and the analysis of their behavior deep in the SC phase
can help disentangling the nature of the relevant modes
involved in the non-linear response.

For what concerns THG experiments, one usually mea-
sures the third-harmonic emission in the field direction
by changing the angle θ that the pump field forms with
the in-plane x crystallographic axis, see Fig. 6, where the
xy plane represent the CuO2 plane of cuprates. Since

ITHG ∝ |JNL(3Ω)|2, see Eq. (5), the relevant quantity
to be computed is the non-linear current jNL‖ in the field
direction. The experimental results of Ref. [29, 31] are
pretty much isotropic, at least within the error bars, see
e.g. the data in Fig. 6b, taken from Ref. [29]. For THz
pump-optical probe experiments one can vary both the
pump (P ) and probe (S) angles θP,S with respect to the
crystallographic axes, and study the angular-dependence
of the time-resolved modulation at a fixed tpp. As we
explained above, at low T one is always in the condition
Ω� ωres, so the time-dependent response is expected to
scale in the tpp domain with the square of the pump field,
see Fig. 4d, as indeed observed experimentally, see inset
in Fig. 6c. However, in contrast to the case of THG ex-
periments, THz Kerr effect measurements reveal a mod-
ulation of the signal (see Fig. 6c) that increases as the
doping increases, see Fig. 6d. In Ref. [28] such a modu-
lation has been analyzed in terms of a decomposition of
jNL‖ in the symmetry projections for the D4h point group
relevant for cuprates:

jNL‖ (θS , θP ) = KA1g +KB1g cos 2θS cos 2θP+

+KB2g sin 2θS sin 2θP .
(13)

As it has been discussed in Ref. [25], such a decomposi-
tion is meaningful when the non-linear kernel Kαβγδ only
admits diamagnetic Kubo-like diagrams, that is not nec-
essarily the case in the presence of disorder. Nonetheless,
by preserving the notation of Ref. [28] based on the de-
composition (13), the analysis of the experimental data
gives KB2g = 0 and a ratio KB1g/KA1g increasing with
doping from almost 0 in underdoped samples to almost 1
in overdoped ones, see Fig. 6d. It is worth noting that us-
ing the same decomposition also for THG measurements
in transmission one would obtain that

jNL‖ (θ) = KA1g +KB1g cos2(2θ) +KB2g sin2(2θ). (14)

As a consequence, the isotropy of the THG signal in
cuprates, see Fig. 6b, points to the existence only of the
KA1g component, as seen at low doping in pump-probe
experiments, see Fig. 6d, but making it puzzling the lack
of a strong B1g component around optimal and overdop-
ing, as we will comment further in what follows.

All the experimental findings summarized so far help
disentangling the contribution to the non-linear response
coming from the BCS response or from the other collec-
tive modes. Indeed, these results can be understood from
the general scheme outlined in Sec. 2 by assuming that a
sizeable non-linear kernelKSC(ω) emerges below Tc, with
a peculiar polarization dependence. To clarify the nature
of the non-linear response in cuprates, we then study an
extended version of the attractive Hubbard model that
we used in Ref. [25], accounting for the effects of disorder
and doping on a realistic band structure. More specifi-
cally we start from the electronic Hamiltonian

H = −
∑
ijσ

tijc
†
iσcjσ − |U |

∑
i

ni↑ni↓ +
∑
iσ

Viniσ, (15)
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where the local potential Vi is taken from a flat distri-
bution −V ≤ Vi ≤ +V . We set tij = t for the near-
est neighbors hopping and a different tij = −t′ for the
next-nearest neighbors hopping to better reproduce the
Fermi surface of cuprates. For numerical reasons, calcu-
lations are performed on a 32 × 32 lattice, and we set
U/t = 1.4. This is the lowest value for which finite size
effects can be neglected. For a nearest-neighbor hopping
t ∼ 200−300 meV and a next-nearest-neighbors hopping
of t′/t ∼ −0.2, one obtains gap values ∆ ∼ 25− 55 meV
compatible with ARPES measurements in overdoped Bi-
2212 close to the nodal region, where pseudogap effects
should be small [28]. We consider the doping levels
p = 0.1 for the underdoped regime and p = 0.2 for
the overdoped. Notice that the polarization dependence,
which is the main focus here, depends specifically on the
band structure and disorder level, so even though the
model (15) does not include the d-wave symmetry of the
order parameter it can nonetheless provide a good quan-
titative account of the realistic situation, especially at
pump frequencies far from the resonance.
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Figure 7. Numerical results for the non-linear current jNL
‖ (θ)

at Ω = 0 as a function of the angle θ for V/t = 0.1 (up-
per row) and V/t = 0.5 (lower row) at two doping levels.
Diamonds refer to the diamagnetic contribution and circles
to the paramagnetic one. "BCS" labels the pure BCS re-
sponse, probing the quasiparticle continuum, "BCS+Higgs"
the response including vertex correction in the SC amplitude
(Higgs) channel, and "Full" the results obtained by including
vertex corrections in all channels (SC amplitude, SC phase
and charge). For more details on the notation see Ref. [25].

In order to establish a close connection with the exper-
iments, we compute the transport scattering rate τ for
each doping and disorder level, following the procedure
outlined in Ref. [25]. Experimental data in Ref. [28] in-
dicate a disorder level γ/2∆ ∼ 0.85, that is intermediate
between our V/t = 0.1, corresponding to γ/2∆ ∼ 0.03
(0.04) for p = 0.1 (p = 0.2), and V/t = 0.5 corresponding
to γ/2∆ ∼ 1.12 (1.79) for p = 0.1 (p = 0.2). By follow-
ing the time evolution of the mean-field density matrix

stemming from Eq. (15), we calculate the third-harmonic
current by selectively including the charge, phase and
amplitude fluctuations, distinguishing between the para-
magnetic and diamagnetic processes. We then focus on
the zero-frequency value of the non-linear current, as a
good approximation in the out-of-resonance condition.
Further details on the numerical procedure have been re-
ported in Ref. [25].

Fig. 7 shows the jNL‖ (θ) component of the nonlinear
current as a function of the angle θ, where we keep sepa-
rate the BCS contribution, the full response including all
SC fluctuations, and the contribution of BCS+Higgs fluc-
tuations only. Diamonds denote the diamagnetic contri-
bution, see Eq. (11), that is also present in the perfectly
clean case (V = 0), while circles denote the paramagnetic
contribution, that only arises in the presence of disorder,
see Eq. (12). At the lowest disorder level V/t = 0.1, the
Higgs contribution (blue diamonds/circles) is quantita-
tively negligible, and for V/t = 0.5 it only adds a correc-
tion at most of order of 30% of the BCS one, while phase
modes (green diamonds/circles) give a sizeable contri-
bution already at V/t = 0.1. As a consequence, one
can safely conclude that THG measurements in cuprates
should be ascribed to the BCS response, further enhanced
by the contribution of phase fluctuations, while the Higgs
response is largely subleading. For what concerns the
polarization dependence, one can see that the paramag-
netic part becomes rapidly predominant at θ = 0, but the
overall modulation of the two contributions has a simi-
lar strength, so that the overall response is pretty much
isotropic at V/t = 0.1, see Fig. 8, and only slightly mod-
ulated at V/t = 0.5, in excellent agreement with THG
results, see Fig. 6b.
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Figure 8. Polarization dependence of the BCS contribution
to the non-linear current at Ω = 0 as given by diamagnetic
(left) or paramagnetic (right) diagrams, for two different lev-
els of doping and disorder. Solid lines represent a fit of the
diamagnetic term with KA1g + KB1g contributions, and of
the paramagnetic one with KA1g +KB2g contributions. The
parameters of the fit are reported in Tables II-III.
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Finally, we would like to comment on the polariza-
tion dependence expected in THz pump-optical probe
measurements. The relevant processes for this kind of
experiments are still depicted by the diagrams in Fig.
5, but the frequencies running in the fermionic loops
are different with respect to the case of simple THG
experiments. Indeed, for an optical probe two external
lines carry a large frequency in the visible, leading
to a large frequency running in the internal loop. As
observed in Ref. [22], in this situation disorder effects
are expected to be less efficient in triggering a finite
paramagnetic response, in contrast to what happens
when only a frequency of the order of the THz pump
field is involved. As a consequence, one can speculate
that for THz Kerr effect measurements the relevant non-
linear kernel can be a combination of the diamagnetic
response plus only part of the paramagnetic one. If this
is the case, it can be worth analyzing separately the
angular dependence of the two contributions, as done
in Fig. 8 for the BCS part only. Notice that while for
pump-probe experiments one can identify separately the
KB1g and KB2g contributions by tuning independently
the pump θP and the probe θS angles, see Eq. (13), in
the case of THG experiments jNL‖ depends only on the
pump angle θ, see Eq. (14), leaving some ambiguity in
the identification of the various angle-dependent terms.
In the specific case of our calculations we will fit the
diamagnetic term with the sum of a KA1g and a KB1g

contribution, by using the fact that for these Kubo-like
diagrams the KB2g term in the clean limit can only
scale with the sub-leading t′ next-nearest-neighbors
hopping term. On the other hand, for paramagnetic-like
diagrams one cannot establish a-priori a prevalence
of one asymmetric channel over the other, so one
can only fix in principle the relative weight of the
combination of two terms, by rewriting e.g. Eq. (14)
as jNL‖ (θ) = KA1g + KB2g + (KB1g − KB2g) cos2(2θ),
or the analogous expression where only a sin2(2θ) is
left. Once clarified such an ambiguity, and in order to
simplify the analysis, we decided to conventionally fit
the paramagnetic term as the sum of a KA1g and KB2g

terms only, by simply observing that the signal increases
as θ increases. The relative weights of the various
channels are reported in Table II and III. As one can
see, the diamagnetic term has a sizeable B1g component
with an increasing ratio KB1g/KA1g as doping increases,
especially for larger disorder. Even though these ratios
are larger than the experimental findings of Ref. [28], one
could expect that a partial compensation from the para-
magnetic channel can explain the difference with THG
measurements, and account for the observed doping
dependence of the KB1g/KA1g ratio. Finally, it is worth
mentioning that a third possible mechanism has been
recently proposed in Ref. [32], based on two-plasmon
excitation processes that are beyond the approximation
studied here. By accounting for this additional channel
within an XY model description of plasma modes, one
finds an additional contribution to the non-linear kernel

having KB1g/KA1g = 0.5. So far, the quantitative
relevance of this effect with respect to the BCS response
has not been estimated, making a direct comparison
with experiments difficult. On the other hand, since
the energy scale setting the strength of two-plasmon
excitations is the superfluid stiffness, one would expect
a larger contribution in overdoped samples, where it
becomes quantitatively larger. A closer analysis of this
problem, along with a direct estimate of the effective
relevance of paramagnetic processes for the THz Kerr
effect, will certainly help elucidating the nature of the
THz non-linear response in cuprate superconductors,
and will thus deserve future work.

TABLES

V/t = 0.1 V/t = 0.5
KA1g KB1g KB1g/KA1g KA1g KB1g KB1g/KA1g

p = 0.1 0.038 0.135 3.545 0.054 0.086 1.576
p = 0.2 0.040 0.150 3.732 0.035 0.096 2.756

Table I. Results of the fitting procedure for the diamagnetic
BCS-only contribution to jNL

‖ (θ) through Eq. (14), obtained
by conventionally setting KB2g = 0.

V/t = 0.1 V/t = 0.5
KA1g KB2g KB2g/KA1g KA1g KB2g KB2g/KA1g

p = 0.1 0.354 0.185 0.521 1.487 0.587 0.395
p = 0.2 0.278 0.162 0.581 1.152 0.503 0.437

Table II. Results of the fitting procedure for the paramagnetic
BCS-only contribution to jNL

‖ (θ) through Eq. (14), obtained
by conventionally setting KB1g = 0.

V/t = 0.1 V/t = 0.5
KB1g/KA1g KB2g/KA1g KB1g/KA1g KB2g/KA1g

p = 0.1 0.344 0.470 0.055 0.381
p = 0.2 0.470 0.508 0.081 0.424

Table III. Results of the fitting procedure for the sum of dia-
magnetic and paramagnetic BCS-only contributions to j3‖(θ).
The A1g component is taken as the sum of the separate results
from diamagnetic- and paramagnetic-only contributions.
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