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Sperm swimming is crucial to fertilize the egg, in nature and in assisted reproductive technologies. Modeling
the sperm dynamics involves elasticity, hydrodynamics, internal active forces, and out-of-equilibrium noise. Here
we give experimental evidence in favor of the relevance of energy dissipation for sperm beating fluctuations. For
each motile cell, we reconstruct the time evolution of the two main tail’s spatial modes, which together trace
a noisy limit cycle characterized by a maximum level of precision pmax. Our results indicate pmax ∼ 102 s−1,
remarkably close to the estimated precision of a dynein molecular motor actuating the flagellum, which is
bounded by its energy dissipation rate according to the thermodynamic uncertainty relation. Further experiments
under oxygen deprivation show that pmax decays with energy consumption, as it occurs for a single molecular
motor. Both observations are explained by conjecturing a high level of coordination among the conformational
changes of dynein motors. This conjecture is supported by a theoretical model for the beating of an ideal
flagellum actuated by a collection of motors, including a motor-motor nearest-neighbor coupling of strength
K : When K is small the precision of a large flagellum is much higher than the single motor one. On the contrary,
when K is large the two become comparable. Based upon our strong-motor-coupling conjecture, old and new
data coming from different kinds of flagella can be collapsed together on a simple master curve.
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I. SWIMMING WITH NOISE

Sperm motility plays a crucial role in sexual reproduction
and also serves as a prototype for understanding the physics
of microswimmers [1,2]. Its investigation is fundamental to
develop new technologies, for instance, to improve fertility
diagnostics and assisted reproduction techniques [3]. It can
also positively influence the fields of artificial microswimmers
and microfluidic devices [4].

A sperm cell is composed of a large head (spatulate shaped
for bull sperms such as those considered here) and a thin
whiplike tail called a flagellum, whose oscillatory movement
sustains a traveling wave from head to tail [5]. In recent
decades, physics has investigated the sperm swimming prob-
lem, how it originates from flagellar beating coupled with
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the fluid dynamics and with the many possible boundary
conditions [6–8]. Different swimming modes have been iden-
tified, including planar beating near flat (e.g., air-liquid or
liquid-substrate) surfaces, beating with precession when the
head is anchored to a point, circular trajectories on a plane,
three-dimensional helical in the bulk, etc. [9].

In modeling, minimal ingredients for swimming of semi-
flexible filaments are an anisotropic Stokes drag and a single
traveling wave, e.g., for small deviations y(t, s) from the
straight rod shape at time t and arclength s ∼ x, y(t, x) =
A cos(kx − ωt ), which guarantees irreversibility of the shape
cycle, i.e., y(t, x) �= y(T − t, x), where T is the cycle pe-
riod, necessary to swim at low Reynolds numbers [10,11].
An important element is noise, that is, deviations from the
average flagellum beating dynamics, which has been previ-
ously considered in modeling [7,12–14] and in experiments,
with Chlamydomonas [15–19] and with sperms [20]. In
particular, such experimental works have estimated through
different methods the quality factor of the phase noise in the
beating cycle, a parameter which is strictly connected to the
precision studied here, as discussed later. Flagellar fluctua-
tions have been observed to influence self-propulsion [21] and
synchronization of adjacent filaments [16,17,22].
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In the present study we show how energy dissipation, an
intrinsic quantity for motors at all scales, affects noise in
sperm beating, rationalizing the problem under the framework
of thermodynamic uncertainty relations (TURs) [23–25] (see
Appendix D for a summary of the simplest working principle
behind TURs). Remarkably, the connection between power
consumption and macroscopic fluctuations leads us to put
forward a hypothesis about the collective dynamics of the
molecular motors actuating the flagellum.

The sperm axoneme hosts an array of dynein molecules
for a total of N ∼ 105 motor domains [26–28]. Each motor
converts available ATP molecules into power strokes inducing
local bending of the axoneme. Deviations from the average
biochemical cycle of a molecular motor occur mainly because
of fluctuating times of residence in the different chemical
states [29]. Less understood is the mechanism of coordination
of the N motors necessary to generate the tail’s traveling wave:
A widely accepted fact is the presence of some feedback
mechanism inducing activation and deactivation of the motors
based upon the local bending state [30]. The hypothesis that a
dynein operates independently of its neighbors is questioned
by the observation (in micrographs by scanning electron

microscopy, etc.) of nonrandom grouping of dynein states and
by the evidence that interactions between adjacent dyneins
may be inevitable because of the size of dynein arms [31–33].
Our experimental observations about the high amplitude of
the noise affecting flagellum beating (comparable to that of
a dynein motor) and about the decay of flagellum precision
with energy consumption (similar to what happens for a single
motor) contribute together to conjecture a strong coupling be-
tween the dynamics of adjacent motors proteins. A schematic
model for axonemal oscillations under the effect of noisy
motor dynamics corroborates our hypothesis.

II. PRECISION OF A BROWNIAN MOTOR

We first discuss how to measure precision, an observable
which has recently attracted a profound interest in nonequi-
librium statistical physics (see Fig. 1). For our purpose it is
sufficient to consider a system where an angular observable
θ (t ) represents the system’s configuration [see Figs. 1(a) and
1(b)]. We expect θ (t ) to perform an irreversible stochastic
stationary dynamics with average drift 〈θ (t ) − θ (0)〉 = Jt and
relative dispersion 〈[θ (t ) − θ (0) − Jt]2〉 ∼ 2Dt for large t .

(a) (i)

(i)

(ii)

(ii)

(iii)

(iii)

(iv)

(v)

(b)

(d)

(c)

FIG. 1. Precision of stochastic clocks. Examples are shown, in different systems, of the coarse-grained coordinate θ (t ) useful to define the
precision p of Brownian clocks. (a) Sketch of the supposed chemical cycle of the dynein ATP-ase, counterclockwise starting from the top:
(i) rest (apo) state, (ii) ATP-binding, (iii) detachment of the stalk, (iv) ATP → ADP+P reaction with rejoining of the stalk to the upper
substrate, in a forward position, and (v) stroke of the linker (red spring) with consequent dragging of the upper substrate. (b) Sketch of
the elastomechanical cycle of a sperm cell. The tail shape is approximated by a curve close to A(t ) cos(kx) + B(t ) sin(kx). (c) Mean-square
displacement from a trajectory generated by the numerical integration of the equation θ̇ = J + √

2Dη(t ), with η(t ) white noise with unitary
amplitude, J = 1, and D = 0.1. The insets show the trajectory θ (t ) with a different time range, i.e., (i) t ∈ [0, 0.1], (ii) t ∈ [0, 1], and (iii)

t ∈ [0, 10]. It is evident how the mean current θ̇ = J can be appreciated only at times much larger than 1/p = D/J2. (d) Successive snapshots
[taken at 0.04-s intervals with an optical microscope (see Appendix A)] of the tail dynamical sequence in a caged sperm experiment. The
purple box represents the region of interest and the red dot and red arrow identify the parameters a and b (y position and slope of the tail close
to the origin, respectively) which approximate A and B in Eq. (3), here corresponding to (A, B) ∼ (0, 1) → (−1, 0) → (0,−1) → (1, 0). The
white arrows indicate the x̂ and ŷ directions (the ẑ direction is perpendicular to both). The white scale bar represents 10 µm.
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We are interested in the precision rate defined as

p = J2

D
. (1)

The observable p can be understood as the inverse of the
typical time t∗ = 1/p separating the diffusive regime t 
 t∗
[Dt � (Jt )2] from the ballistic regime t � t∗ [see Fig. 1(c)
and its insets].

The quantity p has been demonstrated, through the so-
called thermodynamic uncertainty relation [23–25], to be
bounded from above by the entropy production rate or in prac-
tical terms (for the purpose of steady isothermal molecular
motors) the motor’s energy consumption rate Ẇ in thermal
units:

p � pTUR = Ẇ

kBT
. (2)

The ratio Q = p/pTUR � 1 can be considered as a motor’s
figure of merit. Estimates of p through Markovian mod-
els informed by experimental data [34] suggest that several
molecular motors work not far from their optimum, or at least
close to its order of magnitude (Q � 0.1). In the following
we present a method to estimate p and we apply it to ex-
periments with bulls’ sperm cells [see Figs. 1(b) and 1(d)].
Notwithstanding its physical relevance, the quantity p has not
been discussed for microswimmers, even if its estimate can
be deduced from other variables in previous works. Quantities
that are strictly related to p are the dissipation time [35] and
the quality factor q = J/2D = p/2J , which has been mea-
sured within a similar approach for Chlamydomonas flagella
in [15–19] and for bull sperms in [20], although never com-
pared to energy dissipation or discussed within the framework
of TURs.

III. PRECISION OF SPERM BEATING

We adopt a coarse-graining protocol that reduces the space
of possible shapes of the flagellum into two coordinates, the
minimum for the existence of irreversible limit cycles. We
improve the quality of image tracking and disentangle the
simplest mode of sperm movement, that is, the planar one,
with the following technique. Each observed sperm has its
head trapped in a microcage printed by two-photon microli-
tography [see Fig. 1(d) and Appendix A]. The cell cannot
spin and the flagellum beats on the x̂y plane. While the most
common swimming strategy of sperm cells is helical [9,36],
planar movement is typically observed close to a surface and
can lead to circular paths [37–39], here prevented by the cage.
The sperm’s center of mass has a very limited dynamics in
the x̂z plane but can oscillate in the transverse ŷ direction;
the body, entirely free, performs planar tail beating, which
pushes the body into the cage, making the escape probability
negligible. As a direct consequence of tail beating, the head
is also observed to oscillate: Our main results are obtained by
tail tracking, while in the Supplemental Material we confirm
our conclusions by tracking the head (see [40] and Fig. S1
therein).

Referring to Fig. 1(d), our region of interest (ROI) tracks
less than half of the observed beating wavelength. After

image processing (see Appendix B) each tail’s image is fitted
through a second-order polynomial y(x, t ) = a(t ) + b(t )x +
c(t )x2 (see also the movie in the Supplemental Material [40]).
Under the assumption that the ROI contains less than half a
wavelength [and therefore y(x, t ) has at most one extremal
point], a(t ) and b(t ) are (but for multiplicative constants) fair
approximations of the coefficients A(t ) and B(t ), respectively,
of a mode expansion

y(x, t ) ≈ A(t ) cos(kx) + B(t ) sin(kx)

∼
x→0

A(t ) + kB(t )x + O(x2). (3)

Such a shape approximation and the consequent coarse
graining of the planar flagellum dynamics into two main co-
ordinates A and B have been used for bull sperms [20], with
Chlamydomonas flagella [15–19] and with human sperms
[39]. A similar approach to the breakdown of detailed balance
in flagella has been adopted in experiments with Chlamy-
domonas [41], with filaments in actin-myosin networks [42],
with C. elegans worms [43]. A general perspective about this
strategy was discussed in a recent review [44]. In experiments
of this kind, however, precision and TUR are rarely considered
[45,46].

For the purpose of estimating p for each cell, we first
apply a filter to the a(t ) and b(t ) time series in order to re-
move low-frequency drifts, including average, and normalize
the data to have a standard deviation of 1. We observe that
the two coordinates exhibit almost harmonic oscillations at
a similar frequency f ∼ 6–8 Hz [see spectra in Appendix B,
Figs. 6(b) and 6(c)] but with a phase delay �(t ) that fluc-
tuates around a steady nonzero value [Fig. 6(a)]. This delay
allows us to reconstruct the angle θ (t ) in the a(t )-b(t ) plane
[see Fig. 2(a)] and finally measure the average phase-space
current J = 〈θ (t )〉/t [see Fig. 2(b)]. Apart from a few noise-
dominated cells where J is small and negative we find J > 0,
as expected from the geometrical interpretation of a(t ) and
b(t ) in terms of the main modes of the tail’s shape. A negative
J would correspond to a waveform traveling in a direction that
is incompatible with forward swimming. We stress that the
cumulative phase-space angle θ (t ) is proportional to the num-
ber of performed cycles of the sperm’s tail shape dynamics.
The average current |J| is related to the beating frequency f
in a subtle way: In fact, the growth of θ (t ) is influenced not
only by the oscillation of a(t ) and b(t ) but also by the sign of
their phase delay �. Failures to guarantee a constant sign of
� imply ineffective beatings, i.e., uncoordinated oscillations
which do not contribute to the growth of θ (t ), leading to
|J| � Jmax = 2π f .

Fluctuations of the rotation speed θ̇ (t ) − J are clearly
visible in our experiment [see Figs. 2(b) and 2(c)] and rep-
resent departures from the average shape cycle θideal(t ) =
Jt . They are due in part to real dynamical noise (stochas-
tic deviations) and in part to the fact that the real shape
dynamics is slightly different from the approximated one
(deterministic deviations). Since deterministic deviations are
periodic and each experiment includes hundreds of beating
periods, their contribution to the diffusivity D can be safely
neglected for our purpose. The main origin of stochastic de-
viations is nonequilibrium fluctuations, acting both on the
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Extracting precision from tail tracking. (a) Histogram of the positions in the plane a(t )-b(t ) for the 12 sperms with precision
p > 20 s−1. The light blue curve traces the a(t )-b(t ) path for a particular sperm in 0.2 s (10 frames). (b) Integrated phase-space current
θ (t ) for a few observed sperms. The inset shows the probability density function (PDF) (over all observed sperms) of the average current J .
(c) PDF (over a 20-s acquisition), for a few sperms, of δθ = θ (t + dt ) − θ (t ) (shifted by the mean and scaled by the standard deviation), where
dt = 0.02 s. The inset shows a few autocorrelations C(t ) = 〈δ̃θ (t )δ̃θ (0)〉, where δ̃θ = δθ − 〈δθ〉. (d) Mean-square displacement of θ (t ) for a
given sperm and its fit according to the model MSD(t ) = 2Dt + (Jt )2. The inset shows the PDF of diffusivity D over all observed sperms. (e)
Diffusivity D versus average current J together with decaying exponential fit D ∼ 102e−J/25 s−1. (f) Precision p versus the noise-to-signal ratio
(NSR) computed from the signals a(t ) and b(t ). The inset shows p versus the current J . In (e) and (f) error bars for J and D denote 3 times
the standard deviation of J and D estimated when fitting the MSD by χ2 optimization. Data come from the observation of 54 different sperm
cells, if not specified otherwise.

fluid surrounding the flagellum and on the working cycle of
the thousands of molecular motors actuating the flagellum.
At low Reynolds numbers the first effect is negligible (see
Appendix B 2).

We empirically find a good fitting model for the mean-
square displacement 〈[θ (t + τ ) − θ (t )]2〉 ∼ Jτ + 2Dτ 2 (av-
eraged over t along each whole experiment) [see Fig. 2(d)
for an example]. Alternative ways to estimate the diffusiv-
ity are discussed in [20]; we have considered them for our
experiment, finding substantial agreement (see Fig. S2 in the
Supplemental Material [40]). In Fig. 2(e) we show the relation
between diffusivity D and average current J displaying an
average decay but with wide population variability. In Fig. 2(f)
we plot the measured values of p in a large set of experi-
ments, as a function of the noise-to-signal ratio [defined as
the ratio between the peak of the spectrum and its average at
frequencies higher than the oscillation frequency (see Fig. 6
in the Appendix B)] and, in the inset, versus J . Our first
main conclusion is that p takes values in the approximate
range 0–pmax with pmax ≈ 102 s−1. Moreover, we see that it
roughly decreases with the noise-to-signal ratio and it roughly
increases with J . A visual inspection of the extremal cases,
i.e., those close to 0 and those close to pmax, confirm that they
correspond to chaotic motion and to almost regular periodic
motion, respectively.

IV. SPERM PRECISION IS MUCH LOWER
THAN THE TUR BOUND

Direct empirical estimates of the energy consumption
(through respiration and glycolysis) for various types of
sperms gave figures in the range of (107–108)kBT s−1 (see
Appendix B) [27,47,48]. Theoretical estimates for the power
produced by microswimmers are given by the Taylor formula,
here adapted for bull sperms [48]:

Ẇprod ≈ π3ηL f 2β2. (4)

Here β is the tail beating amplitude, L is the tail length,
and η the host fluid viscosity (we have assumed, in the orig-
inal Taylor formula, the cross section of the flagellum to
be approximately 0.2 µm and the tail wavelength approx-
imately 35 µm). We set β = 5 µm (only weakly varying
with external conditions in our range; see [49]), L = 60 µm,
and η = 10−3 Pa s. The accepted order of magnitude of the
sperm’s efficiency is approximately 10–25 % [50–55], giv-
ing values which are compatible with experimental estimates
Ẇ ≈ 108 kBT s−1 when f = 20 Hz at 37 ◦C. In our experi-
ments at room temperature, approximately 20 ◦C, the typical
beating frequency is 6–7 Hz, leading to Ẇ ≈ 107 kBT s−1, and
therefore pTUR = 107 s−1. It is clear that all these figures rest
in a much narrower range if the normalized consumption
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rate is considered Ẇ / f 2 ≈ (2–5) × 106 kBT s. In conclusion,
the bound in Eq. (2) largely overestimates our measured
maximum precision, with Qmacro = pmax/pTUR ∼ 10−5. In the
following we propose an interpretation of this result.

An intriguing observation concerns the maximum pre-
cision, computed from empirical data-informed models, of
the dynein molecular motors pd [34], which is close to the
maximum values we have measured for the whole flagellum
pd ∼ pmax [56]. Our interpretation of the similarity between
those two figures is the following. Let us denote by θi(t ) the
integrated current, in the space of motor configurations, in the
time t for the ith dynein motor. In both the systems (sperm’s
flagellum and dynein) the current integrated in time counts the
cumulative number of performed cycles in the configuration
space. We conjecture that, in a given amount of time, the
number of cycles in the configuration space of the sperm’s
flagellum is proportional to the number of cycles in the motor
configuration space of any molecular motor in that flagel-
lum, i.e., θ (t ) ≈ Cθi(t ) ∀ i ∈ [1, N], with possible i-dependent
corrections which rapidly vanish with t . The result of this
conjecture is that the precision of the variable θ (t ) is close
to the precision of variables θi(t ) for any i. The biological
meaning of our conjecture is that a long-range coordination
among molecular motors inside the flagellum, quite an ac-
cepted fact in the literature [30], affects also fluctuations. In
order to make our conjecture more robust, we proceed along
two different paths: a new theoretical model and a second
experiment.

V. A MODEL WITH STRONGLY COUPLED MOTORS

A first clue in support of our conjecture comes from the nu-
merical analysis of a theoretical model for the motor-actuated
flagellar dynamics, extensively studied in Refs. [12,57,58],
modified here through the introduction of a coupling term
between adjacent motors. The model is depicted in Fig. 3(a)
and is described in detail in Appendix C. It consists of a fila-
ment with N motors. Each motor acts on the filament through
an interaction potential and performs a stochastic attachment-
detachment dynamics which breaks the detailed balance as if
consuming ATP. The motor position X oscillates under the
joint effect of the forces of the attached motors and an external
elastic force ξ Ẋ (t ) = −∂X

∑
i siU [xi − X (t )] − κX , with si ∈

{0, 1} representing the detached-attached status of the ith mo-
tor, the motor-filament potential U (x) = U0[1 − cos(2πx/�)],
viscosity ξ , and elastic constant of the external spring κ .
The elastic force here could represent the effect of the cage
but in previous studies was introduced just to simplify the
mathematics of the problem; it is not crucial for the model’s
phenomenology [57]. The variables si jump from 0 to 1 and
back according to a Poisson process. In the original model
the probability rates of such a process depended only upon
the local motor-filament potential, so the fluctuations of the
jump dynamics of each motor were independent of nearby
motors; for this reason the amplitude of the macroscopic noise
was observed to decrease with N [20]. Here we employ a
binding potential K (si − si+1)2 that correlates the states si and
si+1 of adjacent motors. Increasing K (from the case K = 0,
which corresponds to the original version) drastically changes
the behavior of the model, in particular, resulting in a much

(a)

(b)

FIG. 3. Theoretical model. (a) Sketch of the model. (b) Precision
p versus number of motors N for different choices of the coupling pa-
rameter K , showing the O(N ) scaling for uncoupled motors (K = 0)
and the O(1) scaling for large K . In all the simulations we have
used α = η = 0.5, k/ξ� = 10, and αNU0/��2ξ = 0.6. The error
bars are obtained to error propagation based upon the error in the
measurement of D. Such error is the estimated standard deviations
of D in the nonlinear least-squares fit of the exponential decay of the
phase correlation (see Appendix C).

stronger macroscopic noise, i.e., a largely faster decay of the
phase correlation (see Fig. 7 in Appendix C).

In Fig. 3(b) we draw our main new conclusion, measuring
the precision p = ω2/D, where ω is the average oscillation
frequency and D the diffusivity deduced from the decay of
phase correlation [20]. When K = 0 the precision grows lin-
early with N , in agreement with what was already observed
in [20] and with the reasonable argument that the N random
independent fluctuations of the motor phases contribute with
a variance 1/N to the fluctuations of the macroscopic phase.
However, the noise reduction due to the growth of N disap-
pears at large K : When K increases the size scaling of p goes
from p ∼ O(N ) to p ∼ O(1). This result amounts to saying
that the precision of the whole flagellum becomes comparable
to the precision of the single motor when K is large enough,
as in the experiment. On the other hand, the energy con-
sumption (ATP consumed per cycle and per motor) increases
with N , mostly independently of the coupling strength. The
ratio between precision p ∼ O(1) and energy consumption
Ẇ ∼ N therefore decreases as 1/N , in fair agreement with our
experimental observations.

VI. EXPERIMENT UNDER OXYGEN DEPRIVATION

Experimentally, we reconsider the TUR [Eq. (2)]. For a
single dynein motor, in fact, it establishes a close upper
bound: Qmicro = pd/(Ẇdynein/kBT ) � 10−1. The closeness of
the bound suggests that a variation of energy consumption
must result in a proportional variation of dynein’s precision,
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FIG. 4. Sperm precision and thermodynamics. Observations were made for caged sperms in experiments within a sealed chamber.
(a) Decay of beating frequency [as measured from the spectrum peak of a(t ) and b(t )] with time. The average values of the frequencies
at each hour of the experiment are also marked as white circles, together with a sigmoidlike fit f (t ) = c1e−c2t s(t ) + c3e−c4t [1 − s(t )] with
sigmoid s(t ) = [1 + e(t−t0 )/τ ]−1 and best-fit values t0 = 143, τ = 10.2, c1 = 7.1, c2 = 1.1 × 10−3, c3 = 3.5, and c4 = 2 × 10−3. (b) Reduction
of average current and diffusivity along time, shown as violin plots, each from an hour bin (e.g., 1 means all observation is done in the first
hour, etc.). (c) Decay of precision with time, again in the form of a violin plot. The inset shows the decay of pmax (estimated as the average of
the top 25% population) together with the normalized (by N = 105) power consumption extracted by the Taylor formula [Eq. (4)] using the
frequency decay fit shown in Fig. 3(a), with amplitude fixed at the average observed value 5.2 µm. Error bars represent standard deviations
normalized by the square root of the number of data in the aforementioned percentile. The sizes of samples in (b) and (c) are 41 sperms in the
first hour, 24 in the second hour, 34 in the third hour, 25 in the fourth hour, and 16 in the fifth hour.

confirmed also in theoretical models [34]. Therefore, if the
noise of the flagellum beating is dominated by molecular mo-
tors’ noise, a reduction of energy consumption should result
in a reduction of the flagellum’s pmax.

We have performed a series of experiments in oxygen
deprivation (see Fig. 4). The samples were left in a sealed box
for several hours, recording activity and assessing the p of
all trapped cells, every 15–30 min. During the total time of
the experiment (5 h) we observed a clear decay in the beating
frequency f [see Fig. 4(a)]. Although we cannot directly con-
trol if the reduction of beating frequency is induced only by
the reduction of oxygen or of other nutrients, sperms clearly
reduce their activity and, as a consequence, their energy con-
sumption. During the experiment we also observed a decay
of both D and J [see Fig. 4(b)] and most importantly of the
maximum precision pmax by more than a order of magnitude
[see Fig. 4(c)]. Remarkably, the observed decay of pmax is well
reproduced by the decay of energy consumption normalized
by N , i.e., pmax ≈ Ẇ /(NkBT ), where N = 105 is an estimate
of the number of dynein motor domains in a flagellum [26–28]
[see the blue solid and dashed lines in the inset of Fig. 4(c)].
We interpret this result as an argument in favor of the conjec-
ture that fluctuations in the flagellum beating are dominated
by fluctuations of spatially correlated dynein motors.

VII. GENERALIZATION TO OTHER EUKARYOTIC
FLAGELLA: A TUR-BASED CORRELATION LENGTH

We underline that, in order to extrapolate it to other sys-
tems and more general conditions, the identification with N
for the ratio between the TUR bound and the actual sperm
precision should be taken as an order of magnitude. Here
we discuss this point in detail. We propose to generalize our
observation to assemblies of N molecular motors in the form

pmax ≈ Ẇ /LTURkBT , where LTUR ∼ N is a correlation length
(measured in adimensional units, i.e., as an estimate of the
number of adjacent correlated motors). In Appendix B 3 we
show that such a generalization follows by considering a chain
of molecular motors whose dynamics is correlated up to an
extension of approximately LTUR adjacent motors, leading
to a renormalization of the precision by a factor LTUR. In
order to corroborate our conjecture, we reconsidered several
previous results where the quality factor for fluctuations was
measured in different conditions and with different flagella
(from sperms and C. reinhardtii algae) [16–20]. A summary of
our and previous results is given in Table I, in Appendix B 4.
Our conjecture allows us to collapse new and old data upon a
master curve LTUR ∼ N , fully consistent with our hypothesis
(see Fig. 5).

VIII. CONCLUSIONS AND OUTLOOK

We have reported an experimental protocol to estimate the
statistical precision of sperm’s beating, which differs from
previous measurements of the quality factor as it is directly
related to energy consumption, according to the recently
celebrated TURs. The use of single-cell traps aids the recon-
struction of the dynamics of a single cell’s shape, but in future
implementations it could be replaced by a comoving tracking
analysis directly applied upon free-swimming cells.

Our results point to the need of understanding dynami-
cal fluctuations of active flagella and their relation to their
bioenergetics [59–61]. It seems that a recognized theoretical
statement, the thermodynamic uncertainty relation, has a rel-
evance not only for molecular motors but also for mesoscopic
self-propelling microswimmers. With this aim, we have re-
ported two striking observations: (i) the coincidence between
the maximum precision of the whole sperm cell and that of
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FIG. 5. Collapse of correlation lengths in several experiments.
The data from different previous experiments with sperms and flag-
ella of C. reinhardtii algae are summarized here by plotting the
correlation length LTUR = Ẇ

pkBT , discussed in Appendix B 3, versus
the length of the flagella N (both quantities are given as numbers of
molecular motors). The data are also reported in Table I. The light
colored points allow one to distinguish the different experiments,
while the circles identify the averages at each given flagellar length.
Bars represent statistical errors. The dashed line marks the scaling
law LTUR ∼ N , which is expected under the hypothesis of strong
coordination among adjacent motors in the axoneme.

molecular motors actuating the sperm’s flagellum and (ii) the
dependence of the maximum precision of the whole sperm
cell upon the reduction of energy consumption, a dependence
that one would expect only for the molecular motors. As a
common explanation we conjecture that the N ≈ 105 dynein
motors actuating a sperm’s tail work at a high level of coor-
dination which also affects fluctuations; a theoretical model
where adjacent motors are coupled by a binding potential
is consistent with our observations. The TUR is therefore
still valid for the whole sperm’s cell, but with a discrepancy
between maximum precision and energy consumption which
is approximately N times worse than in the case of the single
molecular motor. An interesting perspective involves studying
the same observables with other microswimmers, such as E.
coli, whose flagellar motor fluctuations have been studied in
the past [62] but not their connection with the TUR. It will also
be important to understand more deeply the detailed mechan-
ical modeling of ciliary oscillations and how fluctuations can
emerge from the dynamical instabilities that underlie the ax-
onemal beating [63–65]. Validating such models will require
a comparison with the full probability density function of the
beating phase fluctuations (and not only its extreme values).

We conclude by emphasizing that our work suggests new
applications of the TUR and of the precision observable. First,
the TUR lets us evaluate if the observed precision is low or
not, as it gives a theoretical bound which can be reached by
certain systems (for instance, some kinds of molecular motors
get quite close to it). A large distance from such a bound is
an observation which stimulates further investigation. Second,
the precision p helped us in validating the theoretical model:

The scaling of p with N suggests the relevance of the cou-
pling ingredient, beyond any precise calibration of the model
parameters. Finally, p could be made useful, in the future,
in fertility studies and diagnostics, as it can enter the list of
parameters measured in a spermiogram, to assess the health
of human or animal sperm: For instance, our study suggests
that it is correlated to the energy consumption of the cell.
Of course, the usefulness of such a parameter (e.g., if it is
correlated with the good performance of a cell in chemotaxis
or other kinds of migration mechanisms) must be validated
with further studies.
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APPENDIX A: EXPERIMENT

1. Microfabrication

The microcage features allows us to accommodate one
single cell on it, in a way that the head is confined while
leaving the entire tail outside. Based on sperm characteristics,
the chamber is designed as a box composed of four microfab-
ricated facets anchored to the cover glass. The height, width,
and depth of a single cage are 500 nm, 5.5 µm, and 11 µm,
respectively. Microfabrication is carried out by a custom-built
two-photon polymerization setup [66]. The microchambers
are generated from SU-8 3025 photoresist (Kayaku Advanced
Materials) using a 60× 1.4 numerical aperture objective. After
exposure, the photoresist sample is baked, ramping the tem-
perature from 65 ◦C up to 95 ◦C with increments of 5 ◦C per
min and then 7 min at the highest temperature. Reduction of
stress between the substrate and SU-8 is achieved by gradu-
ally decreasing the temperature of the sample until reaching
room temperature. Thereafter, the photoresist is developed by
its standard developer solvent, followed by rinsing in a 1:1
solution of water and ethanol, and finally dried with a gentle
blow of nitrogen. Strong adhesion of the microchambers to the
carrier cover glass is ensured by three layers of Omnicoat ad-
hesion promoter (Kayaku Advanced Materials). Laser power
and scanning speed are 5 mW and 30 µm s−1, respectively.

2. Sample preparation

The experiments for measuring the main spatial modes
of the sperm’s tail were developed on an open sample. This
sample was obtained by attaching a plastic ring surrounding
the microchambers area using the optical adhesive NOA81
(Norland Products Inc.). For the experiments under oxygen
deprivation, we used hermetically sealed samples. Two fishing
wires of approximately 100 µm thickness and NOA81 adhe-
sive were used as spacers between the carrier cover glass and
a coverslip, generating a channel; after introducing approxi-
mately 150 µL of solution containing sperm cells, the sample
was completely sealed by applying NOA81 adhesive in the
two open sides.
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(a) (b) (c)

FIG. 6. Details about the tail-tracking procedure. (a) Examples of the signals a(t ) and b(t ) from trail tracking. One can see that a(t )
anticipates b(t ) of an angle between approximately π/2 and approximately π . (b) Spectra (modulus of the fast Fourier transform) of the
signals a(t ) and b(t ). (c) Spectra after signal filtering. The orange and light blue dashed lines indicate the signal level and the noise level,
respectively (the noise-to-signal ratio is defined as the ratio between the latter and the former).

Bull sperms were obtained from Agrilinea S.R.L. (Rome)
and stored in a liquid nitrogen cylinder. On the day of the
experiment, a vial of sperms suspended in semen was taken
and immersed in a hot water bath of 37 ◦C for 10 min. The
vial was then taken out of the bath and immediately cut open
using a pair of sterilized scissors. The sperm suspension was
poured out of the vial in an Eppendorf. A micropipette was
then used to suck out 150 µL of the sperm suspension from the
Eppendorf and insert the fluid into the microchannel, ensuring
proper filling inside the structures. The sperm movement was
recorded at environmental temperature, approximately 20 ◦C,
by using a digital camera (Nikon, USA) connected to an
inverted microscope. The image capturing and analysis was
performed using an in-house software made using PYTHON

programming language

APPENDIX B: DATA ANALYSIS

1. Details about the tail-tracking procedure

Images are collected at 50 frames per second, with 20×
objective resulting in a resolution of 6.5/20 µm per pixel.
Each image portrays a large portion of the substrate where
several cages are present, almost all filled by caged sperms.
Only cages with a single trapped sperm cell are analyzed. A
region of interest of on average 40 × 40 pixels, correspond-
ing to an area of roughly 13 × 13 µm2, containing the most
visible part of the tail which is also the one closest to the
head [see Fig. 1(d)], is cropped and treated by successive
layers of image processing tools: (i) background subtraction
to reduce noise, (ii) transform to gradient (squared modulus)
to avoid dependence on absolute levels, (iii) Gaussian filter
with 1 pixel range, (iv) the largest continuous bright region is
individuated (it always corresponds to the tail), and (v) that
region is treated as a cloud of scattered points representing a
curve y vs x, which is fitted by least squares to a second-order
polynomial y(x, t ) = a(t ) + b(t )x + c(t )x2 as discussed in the
main text. The time series of a(t ) and b(t ) are filtered by
a third-order Butterworth high-pass digital filter with critical
frequency set at 1.5 Hz. In Fig. 6 the time series of a(t ) and
b(t ) of a tracked cell are shown together with the spectra of the
two series before and after the filtering. The noise-to-signal
ratio is computed as the ratio between the noise level and the
signal level, both shown in the figure.

2. Discussion of thermal diffusion effects due to the fluid

The value of D is the result of a complex interplay of
elasticity, hydrodynamics, activity, and noises with different
origins. Even at thermal equilibrium, i.e., for dead sperms,
an estimate of filament phase diffusivity is complex as it
involves not only the amplitude of fluctuations, which can
be inferred by the equilibrium distribution of elastic energy,
but also the relaxation time of such modes. A first estimate
of involved timescales can be obtained by computing the
rotational diffusivity. For a passive rod [67] (or a filament with
low flexibility) of length � ≈ 50 µm (as the sperm’s body) in
water viscosity η one has a rotational diffusivity of the order
DStokes ≈ kBT/η�3 ≈ 10−5 rad2 s−1. Visual inspection of our
samples shows that nonmotile cells are basically immobile
with negligible fluctuations in position or in shape, within our
space-time resolution.

3. Correlation length based upon the thermodynamic
uncertainty relation

Here we discuss a simple scaling argument to pinpoint the
minimal assumptions behind the definition of an uncertainty
correlation length

LTUR = Ẇ

pN kBT
(B1)

for a system of N connected motors (e.g., a chain similar to
the axoneme structure). We recall that the asymptotic (steady-
state) precision p is defined as

pN = lim
t→∞

1

t

〈XN (t )〉2

〈
X 2

N

〉
c

, (B2)

where 〈x2〉c stands for the variance of variable x and XN (t ) =∫ t
0 ds ẊN (s) is the observed integrated current.

In a first-order approximation, the presence of spatial cor-
relations across a correlation length Ñ inside the chain can be
accounted for by regrouping the N motors in M = N/Ñ inde-
pendent groups. Moreover, the observed integrated current XN

can be assumed to be an empirical average of the integrated
current in each of the M independent groups, i.e.,

XN =
∑M

i=1 XÑ,i

M
, (B3)
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TABLE I. Results from previous literature and from the present study for both sperms and Chlamydomonas. The columns report the kind
of experiment (with reference), the frequency of beating (in hertz), the length of the flagellum (in microns), the estimated number of motors
N = 1800L, the energy consumption in units of kBT , the quality factor q (when measured), the maximum observed precision pmax (in s−1),
and the precision-based correlation length LTUR = Ẇ /(pkBT ) in the number of motors (see Appendix B 3). To conserve space, we have not
reported the errors if they can be computed by standard error propagation. The reported errors are those obtained from estimates reported in
the literature and standard deviations in our experimental observations.

Experiment f (Hz) L (µm) N Ẇ /(kBT ) q pmax (s−1) LTUR

Sperms (this study) 8 ± 1 60 ± 3 1.1 × 105 107 120 ± 30 8.5 × 104

Sperms after ∼2 h 6 ± 1 60 ± 3 1.1 × 105 5.7 × 106 60 ± 10 9.6 × 104

Sperm after ∼4 h 3 ± 1 60 ± 3 1.1 × 105 1.4 × 106 10 ± 5 1.4 × 105

Sperm after ∼5 h 2 ± 1 60 ± 3 1.1 × 105 6.4 × 105 4 ± 0.5 1.6 × 105

Sperms at 37 ◦C [20] 31 ± 1 60 ± 3 1.1 × 105 1.5 × 108 38 ± 5 1.4×104 104

Chlamydomonas [16] 47 ± 2 10 ± 0.5 1.8 × 104 1.6 × 108 23 ± 16 1.3×104 1.2 × 104

Chlamydomonas [16] 47 ± 2 10 ± 0.5 1.8 × 104 1.6 × 108 26 ± 18 1.6×104 104

Chlamydomonas [17] 71 ± 2 6 ± 0.5 104 2.3 × 108 70 ± 10 6.2×104 3.6 × 103

Chlamydomonas [17] 67 ± 2 8 ± 0.5 1.4 × 104 2.6 × 108 100 ± 12 8.3×104 3.1 × 103

Chlamydomonas [17] 62 ± 2 10 ± 0.5 1.8 × 104 2.9 × 108 120 ± 18 9.6×104 3 × 103

Chlamydomonas [18] 60 ± 3 10 ± 0.5 1.8 × 104 2.7 × 108 100 ± 20 7.5×104 3.5 × 103

Chlamydomonas [19] 53 ± 2 10 ± 0.5 1.8 × 104 2 × 108 199 ± 20 1.3×105 1.6 × 103

with the XÑ,i being independent and identically distributed.
These assumptions lead to

pN = lim
t→∞

1

t

〈XÑ (t )〉2

〈
X 2

Ñ

〉
c

/
M

= M pÑ . (B4)

Assuming that the mean consumed work is extensive in the
size of the chain, i.e., ẆN ∼ NẆ1, we get

ẆN

pN kBT
= Ñ

Ẇ1

pÑ
= (Qmicro)−1Ñ, (B5)

having considered

Ẇ1

pÑ
≈ Ẇ1

p1
= (Qmicro)−1. (B6)

In the last passage we have assumed pÑ ≈ p1 following the
assumption that for the correlated Ñ motors in a group the
precision is that of a single motor. Equation (B5) justifies our
definition in Eq. (B1).

4. Previous experiments with sperms at physiological
temperature and with other flagella

In a recent work [20] data from sperm cells observed at
37 ◦C were analyzed. Such data, collected in a previous work
[63], concern an anomalous swimming regime which is appar-
ently induced by a particular sample preparation: They were
“incubated with 1% F-127 (Sigma) in PBS for 5 min. . .. When
the surface was treated with F-127, the sperm did not stick but
instead swam close to the surface, usually in circles of radii on
the order of 40 µm” [63]. With such treatment the measured
beating frequency was particularly high; we define it as fMa ∼
31 Hz, much higher than what is usually observed (literature
reports 20 Hz for bull sperm cells at 37 ◦C [49], observed also
in [63] without such surface treatment). Within such particular
conditions the authors measured a quality factor which, in our
notation, reads q = J/2D ∼ 38, which would correspond to a
precision p = 2qJ .

Other experimental works have addressed the properties of
noise in the beating of axonemes, particularly with Chlamy-
domonas flagella [15–19]. In Refs. [16,17] the quality factor
of beating was obtained indirectly from the rate of phase slips
in pairs of synchronized flagella (as well as directly from the
distribution of beating periods), getting estimates in a range
q = 25–120, with average beating frequency f = 50 Hz.

A summary of such previous observations and a com-
parison with the results of the present study are given in
Table I. In compiling this table we have used some assump-
tions typically found in the literature i.e., that the amplitude
of sperm’s beating is 6 ± 1 µm, the amplitude (“wingspan”)
of Chlamydomonas flagellar beating is 10 ± 1 µm, and the
energy consumption in both cases is given by the Taylor for-
mula [Eq. (4)] multiplied by 10 (that is, assuming an average
efficiency of 10%).

A plot of the TUR-based correlation length versus the
length of the flagellum is shown in Fig. 5. Within the error, the
data are compatible with long-range order, i.e., LTUR ∼ N .

5. Estimates of the energy consumption
and efficiency of sperm swimming

Consumption rate, speed, and beating frequency are sensi-
tive to environmental conditions, e.g., temperature and fluid
viscosity [49]. In Ref. [47] sea urchin sperm was studied in
a 50% glycerol solution at 16 ◦C with varying the beating
frequencies through modulation of the ATP concentration:
For instance, at 20 Hz, 106 molecules of ATP were found
per sperm per second, corresponding to slightly more than
approximately 107kBT per second. In Ref. [48] experiments
were performed at 37 ◦C, with bull semen diluted or washed
in egg yolk with diluents, a phosphate buffer, and the addition
of fructose and lactate, leading to an estimate of consumption
rate equal to approximately 107 molecules of ATP per sperm
per second, i.e., slightly more than approximately 108kBT
per second. The evaluation of the produced work through
the Taylor formula led to an estimate of the efficiency of
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approximately 20%. In Ref. [27] sea urchin sperms were
studied one by one in droplet solutions, at unreported temper-
ature but with controlled conditions in both ATP concentration
and buffer viscosity (both directly modulating the beating
frequency), obtaining approximately 3 × 106 ATP molecules
per sperm per second when the tail beats at 10 Hz.

APPENDIX C: A THEORETICAL MODEL FOR
THE FLUCTUATIONS OF AN ACTIVE AXONEME

The model discussed in this Appendix is a variation of the
classical model introduced in Ref. [12] and further studied in
Refs. [57,58]. Interestingly, the original model has been used
to rationalize recent experiments on sperm swimming fluctu-
ations [20]. In the original model however, the fluctuations of
the N motors are independent. Therefore, the fluctuations of
the filament macroscopic dynamics are somehow similar to
the fluctuations of an average of N independent noises and
therefore their squared error (or diffusivity) decreases with
N ; this results in a linear approximately N increase of the
precision (or quality factor). We provide a simple mechanism
to couple the noises of the motors and verify, in numerical
simulations, that this ingredient is sufficient, at strong cou-
pling, to change the size scaling from O(N ) to O(1).

In the model the filament is represented by a position
X (t ) and by a potential W = ∑N

i=1 siU [xi − X (t )] which reg-
ulates the interaction of the filament with N motors, each
one being at fixed position xi and in attachment state si =
0, 1 (0 when detached and 1 when attached). The position
X (t ) can be understood as the real position in space of the
center of mass of the filament, as well as a generalized co-
ordinate representing the shape of it. The potential may be
related to local properties of the filament, such as the local
curvature which depends upon the time t through the co-
ordinate X (t ). Each motor can detach from and reattach to
the filament, changing its state si, according to a Poisson
process that violates detailed balance, as it happens when
the ATP → ADP+P process is involved. The overdamped
equation of motion of the filament is ξ Ẋ (t ) = Fext(t ) + F (t ),
where F (t ) = −∂X

∑
i siU [xi − X (t )] and Fext(t ) is an exter-

nal force. In general, the filament can be free from external
forces, but then a spatial asymmetry [employed in W (x)] is
needed to induce forward motion; otherwise an external force
(e.g., a spring on an end of the filament) is already sufficient
to break spatial symmetry and the potential W can be taken
to be symmetric to simplify calculations. This is the case
analyzed here and in Ref. [20], with Fext = −κX and U (x) =
U0[1 − cos(2πx/�)], the filament does not move on average
but fluctuates more or less regularly, while a limit cycle in the
X (t )-F (t ) plane can be used as analogous to the A-B plane
used in our experiments. In the original model, each motor
realizes the attachment-detachment process independently of
the other motors, with the only indirect correlations due to the
modulation of the attachment-detachment rate through the po-
sition ωi

on = �(η − α cos{2π [xi − X (t )]/�}) and ωi
off = � −

ωi
on. This ingredient, however, only correlates (locally) the

average residence times but does not correlate fluctuations
around those averages: It is the same as considering indepen-
dent noises with similar averages.

In order to adapt the model to our experimental
findings, we introduced a binding potential that cor-
relates adjacent motors: This potential is minimized
when adjacent motors are in the same state. This is
implemented as a modification of the rates according to
the formula ωi

on = �(η − α cos{2π [xi − X (t )]/�})e−�U bind
i

and ωi
off = � − �(η − α cos{2π [xi − X (t )]/�})e−�U bind

i ,
where �U bind

i is the binding potential increase after the
variation of state si of the ith motor and the binding potential
is U bind

i = K (si − si+1)2 + K (si − si−1)2. When K = 0 the
original model without binding energy is recovered.

The effect of K can be appreciated in numerical simula-
tions of the model whose results are reported in Figs. 3 and
7. In particular, in Figs. 7(c)–7(f) we show the drastic change
in the decay of the phase correlation when K is increased. In
Fig. 3(b) it can be appreciated how the size scaling of the pre-
cision changes completely and tends to become independent
of N when the coupling strength increases. Our observation
that the macroscopic sperm precision (N ∼ 105) is similar to
the microscopic sperm precision (N = 1) is explained fairly
well by this new model. Note that the beating frequency in the
model is independent of N (at least for N � 102) so that the
energy consumption (ATP consumed per cycle and per motor)
increases with N , even for large binding potential. The ratio
between precision p ∼ O(1) and energy consumption Ẇ ∼ N
is therefore doomed to decrease as 1/N , in fair agreement with
experimental observations.

APPENDIX D: SIMPLEST WORKING PRINCIPLE
FOR THERMODYNAMIC UNCERTAINTY RELATIONS

While the TURs have been demonstrated for larger and
larger classes of models and time domains, we judge it in-
structive to summarize the first example where they have been
observed, which is a Markov jump process describing, in a
very simplified way, the stochastic (progressive on average)
dynamics of a single Brownian motor or clock [23]. The
model is defined in continuous time; the motor can go forward
or backward with probability rates k+ and k−, respectively.
Local detailed balance dictates that k+/k− ∼ exp(Q/kBT ),
where Q = W is the energy dissipated in a forward jump equal
to the work input carried by ATP.

The average current of the clock (number of steps per unit
of time) is J = k+ − k−, while the associated diffusivity is
2D = k+ + k−. Therefore, for the position X (t ) of the mo-
tor or clock one has a relative uncertainty defined as ε2 =
(〈X 2〉 − 〈X 〉2)2/〈X 〉2, which reads ε2 = 2Dt/(Jt )2 = (k+ +
k−)/(k+ − k−)2t , which in terms of the precision p = 2/tε2

reads p = 2(k+ − k−)2/(k+ + k−). The energy dissipated up
to time t reads, in terms of the entropy production rate σ ,
T σ t = Q̇t = JQt . Then the product between the energy dissi-
pated and the relative uncertainty satisfies 2Q̇/p = T σ tε2 =
(k+ + k−)/(k+ − k−)Q coth(Q/2kBT ) � 2kBT , which leads
to the TUR used in this paper p � Q̇/kBT .

This example is useful to evaluate the key sources of noise
in this process, i.e., the contributions to D which are both k+
and k−. This means that backstepping (a non-negligible k−)
is not the only source of noise, but k+ also contributes to
noise. The reason is that a large contribution to fluctuations
of the motor current is due to fluctuations in the residence
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FIG. 7. Theoretical model. (a) and (d) Evolution of the system in the force-coordinate phase space: (a) K = 0 and (d) K = 10. The angle
θ (t ) measures the phase of this limit cycle after suitable rotation and normalization of the axis. (b) and (e) Evolution of cos[θ (t )] that allows
us to evaluate the stability of the periods in the two cases: (b) K = 0 and (e) K = 10. (c) and (f) Real part of the autocorrelation of eiθ (t ) and
exponential fit of approximately e−Dt of its envelope: (c) K = 0 and (f) K = 10. In all the simulations we have used α = η = 0.5, k/ξ� = 10,
and αNU0/��2ξ = 0.6.

time before a new forward step. If time is discretized in dt
steps, the motor remains in its position with a probability 1 −
(k+)dt − (k−)dt ; the exit time has an exponential probability
with average exit rate (k+) + (k−). The real chemical network
of a molecular motor, such as the dynein, is much richer than
the minimal model considered in Refs. [23,68,69]. In that
minimal model a single step is a coarse graining of the several
intermediate chemical steps. The presence of intermediate

steps with their fluctuating residence of times and possi-
bly non-negligible backstepping probabilities implies relevant
fluctuations in the coarse-grained residence times and there-
fore in the motor’s current, even when the total backstepping
probability is negligible. We deem these motors’ fluctuations,
with an additional coordination hypothesis discussed in the
text, to be important for the deviation of the sperm shape cycle
from its average dynamics.
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