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Abstract

We extend the KLM approach to defeasible reasoning to be
applicable to a restricted version of first-order logic. We de-
scribe defeasibility for this logic using a set of rationality pos-
tulates, provide an appropriate semantics for it, and present a
representation result that characterises the semantic descrip-
tion of defeasibility in terms of the rationality postulates.
Based on this theoretical core, we then propose a version of
defeasible entailment that is inspired by Rational Closure as
it is defined for defeasible propositional logic and defeasible
description logics. We show that this form of defeasible en-
tailment is rational in the sense that it adheres to our rational-
ity postulates. The work in this paper is the first step towards
our ultimate goal of introducing KLM-style defeasible rea-
soning into the family of Datalog+/- ontology languages.

1 Introduction
The past 15 years have seen a flurry of activity to intro-
duce defeasible-reasoning capabilities into languages that
are more expressive than propositional logic (Casini and
Straccia 2010, 2013; Casini et al. 2015; Giordano et al. 2013,
2015; Bonatti et al. 2015; Bonatti 2019; Pensel and Turhan
2018). Most of the focus has been on defeasibility for de-
scription logics (DLs), with much of it devoted to versions
of the so-called KLM approach to defeasible reasoning ini-
tially advocated for propositional logic by Kraus, Lehmann,
and Magidor (1990), and Lehmann and Magidor (1992). In
DLs, knowledge is expressed as general concept inclusions
of the form C v D, where C and D are concepts, with the
intended meaning that every instance ofC is also an instance
of D. Defeasible DLs allow, in addition, for defeasible con-
cept inclusions of the formC@∼D with the intended meaning
that instances of C are usually instances of D. For instance,
Student @∼ ¬∃pays.Tax (students usually don’t pay tax) is a
defeasible version of Student v ¬∃pays.Tax (students don’t
pay tax).

Given the tight formal relationship between DLs and the
family of Datalog+/- ontology languages (Calì et al. 2010;
Calì, Gottlob, and Lukasiewicz 2012), it is surprising that
this form of defeasibility has not yet found its way into
Datalog+/-. In this paper we take the first steps to fill that
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gap by providing the theoretical foundations for defeasibil-
ity in a restricted version of first-order logic. We refer to the
classical version of the logic as RFOL and the defeasible
extension as DRFOL. It suffices to to use Herbrand interpre-
tations for the semantics of RFOL. However, the availabil-
ity of non-unary predicates means that the definition of an
appropriate semantics for DRFOL is a non-trivial exercise.
This is because the intuition underlying KLM-style defea-
sibility generally depends on the type of language in which
it is implemented. For propositional logics the intuition dic-
tates a notion of typicality over possible worlds. The state-
ment “birds usually fly”, formalised as bird |∼ fly, is in-
tended to convey that in the most typical worlds in which
bird is true, fly is also true. In contrast, defeasibility in DLs
invokes a form of typicality over individuals. The statement
Student@∼¬∃pays.Tax states that of all those individuals that
are students, the most typical ones don’t pay taxes. Consider,
for instance, the following example of (Delgrande 1998):

Example 1. The following DRFOL knowledge base states
that humans don’t feed wild animals, that elephants are usu-
ally wild animals, that keepers are usually human, and that
keepers usually feed elephants, but that Fred the keeper usu-
ally does not feed elephants (the connective ; refers to de-
feasible implication and variables are implicitly quantified).

K = { wild_animal(x) ∧ human(y)→ ¬feeds(y, x),

elephant(x) ; wild_animal(x),

keeper(x) ; human(x),

elephant(x) ∧ keeper(y) ; feeds(y, x),

elephant(x) ∧ keeper(fred) ; ¬feeds(fred, x) }

Note that all statements, except for the first one, are defea-
sible. For any appropriate semantics, the knowledge base in
the example should be satisfiable (given an appropriate no-
tion of satisfiability). With this in mind it soon becomes clear
that the propositional approach cannot achieve this. To see
why, note that applying the propositional intuition to the ex-
ample would result in elephant(x)∧keeper(y) ; feeds(y, x)
meaning that in the most typical worlds (Herbrand interpre-
tations in this case) all keepers feed all elephants. This is in
conflict with elephant(x)∧ keeper(fred) ; ¬feeds(fred, x),
which states that in the most typical Herbrand interpreta-
tions, keeper Fred does not feed any elephants. For any
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reasonable definition of satisfiability, this would render the
knowledge base unsatisfiable.

The DL-based intuition of object typicality is also prob-
lematic. Under this intuition the statement elephant(x) ;

wild_animal(x) would mean that the most typical elephants
are wild animals. Similarly, keeper(x) ; human(x) would
mean that the most typical keepers are human. Combined
with the first statement in the knowledge base, it would then
follow that the most typical keepers (being humans) do not
feed the most typical elephants (being wild animals). On the
other hand, the fourth statement in the knowledge base ex-
plicitly states that the most typical keepers feed the most typ-
ical elephants, from which we obtain the counter-intuitive
conclusion that typical elephants and typical keepers cannot
exist simultaneously.

We resolve this matter with a semantics that is in line
with the propositional intuition of a typicality ordering over
worlds, but also includes aspects of the DL intuition of the
typicality of individuals. We achieve the latter by enrich-
ing our semantics with a set of typicality objects, the el-
ements of which are used to represent typical individuals.
Thus, elephant(x) ∧ keeper(y) ; feeds(y, x) means that in
the most typical enriched Herbrand interpretations, all typi-
cal keepers feed all typical elephants, with the understanding
that there may be exceptional keepers that don’t feed some
elephants. Note that the term typical is used here in two dif-
ferent, but related, ways.

The central theoretical result of the paper is a represen-
tation result (Theorems 2 and 3), showing that defeasible
implication defined in this way can be characterised w.r.t.
a set of KLM-style rationality postulates adapted for DR-
FOL. We show that DRFOL formally generalises propo-
sitional KLM-style defeasible reasoning in two ways. The
cases where DRFOL, restricted to 0-ary predicates, or where
n-ary predicates for any n > 0 are allowed, but with a re-
striction to variable-free statements, both reduce to proposi-
tional KLM-style defeasibility. A comparison with defeasi-
ble DLs is more complicated, but the semantics of defeasible
DLs, for the most part, carries over to DRFOL. An important
exception is that whereas a defeasible DL statement of the
form A@∼⊥ is equivalent to its classical counterpart A v ⊥,
it is possible to distinguish between the DRFOL version of
the same statement,A(x) ; ⊥, and its classical counterpart
A(x)→ ⊥. In fact, the former is weaker than the latter.

Another important consequence of our representation re-
sult is that it provides the theoretical foundation for the def-
inition of various forms of defeasible entailment for DR-
FOL. We present one such form of defeasible entailment
in Section 5, and show that it can be viewed as the DR-
FOL analogue of Rational Closure, as originally defined for
the propositional case (Kraus, Lehmann, and Magidor 1990;
Lehmann and Magidor 1992).

The rest of the paper is structured as follows. Section 2 is
a brief introduction to RFOL, as well as to KLM-style de-
feasible reasoning for propositional logics. Section 4 is the
heart of the paper. It introduces DRFOL, describes an ab-
stract notion of satisfaction w.r.t. a set of KLM-style pos-
tulates, provides a semantics, and proves a representation
result, showing that the KLM-style postulates characterise

the semantic construction. Section 5 presents a form of de-
feasible entailment for DRFOL that can be viewed as the
DRFOL equivalent of the well-known propositional form of
defeasible entailment known as Rational Closure. Section 6
compares defeasible reasoning in DRFOL with KLM-style
defeasible reasoning in propositional logic and DLs. Section
7 provides an overview of related work, while Section 8 con-
cludes and briefly discusses future work. The proofs can be
found in an appendix: https://tinyurl.com/7472fn2a.

2 Background
We consider a restricted version of a first-order language,
which we refer to as RFOL. The language of RFOL is de-
fined by three disjoint sets of symbols: CONST, a finite set
of constants; VAR, a countably infinite set of variable sym-
bols; and PRED, a finite set of predicate symbols. It has no
function symbols. Associated with each predicate symbol
α ∈ PRED is an arity, denoted ar(α) ∈ N, which repre-
sents the number of terms it takes as arguments. We assume
the existence of predicate symbols > and ⊥, which we take
to have arity 0. A term is an element of CONST ∪ VAR. An
atom is an expression of the form α(t1, . . . , tar(α)) where
α ∈ PRED and the ti are terms. Observe that > and ⊥ are
atoms as well.

A compound is defined to be a boolean combination of
atoms, i.e. an expression built out of atoms and the standard
logical connectives ¬, ∧, and ∨. An implication is defined
to have the form A(~x) → B(~y) where A(~x) and B(~y) are
compounds, and where the terms occurring in ~x and ~y may
overlap. A compound (respectively, implication) is said to
be ground if all the terms contained in it are constants; oth-
erwise it is open. In RFOL, the only formulas we permit
are compounds and implications. When viewed as formulas,
compounds and implications are understood to be implicitly
universally quantified.

We adopt the following conventions for various kinds
of formula. Constant symbols and variables will be writ-
ten in lowercase English, with early letters used for
constants (a, b, . . . ) and later letters used for variables
(x, y, . . . ). Compounds will be written in uppercase English
(A,B, . . . ). A tuple of variables or constants will be written
with overbars, such as ~x and ~a respectively, and A(~x) and
B(~a) will be used as shorthand for compounds over their re-
spective tuples of terms. We use lowercase greek (α, β, . . . )
to denote RFOL formulas.

We omit specifying the symbol sets under consideration,
as they can be inferred from context. The set of all formulas
(compounds and implications) is denoted by L, and a knowl-
edge base K is defined to be a finite subset of L.

RFOL can be thought of as an extension of Datalog
(Abiteboul, Hull, and Vianu 1995). In fact, we use Herbrand
interpretations to specify the semantics of RFOL. The Her-
brand universe U is the set of constant symbols CONST. The
Herbrand base of U, denoted B, is the set of facts defined
over U. A Herbrand interpretation is a subsetH ⊆ B.

Substitutions are defined to be functions ϕ : VAR →
VAR ∪ CONST assigning a term to each variable symbol.
Variable substitutions are substitutions that assign only vari-
ables, and ground substitutions are substitutions that assign
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only constants. The application of a substitution ϕ to a com-
pound A(~x) is denoted A(ϕ(~x)). RFOL knowledge bases
are interpreted by Herbrand interpretationsH as follows:

1. if A(~a) is a ground atom, thenH  A(~a) iff A(~a) ∈ H.

2. if A(~a) and B(~b) are ground compounds (where ~a and ~b
may overlap), then H  A(~a) and H  A(~a) → B(~b)
according to the usual laws of boolean connectives.

3. if A(~x) is an open compound, then H  A(~x) iff H 
A(ϕ(~x)) for every ground substitution ϕ.

4. if A(~x) → B(~y) is an open implication (where ~x and
~y may overlap), then H  A(~x) → B(~y) iff H 
A(ϕ(~x))→ B(ϕ(~y)) for every ground substitution ϕ.

5. IfK is a knowledge base, thenH  K iffH  α for every
α ∈ K.

The set of Herbrand interpretations is denoted by H . A
Herbrand interpretation that satisfies a knowledge base K is
a Herbrand model of K.

3 Propositional Defeasible Reasoning
Kraus, Lehmann, and Magidor (1990) originally define |∼
as a consequence relation over a propositional language,
with statements of the form α |∼ β to be interpreted as
the meta-statement “β is a defeasible consequence of α”.
Lehmann and Magidor (1992) subsequently shift to inter-
preting α |∼ β as the object-level statement “α defeasibly
implies β”, with |∼ viewed as an object-level connective.
An abstract notion of satisfaction can then be defined in
terms of satisfaction sets. A satisfaction set S of statements
of the form α |∼ β is said to be rational if it satisfies the
well-known KLM properties below (Lehmann and Magidor
1992). Lehmann and Magidor did not refer to satisfaction
sets, but our formulation here is equivalent to theirs for the
propositional case:

(REFL) α |∼ α ∈ S

(RW)
α |∼ β ∈ S, |= β → γ

α |∼ γ ∈ S

(LLE)
|= α↔ β, α |∼ γ ∈ S

β |∼ γ ∈ S

(AND)
α |∼ β ∈ S, α |∼ γ ∈ S

α |∼ β ∧ γ ∈ S

(OR)
α |∼ γ ∈ S, β |∼ γ ∈ S

α ∨ β |∼ γ ∈ S

(RM)
α |∼ β ∈ S, α |∼ ¬γ /∈ S

α ∧ γ |∼ β ∈ S
A semantics for defeasible implications is provided by

ranked interpretations R, which are defined to be total pre-
orders over a subset UR ⊆ U of valuations. Valuations that
are lower in the ordering are considered to be more typi-
cal, whereas valuations that are not in UR are impossibly
atypical. A defeasible statement α |∼ β is satisfied in R
(R  α |∼ β) iff the R-minimal models of α are also mod-
els of β, which formalises the intuition that β holds in the
most typical situations in which α is true. A classical state-
ment α is satisfied by R iff every valuation in UR satisfies
α.

Lehmann and Magidor (1992) prove the following cor-
respondence between rational satisfaction sets and ranked
interpretations:

Theorem 1. (Lehmann and Magidor 1992). A set S of state-
ments of the form α |∼ β is a rational satisfaction set iff
there is a ranked interpretation R such that α |∼ β ∈ S iff
R  α |∼ β.

To conclude this section, observe that R  ¬α |∼ ⊥ iff
R contains no models of ¬α (which are therefore viewed as
impossible). In other words, R  ¬α |∼ ⊥ iff R  α. We
return to this property of propositional defeasible reasoning
in Section 6.

4 Defeasible Restricted First-Order Logic
Defeasible Restricted First-Order Logic (DRFOL for short)
extends the logic RFOL that was presented in Section 2 with
defeasible implications of the form A(~x) ; B(~y), where
A(~x) and B(~y) are compounds, and where ~x and ~y may
overlap. Observe that ; is intended to be the defeasible ana-
logue of classical implication. That is, A(~x) ; B(~y) is the
defeasible analogue of the RFOL formula A(~x) → B(~y).
The set of defeasible implications is denoted L;, and a DR-
FOL knowledge base K is defined to be a subset of L∪L;.
Note that DRFOL knowledge bases may include (classical)
RFOL formulas.

As demonstrated in Example 1, defeasible implications
are intended to model properties that typically hold, but
which may have exceptions. In this example, for instance,
elephant(x) ∧ keeper(fred) ; ¬feeds(x, fred), is an excep-
tion to elephant(x) ∧ keeper(y) ; feeds(x, y). A DRFOL
knowledge base containing these statements ought to be sat-
isfiable (for an appropriate notion of satisfaction). The same
goes for the DRFOL knowledge base {bird(x) ; fly(x),
bird(tweety), ¬fly(tweety)}. To formalise these intuitions,
we describe the intended behaviour of the defeasible con-
nective ;, and its interaction with (classical) RFOL formu-
las, in terms of a set of rationality postulates in the KLM
style (Kraus, Lehmann, and Magidor 1990; Lehmann and
Magidor 1992). These postulates are expressed via an ab-
stract notion of satisfaction:

Definition 1. A satisfaction set is a subset S ⊆ L ∪ L;.
We denote the classical part of a satisfaction set by SC =

S ∩ L. The first postulate we consider ensures that a satis-
faction set respects the classical notion of satisfaction when
restricted to classical formulas, where |= refers to classical
entailment:

(CLASSF)
SC |= A(~x)

A(~x) ∈ S

(CLASSR)
SC |= A(~x)→ B(~y)

A(~x)→ B(~y) ∈ S

Next, we consider the interaction between classical and de-
feasible implications. We expect the following supraclassi-
cality postulate to hold:

(SUPR)
A(~x)→ B(~y) ∈ S
A(~x) ; B(~y) ∈ S
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A similar postulate for compounds then holds:

(SUPF)
A(~x) ∈ S

¬A(~x) ; ⊥ ∈ S

Proposition 1. (SUPF) follows from (CLASSR) and
(SUPR).

We now consider the core of the proposal for defining ra-
tional satisfaction sets, the KLM rationality postulates, lifted
to the DRFOL case, and expressed in terms of satisfaction
sets:

(REFL) A(~x) ; A(~x) ∈ S

(RW)
A(~x) ; B(~y) ∈ S, |= B(~y)→ C(~z)

A(~x) ; C(~z) ∈ S

(LLE)
A(~x) ; C(~z) ∈ S, |= A(~x)→ B(~y), |= B(~y)→ A(~x)

B(~y) ; C(~z) ∈ S

(AND)
A(~x) ; B(~y) ∈ S, A(~x) ; C(~z) ∈ S

A(~x) ; B(~y) ∧ C(~z) ∈ S

(OR)
A(~x) ; C(~z) ∈ S, B(~y) ; C(~z) ∈ S

A(~x) ∨B(~y) ; C(~z) ∈ S

(RM)
A(~x) ; B(~y) ∈ S, A(~x) ; ¬C(~z) 6∈ S

A(~x) ∧ C(~z) ; B(~y) ∈ S
Next we consider instantiations of implications. To begin

with, note that universal instantiation is not a desirable prop-
erty for defeasible implications:

(DUIR)
A(~x) ; B(~y) ∈ S

A(ϕ(~x)) ; B(ϕ(~y)) ∈ S
To see why, consider a satisfaction set S containing

elephant(x) ∧ keeper(y) ; feeds(y, x) and elephant(x) ∧
keeper(fred) ; ¬feeds(y, fred). From (DUIR) we have
elephant(x)∧keeper(fred) ; feeds(y, fred) ∈ S, and hence
by (AND) and (RW) that elephant(x)∧keeper(fred) ; ⊥ ∈
S as well, which is in conflict with the intuition that excep-
tional cases (all elephants usually not being fed by keeper
Fred) should be permitted to exist alongside the general case
(all elephants usually being fed by all keepers).

Weaker forms of instantiation for defeasible implications
are more reasonable. Consider keeper(x) ; feeds(x, y),
which states that keepers typically feed everything. While
we cannot conclude anything about instances of x, for the
reasons discussed above, we should at least be able to con-
clude things about instances of y, since y only appears in the
consequent of the implication. This motivates the following
postulate, where ψ is a variable substitution and ~x ∩ ~y = ∅:

(IRR)
A(~x) ; B(~x, ~y) ∈ S

A(~x) ; B(~x, ψ(~y)) ∈ S
There are some more subtle forms of defeasible instanti-

ation that seem reasonable as well. Consider the following
relation defined over L:
Definition 2. A(~x) is at least as typical asB(~y) with respect
to S, denoted A(~x) 4S B(~y), iff A(~x)∨B(~y) ; ¬A(~x) 6∈
S.

Intuitively, A(~x) 4S B(~y) states that typical instances
of A(~x) are at least as typical as typical instances of B(~y).
Note that 4S does not partially order L in general, but is

rather a partial ordering of the subset of consistent formulas
of L, i.e. A(~x) ∈ L such that A(~x) ; ⊥ 6∈ S .

For any variable substitution ψ, a typical instance of
A(ψ(~x)) is always an instance of A(~x). Thus we should ex-
pect the following postulate to hold, where ψ is any variable
substitution:

(TYP) A(~x) 4S A(ψ(~x))

The last postulate we consider has to do with defeasibly im-
possible formulas. Suppose that A(ϕ(~x)) ; ⊥ ∈ S for all
substitutions ϕ : VAR → VAR∪U. This intuitively states that
there are no typical instances of any specialisation of A(~x).
Thus we should expect that there are in fact no instances of
A(~x) at all:

(IMP)
A(ϕ(~x)) ; ⊥ ∈ S for all ϕ : VAR → VAR ∪ U

¬A(~x) ∈ S
This puts us in a position to define the central construction

of the paper: that of a rational satisfaction set.
Definition 3. A satisfaction set S is rational iff it satisfies
(CLASSF), (CLASSR), (SUPR), (IRR), (TYP), (IMP) and
(REFL)-(RM).

Note that rational satisfaction sets satisfy the following
form of label invariance for defeasible implications, where
the variable substitution ψ is a permutation:

(PER)
A(~x) ; B(~y) ∈ S

A(ψ(~x)) ; B(ψ(~y)) ∈ S

Proposition 2. (PER) follows from (REFL)-(RM), (IRR)
and (TYP).

4.1 Semantics
We now proceed to define an appropriate semantics for de-
feasible implications. The first step is to enrich the Herbrand
universe with a set T of typicality objects. Typicality objects
represent the individuals that aren’t explicitly mentioned in
a given knowledge base, and are used to interpret defeasible
implications in a ranking of (enriched) Herbrand interpreta-
tions.
Definition 4. The enriched Herbrand universe is defined to
be the set UT = U ∪ T . An enriched Herbrand interpreta-
tion (or EHI) E is a Herbrand interpretation over the enriched
Herbrand universe.

Observe that every enriched Herbrand interpretation E re-
stricts to a unique Herbrand interpretation HE over U, de-
fined by HE = E ∩ B. The set of EHIs over T is denoted
by HT . To interpret defeasible implications, we make use
of preference rankings over HT .
Definition 5. A ranked interpretation is a function rk :
HT → Ω ∪ {∞}, for some linear poset Ω, satisfying the
following properties, where we define H rk

T = {E ∈ HT :
rk(E) 6= ∞} to be the set of possible EHIs w.r.t. rk, and
H rk
T (A(~x)) = {E ∈ H rk

T : E  A(ϕ(~x)) for some ϕ :
VAR → T } to be the set of possible EHIs w.r.t. rk satisfying
some typical instance of A(~x) ∈ L:

1. if rk(E) = x < ∞, then for every y ≤ x there is some
E ′ ∈HT such that rk(E ′) = y.
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2. for all A(~x) ∈ L, H rk
T (A(~x)) is either empty or has

an element that is an rk-minimal model of A(~x). This is
smoothness (Kraus, Lehmann, and Magidor 1990).
The set of all ranked interpretations over T is denoted

RT .
Definition 6. For A(~x), B(~y) ∈ L:

1. rk  A(~x) iff E  A(~x) for all E ∈H rk
T .

2. rk  A(~x) → B(~y) iff E  A(~x) → B(~y) for all E ∈
H rk
T .

3. rk  A(~x) ; B(~y) iff E  A(ϕ(~x)) → B(ϕ(~y)) for all
E ∈ minrk H rk

T (A(~x)) and all ϕ : VAR → T .
Thus, compounds and classical implications are true in a

ranked interpretation rk if they are true in all possible EHIs
w.r.t. rk, while a defeasible implication is true in rk if its
classical counterpart, with variables substituted for typical-
ity objects, are true in all minimal EHIs (possible w.r.t. rk) in
which the antecedent of the defeasible implication is true. A
ranked interpretation in which a statement is true is a ranked
model of the statement.
Example 2. This is an example proposed by Delgrande
(1998). The following DRFOL knowledge base states that
elephants usually like keepers, that elephants usually don’t
like the keeper Fred, and that the elephant Clyde usually
does like Fred:

K = {elephant(x) ∧ keeper(y) ; likes(x, y),
elephant(x) ∧ keeper(fred) ; ¬likes(x, fred),
elephant(clyde) ∧ keeper(fred) ; likes(clyde, fred)}.

Let T = {t1, . . .} be the set of typicality objects. For
readability we abbreviate elephant by e, keeper by k and
likes by l.

Consider the EHIs E1 = {e(t1), k(t2), l(t1, t2), e(t2),
e(clyde), k(fred), l(clyde, fred)}, E2 = {e(t1), k(t2),
l(t1, t2), k(t3), l(t1, t3), e(clyde), k(fred), l(clyde, fred)},
and E3 = {e(t1), k(t2), e(t2), e(clyde), k(fred),
l(clyde, fred)}.

Let rk1(E1) = rk1(E2) = 0, rk1(E3) = 0, and
rk1(E) = ∞ for all other EHIs. Then rk1 is a ranked
model of the knowledge base above. Let rk2(E1) =
rk2(E3) = 0, rk2(E2) = 1, and rk2(E) = ∞ for
all other EHIs. Then rk2 is not a ranked model of
elephant(x) ∧ keeper(y) ; likes(x, y), but is a ranked
model of elephant(x) ∧ keeper(fred) ; ¬likes(x, fred) and
elephant(clyde) ∧ keeper(fred) ; likes(clyde, fred).

4.2 A Representation Result
In this section we show that ranked interpretations precisely
characterise rational satisfaction sets.
Definition 7. The satisfaction set Srk corresponding to a
ranked interpretation rk is defined as: Srk = {α ∈ L∪L; :
rk  α}.

Our representation result is obtained by showing that
all ranked interpretations generate rational satisfaction sets
(Theorem 2), and that every rational satisfaction set S can be
realised as the satisfaction set corresponding to some ranked
interpretation (Theorem 3).

Theorem 2. For every ranked interpretation rk, Srk is a ra-
tional satisfaction set.

To show the converse of Theorem 2, we adapt the rep-
resentation proof of Lehmann and Magidor Lehmann and
Magidor (1992) to the DRFOL setting. The main idea is
to show that the defeasible implications in a given rational
satisfaction set can be completely characterised by normal
EHIs, which are EHIs that satisfy all of the defeasible con-
sequences of some compound A(~x). By ranking these nor-
mal EHIs over an appropriate linear poset, we can capture
the satisfaction set exactly.
Definition 8. For a rational satisfaction set S , the com-
pounds A(~x), B(~y) are equally typical w.r.t. S (denoted
A(~x) ≡S B(~y)) iff A(~x) 4S B(~y) and B(~y) 4S A(~x).

We denote the equivalence class of a compoundA(~x) ∈ L
with respect to ≡S by [A(~x)]S . As predicates can have arbi-
trarily high arity in general, it is necessary in what follows to
assume that T is a countably infinite set of typicality objects.
Definition 9. Let S be a rational satisfaction set. Then
E ∈ HT is normal for a formula A(~x) ∈ L w.r.t. S iff
the following properties hold:

1. E  α for all α ∈ SC .
2. E  A(ϕ(~x)) for some ϕ : VAR → T .
3. for all B(~y) ∈ [A(~x)]S and ϕ : VAR → T , B(~y) ;

C(~z) ∈ S implies that E  B(ϕ(~y))→ C(ϕ(~z)).
The set of normal EHIs for A(~x) is denoted

normS(A(~x)). For the rest of this section, we will
consider a fixed rational satisfaction set S, and sketch the
construction of a ranked interpretation rk : HT → Ω∪{∞}
such that S = Srk. First, we show that normal EHIs
completely characterise the defeasible implications in a
given rational satisfaction set:
Lemma 1. A(~x) ; B(~y) ∈ S iff for every E ∈
normS(A(~x)) and substitution ϕ : VAR → T we have
E  A(ϕ(~x))→ B(ϕ(~y)).

Corollary 1. A(~x) has a normal EHI iff A(~x) is consistent
with respect to S, i.e. A(~x) ; ⊥ 6∈ S .

Let Ω∗ = {〈A(~x), E〉 : A(~x) ∈ L, E ∈ normS(A(~x))}.
We order elements of Ω∗ using the relation 4S as follows:

〈A(~x), EA〉 ≤ 〈B(~y), EB〉 iff A(~x) 4S B(~y)

Proposition 3. ≤ is reflexive, transitive and total over Ω∗.
Let Ω = Ω∗/ ∼ be the quotient of Ω∗ with respect to its

equivalence classes, which we denote by [α]≤ for α ∈ Ω∗.
By Proposition 3, Ω is a linear poset, though in general it
is not well-ordered. We now show that any given EHI is
contained in at most one equivalence class:
Lemma 2. For any E ∈ HT , the following set is either
empty or contains a single element:

Ω(E) = {[〈A(~x), E〉]≤ : 〈A(~x), E〉 ∈ Ω∗}.
This lets us construct a ranking function rk : HT → Ω ∪

{∞} as follows:

rk(E) =

{
[〈A(~x), E〉]≤ if Ω(E) = {[〈A(~x), E〉]≤}
∞ if Ω(E) = ∅
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Proposition 4. The ranking function rk : HT → Ω ∪ {∞}
is a ranked interpretation.

Finally, we have the following result relating normal EHIs
to minimal elements in rk:
Lemma 3. For any formula A(~x) ∈ L, we have that
minrk H rk

T (A(~x)) = normS(A(~x)).
Lemmas 1 and 3 prove the converse to Theorem 2.

Theorem 3. For every rational satisfaction set S there ex-
ists a ranked interpretation rk, over an infinite set of T of
typicality objects, such that S = Srk.

4.3 Finite Sets of Typicality Objects
Theorem 3 has some limitations in that it requires an infinite
set of typicality objects to be true in general. In this section
we detail some ways ranked interpretations can be restricted
to finite sets of typicality objects, which will be useful for
defining a basic notion of entailment for DRFOL knowledge
bases.

First, consider a fixed finite set T ′ ⊂ T . Note that the set
of EHIs over T ′ is finite, as there are only finitely many pos-
sible atoms over the extended Herbrand base BT ′ . Further-
more, given any such E ∈HT ′ , we can define a characteris-
tic compound for E that parallels the notion of characteristic
formula for a propositional valuation:
Definition 10. Let E ∈ HT ′ be an EHI over T ′, and π :
T ′ → VAR any injective function. Then the characteristic
compound for E , denoted chπ(E), is defined as follows:

chπ(E) =
∧

A(~c,~t)∈BT ′

±A(~c, π(~t))

Here, ~c is a tuple of constants, ~t is a tuple of typicality ob-
jects, and ±A(~x, π(~t)) means A(~c, π(~t)) if E  A(~c,~t), or
¬A(~c, π(~t)) otherwise.

Note that, while chπ(E) depends on π, the characteris-
tic formula is nevertheless unique up to relabelling of vari-
ables and the order of clauses. For this reason we will omit
defining π explicitly where we refer to it. The important fact
about characteristic formulas is that they reflect satisfaction
properties of the underlying EHI E :
Lemma 4. Let E ∈ HT and E ′ ∈ HT ′ be any two EHIs
over T and T ′ respectively such that E  ϕ(chπ(E ′)) for
some ϕ : VAR → T . Then for any compound A(~x) and
substitution ψ : VAR → T ′, E ′  A(ψ(~x)) iff E  A(ϕ ◦
π ◦ ψ(~x)).

The number of typicality objects required to model a de-
feasible formula depends on the number of variables in the
formula. With this in mind, we define the order of a formula
A(~x) to be the length of the tuple ~x.
Definition 11. For any ranked interpretation rk ∈ RT , the
restriction of rk to E ′, denoted rk∗ ∈ RT ′ , is defined by
rk∗(E) = minrk H rk

T (chπ(E)).
The following lemma proves that rk∗ and rk agree for for-

mulas of small enough order:
Lemma 5. rk∗ satisfies the following properties, where n =
|T ′| is the number of typicality objects in T ′:

1. for all classical formulas α ∈ L, rk∗  α iff rk  α.
2. for all defeasible formulas α ∈ L; of order≤ n, rk∗  α

iff rk  α.

This lets us define approximations to any given ranked
interpretation using a finite subset of typicality objects. In
particular, if one only cares about satisfaction for formulas
of bounded order, then a finite set suffices to model them.
Defining the order of a knowledge base to be the maximum
order of any formula contained within it, we have the fol-
lowing corollary:

Corollary 2. Let K ⊆ L ∪ L; be any knowledge base of
order n. ThenK has a ranked model iff it has a ranked model
over a set T ′ of typicality objects where |T ′| = n.

5 Defeasible Entailment
A central question that we have left unaddressed until now
is entailment. That is, given a DRFOL knowledge base K,
when are we justified in asserting that a DRFOL formula
α follows defeasibly from K? In this section we provide one
answer to this question by defining a semantic version of Ra-
tional Closure (Lehmann and Magidor 1992) for DRFOL. It
is, by now, well-established that systems for defeasible rea-
soning are amenable to multiple forms of defeasible entail-
ment, and the work we present in this section should there-
fore be viewed as the first step in a larger investigation into
defeasible entailment.

Rational Closure is a well-known framework for non-
monotonic reasoning that can be viewed as one of the core
forms of defeasible entailment in KLM-style reasoning. Due
to the so-called drowning effect (Benferhat et al. 1993), it
is considered inferentially too weak for some application
domains. Despite that, it is a semantic construction that
can be extended to obtain other interesting entailment rela-
tions (Lehmann 1995; Casini and Straccia 2013; Casini et al.
2014; Giordano and Gliozzi 2019). It has gained attention in
the framework of DLs (Casini and Straccia 2010; Britz et al.
2020; Giordano et al. 2015; Bonatti et al. 2015). An equiva-
lent semantic construction, System Z (Pearl 1990), has been
considered for unary first-order logic (Kern-Isberner and
Beierle 2015; Beierle et al. 2016, 2017). Several equivalent
definitions of Rational Closure can be found in the literature.
Here we refer to the one due to Booth and Paris (1998).

Let a knowledge base K be a set of propositional defeasi-
ble implications α |∼ β (see Section 3). Booth and Paris pro-
vide a construction with the following two immediate con-
sequences:

1. Given all the ranked models of K there is a model R∗ of
K, that we can call the minimal one, which is such that
it assigns to every propositional valuation v the minimal
rank assigned to it by any of the ranked models of K.

2. Propositional Rational Closure can be characterised us-
ing R∗. That is, α |∼ β is in the (propositional) Ratio-
nal Closure of K iff R∗  α |∼ β. The intuition behind
the use of the ranked model R∗ for the definition of en-
tailment is that it formalises the presumption of typical-
ity (Lehmann 1995): assigning to each valuation the low-
est possible rank, we model a reasoning pattern in which
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we assume that we are in one of the most typical situations
that are compatible with our knowledge base.
Based on Corollary 2 and the other results in Section 4.3,

we can define an analogous construction for DRFOL:
Definition 12. Let K ⊆ L ∪ L; be a DRFOL knowledge
base of order n, and take T ′ ⊂ T to be a finite set of typical-
ity objects of cardinality n. Then the minimal ranked inter-
pretation ofK, which we denote by rkK : HT ′ → N∪{∞},
is defined as follows:

rkK(E) = min{rk(E) : rk ∈ RT ′ and rk  K}
Note that we take min ∅ =∞ by convention, and that rkK

is a ranked interpretation over T ′, hence rkK ∈ RT ′ . Intu-
itively, rkK is what you get if you let every EHI rank as low
as possible amongst the models of K. This minimal ranked
interpretation can be used to define a defeasible entailment
relation for DRFOL:
Definition 13. For any DRFOL knowledge base K and for-
mula α, we say that α is in the Rational Closure of K, de-
noted K |≈rc α, iff rkK  α.
Example 3. Consider the knowledge base K from Example
2. We add the unary predicate purple(x) to PRED . The order
of K is 2, so we build our minimal model rkK using the set
of EHIs HT ′ , where the set of typical constants is T ′ =
{t1, t2}. Since K does not contain classical formulas, there
are no EHIs of infinite rank. All the EHIs satisfying K will
be assigned rank 0. That is, all the EHIs in which if ti is
an elephant and tj is a keeper (i, j ∈ {1, 2}), ti likes tj
but, if fred is a keeper, ti does not like fred. Also, if fred is
a keeper and clyde is an elephant, clyde likes fred. All the
other EHIs will be assigned rank 1. For example, the EHI
E1 from Example 2 would have rank 0, while E3 would have
rank 1, since it does not satisfy the formula elephant(x) ∧
keeper(y) ; likes(x, y) (E2 is not considered in rkK, since
it uses the constant t3).

It then follows that a desirable form of constrained
monotonicity, formalised by (RM), holds. Note that all
the EHIs at rank 0 in the minimal model rkK would ei-
ther satisfy purple(ti) (i ∈ {1, 2}) or not, since it is ir-
relevant to the satisfaction of K. The outcome would be
that, while of course satisfying the formula elephant(x) ∧
keeper(fred) ; ¬likes(x, fred), since it is in K, rkK would
not satisfy elephant(x)∧keeper(fred) ; ¬purple(x), while
it would satisfy elephant(x) ∧ purple(x) ∧ keeper(fred) ;

¬likes(x, fred).
More generally, Rational Closure, in the propositional and

DL cases, satisfies a number of attractive properties:

(INCL) α ∈ K implies K |≈rc α
(SMP) S = {α : K |≈rc α} is rational

It is straightforward that our definition of |≈rc carries over
to these properties:
Theorem 4. The entailment relation |≈rc satisfies (INCL)
and (SMP).

It is worthwhile delving a bit deeper into each of these
properties. The first one, (INCL), also known as Inclusion,

simply requires that statements in K also be defeasibly en-
tailed by K. It is a meta-version of the (REFL) rationality
postulate for propositional logic (described in Section 2)
and for DRFOL (described in Section 4). While the prop-
erty itself might seem self-evident, it is instructive to view
it in concert with the definition of rkK. From this it follows
that rkK, which essentially defines Rational Closure, is the
ranked interpretation in which EHIs are assigned a ranking
that is truly as low (i.e., as typical) as possible, subject to the
constraint that rkK is a model of K. This aligns with the in-
tuition of propositional Rational Closure which requires of
propositional valuations in a ranked interpretation to be as
typical as possible.

(SMP) requires the set of statements corresponding to the
Rational Closure of knowledge base K to be rational (in the
sense of Definition 3). By virtue of Theorem 3, this requires
defeasible entailment to be characterised by a single ranked
interpretation. This accounts for the fact that the property is
also referred as the Single Model Property.

6 Comparison
Given that KLM-style defeasible reasoning started off as a
propositional endeavour, it makes sense to begin this section
with a formal comparison to the propositional case. Note
firstly that, when restricted to 0-ary predicates, the language
of RFOL reduces to a propositional one. In this case the
Herbrand universe becomes superfluous, the Herbrand base
is the set of 0-ary predicates (propositional atoms), and a
Herbrand interpretation is a subset of propositional atoms.
Clearly then, Herbrand interpretations reduce to proposi-
tional valuations. For DRFOL we work with enriched Her-
brand interpretations in which typicality objects are added
to the Herbrand universe. But since the Herbrand universe
plays no role in the semantics of 0-ary predicates, it is re-
dundant. The ranked interpretations for DRFOL (Definition
5) then reduce to propositional ranked interpretations (de-
scribed in Section 3, from which it follows that defeasi-
ble implication in DRFOL reduces to propositional defea-
sible implication (represented by the symbol |∼ in Section
3). More specifically, consider a defeasible propositional
language generated from a set of atoms, and take this set
to be the 0-ary predicates of a DRFOL language. It fol-
lows that for every propositional ranked interpretation R
there is a DRFOL ranked interpretation rk such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α ; β iff R  α |∼ β and rk  α iff R  α.
Conversely, for every DRFOL ranked interpretation rk, there
is a propositional ranked interpretation R such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α; β iff R  α |∼ β and rk  α iff R  α.

A similar result holds when DRFOL is restricted to com-
pounds, implications, and defeasible implications that are
all ground. Considering RFOL first, observe that, unlike the
case discussed above, the Herbrand universe is used to con-
struct the Herbrand base here, and it is therefore used in
the definition of Herbrand interpretations. But since we only
consider ground statements, each ground atom in a Herbrand
interpretation effectively functions like a propositional atom,
which again means that Herbrand interpretations reduce to
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propositional valuations (for the propositional language with
the ground atoms as its set of propositional atoms). Mov-
ing on to DRFOL we note that since we are restricted to
ground statements, the substitutions referred to in Definition
6 do not play any role, which means that the typicality ob-
jects in enriched Herbrand interpretations are redundant. In
summary, consider a defeasible propositional language gen-
erated from the ground atoms of a language of DRFOL. It
follows that for every propositional ranked interpretation R
there is a DRFOL ranked interpretation rk such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α ; β iff R  α |∼ β and rk  α iff R  α. And
conversely, for every DRFOL ranked interpretation rk, there
is a propositional ranked interpretation R such that for all
propositional statements α, β constructed from ¬,∧ and ∨,
rk  α; β iff R  α |∼ β and rk  α iff R  α.

Space considerations prevent us from providing a detailed
comparison of DRFOL with DALC, the defeasible version
of the DL ALC (Britz et al. 2020). Suffice it to note that
when DALC is stripped of existential and value restrictions
and confined to Tbox statements, and when DRFOL is re-
stricted to unary predicates and open implications (defeasi-
ble and classical), every concept C inDALC can be mapped
to a compound C(x) in DRFOL, and vice versa. It is then
possible to obtain a result that is analogous to the proposi-
tional cases above, with one exception: a defeasible implica-
tion of the form C(x) ; ⊥ has a meaning that is different
than C @∼ ⊥, its DALC counterpart.

This marks an important distinction between DRFOL
and both the propositional KLM framework and DALC, in
which classical statements are equivalent to certain defeasi-
ble implications. In the propositional case α is equivalent to
¬α |∼ ⊥ (R  α iff R  ¬α |∼ ⊥ for all R) while, for
DALC, C v ⊥ is equivalent to C @∼ ⊥. But in DRFOL, de-
feasible implications cannot inform us about compounds or
classical implications. Formally, rational satisfaction sets do
not necessarily satisfy the following postulate:

(SUB)
A(~x) ; ⊥ ∈ S
A(~x)→ ⊥ ∈ S

One way this difference manifests itself is in the way
our framework handles the finitary Lottery Paradox (Poole
1991). Consider the DRFOL knowledge base K =
{penguin(x) → bird(x), cuckoo(x) → bird(x), bird(x) →
cuckoo(x) ∨ penguin(x), bird(x) ; flies(x) ∧ nests(x),
cuckoo(x) → ¬nests(x), penguin(x) → ¬flies(x)}. This
can also be modelled as a propositional defeasible knowl-
edge base and as a DALC knowledge base.

In all three cases KLM rationality dictates that being a
bird defeasibly implies a contradiction: bird(x) ; ⊥ in the
case of DRFOL, bird |∼ ⊥ in the propositional defeasible
case, and Bird @∼ ⊥ in the case of DALC. In the defeasible
propositional case this means there are no birds (bird |∼ ⊥ is
equivalent to ¬bird). Similarly forDALC, where Bird@∼⊥ is
equivalent to Bird v ⊥. In DRFOL, however, bird(x) ; ⊥
is not equivalent to bird(x) → ⊥. Rather than stating that
there are no birds, bird(x) ; ⊥ means that there are no
typical birds. This leaves open the possibility of there be-
ing only atypical birds, something that is not possible in the
propositional and DL cases.

Example 4. Let CONST = {tweety}, VAR = {x}, PRED =
{bird, penguin, cuckoo, flies, nests}, with T = {t1, . . .} the
set of typicality objects. Let rk be the ranked interpretation
for which rk(E) = 0 and rk(E ′) = ∞ for all other EHIs,
where E = {bird(tweety), penguin(tweety)}. It is easily
verified that rk satisfies all statements in the DRFOL knowl-
edge base K above, and also satisfies bird(x) ;⊥, since
rk 6 bird(ti) for all i. But rk does not satisfy bird(x)→ ⊥.

We regard this as a significant advantage of DRFOL over
previous KLM-style defeasible formalisms.

As a final remark, observe that this distinction is not in
conflict with the claim that DRFOL is a proper generali-
sation of propositional defeasible logic. For a ground com-
pound α (including those containing 0-ary predicates) it is
indeed the case that α ; ⊥ is equivalent to α → ⊥. It is
when α is an open compound that (SUB) need not hold.

7 Related Work
Defeasible reasoning is part of a broader research pro-
gramme on conditional reasoning (Arlo-Costa 2019), most
of which was developed for propositional logic. This pa-
per falls in the class of approaches aimed at moving be-
yond propositional expressivity. We pointed out the connec-
tion with defeasible DLs (Casini and Straccia 2010, 2013;
Casini et al. 2015; Giordano et al. 2013, 2015; Bonatti et al.
2015; Bonatti 2019; Pensel and Turhan 2018) in Section 6,
but there have also been proposals to extend this approach
to first-order logic. Most of these define a preferential or-
der over the elements of the first-order domain (Schlechta
1995; Brafman 1997; Delgrande and Rantsoudis 2020), in
line with some of the DL proposals (Giordano et al. 2015;
Britz et al. 2020), and present rationality postulates, but they
do not provide characterisations in terms of rationality pos-
tulates. Others (Delgrande 1998; Kern-Isberner and Thimm
2012) are formally closer to our work in that they use pref-
erence orders over interpretations.

Delgrande (1998) proposes a semantics that is closer to
the intuitions behind circumscription (McCarthy 1980), giv-
ing preference to interpretations that minimise the counter-
examples to defeasible conditionals. On the other hand,
Kern-Isberner and Thimm (2012) propose a technical solu-
tion that is much closer to the work we present here. Like
ours, their semantics is based on Herbrand interpretations.
They define ordinal conditional functions over the set of
Herbrand interpretations, obtaining a structure that is very
close to our ranked interpretations. They identify some indi-
viduals as representatives of a conditionals. This is done to
formalise the same intuition (or, at least, an intuition that is
very similar) that underlies our decision to introduce typical-
ity objects. Apart from other formal differences (e.g. the ex-
pressivity of their language is slightly different), their work
focuses on the definition of a notion of entailment based
on a specific semantic construction carried over from the
propositional framework known as c-representations of a
conditional knowledge base (Kern-Isberner 2001, 2004). In
contrast, our focus in this paper is on getting the theoreti-
cal foundations of defeasible reasoning for restricted first-
order logics in place. Thus, our work here is centred around
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a representation result that provides a characterisation of the
semantics in terms of structural properties. And while we
present some results on defeasible entailment in Section 5,
we have left a more in-depth study of this important topic as
future work. Indeed, it is our conjecture that the foundations
we have put in place in this paper will allow for the defini-
tion of more than one form of defeasible entailment. At the
same time, a more in-depth comparison with the proposal of
Kern-Isberner and Thimm is also necessary. We leave that
for future work.

Kern-Isberner and Beierle (2015); Beierle et al. (2016,
2017) use the same semantic approach of Kern-Isberner and
Thimm (2012) to develop an extension of Pearl’s System Z
(1990) for first-order logic, but they restrict their attention
to unary predicates. System Z is a form of entailment that is
very close to the approach we introduce in Section 5.

Brafman (1997) suggests that preference orders over the
domain should result in forms of reasoning quite different
from the use of preference orders over interpretations, com-
parable to the difference between statistical and subjective
readings of probabilities. We leave a proper investigation of
the differences between these two different modelling solu-
tions as future work.

As mentioned, the final goal of our investigation is the de-
velopment of a defeasible extension of Datalog+/-. To the
best of out knowledge there is no research on the intro-
duction of defeasible implication in Datalog+/-. Of course,
there is a longstanding tradition of non-monotonic exten-
sions of Disjunctive Datalog with an Answer Set seman-
tics (Leone et al. 2006). Although there are some connec-
tions between conditional reasoning (of which defeasible
reasoning is a special case) and negation-as-failure (Makin-
son 1994, 2005), these two approaches are different. Answer
Set Programming is a popular solution to model the closed-
world assumption, while conditional reasoning is focused on
reasoning with the potential conflicts resulting from defea-
sible pieces of information.

8 Conclusion and Future Work
In this paper we have laid the theoretical groundwork for
KLM-style defeasible Datalog (DRFOL). Our primary con-
tribution is a set of rationality postulates describing the be-
haviour of defeasibility in DRFOL, a typicality semantics
for interpreting defeasibility in DRFOL, and a representa-
tion result, proving that the proposed postulates characterise
the semantic behaviour precisely.

With the theoretical core in place, we then proceeded to
define a form of defeasible entailment for DRFOL that can
be viewed as the DRFOL equivalent of the propositional
form of defeasible entailment known as Rational Closure.

There are at least three important avenues for future re-
search. The first one relates to a more detailed investiga-
tion of defeasible entailment for DRFOL knowledge bases.
While Rational Closure for DRFOL is on par with the anal-
ogous notions for propositional logic and DLs (restricted
to Tboxes), it is not able to fully manage reasoning about
individuals. Going back to Example 3, assume that we
add a constant bob to CONST. Since we are not informed
of anything atypical about bob, we would like to be able

to infer the statement elephant(bob) ∧ keeper(fred) ;

¬likes(bob, fred). But Rational Closure does not sanction
this, since the formula elephant(x) ∧ keeper(fred) ;

¬likes(x, fred) is evaluated only on the typicality constants,
and whether bob behaves in a typical way or not is irrelevant
w.r.t. the satisfaction of the knowledge base. Consequently,
on rank 0 of rkK there are EHIs in which elephant(bob)
behaves like an atypical elephant. Rational Closure would
therefore need to be refined to model the inferences about
individuals properly.

Next we discuss a more general point about defeasible
entailment. Based on the theoretical basics we have put in
place and the preliminary work on Rational Closure for
DRFOL, we conjecture that all appropriate forms of DR-
FOL defeasible entailment will satisfy the (SMP) prop-
erty, thereby ensuring that all forms of defeasible entail-
ment are rational. This will be similar to the propositional
case (Lehmann 1995; Booth and Paris 1998; Giordano et al.
2015), and unlike the case for DLs (Casini and Straccia
2010; Casini et al. 2013).

With a suitable definition (or definitions) of DRFOL de-
feasible entailment in place, the next step is to investigate al-
gorithms for computing DRFOL defeasible entailment. Here
we plan to draw inspiration from both the propositional and
DL cases, where defeasible entailment can be reduced to a
series of classical entailment checks, sometimes in polyno-
mial time and with a polynomial number of classical entail-
ment checks (Casini, Straccia, and Meyer 2019; Giordano
et al. 2015; Casini, Meyer, and Varzinczak 2019).

Finally, in line with our stated aim in Section 1, the basic
theoretical framework presented in this paper places us in a
position to see whether the work on DRFOL can be extended
to Datalog +/-.
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