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Abstract

Synchronization is a subject of interdisciplinary relevance, interpolating between

efficiency in transportation and digital data transfers to disease in cardiac and

neural tissue. While continuous transitions to synchronization are gradual and

easy to control, explosive transitions may occur suddenly and can have catas-

trophic effects. Here we report that in populations of cooperative and compet-

itive oscillators the transition can be tuned between continuous and explosive

simply by adjusting the balance between the two oscillator types. We show that

this phenomenon is independent of the network topology, and can be described
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analytically already in the mean-field approximation. Moreover, we provide

evidence that the difference between the two transitions is due to a merging

process of clusters which is forbidden by adaptation, and that the hysteresis as-

sociated to the explosive transition is enhanced when the adaptive mechanisms

span larger scales.

Keywords: Explosive synchronization, cooperative, competitive, mean-field

1. Introduction

One of the fundamental contributions of the 20th century to statistical

physics has been the theory of phase transitions and critical phenomena [1, 2]. 

Although applications were for decades restricted to conventional physical sys-

 tems, it was around the turn of the century that the full scale and importance

of this theory started to come to light. Indeed, the phase transitions observed

originally in condensed matter physics were later found of relevance in phenom-

ena as diverse as catastrophic shifts in ecosystems [3], the emergence of public

cooperation in social dilemmas [4], percolation and synchronization in complex

 systems and networks [5, 6].

Synchronization, in particular, has numerous applications across social, tech-

nological and natural sciences, wherein the nature of the phase transition from

disorder to synchrony frequently plays a key role [7]. For instance, continuous or 

second-order phase transitions occur in the standard Kuramoto model [8, 9].

 Under certain conditions, however, the transition becomes explosive: an abrupt 

onset of synchronization follows an infinitesimally small change in the coupling 

strength, and hysteresis loops may be observed as in a thermodynamic first-order 

phase transition [6]. Explosive synchronization (ES) has been described in different 

extensions of the Kuramoto model [10], including inertia [11, 12],

 noise [13], and different frequency distributions [14, 15, 16]. In particular, the

finite-size behavior of systems with uniform and other finitely-supported distri-

butions provided important insights into the mechanism underlying ES [17].

The departure from all-to-all to irregular coupling architectures spurred on
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by the coming of network science [5, 18], and gave rise to a new wave of in-

 terest in phase transitions to synchronization. ES in heterogeneous networks

was initially linked to natural frequencies being linearly related to the degrees

of the oscillators [19], and this feature was indeed observed experimentally in

nonlinear electronic circuits exhibiting chaotic dynamics [20]. However, later

on it was clarified that linear frequency-degree correlations are a sufficient but

 not necessary condition for ES: non linear correlation features can actually arise

spontaneously from conditioning or weighting the networks’ links according to

the mismatch in natural frequencies of neighboring oscillators [21, 22]. In fact,

other disassortativity rules are also known to give rise to ES transitions [23, 24].

Ultimately, it became clear that not even correlations between natural fre-

 quencies and local topological properties are necessary for such a fascinating

phenomenon to occur. Indeed, any restrictive condition preventing either the

formation or the merging of synchronization clusters during the transition to

the coherent state can lead to ES. While the former mechanism was elucidated

already in Refs. [21, 22], the prevention of cluster merging was first shown in

 Ref. [25] by means of a simple adaptive rule involving a dependence of the

nodes’ interactions on the local order parameter. Mean-field analysis and simu-

lations of very large size networks reveal that any nonzero fraction of oscillators

adapting cooperatively their coupling to the local order parameter is already

sufficient for ES in the thermodynamic limit [26].

 In this paper, we significantly advance such recent studies in two fundamen-tal 

directions. First, we consider a population fragmented into cooperative and 

competitive units, i.e. we account for the two adaptation mechanisms describing 

dynamical competition and cooperation (or interdependence) in networks [27]. 

Second, we examine the role of different graph’s mesoscales in the feedback lead-

 ing to adaption. Not only we reveal that the type of transition can in fact be 

controlled simply by means of the balance between the two oscillator types, but we 

also show that the irreversibility associated to ES is actually enhanced when the 

adaptation feedback occurs from global to local scales. These findings have 

important implications for the robustness of ES in different network topologies,
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            for its analytical treatment by means of mean-field approximations, and for elu-

cidating once and for all the fundamental role played by synchronization clusters

along the synchronization transition.

2. Model and Results

We start by considering an adaptive Kuramoto model consisting of N phase

oscillators, where the instantaneous phase of oscillator i (denoted by θi (i =

1, 2, · · · , N)) evolves in time as

θ̇i = ωi + λαi

N∑
Aij sin (θj − θi) , (1)

j=1

where ωi is the natural frequency of the oscillator, λ is the overall coupling

 strength, and Aij are the elements of the adjacency matrix (Aij = 1 if oscillators

i and j are coupled and zero otherwise). The degree of a given oscillator i is

defined as ki =
∑N
j=1Aij .

The novelty of the model lies in the coupling strength being controlled by

the global order parameter R through the local variable αi. R satisfies ReiΦ =∑N
j=1

∑N
k=1 Ajke

iθk∑N
j=1 kj

, where Φ is the average phase. On the other hand, R quantifies

the synchronization level in the network (0 ≤ R ≤ 1, with the two extreme

values corresponding to incoherence and full synchrony, respectively [7]). Our

network is furthermore partitioned into two sets of nodes (oscillators): there

are competitors (αi = 1 − R) which decouple from their neighbors as global

 synchrony increases, and cooperators (αi = R) which tend instead to couple more 

strongly to their neighbors as the network becomes more synchronized.

We here consider Nρ competitors and N(1 − ρ) cooperators, the populations

being controlled by the competition fraction ρ. The case ρ = 0 has been studied

in Ref. [25], where ES was found. On the other hand, at ρ = 1 the ability of

 synchronous oscillators to form small clusters is enhanced by competition, and

therefore one expects to have a continuous synchronization transition.

Our results refer to networks consisting of N = 1, 000 oscillators, with natu-

ral frequencies {ωi} randomly drawn from a uniform probability distribution in
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[−1, 1]. These are Erdős-Rényi (ER) networks [28] and Barabási-Albert scale-

 free (SF) networks [29], which are paradigmatic examples of homogeneous and

heterogeneous graphs, respectively, with an average degree 〈k〉 ≡ 1
N

∑N
i=1 ki =

12. At each value of ρ, λ is gradually increased from 0 to 0.5 (where already one

has R ∼ 1) for the tracking of the forward transition (Fw), and then decreased

back again to 0 for the tracking of the backward transition (Bw), with a step

 δλ = 0.02. The system is allowed to reach its stationary state for each λ value,

and the order parameter at stationarity is computed [30].

In Fig. 1 (a,b), R vs. λ curves for Fw and Bw are reported for two values of

the competition fraction ρ in ER (a) and BA (b) networks. One can see clearly that 

when competitors are in majority (i.e., ρ = 0.8 for ER), continuous tran-

 sitions occur as in the all-to-all classical Kuramoto model. By contrast, a large 

fraction of cooperators (for instance ρ = 0.2 for ER) induces abrupt (explosive) 

transitions with hysteresis effects. The insets in Figs. 1(a,b) give information on the 

critical points λB (for Bw) and λF (for Fw). By calculating the same Fw and Bw at 

different values of ρ, one can reconstruct the phase diagram showing

 the order parameter R as a function of ρ and the coupling strength λ. This is shown in 

Fig. 1(c) for an ER network with the same properties discussed above. The 

(continuous) transition is seen to become steeper as ρ is decreased, but it continues 

being reversible, which makes it possible to assign a single value to

R for the forward and backwards sweeps. For ρ . 0.5, the transition becomes 

 abrupt and hysteresis effect appear, which means the order parameter R for

fixed ρ is no longer a single-valued function of λ. Similar results are obtained

on BA network, as shown in Fig. 1(d).

More information on the mechanisms behind ES can be gathered by monitor-

ing each oscillator’s effective frequency ωeff
i = 1

T

∫ τ
τ−T θ̇i(t)dt. The probability

       distribution function f(ωeff ) at different λ is shown in Fig. 2 for ER networks (τ and 

T are set as 105 and 104, respectively). At ρ = 0.2, f(ωeff ) turns sharply after the 

threshold, while a much smoother behavior is observed at ρ = 0.8, where the 

transition is instead continuous. One therefore sees that the main difference between 

ES and a continuous transition lies in the fact that in the
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               latter case (for large ρ) the giant synchronization cluster coexists with several

small clusters, while in the former case it forms abruptly at the transition point

without relying on any pre-existing mesoscale correlations.

Let us now further extend our study, and consider explicitly that adapta-

tion may depend on specific graph’s mesoscales. For this purpose, we define a

penetration depth l for the adaptation feedback (with 1 ≤ l ≤ D, and with D

being the diameter of the graph), and introduce a scaled order parameter γli

which measures the level of synchronization between oscillator i and the sub-

graph formed by all other oscillators whose distances from i are smaller or equal

to l. One then has

γli =

∑
j∈Nl(i)

∑N
j=1Aije

iφj∑
j∈Nl(i) kj

, (2)

where Nl(i) is the set of l-order neighbors of oscillator i. Therefore, N0(i) = {i}

and γ0
i recovers the local order parameter used in Ref.[25], while ND(i) is the

entire graph minus node i (implying that γDi ' R). Then αi = γli for a fraction

1 − ρ of oscillators, and αi = 1 − γli for the remaining ones. Our results show

that ES may emerge at all values of the penetration depth. Furthermore, one

can see from Fig. 3 that the hysteresis associated to ES is actually enhanced

as l increases on both ER and BA networks (| 〈λF 〉 − 〈λB〉 | becomes larger in     

both cases).

In order to gain analytical insight into the problem at hand, one can recast

Eq. (1) as

θ̇i = ωi + λαikiri sin (Φi − θi) , (3)

where ri and Φi (i = 1, 2, · · · , N) are, respectively, the local order parameter

and the local mean phase, which satisfy rie
iΦi = 1

ki

∑N
j=1Aije

iφj . The mean-

field approximation consists in replacing ri → R and Φi → Φ, and to referring

to the rotating frame in terms of deviations from the mean phase ∆θi = θi−Φ:

∆θ̇i = ωi − Ω− λαikiR sin (∆θi) (4)

where Φ̇ = Ω is the mean angular velocity.
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For vanishing ρ, Eq. (4) becomes ∆θ̇i = ωi − Ω − λkiR
2 sin (∆θi), and

oscillators satisfying |ωi − Ω| ≤ λkiR
2 reach a fixed point given by ∆θi =

arcsin
(
ωi−Ω
λkiR2

)
(i.e. they phase-lock to the mean field). The number of os-

cillators that do satisfy this requirement grows with increasing λ, or ki, or R

(as they are cooperative oscillators). All other oscillators are either too fast or

too slow to synchronize, and drift away from the mean field at all times. To

provide a mean-field solution, one can define

R =

∑N
j=1 kjrj∑N
j=1 kj

=

∑N
j=1 e

−iΦj
∑N
k=1Ajke

iθk∑N
j=1 kj

. (5)

If the average phases Φj associated with the local order parameter rj are

similar (Φ1 ≈ Φ2 · · · ≈ ΦN ), they can be simply denoted by Φ, and e−iΦj ≈ e−iΦ

can be taken out of the sum as a common factor, yielding

R ≈ e−iΦ

∑N
j=1 kje

iθj∑N
j=1 kj

. (6)

Then

R =

∑N
j=1 kjrj∑N
j=1 kj

≈

∣∣∣∣∣
∑N
j=1 kje

iθj∑N
j=1 kj

∣∣∣∣∣ = R, (7)

i.e., one can (for strong phase coherence) approximate R by R and one has

R =
1

N〈k〉
∑

|ωi|<λR2kj

kj cos (∆θj) . (8)

Substituting ∆θj into Eq. (8) leads to

R =
1

N〈k〉
∑

|ωi|<λR2kj

kj

√
1− (ωj/λR2kj)

2
, (9)

and in the continuum form one has

R =
1

〈k〉

∫
|ω|<λR2k

h(k, ω)k

√
1−

( ω

λR2k

)2

dωdk. (10)

Here h(k, ω) is a joint distribution and can be written as h(k, ω) = P (k)g(ω),

with P (k) being the network’s degree distribution (if oscillators’ degrees and

natural frequencies are independent). In the more general condition where ρ ∈
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[0, 1], one has F (k, ω, λ, α,R) =
∫
|ω|<λαRk h(k, ω)k

√
1−

(
ω

λαRk

)2
dωdk, and

R =
1

〈k〉
(ρF (k, ω, λ,R,R)

+(1− ρ)F (k, ω, λ, 1−R,R)) .

(11)

By means of Eq. (11) one can calculate the mean-field solution for R on a

network with given degree distribution. The case of a ER network with 〈k〉 = 12

and ρ = 0.3 is plotted in Fig. 1 (e), in which one clearly sees that the existence

of an unstable solution is responsible for the emergence of ES.125

3. Conclusion

In summary, we reported on an adaptive Kuramoto model wherein cooper-

ative (or interdependent) oscillators increase the coupling strength with their 

neighbors in proportion to the degree of synchronization, whilst competitive

 oscillators do the opposite. The continuity of the synchronization transition in this 

model can be controlled simply by adjusting the balance between the two oscillator 

populations. Our observations are independent of the network topol-ogy, and they 

can be captured analytically already at the level of a mean-field approximation. By 

focusing on different network mesoscales, we further showed

 that the scale plays an important role in facilitating ES. Lastly, we have shown

that the hysteresis associated to ES is enhanced with a shift from the local to

the global order parameter.

These results significantly deepen our understanding of ES transitions, as

they reveal an alternative way to control whether the onset of synchronization

 is gradual or abrupt. This in turn opens up many avenues for the application of 

such shift for synchronization transitions, in particular on multilayer networks

[31], where a duality of oscillatory types is likely on two or more different net-

work layers [27]. Cooperative and competitive duality is also common in several 

social settings, for example in deciding whether or not to cooperate and vacci-

 nate [32]. As recent research emphasizes the importance and prevalence of using 

different strategies with different partners over time [33], our research opens up
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the prospect of moderating the temporal activity in communities and different

network layers to achieve an optimal timing in collective action dilemmas. Our

results are furthermore of value in brain dynamics: competitors and cooperators

     in our model resemble indeed inhibitory/excitatory neurons in the brain, and

an imbalance ratio between these two types of populations is reported to be at

the origin of disorders like Epilepsy and Fibromyalgia, both being significant ex-

amples of ES [34, 35, 36]. Moreover, anesthetized brain states undergo frequent

loss and recovery of consciousness during which hysteresis loops are observed

      and demonstrates conditions of ES [37]. There is also little doubt that our re-

search can be verified and extended in more traditional experimental settings,

for example using nonlinear electronic circuits, as has been done successfully in

the past [20].
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M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, The structure and

dynamics of multilayer networks, Physics Reports 544 (1) (2014) 1–122.

12



[32] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d’Onofrio, P. Manfredi,

M. Perc, N. Perra, M. Salathé, D. Zhao, Statistical physics of vaccination,

Phys. Rep. 664 (2016) 1–113.

[33] I. Sendiña-Nadal, I. Leyva, M. Perc, D. Papo, M. Jusup, Z. Wang, J. A.

Almendral, P. Manshour, S. Boccaletti, Diverse strategic identities induce

dynamical states in evolutionary games, Nat. Phys. (2019) submitted.

       [34] Z. Wang, C. Tian, M. Dhamala, Z. Liu, A small change in neuronal net-

work topology can induce explosive synchronization transition and activity

propagation in the entire network, Scientific Reports 7 (2017) 561.

[35] U. L. et al., Functional brain network mechanism of hypersensitivity in

chronic pain, Scientific Reports 8 (2018) 243.

               [36] J. Du, V. Vegh, D. C. Reutens, Small changes in synaptic gain lead to

seizure-like activity in neuronal network at criticality, Scientific Reports 9

(2019) 1097.

[37] H. Kim, J.-Y. Moon, G. A. Mashour, U. Lee, Mechanisms of hysteresis in

human brain networks during transitions of consciousness and unconscious-

ness: Theoretical principles and empirical evidence, PLOS Computational

Biology 14 (2018) e1006424.

13



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0 0.5 1
0

0.5

F

B

=0.2, Bw =0.2, Fw =0.8, Bw =0.8, Fw

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.05

0 0.5 1
0

0.1

0.2
F

B

=0.0, Bw =0.0, Fw =0.8, Bw =0.8, Fw

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

(c)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

(d)

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

un-stable

syn-stable

asyn-stable

(e)

Figure 1: Forward (Fw) and backward (Bw) synchronization transitions on (a) ER and (b)

BA networks with N = 1, 000 and 〈k〉 = 12. The two insets report the distance d between

the critical points λB (for Bw) and λF (for Fw), as well as λB and λF themselves. The

contour plot of R (color codes in the right bars) in the parameter space (λ, ρ) are displayed

in (c) for the ER network, and in (d) for the BA network. In panels (c,d) the cyan area is the

parameter region where ES emerges. The red continuous (black dashed) lines represent λB

(λF ). Panel (e) reports the mean-field solution of Eq. (11) for an ER network and for ρ = 0.3.

The blue-dashed-line represents the un-stable solution, while the green-inverted-triangle-line

(the red-triangle-line) is the coherent (incoherent) solution.
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Figure 2: The contour plots (see color codes on the right bars) report the probability distri-

bution function of the effective frequency, f(ωeff) (see text for definition), versus λ for an ER

network. Parameters are: (a) Bw for ρ = 0.2, (b) Fw for ρ = 0.2, (c) Bw for ρ = 0.8, and (d)

Fw for ρ = 0.8.
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Figure 3: Critical points for Bw (〈λB〉) and Fw (〈λF 〉) for (a) an ER network with ρ = 0.2

and (b) a BA network with ρ = 0.0. Plotted points refer to ensemble averages over 10 distinct

network realizations.
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