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A challenging frontier in modern statistical physics is concerned with systems with a small number
of degrees of freedom, far from the thermodynamic limit. Beyond the general interest in the foundation
of statistical mechanics, the relevance of this subject is due to the recent increase of resolution in the
observation and in the manipulation of biological and man-made objects at micro- and nano-scales.
The peculiar feature of small systems is the role played by fluctuations, which cannot be neglected and
are responsible for many non-trivial behaviors. The study of fluctuations of thermodynamic quantities,
such as energy or entropy, goes back to Einstein, Onsager, and Kubo; more recently, interest in this
matter has grown with the establishment of new fluctuation–dissipation relations, which hold even in
non-linear regimes, and of the so-called stochastic thermodynamics. Such a turning point has received a
great impulse from the study of systems that are far from thermodynamic equilibrium, due to very long
relaxation times, as in disordered systems, or due to the presence of external forcing and dissipation,
as in granular or active matter. Applications of the thermodynamics and statistical mechanics of
small systems range from molecular biology to micro-mechanics, including, among others, models of
nano-transport, of Brownian motors, and of (living or artificial) self-propelled organisms.

The Contributions

In this special issue, we collect 20 contributions, spanning the above mentioned subjects.
In particular, the main addressed topics are as follows:

1. entropy production and stochastic thermodynamics (8);
2. heat transport and entropy in nonlinear chains and long-range systems (4);
3. granular and other dissipative systems (2);
4. phase transitions and large deviations in probabilistic models (2);
5. coarse-graining techniques (2);
6. ferromagnetic models (2).

Topic (1): Entropy Production and Stochastic Thermodynamics

In [1], the stochastic energetics approach is applied to a Stirling engine model. Such an engine is
realized by coupling a passive and an active system. The latter is modeled through a non-Gaussian
noise with persistency: this choice allows the authors to study two possible origins of discrepancy
with respect to thermodynamic engines (coupled to equilibrium systems), finding that persistency is
more important.

Entropy 2018, 20, 392; doi:10.3390/e20060392 www.mdpi.com/journal/entropy1
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In [2], the interesting problem of optimizing the energetic cost of maintaining a non-equilibrium
state is discussed. The important result concerns the existence of a minimum bounding such a
cost, which is expressed as an information-theoretic measure of distinguishability between the target
non-equilibrium state and the underlying equilibrium distribution.

In [3], the possibility of a Clausius relation for active systems is investigated on the basis of the
so-called Active Ornstein-Uhlenbeck Particles (AOUP) model. It is shown that a mapping from the
AOUP model to an underdamped model with non-uniform viscosity and temperature can shed light
on this question, but induces an ambiguity in the determination of the parity under time-reversal of
some forces in the system, leaving at least two possible definitions of entropy production. One of the
two possible choices leads to an entropy production that is consistent with detailed balance in the
system and can be expressed in a Clausius-like fashion.

In [4], the problem of moving a system, in a finite time, from an equilibrium state to a different one
is studied. The question here is when such a transformation occurs optimally in the sense of producing
a minimum amount of entropy. The answer is a set of constraints on the possible protocols, particularly
on their time-derivatives. Some interesting examples related to recent experiments are discussed.

In [5], the author revisits the classical problem of a system in contact with a collection of harmonic
oscillators initially in thermal equilibrium, which may represent a thermal bath. The new ingredient
is a time-dependent system-bath coupling which is shown to lead to an additional harmonic force
acting on the system. The consequences for heat and work functionals of stochastic thermodynamics,
in classical as well as quantum systems, are also worked out.

In [6], a magnetic quantum thermal engine is considered where the energy levels are degenerate.
The analytical expression of the relation between the magnetic field and temperature along the adiabatic
process is calculated, including the efficiency as a function of the compression ratio.

In [7], two interacting stochastic systems are considered, under the point of view of information
exchange. An information landscape and an information flux are defined and seen to influence different
aspects of the systems’ dynamics. Connections with the entropy production of non-equilibrium
thermodynamics are investigated.

In [8], a stochastic model of nanopore is investigated in the framework of information dynamics,
focusing on the local and specific entropy rates computed in simulations. Those metrics are put in
relation with the fluctuations of the current in the nanopore.

Topic (2): Heat Transport and Entropy in Nonlinear Chains and Long-Range Systems

In [9], transport of mass and energy through a discrete nonlinear Schrödinger chain in contact
with a heat reservoir and a pure dissipator is considered. Depending on the heat bath temperature,
two interesting regimes are observed, featuring a non-monotonous shape of the temperature profiles
across the chain (at low temperature) and a spontaneous emergence of discrete breathers (at high
temperature), whose statistics can be described in terms of large deviations.

In [10], a multi-partitioned piston model coupled with two thermal baths at different temperatures
is discussed in the framework of kinetic theory, obtaining the values of the main thermodynamic
quantities characterizing the stationary non-equilibrium states: a good agreement with Fourier’s law
in the thermodynamic limit is obtained.

In [11], the effect of both short- and long-range interparticle interactions in the Nosé–Hoover
dynamics of many-body Hamiltonian systems is investigated. It was found that the equilibrium
properties of the system coincides with that within the canonical ensemble; however, in the case with
only long-range interactions, the momentum distribution relaxes to its Gaussian form in equilibrium
over a scale that diverges with the system size. This study brings to the fore the crucial role that
interactions play in deciding the equivalence between Nosé–Hoover and canonical equilibrium.

In [12], the relation between Kolmogorov entropy and the largest Lyapunov exponent in
systems with long-range interactions is studied. In particular, Lyapunov spectra for Coulombic
and gravitational versions of the one-dimensional systems of parallel sheets with periodic boundary

2



Entropy 2018, 20, 392

conditions are computed, showing that the largest Lyapunov exponent can be viewed as a precursor
of the transition that becomes more pronounced as the system size increases.

Topic (3): Granular and Other Dissipative Systems

In [13], the interesting issue of Kovacs-like memory effects, which characterize some athermal
dissipative systems whose stationary states cannot be completely characterized by macroscopic
variables such as pressure, volume, and temperature, is addressed. Within the linear response regime,
it is proved that the observed non-monotonic relaxation is consistent with the monotonic decay of the
non-equilibrium entropy.

In [14], the transport properties of a low-density granular gas immersed in an active fluid, modeled
as a non-uniform stochastic thermostat, are investigated. Navier–Stokes hydrodynamic equations can
describe the steady flow in the system, even for high inelasticity.

Topic (4): Phase Transitions and Large Deviations in Probabilistic Models

In [15], an example of the condensation of fluctuations is considered in probabilistic models with
power-law distributions. This kind of phenomenon occurs when there is a critical threshold above
which the fluctuation in the system is fed by just one degree of freedom. The paper focuses on the
evaluation of the participation ratio as a generic indicator of condensation.

In [16], a stochastic logistic model with multiplicative noise, which shows a transition for
sufficiently strong noise, is studied. Such a transition between different solutions is analyzed in
terms of entropy and information length.

Topic (5): Coarse-Graining Techniques

In [17], a systematic coarse-graining methodology to treat many particle molecular systems using
cluster expansion techniques is discussed. This allows for the building of effective Hamiltonians with
interaction potentials with two, three, (and more) body interactions.

In [18], spatial block analysis as a method of efficient extrapolation of thermodynamic quantities
from finite-size computer simulations of a large variety of physical systems is reviewed. Such a method
provides promising results for simple liquids and liquid mixtures.

Topic (6): Ferromagnetic Models

In [19], the authors focus on the Ising model with a small number of sites, comparing numerical
results about the magnetization (in 1d, 2d, and 3d and without periodic boundary conditions) with
past results for the thermodynamic limit.

In [20], the spinor analysis is applied to exactly evaluate spin–spin correlation functions in the 2d
rectangular Ising model. The author shows the different results (even in terms of short- or long-range
order) emerging from different boundary conditions.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is
considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian
persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal
transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels
that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient.
Persistence, more than non-Gaussian effects, are responsible for this result.

Keywords: active matter; stochastic energetics; Stirling engine

1. Introduction

Every well-educated physicist has heard of Carnot or Stirling cycles. In equilibrium thermodynamics
of macroscopic systems (such as a gas enclosed in some container), a cycle is a periodic sequence of
transformations the system is subjected to, with a view, as far as engines are considered, extracting work
from the system. For a Carnot cycle, this is the well-known adiabatic-isothermal-adiabatic-isothermal
sequence, while, for a Stirling cycle, the adiabatic transformations are replaced with isochoric ones.
The analysis of small, microscopic or nanoscopic systems, such as a colloidal particle in some
solvent, in contrast with the nineteenth century fluid systems, poses theoretical and experimental
challenges. The former have been overcome by the advent of stochastic energetics at the end of the
nineties [1]. Stochastic energetics (or stochastic thermodynamics) encompass a series of concepts
and methods that allow one to define work, heat, dissipation, energy, etc. at an instantaneous and
fluctuating level. By taking averages, one usually recovers (with often no need to consider the limit of
macroscopic systems) the standard principles of thermodynamics. The gain, however, is enormous
in that stochastic energetics also allows one to quantify fluctuations, which may not be negligible for
small-scale systems. An excellent review on the latest developments of stochastic thermodynamics is
that by Seifert [2], while the earlier Schmiedl and Seifert paper [3] focuses specifically on the analysis
of stochastic engines. Experimental realizations pose challenges of their own. These are concerned
with the control of small-size objects (often by means of optical tweezers), coupled to the need to
control other parameters of the experiment. The bath temperature is one of them. Another one is
the optical trap stiffness that can be seen as playing a role analogous to the volume of the container
enclosing the gas in the macroscopic version. The conjugate parameter (analogous to the pressure)
is the particle position (squared). The first colloidal-made engines were concerned with a Stirling
cycle [4,5], in which a sequence of transformations by which the bath temperature and the trap
stiffness were varied was applied to the colloidal particle. This is no place to discuss what an adiabatic

Entropy 2017, 19, 193; doi:10.3390/e19050193 www.mdpi.com/journal/entropy5
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transformation actually means at the level of a colloidal particle in a solvent, suffice it to say that this
has very recently been defined [6] and put to work in an actual Carnot cycle [7]. A lot remains to be
done at the experimental level and theoretical level alike, but it is fair to say that things are pretty
well-understood as far as the theoretical framework is concerned. However, a somewhat unexpected
generalization of these cycles seen as transformations between equilibrium states has recently been
put forward by Krishnamurthy et al. [8]. The generalization, in the spirit of the seminal work of
Wu and Libchaber [9], consists of replacing the equilibrium bath by an active bath containing living
bacteria in a stationary yet nonequilibrium state. The sequence of transformations thus occurs between
nonequilibrium steady-states instead of between equilibrium ones. Due to the nonequilibrium nature
of the bacterial bath, there is no way to define a bona fide temperature. There are, however, several
ways to define an energy scale expressing the level of energetic activity of the bath (all of which
reduce, under equilibrium conditions, to the physical temperature). The proposal of [8] is to use the
colloid’s position fluctuations via Tact =

k
2 〈x2〉 (where k is the trap stiffness). Another possibility would

have been the following: in the absence of any confining force, the colloidal particle will eventually
diffuse away from its initial position, so that we might then expect 〈(x(t)− x(0))2〉 = 2T

γ t, where T
is yet another acceptable active temperature (this would be the asymptotic slope in Figure 2 of [9]).
One might be inclined, somewhat subjectively, to view T as better expressing the intrinsic properties
of the bath, while Tact must result from a balance between the bath and some external force. We will
come back to that point at a later stage.

The purpose of this work is to analyze the results of [8] in the light of a specific modeling of the
bacterial bath. We argue that, in the presence of the nonequilibrium bath, the Stirling engine efficiency
depends on whether T or Tact is held fixed during the isothermal transformation, a distinction which
does not apply to equilibrium baths for which T and Tact are equal. Our modeling relies on a single
hypothesis: the bath enters the colloid’s motion only through an extra noise term, and the noise
statistics alone encode for the effect of the bath. Inspired by the suggestion of [8] that non-Gaussian
statistics are essential, we will propose that the noise to which the colloid is subjected may have
itself non-Gaussian statistics (recent advances of stochastic energetics for non-Gaussian but white
processes [10,11] have taught us how to manipulate such signals) and possibly possess persistence
properties. We will begin by a reminder of the properties of the stochastic Stirling engine between
equilibrium reservoirs. We will then consider the extension to nonequilibrium bath and see how
equilibrium results are not affected by choosing isothermal processes based on Tact. Then, we will
adopt a definition of active temperature based on the colloid’s diffusion constant and show that energy
balance considerations are deeply modified and that the persistence of the noise is of key importance.

2. Stirling Cycle between Equilibrium States: A Quick Review

2.1. Modeling the Motion of a Colloidal Particle

The standard description of the dynamics of a colloidal particle in a solvent rests on a Langevin
equation governing the evolution of the particle’s position x(t). In the overdamped limit relevant to
the description of a micron-sized particle, this Langevin equation reads

γ
dx
dt

= −∂xV + γη, (1)

where γ is the friction coefficient characterizing the viscous drag of the particle in the solvent (this is the
inverse mobility). The external potential V depends on the particle’s position x and an external control
parameter of the potential (like the stiffness of the harmonic trap). Finally, η, which, with the chosen
normalization, has the dimension of a velocity, stands for a Gaussian white noise with correlations
〈η(t)η(t′)〉 = 2T

γ δ(t− t′). Under those conditions, where the dissipation kernel exactly matches the
noise correlator, as prescribed by Kubo [12], the colloidal particle is in equilibrium (provided, of course,
the external potential is not time dependent). In experimental setups, the potential is harmonic and
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the particle’s motion is tracked in two-dimensional space, r = (x, y) and V(x, k) = k
2 (x2 + y2). We will

stick to a one-dimensional description for notational simplicity. In the nonequilibrium setting we want
to describe here, we shall encapsulate the effects of the interactions of the colloidal particle with its
nonequilibrium environment into a single ingredient, namely the noise statistics. However, there is no
reason to expect the noise resulting from the interactions of the colloidal particle with the bacteria bath
to be either Gaussian or white. We postpone the analysis of such active noises to the next section and
now proceed with a reminder of [3,4].

2.2. Energetics of the Stirling Cycle

In this subsection, we briefly review the results presented in [4,5]. This serves as a way to set
notations straight and to define the quantities of interest. A Stirling cycle ABCDA is made of the
following sequence of states in the stiffness-temperature space (k, T):

A : (k2, T2)
isothermal−→ B : (k1, T2)

isochoric−→ C : (k1, T1)
isothermal−→ D : (k2, T1)

isochoric−→ A, (2)

where the terminology isochoric of course refers to an iso-stiffness transformation. This cycle is sketched
in Figure 1.

Figure 1. Schematic diagram of the Stirling cycle in stiffness-position space. Unlike its thermodynamic
counterpart, the cycle is run counter-clockwise but is nevertheless an engine cycle.

We will denote by a = k1/k2 > 1 the stiffness ratio (a large value of k is analogous to a more
compressed state). The warm source is at T1 while the cold source is at T2 (T1 > T2). The instantaneous
fluctuating energy of the particle is V(x, k) = k

2 x2. The work done on the colloid along a protocol

driving it from state i to state f is W =
∫ f

i dt dk
dt

∂V
∂k =

∫ f
i dk 1

2 x2. The heat received by the colloid during
the same step is given by the integral of the entropy production along the given protocol:

Q = −
∫ f

i
dtTσ, (3)

where σ = T−1 ẋ(γẋ − γη) = −T−1kẋx is also the rate of work performed by the particle on
the bath, and thus Q is the work performed by the bath on the particle. Altogether, we thus
have Q =

∫ f
i kxdx. If peq(x) = e−kx2/2T/

√
2πT/k is the equilibrium distribution, then, up to

7
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a constant S = −
∫

dxpeq(x) ln peq(x) = − 1
2 ln k

2πT + 1
2 is the equilibrium entropy and 〈Q〉 =

∫ f
i TdS,

with dS = − 1
2

dk
k + 1

2
dT
T . This is consistent with Q =

∫ f
i kxdx = [ kx2

2 ]
f
i −
∫ f

i dk x2

2 , which is a promotion
of the first law Vf − Vi = W + Q to stochastic energies. Using 〈x2〉 = T/k, it is a simple exercise
to determine the average heat received by the system during each step, 〈QAB〉 = − 1

2 T2 ln a < 0,
〈QBC〉 = 1

2 (T1 − T2) > 0, 〈QCD〉 = 1
2 T1 ln a > 0 and 〈QDA〉 = − 1

2 (T1 − T2) < 0. Correspondingly,
〈WAB〉 = T2

2 ln a, 〈WBC〉 = 0, 〈WCD〉 = − T1
2 ln a and 〈WDA〉 = 0. The total average work received by

the colloid is 〈W〉 = 〈WAB +WCD〉 = − 1
2 (T1 − T2) ln a < 0. This means that the engine provides some

work on average. Given that Q1 = QBC + QCD and Q2 = QAB + QDA are the heat effectively received
by the colloid and the heat effectively given by the colloid to the bath, respectively, we define E = |〈W〉|

〈Q1〉
as the engine’s efficiency. The result is

E =
〈Q1 + Q2〉
〈Q1〉

=
(T1 − T2) ln a

T1 − T2 + T1 ln a
. (4)

If a perfect regenerator was used during the isochoric cooling D → A, then the energy given
out during this isochoric cooling could be used for the heating during the isochoric heating B → C.
Then, the heat received by the colloid would reduce to Q1 = QCD and the efficiency would become
EC = (T1−T2) ln a

T1 ln a = 1− T2
T1

(this Carnot efficiency is of course an upper bound for E = EC ln a
EC+ln a as given

in Equation (4)). Again, these results can all be found in [4]. We have now set the stage for the purpose
of this work, which is to re-examine each of these steps when the colloidal particle is in contact with
nonequilibrium baths just as was carried out experimentally in [8].

3. Engine Operating between Nonequilibrium Baths

3.1. Modified Langevin Equation

We stick to our hypothesis that the effects of the bacterial bath can be entirely encoded into a single
random process, so that now the colloid’s position evolves according to

γẋ = −kx + γηact, (5)

where the active noise ηact is a characteristic feature of the bacterial bath. Assuming this random
signal inherits its properties from the bacteria making up the bath, we may expect that not only will
the noise display non-Gaussian statistics, but it will also exhibit persistence properties captured by
some memory kernel in the noise correlations. One way to substantiate our hypothesis on a more
mathematical basis is to view the colloidal probe as interacting with the bacteria via some potential
and then integrate out the degrees of freedom of the bacteria. Adapting the Vernon and Feynman
approach [13] to this classical and nonequilibrium context can be seen to give rise to a dissipation kernel
that depends on the bacteria-colloid interactions only, while the noise correlations (which are built
from the noise felt by the bacteria themselves) in addition involve the persistence time of the bacteria.
Furthermore, non-Gaussian statistics of the effective noise felt by the colloid follows directly from the
non-Gaussian statistics of the noise felt by each individual active bacterium. Our approximation thus
retains exactly these two features and forgets about further equilibrium-like memory effects. Among
existing models, we may cite Run-and-Tumble noise, Active Brownian noise (see [14] for a review),
Active Ornstein–Uhlenbeck noise [15] or even white yet non-Gaussian [10]. Following [8], we define
a first active temperature Tact by the steady-state value of x2: Tact ≡ k〈x2〉. However, we introduce
another active temperature that we denote by T by means of the colloid’s mean-square displacement
in the absence of a confining force, namely, at k = 0, we expect that

〈(x(t)− x(0))2〉 = 2T
γ

t (6)

8
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at large times, so that T = γ
2t
∫ t

0 dt1dt2〈ηact(t1)ηact(t2)〉. We stress that neither T nor Tact are bona fide
temperatures. They merely are energy scales reflecting how the bath injects energy into the colloids.
The simple fact that these temperatures may not be equal out of equilibrium highlights that these
temperatures cannot be endowed with any thermodynamics meaning.

3.2. The Energetics Is Not Altered If We Use Iso-Tact Steps

Using the definition of the work Wi→ f =
∫ f

i dk x2

2 , we see that 〈Wi→ f 〉 =
∫ f

i dk Tact
2k , which leads

to the exact same expressions for the work as found in the previous section, up to the replacement of
the equilibrium temperature with Tact. Similarly, following [2], we base our analysis on the fact that
the heat is given by the work exerted by the bath on the colloid, namely, Qi→ f =

∫ f
i dtẋ(−γẋ + γηact),

which again simplifies into Qi→ f =
∫ f

i dtẋ(kx) and thus Qi→ f = [ kx2

2 ]
f
i −
∫ f

i dk x2

2 . After taking
averages, we are back onto the expression found in equilibrium, again up to the replacement of
temperatures by the corresponding Tacts. Hence, within that set of definitions and within our modeling,
a quasistatic engine operating between nonequilibrium baths cannot outperform an equilibrium one.
In light of the experiments of [8], this leaves us with a puzzle that we will address in the discussion
section. In the following section, we suggest that perhaps another definition of the active isothermal
process might lead to more striking differences with respect to an equilibrium engine.

4. Energetics Using the Diffusion Constant as an Active Temperature

In this section, we re-examine the Stirling engine operating between nonequilibrium baths using
the temperature T defined in Equation (6) via the diffusion constant of an unconstrained particle.
An isothermal process will now be understood as a process at constant T. Physically, this requirement
is arguably more natural than processes at constant Tact. Indeed, T is an intrinsic measure of the
activity of the bath, which can usually be tuned easily by the experimentalist, while Tact results from
a balance between the bath’s activity and a given external potential.

This new definition immediately requires us to adopt specific models for the active noise ηact

because the explicit dependence of 〈x2〉 on T and k is now of crucial importance. We examine
successively the case in which ηact is a non-Gaussian but white noise, and then a persistent noise with
two-point correlations exponentially decreasing in time, a case that encompasses Ornstein–Uhlenbeck
noise, Run-and-Tumble or Active Brownian noise.

4.1. A Bath with White but Non-Gaussian Statistics

Let’s now assume that the active nature of the bacterial bath only surfaces through the
non-Gaussian statistics of the noise ηnG appearing in the Langevin equation,

γẋ = −∂xV + γηnG, (7)

while memory effects can be ignored in a first approximation. A non-Gaussian white noise ηnG(t) can
be formed by compounding Poisson point processes with random and independent amplitudes [16].
In practice, a realization of the noise over a time interval [0, T ] is generated by first drawing a number of
points, n, from a Poisson distribution with mean νT . Then, a collection of times ti, with i = 1, . . . , n,
are drawn uniformly in [0, T ]. To each ti is associated a jump amplitude ci, where the cis are
independent but identically distributed random variables with distribution p(c). The non-Gaussian,
white noise is constructed as the composition of these random-amplitude Poisson jumps:

ηnG(t) = ∑
i

ciδ(t− ti). (8)

The generating functional of ηnG(t) is 〈e
∫

dt j(t)ηnG(t)〉 = eν
∫

dt(〈ec j(t)〉p−1), where the p index
denotes an average with respect to c and j(t) is the field conjugate to ηnG. The two parameters defining
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the noise statistics are the hitting frequency ν and the full jump distribution p. The Gaussian white
noise limit is recovered as ν→ ∞ and 〈c2〉p → 0 while ν〈c2〉p remains fixed. The noise has cumulants

〈ηnG(t1) . . . ηnG(tn)〉cumulant = ν〈cn〉pδ(t1 − t2) . . . δ(tn−1 − tn). (9)

We denote by T/γ = ν〈c2〉p/2 so that 〈ηnG(t)ηnG(t′)〉 = (2T/γ)δ(t − t′) and T matches the
definition given in Equation (6). It is possible to show that, in the case of the non-Gaussian white noise,
this T is actually identical to our prior definition Tact = 〈x2〉/k. To prove this, we start from the master
equation for the probability that x(t) takes the value x at time t, P(x, t), which reads

∂tP(x, t) = γ−1∂x(kxP(x, t)) + ν
∫

dc p(c) (P(x− c, t)− P(x, t)) , (10)

which we multiply by x2 and integrate over x. This directly leads to

d
dt
〈x2〉 =− 2k

γ
〈x2〉+ ν〈c2〉p. (11)

Hence, it results that in steady-state k〈x2〉 = T, independently of the non-Gaussian noise specifics.
This is an extension of equipartition to a nonequilibrium context. An identical equipartition holds for
an underdamped Langevin equation with non-Gaussian noise, for which mv̇ = −γv−V′+ γηnG leads

to m d〈v2〉
dt = −γ〈v2〉 − d

dt 〈V〉+
2γT

m . This indeed forces 〈mv2/2〉 = T/2 in the steady-state, irrespective

of the white noise statistics. In a similar vein, one can also see that d
dt 〈xv + γ

m
x2

2 〉 = 〈v2〉 − 1
m 〈xV′〉,

which leads to 〈xV′〉 = m〈v2〉 = T in the nonequilibrium steady-state. It immediately follows that the
average works and heats will be unchanged with respect to the equilibrium discussion of Section 2.2.
Note, however, that, in line with [2,10], the heat is not given anymore by the entropy production
δQ = −Tσdt as in Equation (3). It would be an interesting task to try and evaluate the corresponding σ,
which is beyond the scope of the present discussion. (This might be feasible in an expansion in the jump
size a at fixed active T. Such an expansion around a Gaussian white noise is admittedly questionable
in view of Pawula’s theorem [17] but can be controlled when manipulated with care [18]). Finally,
that equipartition holds does not preclude strong non-Gaussian effects to show up in the colloid’s
position pdf. For instance, choosing p(c) = e−|c|/a/(2a) (with 〈c2〉p = 2a2) for the distribution of jumps
allows us to find the stationary state distribution Pss(x). Indeed, with this choice of jump statistics [19]
for α = T

2ka2 − 1
2 positive, we have Pss(x) = C|x/a|αKα(|x|/a) and C = 2−αa−1/(

√
πΓ(1/2 + α)),

and thus 〈x2〉 = T
k can be explicitly verified. Note Pss exhibits a cusp at the origin for 0 ≤ α ≤ 1/2,

namely, for ka2 < T < 2ka2.

-1 0 1 2

0.1

0.2

0.5

Figure 2. Log of the probability of the colloid’s position as a function of position (for a unit a),
in equilibrium with Gaussian statistics (red at T/k = 2, green at T/k = 4) or out of equilibrium as
given by Pss (blue at T/k = 2, orange at T/k = 4).
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It comes as no surprise that the position statistics in the steady-state are strongly non-Gaussian
as illustrated in Figure 2. However, it simply turns out that these non-Gaussian fluctuations do not
interfere with the energy balance of the Stirling engine (Appendix B shows explicitly that the value of
the kurtosis of the position distribution is uncorrelated from the efficiency). We now turn our attention
to an active noise displaying some persistence properties with Gaussian statistics.

4.2. A Bath with a Persistent Noise

We now address more realistic modelings of the noise produced by the bacterial bath, in the
form of a stochastic force imparted on the colloid that captures the persistent motion of an active
particle. Such persistent noise arises from three common classes of active dynamics: Run-and-Tumble
particles, active Brownian particles, and active Ornstein–Uhlenbeck motion. All three classes exhibit
noise correlations that decay exponentially with a characteristic time τ:

〈ηP(t)ηP(t′)〉 =
2T
γ
× e−

|t−t′ |
τ

2τ
. (12)

The prefactor T in Equation (12) matches our definition for T from Equation (6). We show in the
Appendix A how the different models give rise to Equation (12) and relate T and τ to the microscopic
parameters of the dynamics. Here, we adopt a unified description of the three different models by
analyzing the impact of their shared noise correlator, Equation (12). Note that we restrict our discussion
to one space dimension only for simplicity. In higher dimensions, the correlator of each component of
the (vectorial) noise is still given by Equation (12), and, by symmetry, our results trivially generalize to
a spherically harmonic potential.

If we interpret the isothermal transformations of Figure 1 as iso-T processes (as opposed to
iso-Tact), the energetics of our Stirling cycle now differ from the equilibrium analysis of Section 2.2.
During an iso-T protocol, 〈x2〉 does not trace an isotherm with the form 〈x2〉 ∝ k−1. The new form
of the isotherm depends only on the two-point correlator 〈ηP(t)ηP(t′)〉 and not on higher-order
correlations, allowing us to simultaneously treat all three types of active motion. Indeed, in Fourier
space, Equation (7) reads

(k + iγω)x̃(ω) = γη̃P(ω), (13)

with the Fourier transform defined as f̃ (ω) =
∫ +∞
−∞ f (t)e−iωtdt. One can then show that in steady state

〈x2〉 =
∫ +∞

−∞

dω

2π

γ2〈η̃P(ω)η̃P(−ω)〉
k2 + ω2γ2 . (14)

For the noise correlator Equation (12), 〈η̃P(ω)η̃P(−ω)〉 = 2T/(γ(1 + τ2ω2)) so that we obtain

〈x2〉 = T
k(1 + kτ/γ)

. (15)

In the notation of Section 3.1, Tact ≡ k〈x2〉 = T/(1 + Ωτ), where we have defined the frequency
Ω ≡ k/γ.

Let us proceed, then, with the cycle Equation (2) in which we consider isothermal processes
at fixed T. The average work has the expression 〈Wi→ f 〉 = 1

2

∫ f
i dk T

k(1+Ωτ)
, which is zero along

an isochoric protocol, but which now reads 〈Wi→ f 〉 = T
2 [ln

k
1+Ωτ ]

f
i along an iso-T protocol. Similarly,

the average heat reads 〈Qi→ f 〉 = [ T/2
1+Ωτ ]

f
i − 1

2

∫ f
i dk T

k(1+Ωτ)
. Putting everything together, we find

11
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〈QAB〉 =
T2

2

[
1

1 + Ω1τ
− 1

1 + Ω2τ

]
− T2

2
ln
[

a
1 + Ω2τ

1 + Ω1τ

]
,

〈QBC〉 =
(T1 − T2)/2

1 + Ω1τ
> 0,

〈QCD〉 =
T1

2

[
1

1 + Ω2τ
− 1

1 + Ω1τ

]
+

T1

2
ln
[

a
1 + Ω2τ

1 + Ω1τ

]
,

〈QDA〉 = −
(T1 − T2)/2

1 + Ω2τ
< 0,

(16)

while the average works are given by

〈WAB〉 =
T2

2
ln a

1 + Ω2τ

1 + Ω1τ
, 〈WCD〉 = −

T1

2
ln a

1 + Ω2τ

1 + Ω1τ
, 〈WBC〉 = 〈WDA〉 = 0, (17)

and thus E = −〈W〉
〈QBC+QCD〉 in the T1 
 T2 limit is

Esat =
ln a 1+Ω2τ

1+Ω1τ

ln a 1+Ω2τ
1+Ω1τ + 1

1+Ω2τ

. (18)

In the limit of small correlation time (Ω1τ � 1), we find that

Esat �
ln a

1 + ln a
−Ω2τ

a− 1− ln a
(1 + ln a)2 +O(τ2). (19)

In Equation (19), the correction to Esat actually remains negative at arbitrary values of τ:
the efficiency saturates to a lower value due to the persistent properties of the noise when compared to
equilibrium (no persistence). The cost of maintaining nonequilibrium steady-state is not paid off by
an improved efficiency! While the available work has increased, the required energy to operate the
engine has increased by an even larger amount.

Let us stress here that the generality of these results, which depend only on the two-point correlator
of the noise but not on higher-order statistics, can seem rather surprising because the behavior of
active Ornstein–Uhlenbeck, Run-and-Tumble and Active Brownian particles in an harmonic trap are
all qualitatively different. The case of an active Ornstein–Uhlenbeck noise in a quadratic potential
is special in that the colloidal particle actually is in equilibrium [15]. The equilibrium distribution

is peq(x) ∼ e−
k(1+Ωτ)

2T x2
(whether and how this extends beyond a quadratic potential was discussed

in [20]), from which Tact = T/(1 + Ωτ) is readily extracted. On the contrary, Active Brownian and
Run-and-Tumble particles have a richer (nonequilibrium) physics. In particular, if the particle is
persistent on a time scale larger than Ω−1, the steady-state distribution is not peaked around x = 0
(the particle spends most of its time on the edge of the trap) [14]. It is therefore surprising that these
differences do not affect the thermodynamics of our engine.

4.3. A Bath Described by a More General Langevin Equation

A more general description of the effect of the bath on the colloidal particle includes memory
effect in the dissipation as well, as discussed by Berthier and Kurchan [21] in a different context.
One obtains a Langevin equation of the form

γ
∫ t

−∞
dt′Kdiss(t− t′)ẋ(t′) = −kx + γη; 〈η(t)η(t′)〉 = 2T

γ
Kinj(|t− t′|) (20)

with generic injection and dissipation kernels Kinj and Kdiss. Equilibrium is achieved on condition that
Kinj(ω) and ReKdiss(ω) are equal. The ratio
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Teff(ω) = T
Kinj(ω)

ReKdiss(ω)
(21)

tells us about the mismatch between injection and dissipation. In the cases considered previously,
with Kdiss(ω) = 1, we ended up with Teff(ω) = T

1+(ωτ)2 . The characteristic frequency of the relaxation
within the harmonic well being Ω, we a posteriori understand that in the regime where persistence
matters, namely, when Ωτ 
 1, Teff(ω > Ω) → 0, and thus the position spectrum will be cut-off
beyond ω = Ω. It is thus no surprise that eventually 〈x2〉 < T/k, or Tact < T. Of course, in the presence
of a more complicated dissipation kernel Kdiss, the latter inequality can be challenged. Should one
devise a dissipation kernel such that Tact > T, one might reasonably suspect that the thermodynamic
efficiency could exceed that of the equilibrium Stirling engine.

Let us therefore consider how the energetics of the cycle in Figure 1 are impacted by the relationship
between Tact and T. In particular, we repeat the analysis of Section 4.2 by assuming Tact = T f (k) for
a generic function f . The derivation proceeds exactly as before and we obtain for the heat and work on
each segment

〈WAB〉 =
T2

2
[G(k1)− G(k2)] ; 〈WCD〉 = −

T1

2
[G(k1)− G(k2)] ; 〈WBC〉 = 〈WDA〉 = 0; (22)

〈QAB〉 = −
T2

2
[G(k1)− G(k2)] +

T2

2
[ f (k1)− f (k2)] ; 〈QBC〉 =

(T1 − T2)

2
f (k1); (23)

〈QCD〉 =
T1

2
[G(k1)− G(k2)]−

T1

2
[ f (k1)− f (k2)] ; 〈QDA〉 =

(T2 − T1)

2
f (k2); (24)

where G(k) is defined such that G′ = f /k. The maximum efficiency in the limit T1 
 T2 then reads

Esat =
G(k1)− G(k2)

f (k1) + G(k1)− G(k2)
. (25)

This leads to the simple criterion that, in this limit, the cycle outperforms an equilibrium Stirling
engine if and only if ∫ k1

k2

f (k)
k f (k1)

dk >
∫ k1

k2

dk
k

. (26)

In particular, if f (k) is an increasing function of k in the range [k2; k1], the active engine
outperforms the equilibrium one. This could correspond to a physical situation in which energy
injection happens at a particular, finite length scale. As an example, a semi-flexible filament immersed
in a bath of Active Brownian particles is excited at a characteristic length scale [22] and could thus be
a candidate to realize such an efficient engine.

5. Discussion: Back to Experiments

We have assumed all along that the tagged colloidal particle is subjected to a noise that inherits
its properties from those of the bath while the rest of its dynamics are unchanged. That the effect
of the nonequilibrium bath can be encoded in a single random signal as an extra force does not seem
to be an outrageous hypothesis, though, given the size of the bacteria used in [8], comparable to that
of the colloidal particle, perhaps hydrodynamic effects should be taken into account, as well as
further memory effects (in the dissipation kernel and in noise correlations). Within that framework,
we might anticipate that bacteria in a constant temperature medium maintain a fixed activity,
and thus the statistical properties of the random forces should remain unchanged throughout the
isothermal transformation. However, because the random forces do not emerge from equilibrium
thermal fluctuations, there is not a unique way to characterize which aspect of the random forces
remains constant. We have shown that, with a definition of the isothermal process based on
a iso-“potential energy”, we see no reason for the equilibrium results to be altered in any way. Coming
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back to [8], aside from the limiting efficiency in the high T1 
 T2 limit, our theoretical observation is
altogether rather consistent with the experiments.

It is interesting to consider how the nonequilibrium nature of the baths could result in an engine
efficiency that differs from the equilibrium efficiency. To this end, we have suggested an alternative
definition of an isothermal process in which the active temperature is defined through the diffusion
constant of a particle without any external potential. With this definition, in stark contrast to the
iso-”potential energy” definition, the efficiency of a Stirling engine takes a dramatically different form
that involves the persistence time of the noise produced by the bacteria. Interestingly, we are able
to pinpoint memory effects as being responsible for the deviation from equilibrium-like efficiencies.
Non-Gaussian statistics alone is not a sufficient ingredient (we have shown equipartition to hold in the
limiting non-Gaussian but white scenario).

From an experimental standpoint, achieving an isothermal process defined through the diffusion
constant certainly involves working at constant ambient temperature. However, it also involves
working at constant activity for the bacteria. The latter are eventually propelled by molecular motors
which consume ATP (which should therefore be in sufficient amounts). In other words, food for the
bacteria must remain at a constant level (and the bacteria population as well). The former, namely the
ambient temperature, controls the chemical kinetics behind the active processes actually propelling
the bacteria. Lowering the ambient temperature will affect the kinetics of the bacteria and will lead
to a decreased diffusion constant. Whether and how the persistence time of the bacteria’s motion is
affected is, in our view, an interesting and challenging question beyond the scope of the present work.
An alternative way to vary the diffusion constant might be to vary food concentration.

We hope the suggestion to use our alternative active temperature will trigger further experiments
along the lines of [8].
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Appendix A. Active Particle Dynamics

For completeness, we define here Active Brownian and Run-and-Tumble particles (hereafter,
ABPs and RTPs). In both cases, the noise entering the Langevin equation Equation (1) is written as a
force of constant magnitude f0 in a fluctuating direction u, a unit vector. In arbitrary dimension (ABPs
are only defined in d ≥ 2),

γṙ = −∇V + γ f0u. (A1)

For ABPs, the direction u undergoes rotational diffusion, while, for RTPs, a new direction is
picked uniformly at a constant rate α. Let us show that, in both cases, each component of the noise has
correlations given by Equation (12). We focus here on the 2d case. The derivation follows in the same
way in higher dimensions (and d = 1 for RTPs).

In 2d, u is parametrized by an angle θ, u = (cos θ, sin θ). For ABPs, the Fokker–Planck equation
associated with the evolution of the angle reads

∂tPt(θ) = Dr
∂2P(θ)

∂θ2 (A2)

with Dr, the rotational diffusion coefficient. This gives for the x-component of ux = cos θ

∂t〈cos θ cos θ0〉 = Dr

∫
dθ cos θ cos θ0

∂2P(θ)
∂θ2 = −Dr〈cos θ cos θ0〉, (A3)
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where the last equality follows from integrating by parts. We thus have 〈cos θ(t + t0) cos θ(t0)〉 =
1
2 e−Drt so that, in the notations of Equation (12), τ = D−1

r and T = f 2
0 /(2Dr).

One gets a similar result for RTPs which obey the Master equation

∂tPt(θ) = −αP(θ) + α
∫ dθ′

2π
P(θ′), (A4)

with α being the tumble rate. This leads in the same way to τ = α−1 and T = f 2
0 /(2α).

Appendix B. Is Kurtosis Related to Efficiency?

One may want to quantify deviations to the Gaussian distribution for the position [8]. We define
μn(X) the n-th moment of a random variable X and we can compute renormalized kurtosis κ defined

as follows: κx = μ4(x)
3μ2(x)2 − 1 = 〈x4〉

3〈x2〉2 − 1 if 〈x〉 = 0. Let us focus on the ABP case assuming that the
derivation of the fourth moment for RTPs is similar. The Fokker–Planck equation in the 2d case for
ABPs writes:

∂tP(r, θ) =
1
γ
∇ · (P(r, θ)∇V)− f0u(θ) · ∇P(r, θ) + Dr

∂2

∂θ2P(r, θ). (A5)

We take a quadratic potential V = 1
2 kr2. In the stationary regime, multiplying the two members

by x4 and performing integration with respect to r and θ gives:

〈x4〉 = f0
γ

k
〈x3 cos θ〉 = f0

Ω
〈x3 cos θ〉. (A6)

Similarly, we obtain:

〈x3 cos θ〉 = 3 f0

Dr + 3Ω
〈x2 cos2 θ〉; 〈x2 cos2 θ〉 = 1

2Dr + Ω

(
Dr〈x2〉+ f0〈x cos3 θ〉

)
; (A7)

〈x cos3 θ〉 = 1
9Dr + Ω

(
3
8

f0 + 6Dr〈x cos θ〉
)

; 〈x2〉 = f0

Ω
〈x cos θ〉; 〈x cos θ〉 = f0

2(Dr + Ω)
. (A8)

Using Equations (A6)–(A8), we get:

κx = − Ω(7Dr + 3Ω)

2(2Dr + Ω)(Dr + 3Ω)
< 0. (A9)

We might wonder whether the kurtosis can give indications on the efficiency of the stochastic
Stirling engine. We can also compute kurtosis of x for RTPs in 1d as we know the distribution [23].
For this case, we have κx = − 2Ω

α+3Ω with α being the tumbling rate. Here, κx < 0 and we have proved in
Section 4.2 that efficiency was still lower than the efficiency of the equilibrium case. This result should
be compared to the kurtosis for x that satisfies the steady state distribution of Section 4.1, where the
noise is white and non-Gaussian. For Pss(x) = C|x/a|sKs(|x|/a) and C = 2−sa−1/(

√
πΓ(1/2 + s)),

kurtosis κx = 2/(1 + 2s) is strictly positive and the maximum efficiency is still the equilibrium one.
Hence, the kurtosis of the position distribution does not indicate how the efficiency relates to that of
an equilibrium Stirling engine.
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Abstract: There are many functional contexts where it is desirable to maintain a mesoscopic system in
a nonequilibrium state. However, such control requires an inherent energy dissipation. In this article,
we unify and extend a number of works on the minimum energetic cost to maintain a mesoscopic
system in a prescribed nonequilibrium distribution using ancillary control. For a variety of control
mechanisms, we find that the minimum amount of energy dissipation necessary can be cast as
an information-theoretic measure of distinguishability between the target nonequilibrium state and
the underlying equilibrium distribution. This work offers quantitative insight into the intuitive idea
that more energy is needed to maintain a system farther from equilibrium.

Keywords: nonequilibrium thermodynamics; dissipation; relative entropy

1. Introduction

Small systems are continually bombarded by noise from their surroundings. Sometimes this
noise is helpful; thermal and chemical fluctuations are the fuel that power biological molecular
motors [1]. More often, though, noise is a nuisance. Fluctuations in gene expression or transcription
can lead to errors in downstream macromolecules, like RNA, that can be detrimental to a cell’s
function [2]. Noise can also interfere with the functioning of artificial mesoscopic devices, such as
micromechanical [3] and nanomechanical resonators [4,5]. In all these situations, an ancillary control
mechanism can be employed to suppress fluctuations. This can take the form of a kinetic proofreading
scheme [2] or the addition of an auxiliary control device that employs active feedback, as in a Maxwell’s
demon [6–12].

No matter the control mechanism, the effect is to force the system into a statistical state distinct
from its noisy equilibrium, where it will inevitably dissipate energy. Thus maintaining a system
away from equilibrium comes with an energetic cost. Attempts at predicting the properties of such
nonequilibrium states by minimizing the energy dissipation have a long history, starting with Prigogine
and coworkers [13] within linear irreversible thermodynamics (see also [14]). However, it seems no
such general variational principle exists beyond the linear regime [14–16]. As such, our goal in this
work is not to characterize the nonequilibrium state through a thermodynamic variational principle.
Instead, we aim to characterize the energetic requirement to hold an originally equilibrium system
in a prescribed out-of-equilibrium state using an additional external control system that does not
alter the original system’s properties. Indeed, previously in Refs. [17,18], we showed that for specific
classes of externally imposed controls, this minimum energetic cost could be expressed simply in
terms of the systems underlying equilibrium dynamics. In this Article, we expand this program to
include new control mechanisms, and in the process offer a unifying perspective on these previous
results. In particular, we demonstrate that for various control mechanisms the minimum entropy

Entropy 2017, 19, 333; doi:10.3390/e19070333 www.mdpi.com/journal/entropy17
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production (or dissipation) to keep a mesoscopic system in a specified nonequilibrium distribution
can be expressed as a time derivative of the relative entropy between the target distribution and
the uncontrolled equilibrium Boltzmann distribution. This information-theoretic characterization
quantitatively characterizes the intuitive notion that the farther a system is from equilibrium the more
energy must be dissipated to maintain it.

2. Setup

We have in mind a small mesoscopic system making random transitions among a set of discrete
mesostates, or configurations, i = 1, . . . , N, each with (free) energy Ei. We can visualize this dyanmics
occurring on a graph (or network) like in Figure 1, where each configuration is assigned a vertex
(or node), and possible transitions are represented by edges (or links).

Figure 1. Illustration of three types of control: (Top) Graph representation of the system’s configuration
space without control. Mesoscopic configurations are represented as vertices (or nodes) with
edges signifying allowed transitions; (Bottom) Control is implemented by adding additional edges
(red dashed) or nodes (red dots) in order to drive the system into a nonequilibrium distribution.
From Left to Right: Edge control, Node control, and Auxiliary control.

The dynamical evolution is modeled as a Markov jump process on our graph according to
transition rates Wij from j→ i, with Wij �= 0 only when Wji �= 0, so that every transition has a reverse.
As such, the system’s time-dependent probability density pi(t) evolves according to the Master
Equation [19]

∂t pi(t) = ∑
j �=i

Wij pj(t)−Wji pi(t), (1)

which constitutes a probability conservation equation with probability currents

Jij(p) = Wij pj(t)−Wji pi(t). (2)

Now, in the absence of any external control, we assume that our system relaxes to a thermal
equilibrium steady state at inverse temperature β = 1/kBT, given by the Boltzmann distribution
peq

i = eβ(Feq−Ei) with equilibrium free energy Feq = −kBT ln ∑i e−βEi . To guarantee this, we impose
detailed balance on the transition rates [19],

Wij p
eq
j = Wji p

eq
i . (3)

In equilibrium, each transition is counter-balanced by its reverse. Our goal is then to maintain
the system in a predetermined target nonequilibrium steady state p∗ �= peq, and to characterize
the minimum dissipation necessary.
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3. Minimum Dissipation to Suppress Fluctuations

We are interested in pushing and holding our system into a statistical state distinct from
the equilibrium Boltzmann distribution. One could imagine a variety of schemes to accomplish
this goal. Perhaps the simplest, is if we have complete control to vary the system’s energy function
{Ei}. We could then hold the system in the statistical state p∗ by shifting all the energy levels to
E∗i = −kBT ln p∗i , thereby making the target state the new equilibrium state: p∗i = e−βE∗ . After an initial
transient relaxation, the system would then remain in p∗ indefinitely as it is in equilibrium. While there
is a one time energetic cost to vary the energy levels equal to the free energy difference [20], the system
can be held in p∗ for free. Implementing such a protocol, however, generically requires very fine
control over all the individual energies, which often is prohibitive [20]. As a result, there are a number
of situations where this is not possible or not desirable. For example, nature does not utilize this control
mechanism; in cells, where the free energies of molecules are fixed, noise reduction is implemented by
coupling together various driven chemical reactions that constantly burn energy [2,21,22]. Whereas
fluctuations in quantum mesoscopic devices are often suppressed by coupling an auxiliary device that
continually and coherently extracts noise through feedback [4,23–25].

Motivated by this observation, we analyze control mechanisms where we cannot alter the internal
energies {Ei}. Instead, the statistical state of our system is manipulated by introducing additional
pathways. In particular, the scenarios we address, depicted in Figure 1, are: (i) Edge control—additional
driven transitions (or edges) are added with transition rates {Mlk}, which model the coupling of
additional thermodynamic reservoirs; (ii) Node control—additional configurations are incorporated
and coupled to the original network through driven transitions with rates {Mlk}, allowing for ancillary
intermediate configurations, such as in dissipative catalysis; (iii) Auxiliary control—an entirely
new system is coupled to the controlled system, as in feedback control; and finally (iv) Chemical
control—where new chemical reactions are included. Though ostensibly a special case of edge control,
it adds new complications due to the possibility of breaking conservation laws. The addition of such
controllers alters the system’s dynamics leading to a modified Master Equation (cf. (1))

∂t pi(t) = ∑
j �=i

Wij pj(t)−Wji pi(t) + ∑
j �=i

Mij pj(t)−Mji pi(t)

= ∑
j �=i

Jij(p) + JM
ij (p). (4)

Yet no matter which control mechanism is employed, we assume the net effect is to push our
target system into the nonequilibrium steady state p∗. While designing such control is generically
a challenging problem, we take it as a given and instead focus on the minimum cost.

Our only assumption is that the additional control transition rates satisfy a local detailed
balance relation connecting them to the entropy flow into the thermodynamic reservoir that mediates
the transition [26,27]:

ln
Mkl
Mlk

= Δse
kl . (5)

For example, if we implement control by coupling a thermal reservoir at a different inverse temperature
β′, then we require ln(Mkl/Mlk) = β′(El − Ek), which is proportional to the heat flow into the
environment.

The local detailed balance relation implies that our super-system, composed of the system of
interest and the controller, with rates {Wκ

ij} = {Wij, Mij}, where κ specifies an uncontrolled or
controlled transition, satisfies the second law of thermodynamics: Namely, the (irreversible) entropy
production is positive

Ṡi = kB ∑
i>j,κ

Jκ
ij(p) ln

Wκ
ij pj

Wκ
ji pi
≥ 0, (6)
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which is typically split into the derivative of the Shannon entropy

∂tS = −kB∂t ∑
i

pi ln pi = kB ∑
i>j,κ

Jκ
ij(p) ln

pj

pi
, (7)

and the entropy flow

Ṡe = kB ∑
i>j,α

Jκ
ij(p) ln

Wκ
ij

Wκ
ji

. (8)

Our goal will be to bound the entropy production (or dissipation) over all controls that fix the steady
state distribution to be p∗. Due to the local detailed balance relations (3) and (5), we can always connect
the dissipation to the underlying energetics. Thus, our bound on the entropy production can always
be reframed as a minimum energetic cost.

3.1. Edge Control

We begin our investigation with the edge control scheme, where we add a collection of additional
edges to the graph, corresponding to new transitions mediated by additional thermal or chemical
reservoirs. This analysis was originally carried out in [17]. We briefly review it here, as this control
scheme is the simplest and all the following developments will build on it.

In this scenario the super-system produces entropy in the controlled steady state p∗ at a rate

Ṡi = kB ∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

+ kB ∑
k>l

JM
kl (p∗) ln

Mkl p∗l
Mlk p∗k

. (9)

We now wish to bound this sum solely in terms of properties of the system’s environment as codified
by the {Wij} and the target distribution p∗.

To this end, we observe that not only is the total entropy production positive, but link by
link the entropy production is positive, Jkl ln(Mkl pl/Mlk pk) ≥ 0 [12], which follows readily from
the inequality (x− y) ln(x/y) ≥ 0. Thus, each control edge only contributes additional dissipation,
implying that the only unavoidable dissipation occurs along the system’s original links:

Ṡi ≥ Ṡmin = kB ∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

≥ 0. (10)

No matter how control is implemented, the system will inevitable make jumps along the original links,
and those will on average dissipate free energy into the environment when the system is held in the
target state p∗.

We now offer some physical insight into the meaning of (10). To this end, we recognize that Ṡmin

is the entropy production rate of the equilibrium dynamics when the statistical state is the target state
p∗. In other words, it represents the instantaneous entropy production we would observe if we turned
off the control and allowed p∗ to begin to relax to equilibrium. An enlightening reformulation of this
observation is offered by recalling the intimate connection between the time derivative of the relative
entropy, D( f ||g) = ∑i fi ln( fi/gi) [28], and the entropy production rate:

− kB∂tD(p(t)||peq) = ∑
i>j

Jij(p) ln
Wij pj

Wji pi
, (11)

which is a direct consequence of detailed balance (3). As such, we immediately recognize that
the minimum dissipation (10) can be equivalently formulated as

Ṡi ≥ Ṡmin = −kB∂
eq
t D(p∗||peq), (12)
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where the derivative ∂
eq
t should be understood to operate on p∗ as if it were evolving under

the uncontrolled equilibrium dynamics. As the relative entropy is an information-theoretic measure of
distinguishability [28], Equation (12) quantifies precisely the intuitive fact that it costs more to control
a system the farther it is from equilibrium.

We note that this analysis immediately offers the condition under which we saturate the minimum.
As our bound originates in setting aside the extraneous entropy production due to the control
transitions, we immediately find as a consequence that this additional entropy production is zero
when the control transitions operate thermodynamically reversibly. This requires them to operate
much faster than the system dynamics, so that at any instant the system is locally detailed balanced
with respect to the control transitions on a link-by-link basis. In other words, the optimal transition
rates must verify

M∗kl p∗l = M∗lk p∗k . (13)

Indeed, this implies the optimal dissipation on each driven link (cf. (5)) should be

Δs∗kl = ln
M∗kl
M∗lk

= ln
p∗k
p∗l

. (14)

3.2. Node Control

More than a fundamental result, the preceding analysis outlines an approach for characterizing
the minimum dissipation to hold a system out of equilibrium. We now carry out this analysis again in
a new scenario, but allow the addition of C extra nodes in the network and edges connecting them
(Figure 1).

When we add additional nodes, the system plus controller will have α = 1, . . . , N + C
configurations, with a steady-state distribution ρss

α over the super-system. Now, in this case control
will be successful when in the resulting steady state the relative likelihood of the N original states
are in the target distribution p∗i = ρss

i /P , where P = ∑N
i=1 ρss

i . Unfortunately, this is not sufficient to
fix the dissipation rate on the original set of links, as the currents are left undetermined. Indeed, it is
possible to have the subset of N system nodes in the target distribution p∗, but have P small; leading to
small currents on the uncontrolled links Jij(ρ

ss) = P Jij(p∗) and negligible dissipation (cf. (6)). Thus to
arrive at a sensible bound we must also fix the probability currents Jij(ρ

ss) = P Jij(p∗) on the original
uncontrolled links, or equivalently P , the total probability to be in the original configurations. In effect,
we are maintaining the function of the system, as the currents represent different possible tasks for
the system, e.g., they are the rate of production of a molecule or the rate at which heat flux is converted
into useful work.

With this setup, the minimum entropy production rate is again given by the entropy production
on the original undriven links in the global steady state

Ṡi ≥ Ṡmin = kB ∑
i>j

Jij(ρ
ss) ln

Wijρ
ss
j

Wjiρ
ss
i

. (15)

To make this an expression that only depends on p∗ and P , we substitute ρss
i = p∗i P to find

Ṡmin = kBP∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

= −kBP∂
eq
t D(p∗||peq). (16)

Again, the minimum dissipation is dictated by how different the target state is from equilibrium,
but here weighted by the total probability P , which fixes the system’s currents. Similarly, optimality
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is reached when the additional edges that connect the control nodes are very fast, minimizing their
contribution to the entropy production.

3.3. Auxiliary Control

Another scheme for control is the addition of an entirely new system, which we call the auxiliary.
This scheme was original analyzed in [18] for quantum mesoscopic devices modeled by a Markovian
quantum Master equation. In an effort to unify various results, we recapitulate this argument here,
translated into classical language.

We now amend our state space with the addition of an auxiliary control system with states
α = 1, . . . , C, so that each configuration of the super-system is labeled by the pair (i, α). Transition
rates of the original system are assumed unaltered, but the new transitions between auxiliary states
{Mi

αγ}must depend on the system state in order to implement the feedback control. Such a structure
is called bipartite [10,29–31], and is captured in the graph structure by the absence of diagonal links
where the system and auxiliary transition simultaneously (Figure 1). Here, control is successful when
the steady-state distribution ρss

iα has a marginal distribution on the system that is the target distribution
∑C

α=1 ρss
iα = p∗i .

Again we can bound the total entropy production in the system plus auxiliary with the entropy
production on just the system links

Ṡi ≥ kB ∑
(i,α)>(j,γ)

Jij(ρ
ss) ln

Wijρ
ss
jγ

Wjiρ
ss
iα

. (17)

At this point the lower bound still depends on the full distribution ρss over the entire super-system.
However, if we coarse-grain over the auxiliary, we can use the monotonicity of the relative entropy
under coarse-graining [28], to weaken the bound to

Ṡi ≥ Ṡmin = kB ∑
i>j

Jij(p∗) ln
Wij p∗j
Wji p∗i

= −kB∂
eq
t D(p∗||peq). (18)

This result was originally derived in the context of quantum mesoscopoic devices [18]. Here we have
reframed it in classical language.

3.4. Controlling Chemical Reaction Networks

As a final scenario, we turn to the control of a chemical reaction network. This scenario adds
an additional complication: the incorporation of additional control reactions can break an underlying
conservation law of the equilibrium dynamics [32,33]. For example, adding a chemostat that exchanges
matter breaks the conservation of particle number or mass. This observation requires a slight
modification of (12).

To set the stage, consider a chemical reaction network with configurations specified by the vector
of chemical species number X = {X1, . . . , XS}. Transitions then correspond to chemical reactions
that change the value of X subject to system-specific constraints; an illustrative example of which is
pictured in Figure 2. For simplicity, we take the only constraint to be particle number N = ∑S

i=1 Xi.
In which case, the equilibrium steady state is a Poisson distribution constrained to the manifold of fixed

particle number, peq
N (X) = ∏i

X̄
Xi
i

Xi !
e−X̄i δ(∑j Xj −N ) [19]; and detailed balance respects the constraints

as well:
WX′X peq

N (X) = WXX′ p
eq
N (X

′). (19)
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Figure 2. Illustration of chemical control: Two species X1 and X2 interconvert through a single
chemical reaction X1 ⇀↽ X2 that conserves particle number, depicted as solid black lines. As a result,
the dynamical evolution of this chemical reaction network is restricted to a single diagonal subspace
of the network of states. Control can be implemented by chemostating one of the species, say X1,
by allowing X1 molecules to be added and subtracted from the reaction volume through the reaction
X1 ⇀↽ φ, depicted as red dashed lines. As this reaction breaks the particle number conservation law,
it extends the possible configurations the system can dynamically explore.

Now, for control we add new reactions that maintain the system in a fixed target distribution
p∗(X) over chemical space, which may not respect our particle number constraint, i.e., it may have
support on configurations X that have different numbers of total particle number (cf. Figure 2).
To make this explicit, we split the target distribution p∗(X) = p∗N (X)PN into two controlloable pieces:
the conditional probability given the total particle number, p∗N (X) and the probability to have N
particles, PN . With this splitting, the minimum dissipation to maintain p∗ again is only due to
the entropy produced in the original reactions

Ṡmin = kB ∑
X′>X

JX′X(p∗) ln
WX′X p∗(X)
WXX′ p∗(X′)

= kB ∑
N
PN ∑

X′>X

JX′X(p∗N ) ln
WX′X p∗N (X)
WXX′ p∗N (X

′)
, (20)

An information-theoretic interpretation is provided by recalling that the equilibrium transitions WX′X
conserve particle number, to find

Ṡmin = −kB ∑
N
PN ∂

eq
t D(p∗N ||p

eq
N ). (21)

In a chemical system, the minimum dissipation depends only on how different the target distribution
is from the equilibrium distribution on the conserved sectors, whereas shifting only the number
distribution PN can in principle be accomplished for free. This conclusion should remain true when
there are additional conservation laws as well. Note that when the target distribution conserves
particle number, PN = 1 and we recover (12).

4. Discussion

We investigated the minimum entropy production or free energy dissipation to maintain a system
in a target nonequilibrium distribution using ancillary control. We found that in a variety of scenarios
this minimum cost can be formulated using the information-theoretic relative entropy as a measure of
how distinguishable the target nonequilibrium state is from equilibrium. Our analysis further revealed
that the minimum is reached when the driven control transitions operated reversibly.
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As in previous analyses of nonequilibrium thermodynamics, the relative entropy [34–39] appeared
as a key tool in characterizing dissipation. In these previous works, however, the relative entropy
compared the true evolution of the system to the underlying stationary state. By contrast, here we
find that when using external control the cost is characterized by the time-variation of the relative
entropy under a fictitious uncontrolled equilibrium dynamics, evaluated against the unperturbed
equilibrium state.

Looking ahead, we note that while we had in mind throughout the paper autonomous control,
nonautonomous control through reversible hidden pumps offer an intriguing alternative to saturate
our energetic bound [40]. Additionally, we have focused on the average or typical behavior of the state
of our system, but a number recent predictions, collectively known as thermodynamic uncertainty
relations, relate the dissipation to fluctuations in currents or flows [41–45]. Such work suggests that it
would be intriguing to understand how our lower bound is modified, when one wants to use external
control to constrain not just the typical state, but fluctuations as well. Our hope is that the approach
developed here offers the possibility of quantifying the minimum energetic cost of nonequilibrium
states in other more general scenarios.
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Abstract: Many kinds of active particles, such as bacteria or active colloids, move in a thermostatted
fluid by means of self-propulsion. Energy injected by such a non-equilibrium force is eventually
dissipated as heat in the thermostat. Since thermal fluctuations are much faster and weaker than
self-propulsion forces, they are often neglected, blurring the identification of dissipated heat in
theoretical models. For the same reason, some freedom—or arbitrariness—appears when defining
entropy production. Recently three different recipes to define heat and entropy production have been
proposed for the same model where the role of self-propulsion is played by a Gaussian coloured
noise. Here we compare and discuss the relation between such proposals and their physical meaning.
One of these proposals takes into account the heat exchanged with a non-equilibrium active bath:
such an “active heat” satisfies the original Clausius relation and can be experimentally verified.

Keywords: active particles; entropy production; Clausius relation

1. Introduction

Active particle systems have recently attracted the increasing interest of scientists of different
disciplines since they sit at the intersection of biology, chemistry and physics [1,2]. A central feature of
these materials is that its elementary constituents convert energy from the environment via metabolic
or chemical reactions into direct motion but also dissipate energy producing heat by friction in order
to move inside a surrounding solvent [3]. Therefore, the complex behavior of active particles can
only be described by the tools of non equilibrium statistical physics, such as kinetic theory, statistical
mechanics of non-equilibrium processes and stochastic thermodynamics [4]. A fascinating question,
which naturally comes to our mind, is how thermodynamics shapes biological functions in living
organisms [5] such as motility and self-propulsion and in particular which is the entropy production
associated with their non equilibrium steady states [6]. This question requires a notion of heat generated
by self-propulsion and dissipated in the thermostatted solvent.

Within careful calorimetric experiments, one is able to measure the heat dissipated into the solvent
by a microbial colony [7]. Such total heat depends upon many biological functions which are not
included in active models, but one could devise smart experiments (e.g., by varying motility without
changing other functions) in order to assess the fraction of heat strictly generated by self-propulsion.
Observing the associated fluctuations is perhaps a much harder task, if not impossible. However,
before encountering experimental limitations, one finds limits in the theory.

At our mesoscopic level, the definition of heat has to be framed within stochastic
thermodynamics [8–11]. A problem, however, arises when thermal fluctuations are discarded:
such an approximation is adopted in many models of active particles, since temperature is negligible
with respect to the energy associated with both self-propulsion and external forces. In active models,
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some noise is retained to describe the non-deterministic nature of the self-propulsion force, but it
usually acts on time-scales and energy scales much larger than molecular agitation of the solvent.
This “athermal” nature of active particle models is similar to that in granular models [12] or in models
of macroscopic friction [13]. While it is very useful—sometimes even inevitable—for the purpose of
analytic calculations or numerical simulations, it leads to a mismatch between entropy production
and heat [14]. Basically, the relation between total entropy production and dissipated heat loses its
similitude with the original Clausius form and involves additional terms. For this reason, it does not
provide a clear constraint on heat divided by temperature, as it occurs for the Clausius relation in
macroscopic thermodynamics. Such a problem has already been noticed in some models of active
particles [15], and in systems with feedback [16–18].

Recently it has been shown that the above fallacy is bypassed in a model of active particles where
Gaussian colored noise plays the role of self-propulsion [19–21]. Even if thermal fluctuations are
neglected, a notion of “coarse-grained heat” can be introduced, together with a spatial-dependent
effective temperature, such that the original Clausius relation is fully recovered. The crucial point
here is that both such a “coarse-grained heat” and the effective temperature can be measured in
experiments and therefore a test of this active Clausius relation can be attempted. In the last year
other two proposals have appeared in the literature [22,23], devoted to define entropy production
and heat in the same identical model. The purpose of the present paper is to discuss the connection
between those different Clausius relations. Apart from this comparison, two novelties are present here
with respect to [21]: (1) a single trajectory level of description is adopted, while in [21] an ensemble
average had been considered; (2) a generalization of [21] to more than one dimension and interacting
particles is presented. In order to simplify the discussion, the main discussion is focused on the
1d case with a time-independent potential, which is sufficient to show the main difference between the
definitions of heat and entropy production in the three works considered [21–23]. The generalisation
of the proposal in [21] to multi-dimensional cases with a time-dependent potential is also discussed
at the end.

In Section 2, we review the basic facts of Clausius relation in macroscopic thermodynamics and in
stochastic (or mesoscopic) thermodynamics. In Section 3, we introduce the active model with Gaussian
colored noise with thermal fluctuations, where a “microscopic Clausius relation” is trivially satisfied,
and then show what happens at the coarse-grained level, when inertia and thermal fluctuations are
neglected. The three recipes appeared in [21–23] to connect entropy production, dissipated heat and
temperature are reviewed and compared.

2. Heat and Entropy Production: From Macroscopic to Stochastic Thermodynamics

Here we revise a few elementary facts of thermodynamics, at the macroscopic level and at the
mesoscopic one. The macroscopic level is the one presented in thermodynamic textbooks, where there
are no fluctuations: we denote quantities at this level with capital letters. The mesoscopic level is the
topic of an intense research exploded roughly in the last two decades, and is dominated by fluctuations:
we denote quantities at this level with small letters. Averaging out the fluctuations of the mesoscopic
level (an operation which—in general—is automatically obtained in the limit of a very large number
of constituents) brings back the results of the macroscopic one. Through the whole paper, we set the
Boltzmann constant kB = 1.

2.1. Macroscopic Level

For a large system one may measure heat, for instance with a calorimeter, and call it
δQ: we consider it positive when going from the bath to the system. The second principle of
thermodynamics guarantees that in a transformation where entropy S changes by a quantity dS
there is a non-negative entropy production

δΣ = dS− δQ
T
≥ 0 , (1)
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where we used a shorthand notation where—for instance δΣ and δQ are non-exact differentials, while
dS is an exact differential. In a “quasi-static” transformation the equal sign holds, i.e., δΣ = 0.

In the absence of a direct way of measuring the entropy of a system (e.g., if quasi-static
transformations are not available), other relations derived from Equation (1) and involving measurable
observables are useful. For instance from Equation (1) it follows

dS ≥ δQ
T

(2)

and therefore the existence of a “minimum work” that can be extracted, also called difference of free
energy dF:

TdS ≥ dE− δW → δW ≥ dE− TdS = dF. (3)

Another consequence that is derived way from Equation (1) is to consider a cyclical transformation
(dS = 0), where it implies ∮

δQ(t)
T(t)

≤ 0, (4)

which is the celebrated Clausius relation. This can be tested in experiments and is the founding
principle of the theory of heat engines, efficiency, etc.

It is important to underline that if—hypothetically—the total entropy production was something
different from dS− δQ/T, i.e., if

δΣ = dS− δQ
T

+ Σan ≥ 0, (5)

then all the above relations, including the Clausius relation, would not hold anymore due to the
presence of an “anomalous” entropy production term, Σan. However it is quite difficult to imagine
Equation (5) in macroscopic thermodynamics, since the very definition of macroscopic entropy
production is the difference between dS and δQ/T [6]. On the contrary, equations similar to (5)
have appeared in the literature in a stochastic thermodynamic treatment of systems with feedback and
model of self-propelled particles [15–18,23].

2.2. Mesoscopic Level

When a small system is considered, a stochastic description is necessary in order to incorporate
fluctuations. At thermodynamic equilibrium the stochastic evolution must be consistent with
micro-reversibility. More precisely, the couple “system plus thermostat” describes all degrees of
freedom of the world and therefore it has to satisfy an exact symmetry under time-reversal: when the
heat bath is replaced by an effective stochastic bath force, time-reversal is mapped into the equivalence
of probabilities of a trajectory and its time-reversal, which coincides with detailed balance if the process
is Markovian.

When an external, non-conservative, force is applied to the system, one may expect that the
stochastic bath force is not changed (for instance if the bath is very large and is weakly affected by the
external force). This amounts to say that the non-equilibrium model contains the sum of two forces
which both concur to change the energy of the system: the external force does work, the bath force
brings heat [11]. A notion of entropy production rate σ of a trajectory ω(t), for Markovian stochastic
systems, has been introduced in [8] and revisited in [9]. It can be summarized as

∫ t

0
δσ(t′) = ln

prob[{ω(t′)}t
0]

prob[{ω(t− t′)}t
0]

= ln
p[ω(0)]

p[ω(t)]
+ ln

prob[{ω(t′)}t
0|ω(0)]

prob[{ω(t− t′)}t
0|ω(t)]

(6)

=
∫ t

0
ds +

∫ t

0
δsm, (7)

where ω is the time-reversal of the phase-space variables (typically positions are unchanged and
velocities are reflected), s(t) = − ln p[ω(t)] is the microscopic Gibbs entropy in the point ω(t) in
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phase space and δsm is the so-called entropy production of the surrounding medium [9]. In the rest
of the paper we consider, for simplicity, the infinitesimal version of Equation (6), i.e., δσ = ds + δsm.
An average over noise realizations and initial conditions is expected to give back the macroscopic
quantities, i.e., δΣ = 〈δσ〉 and dS = 〈ds〉, such that Equation (1) implies 〈δsm〉 = −δQ/T. Indeed in
many models at constant temperature, one has δsm = −δq/T with δq the heat injected by the bath force,
which satisfies 〈δq〉 = δQ. The total entropy production

∫ t
0 δσ(t′) satisfies the Fluctuation-Relation at

any time t > 0 and this guarantees that δΣ = 〈δσ〉 is non-negative [8]. In a stationary state 〈δsm〉 ≥ 0
then follows.

As a useful example, let us consider the evolution of a colloidal particle of mass m, position
and velocity x(t), u(t) in one dimension, under the action of an external potential φ(x) and of
a non-conservative external force fnc(t).

dx(t) = u(t)dt (8a)

mdu(t) = −γu(t)dt +
√

2γTdW(t)− φ′[x(t)]dt + fnc(t)dt, (8b)

with dW(t) the Wiener infinitesimal increment (with variance dt). Defining energy as
e = mu2/2 + φ(x), it is easy to see that heat (going from the bath into the system) reads

δq = de− δw = u ◦ [−γudt +
√

2γTdW(t)] (9)

where we have defined the work δw = u fncdt, and ◦ denotes products which must be integrated
according to the Stratonovich rule.

For this model, it is possible to compute the conditional probability appearing in (6) and therefore
compute δsm. The result depends upon the parity of fnc under time-reversal [24]. In simple cases,
for instance when magnetic fields are not involved [25], such a force is assigned even parity under
time-reversal. In this case, one gets (see Appendix A)

δσ = ds− u ◦ [−γudt +
√

2γTdW]

T
= ds− δq

T
, (10)

which is ≥ 0 on average, leading to the usual Clausius relation.
On the contrary if fnc is odd, for instance if the coarse-graining has delivered a force which

is proportional to odd powers of the velocity of external bodies [14,26], or if magnetic fields are
involved [25], the relation (10) does not hold anymore. In such cases, things seem to improve
when the so-called conjugated dynamics is considered, by changing the sign of odd external
non-conservative forces when computing the probability of inverse paths appearing in the denominator
of Equation (6) [18,24,26–29]: basically this amounts to change the parity of the force and get back the
result in Equation (10). The problem of such an artificial prescription, however, is that the conjugated
dynamics cannot be realized in experiments and therefore an empirical evaluation (i.e., without
a detailed knowledge of the equation of motions) of the conjugated probability is not available, neither
it is possible to experimentally observe the associated fluctuation relation.

3. Active Particles: The Coarse-Grained Heat and Clausius Relation

The analogy between stochastic and macroscopic thermodynamics, Equation (10), rests upon two
main ingredients: (1) the heat bath must be modeled as a stochastic force which—if non-conservative
forces are removed—satisfies detailed balance with respect to the equilibrium probability distribution
(δσ ≡ 0) and (2) the non-conservative forces are even under time-reversal, a fact which is expected to
be realized when the microscopic forces are not velocity-dependent (e.g., there are no Lorentz forces)
and the coarse-graining does not change or mix their parity. Many models of active particles abandon
such basic facts (in particular detailed balance [4]), with the aim of describing the relevant variables
(such as positions or orientations of the micro-swimmers) which evolve on scales much slower than
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those affected by thermal agitation. An interesting example of model of active swimmers where this
procedure can be analyzed is one where self-propulsion takes the form of an Ornstein-Uhlenbeck
process: its non-zero correlation time represents the persistence of motion due to activity. Active
particles of biophysical interest, for instance bacteria or sperms, display such a finite time decay of
autocorrelation, but of course can exhibit more complicate form of the decay, i.e., not necessarily
an exponential. Several authors have discussed the fair comparison, at some level (for instance
comparing the spatial correlations in the presence of external potentials or the phase separation effects
induced by activity), between other models or real experiments and the Ornstein-Uhlenbeck model
considered here, see for instance [30–32].

Here we introduce the model at a space-time scale fine enough to describe the real velocity u of
the particle and thermal fluctuations:

dx(t) = u(t)dt (11a)

mdu(t) = −γu(t)dt +
√

2γTbdW(t) + fa(t)dt− φ′[x(t)]dt, (11b)

where Tb is the environmental (solvent) temperature and the active force satisfies

d fa(t) = −
fa(t)

τ
dt +

γ
√

2Da

τ
dW2(t), (12)

with dW2 another (independent) Wiener increment with variance dt. Here we consider for simplicity
the 1-particle case in one dimension, with a potential φ(x) which does not depend upon time. Later we
generalize some of the results to many interacting particles and with a time-dependent potential.

Note that, when φ = 0, 〈x2〉 ∼ 2(Da + Tb/γ)t for large times. Based upon such a bare diffusivity,
the “active bath temperature” Ta = γDa is usually defined. In [21] a “mass-less” active temperature
Tτ = Da/τ was defined. In this paper we show that it is not necessary, if an “effective mass” μ = γτ is
used, as in [23]. Of course there is no thermostat at temperature Ta, such a temperature is only useful
to define a relevant energy scale.

Since active micro-swimmers are usually dispersed in viscous liquids, it is much more common
to find the overdamped version of the model [19], which describes the position of the particle on
a time-scale slower than the relaxation time due to inertia:

dx(t) =
√

2γTbdW(t) + fa(t)dt− φ′[x(t)]dt
γ

. (13)

3.1. Heat Dissipation into the Solvent

Interpreting fa as an external force derived—through the coarse-graining of the full microscopic
dynamics—from forces which do not depend upon velocities, it is reasonable to consider it even.
According to the recipe of stochastic thermodynamics discussed above, Equation (6) applied to
Equation (11) or Equation (13), see Appendix A, one gets Equation (10), with

δqb = u ◦ [−γudt +
√

2γTbdW(t)], (14)

which is the heat absorbed from the reservoir, satisfying in the steady state the Clausius relation at
constant temperature, i.e.,

δQb = 〈δqb〉 ≤ 0. (15)

The interpretation is obvious, the active force fa(t) acts as an external non-conservative force
and transfers energy in the system which is dissipated into the bath. This can be measured by
ordinary calorimetry in the solvent [33]. As discussed above, such a measurement is in principle
very difficult in experiments with living micro-swimmers, since released heat is affected by many
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other non-equilibrium biological functions. A promising direction could be the use of artificial active
particles [3].

3.2. Removing the Solvent from the Description

Since Tb is orders of magnitude smaller than active temperatures, it is very useful—also for
computational purposes—to remove it from Equation (13), keeping only

ẋ =
fa(t)− φ′(x)

γ
. (16)

At this point, an important ingredient of the bath force (its noise) has disappeared and the
basic recipe of stochastic thermodynamics cannot be applied straightforwardly. Still, it is useful to
find a measure of “distance from equilibrium” and relate it to parameters and observable quantities.
Considering that fa is random, one is tempted to consider −γẋ + fa(t) as an effective bath and define
a heat as ẋ ◦ [−γẋ + fa(t)]. However, the random force fa(t) is non-Markovian and therefore the
standard recipe of stochastic thermodynamics brings in complications [34–36].

The simplest way to get rid of the non-Markovian character of the noise is to time-derive
Equation (16), obtaining

dx(t) = u(t)dt (17a)

μdu(t) = −γu(t)dt +
√

2γTadW(t)− φ′[x(t)]dt− τφ′′[x(t)]u(t)dt (17b)

= −γΓ(x)u(t)dt + γ
√

2DadW(t)− φ′[x(t)]dt (17c)

where we have introduced the effective mass μ = γτ and the space-dependent viscosity correction
Γ(x) = 1 + τ

γ φ′′(x).
As highlighted by the two versions in Equations (17b)–(17c), the evolution of the effective velocity

u is affected by the conservative force −φ′(x) and by an additional force that can be interpreted in two
different ways: (1) an equilibrium bath at temperature Ta plus a non conservative force fnc = −τφ′′(x)u
which is odd under time-reversal; or (2) a non-equilibrium bath with space-dependent viscosity
modulated according to the function Γ(x). In the next two subsections, we see the consequences
of such different interpretations, which change both the definition of entropy production as well as
of heat.

3.2.1. Equilibrium Bath with a Non-Conservative Force: Conjugated Entropy Production

This interpretation is considered in [23]. The authors propose to define heat as the energy injected
by the force −γudt + γ

√
2DadW, as if it were an equilibrium bath

δq1 = u ◦ (−γudt + γ
√

2γTadW). (18)

To derive the entropy production, the authors consider the formula (6) with the probability of the
time-reversed path (which appears in the denominator) computed according to a dynamics where
the force fnc(t) is replaced by − fnc(t), as discussed at the end of Section 2.2. This idea is justified
by the authors by showing that such a change of sign is necessary in order to make invariant under
time-reversal the dynamics without the bath. However such an argument is not really compelling.
The terms −γudt + γ

√
2γTadW do not correspond to any well-defined part of the physical system

which could be identified as an equilibrium bath: the first term is the viscous damping due to
the solvent, the second term is the fluctuating part of the derivative of the self-propulsion. It is
a mathematical coincidence that together they form a Ornstein-Uhlenbeck process of the same form
of equilibrium bath forces. In our opinion, it is quite arbitrary detaching them from Equation (17)
and there is no reason why the rest of the equation (once those terms are removed) should satisfy the
invariance under time-reversal.
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According to the “conjugated” prescription, one gets for the case of a single particle considered
here (see Appendix A)

δΣ = ds− δq1

Ta
+

τ2

2Ta
(du)2φ′′, (19)

where (du)2 ≈ 2Tadt/(γτ2). The average can be written as

δΣ = dS− δQ1

Ta
+

dt
γ
〈φ′′〉 ≥ 0, (20)

with δQ1 = 〈δq1〉.
A peculiarity of this recipe is that it gives a non-zero average entropy production also for the

harmonic case φ(x) ∼ x2. Since in the harmonic case Equation (17) satisfies detailed balance, it is
unclear if such a peculiarity is an advantage or not. Moreover, as already discussed, entropy production
computed with the conjugated reversed dynamics is not accessible in experiments. Most importantly,
in our opinion Equation (20) hardly deserves the name “Clausius relation”, as it does not give the
same important information about the sign of the average heat.

3.2.2. Equilibrium Bath with a Non-Conservative Force: Standard Entropy Production

In [22] the authors consider Formula (6) (without conjugation for the reversed dynamics) applied
to the dynamics in Equation (17c). However all terms giving exact deterministic differentials are
thrown away, leading to an approximate formula (see Appendix A)

δΣ ≈ τ2uφ′′ ◦ du
Ta

. (21)

In the steady state the neglected terms have zero average, and indeed only the average formula is
reported in [22]. Fluctuations and large deviations functions, however, may keep the memory of those
terms [37–39].

Another difficulty of formula (21) is its connection with heat. In the end of their paper, the authors
manage to show that Equation (16) can be mapped exactly into a generalized Langevin equation with
memory. This equation can be broken into a viscoelastic bath at equilibrium at temperature T plus
a non-conservative force. Within such a description, the average of the entropy production rate in
Equation (21) can be written as J /T, where J is the heat flux dissipated into the bath. A simple
formula for such a “viscoelastic” heat or its—local or global—average is not given in [22]. Most
importantly, some terms of fluctuations of entropy production are neglected which could be relevant
for large deviation functions and the validity of the Fluctuation Relation [37–39].

3.2.3. Non-Equilibrium Bath

If the standard recipe of stochastic thermodynamics, Equation (6), is used without neglecting any
term, one gets (see Appendix A)

δσ = ds− δq2

θ(x)
, (22)

with the “active bath heat” defined as
δq2 = u ◦ d fab, (23)

the “active bath force” as

d fab(t) = −γΓ[x(t)]u(t)dt + γ
√

2DadW(t) (24)

= −γΓ[x(t)]u(t)dt +
√

2γΓ[x(t)]θ(x)dW(t) (25)
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and the “local active temperature” θ(x) = Ta/Γ(x). It is clear that—as in the general formulation,

Equation (9)—δq2 corresponds to the variation of the total energy e = μu2

2 + φ(x) due to the bath
force. The interpretation of θ(x) as a local active temperature is supported by the observation
that a local Maxwellian with temperature θ(x) is an approximate solution for the local velocity
distribution, with “small” violations of detailed balance, see [21] for details. We underline that θ(x) is
immediately accessible in experiments: indeed the external potential φ(x) is directly controlled by the
experimentalist (for instance by means of optical fields). The parameters γ, τ and Da can be measured
by independent measurements with single particles in the fluid without potential.

Averaging Equation (22), one gets

δΣ = dS−
〈

δq2(x)
θ(x)

〉
≥ 0, (26)

which in the steady state (dS = 0) is identical to the Clausius relation [21]. Interestingly, the local
average ˙̃q(x) of the dissipated heat flux reads

˙̃q(x) = γΓ(x)
[

θ(x)
μ

n(x)−
∫

dvu2 p(x, u)
]

, (27)

where n(x) =
∫

dvp(x, u). This is an additional argument in favour of the simplicity and
consistency of the picture discussed in the present section: the “active heat” is exactly proportional
to the difference between the local active temperature θ(x) and the empirical temperature 〈u2〉x.
The empirical temperature is “attracted” by the local active temperature but the non-uniformity of
such a temperature prevents full relaxation: the mismatch is a source of flowing heat. Equation (27)
shows a straightforward way to measure such “active heat”. Indeed such a measurement only amounts
to measure n(x) and 〈u2〉x (for instance by means of a fast camera attached to a microscope), while all
other variables are parameters of the experimental setup, controlled by the experimentalist. Once one
has measured the local heat ˙̃q(x) an experimental verification of the Clausius relation, Equation (26),
is immediately accessible, since 〈

δq2(x)
θ(x)

〉
=
∫

dx
˙̃q(x)
θ(x)

(28)

We note that when the potential does not depend upon time, as in all our equations up to this
point, the active heat δq2 has zero average. Nevertheless, the average entropy production δΣ has
non-zero average, apart from the harmonic case φ(x) ∼ x2 which is a special case where θ(x) is
uniform [21].

When more particles are involved, a (local and time-dependent) diagonalisation procedure can
always set back the problem in the case of a single particle. The multi-particles and multi-dimensional
version of Equation (17) reads

μdui = −γΓij(r)ujdt− ∂iφ(r)dt + γ
√

2DadWi, (29)

with Γij = δij +
τ
γ ∂j∂iφ and indexes running over all particles and all Cartesian components and the

Einstein summation convention is assumed. The potential φ includes both external and internal forces.
Since the matrix Γij(r) is symmetric, an orthogonal matrix Pij(r) always exists such that PΓPT = D
with Dij(r) = λi(r)δij. By defining the rotated coordinates R = Pr and velocities U = Pu, and recalling
that the gradient rotates as a vector and the rotation of the vector of independent white noises gives
again a vector of independent white noises, it is straightforward to get the formula:

μdUi = −γλi(R)Uidt− ∂Ri φ + γ
√

2DadWi. (30)
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Computation of the entropy production leads, therefore, to

δσ(t) = ds(t)−∑
i

δq2,i(t)
θi[R(t)]

, (31)

with θi(R) = Ta/λi(R) the i-th component of the local active temperature and

δq2,i = Ui ◦ [−γλi(R)Uidt + γ
√

2DadW]. (32)

Notice that Equation (31) generalizes the Clausius relation to a system with different
temperatures θi.

As an example, in the case of an active particle moving in a plane a subject to a central potential
φ(r) = φ(r), we have the following Cartesian representation of the matrix Dij(r) = Dr(r)r̂i r̂j +

Dt(r)(δ1j − r̂i r̂j) with Dr(r) = 1 + τ
γ φ′′(r) and Dt(r) = 1 + τ

γ φ′(r)/r. The two temperatures are
θr(r) = 1/Dr(r) and θt(r) = 1/Dt(r).

3.3. Time-Dependent Potential

When an external transformation is considered, i.e., a time-dependent potential φ(x, t) is taken
into account, Equation (17c) is replaced with

μdu(t) = −γΓ(x)u(t)dt + γ
√

2DadW(t)− ∂xφ[x(t), t]dt− τ∂t∂xφ[x(t), t]dt (33)

Also, in this case, we get (see Appendix A) the validity of the mesoscopic Clausius relation
Equation (22) with the active heat Equation (23). Time-dependent potentials are at the basis, for
instance of realizations of heat engines [40].

Very Slow Transformations

Imagine a very slow transformation from a φ(x, t1) to a new φ(x, t2): this means transforming
the original non-equilibrium steady state (“NESS”, at t < t1) to a new non-equilibrium steady state
(for t
 t2). As discussed above, in the initial and final NESS there is heat going steadily to the bath,
even without the transformation. Therefore for very slow transformations ΔQ→ −∞ and the Clausius
relation becomes useless. For this reason, Oono-Paniconi [41], then Hatano-Sasa [42], Bertini et al. [43]
and Maes [44] have found expressions for the so-called “excess heat”, i.e., heat which is released for the
sole purpose of the transformation: this heat is obtained removing the “housekeeping heat” (necessary
for the steady states) from the total ΔQ. All the mentioned proposals have been given for overdamped
systems, where certain symmetries are more clear but also less general. Active particles have some
kind of inertia or persistence which cannot be disregarded and therefore do not comply with such an
assumption. It would be interesting to see the above simple ideas applied to the model in Equation (16)
with a slow transformation of the potential.

4. Conclusions

In this paper, we have reviewed and compared three different prescriptions to extend the Clausius
formula to active systems, i.e. to particles able to self-propel by means of metabolic processes or
chemical reactions and to dissipate energy by a frictional mechanism. Those relations between the
heat dissipation, entropy and work appear at the mesoscopic level, where fluctuations are taken into
account by means of a stochastic description, but the contribution to these fluctuations coming from
the molecular bath is neglected, leaving a certain freedom in defining heat and entropy production.

While all three methods are admissible and do not contradict any general principle, our point
of view gives indications that only one of these prescriptions can be considered as a stochastic
version of the original Clausius heat theorem, that is Equation (22) with “active heat” defined in (23).
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The stochastic “active” version of Clausius formula we have derived coincides with the one recently
presented by using ensemble averaged quantities [21].

We conclude offering a physical interpretation of our finding. In this model there is a level of
coarse-graining which is sufficiently isolated from the fastest (neglected) degrees of freedom: at such
a level of description the system behaves as a microscopic heat engine in contact with a continuum
spectrum of temperatures, i.e., a particle which transfers heats between different positions of space in
an environment where each position is thermostatted at a different temperature θ(x). Basically there
are regions (where θ(x) > 〈u2〉x) where heat enters the system and other regions where heat leaves
the system.

Acknowledgments: We warmly akcnowledge useful discussions and communications with Luca Cerino,
Alessandro Sarracino and Frederic van Wijland.

Author Contributions: A.P. and U.M.B.M. equally contributed to the work reported.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Entropy Production

We consider here a generalization of the dynamics in Equation (8) with fnc(x, u, t) representing
any kind of time-dependent term: it can be external or internal (that is function also of system’s degrees
of freedom), odd or even under time-reversal, and we consider both the normal or the conjugated
dynamics for the probability of the time-reversed path. In particular, we assume dx = udt and

mdu = dα(x, u, t) = −γu(t)dt +
√

2γTdW(t)− φ′[x(t)]dt + fnc(x, u, t)dt (A1)

mdu = dα∗(x, u, t) = −γu(t)dt +
√

2γTdW(t)− φ′[x(t)]dt + f nc(x, u, t)dt (A2)

to generate the dynamics of the forward and reversed paths, respectively. The Wiener increments
dW(t) have variance dt. When the standard entropy production is computed, the dynamics is
the same, i.e., f nc(x, u, t) = fnc(x, u, t). On the contrary for the conjugated entropy production
f nc(x, u, t) = − fnc(x, u, t).

Following Equation (6) (factorized for the Markovian dynamics), the infinitesimal entropy
discharged into the surrounding medium reads

δsm(t) = ln
exp{−[mdut − dα(xt, ut, t)]2/(4γTdt)}

exp{−[mdut − dα∗(xt+dt,−ut+dt, t + dt)]2/(4γTdt)} (A3)

= − 1
4γTdt

{
[mdut + γutdt + φ′(xt)dt− fnc(xt, ut, t)dt]2

−[mdut − γut+dtdt + φ′(xt+dt)dt− f nc(xt+dt,−ut+dt, t + dt)dt]2
} (A4)

= − 1
γT

[
mγdut ◦ ut + γutφ

′(xt)dt− γ
ut fnc(xt, ut, t) + ut+dt f nc(xt+dt,−ut+dt, t + dt)

2
dt

−mdu
fnc(xt, ut, t)− f nc(xt+dt,−ut+dt, t + dt)

2

−φ′(xt) fnc(xt, ut, t)− φ′(xt+dt) f nc(xt+dt,−ut+dt, t + dt)
2

dt

]
.

(A5)

In the first passage we have used the fact that the time-reversal of dut is −ut − (−ut+dt) = dut.
In the second passage we have neglected terms which goes to zero faster than dt and we have replaced
dut(ut + ut+dt)/2 with dut ◦ ut.

The cases considered in this paper are the following:
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• The standard case in Equation (8) where fnc(t) is even and external (i.e., it does not depend upon
x, v): f nc(t) = fnc(t). In this case, the last two terms in Equation (A5) become of higher order in
dt and one gets:

δsm(t) = −
1
T

ut ◦ [mdut + φ′(xt)dt− fnc(t)dt] (A6)

which immediately gives Equation (10).
• The case considered in [23], where fnc(x, u, t) = −τuφ′′(x) and (“conjugated entropy

production”) f nc(x, u, t) = τuφ′′(x). In this case the last term becomes of higher order in dt,
while the term du2 cannot be discarded (as it contains dW2 ∼ dt), and therefore one gets

δsm(t) = −
1
T

{
ut ◦ [mdut + φ′(xt)dt− fnc(xt, vt, t)dt] +

τ2

2
du2

t φ′′(xt)

}
, (A7)

(where we have used m ≡ μ = γτ), that is Equation (19).
• The case considered in [21,22], where fnc(x, u, t) = −τuφ′′(x) and (according to the standard

definition of stochastic entropy production) f nc(x, u, t) = −τuφ′′(x). In this case the third term
in Equation (A5) is of higher order in dt. All the other terms must be kept, giving

δsm(t) = −
1
T

(
1 +

τ

γ
φ′′(xt)

)
ut ◦ [mdut + φ′(xt)dt]. (A8)

If no terms are neglected, it gives exactly Equation (22).
• If in Equation (A8) the exact differentials (ut ◦ dut = du2

t /2, utφ
′(xt)dt = dφ(xt) and

utφ
′(xt)φ′′(xt)dt = d[φ′(xt)]2/2) are removed, then only one terms remains:

δsm(t) ≈ −
1
T

τ2φ′′(xt)ut ◦ dut, (A9)

i.e., Equation (21).
• If a time-dependent potential is considered, then a second non-conservative force appears

fnc,2(x, t) = −τ∂x∂tφ(x, t). We stress that the dependence upon time of φ(x, t) is external, i.e.,
(keeping the standard recipe of stochastic thermodynamics) the probability of the reversed
dynamics is generated by the same equation, that is no change of sign is attributed to ∂t.
Basically we have f nc,2(x, t) = −τ∂x∂tφ(x, t). Introducing fnc,2 in Equation (A3) leads to the
appearance of two new addends in the brackets [...] of Equation (A5): one totally new term
−τut∂

2φ(xt, t) fnc,2(xt, t) coming from the product fnc fnc,2; one surviving term −γut fnc,2(xt, t)
in the third addend. No new terms appear inside the fourth and fifth addend. In conclusion
one gets

δsm(t) = −
1
T

(
1 +

τ

γ
∂2

xφ(xt, t)
)

ut ◦ [mdut + φ′(xt)dt− fnc,2(xt, t)], (A10)

which gives again Equation (22).
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Abstract: We present a stylized model of controlled equilibration of a small system in a fluctuating
environment. We derive the optimal control equations steering in finite-time the system between
two equilibrium states. The corresponding thermodynamic transition is optimal in the sense that
it occurs at minimum entropy if the set of admissible controls is restricted by certain bounds on
the time derivatives of the protocols. We apply our equations to the engineered equilibration of an
optical trap considered in a recent proof of principle experiment. We also analyze an elementary
model of nucleation previously considered by Landauer to discuss the thermodynamic cost of one
bit of information erasure. We expect our model to be a useful benchmark for experiment design
as it exhibits the same integrability properties of well-known models of optimal mass transport by
a compressible velocity field.

Keywords: fluctuation phenomena; random processes; noise and Brownian motion; nonequilibrium
and irreversible thermodynamics; control theory; stochastic processes
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1. Introduction

An increasing number of applications in micro- and sub-micro-scale physics calls for the
development of general techniques for engineered finite-time equilibration of systems operating
in a thermally-fluctuating environment. Possible concrete examples are the design of nano-thermal
engines [1,2] or of micro-mechanical oscillators used for high precision timing or sensing of mass and
forces [3].

A recent experiment [4] exhibited the feasibility of driving a micro-system between two equilibria
over a control time several orders of magnitude faster than the natural equilibration time. The
system was a colloidal micro-sphere trapped in an optical potential. There is consensus that
non-equilibrium thermodynamics (see, e.g., [5]) of optically-trapped micron-sized beads is well
captured by Langevin–Smoluchowski equations [6]. In particular, the authors of [4] took care of
showing that it is accurate to conceptualize the outcome of their experiment as the evolution of
a Gaussian probability density according to a controlled Langevin–Smoluchowski dynamics with
gradient drift and constant diffusion coefficient. Finite time equilibration means that at the end of
the control horizon, the probability density is the solution of the stationary Fokker–Planck equation.
The experimental demonstration consisted of a compression of the confining potential. In such a case,
the protocol steering the equilibration process is specified by the choice of the time evolution of the
stiffness of the quadratic potential whose gradient yields the drift in the Langevin–Smoluchowski
equation. As a result, the set of admissible controls is infinite. The selection of the control in [4] was
then based on simplicity of implementation considerations.
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A compelling question is whether and how the selection of the protocol may stem from a notion
of optimal efficiency. A natural indicator of efficiency in finite-time thermodynamics is entropy
production. Transitions occurring at minimum entropy production set a lower bound in the Clausius
inequality. Optimal control of these transitions is, thus, equivalent to a refinement of the second law of
thermodynamics in the form of an equality.

In the Langevin–Smoluchowski framework, entropy production optimal control takes
a particularly simple form if states at the end of the transition are specified by sufficiently regular
probability densities [7]. Namely, the problem admits an exact mapping into the well-known
Monge–Kantorovich optimal mass transport [8]. This feature is particularly useful because the
dynamics of the Monge–Kantorovich problem is exactly solvable. Mass transport occurs along
free-streaming Lagrangian particle trajectories. These trajectories satisfy boundary conditions
determined by the map, called the Lagrangian map, transforming into each other the data of the
problem, the initial and the final probability densities. Rigorous mathematical results [9–11] preside
over the existence, qualitative properties and reconstruction algorithms for the Lagrangian map.

The aforementioned results cannot be directly applied to optimal protocols for engineered
equilibration. Optimal protocols in finite-time unavoidably attain minimum entropy by leaving the
end probability densities out of equilibrium. The qualitative reason is that optimization is carried over
the set of drifts sufficiently smooth to mimic all controllable degrees of freedom of the micro-system.
Controllable degrees of freedom are defined as those varying over typical time scales much slower
than the time scales of Brownian forces [12]. The set of admissible protocols defined in this way is
too large for optimal engineered equilibration. The set of admissible controls for equilibration must
take into account also extra constraints coming from the characteristic time scales of the forces acting
on the system. From the experimental slant, we expect these restrictions to be strongly contingent
on the nature and configuration of peripherals in the laboratory setup. From the theoretical point of
view, the self-consistence of Langevin–Smoluchowski modeling imposes a general restriction. The
time variation of drift fields controlling the dynamics must be slow in comparison to Brownian and
inertial forces.

In the present contribution, we propose a refinement of the entropy production optimal control
adapted to engineered equilibration. We do this by restricting the set of admissible controls to those
satisfying a non-holonomic constraint on accelerations. The constraint relates the bound on admissible
accelerations to the path-wise displacement of the system degrees of freedom across the control horizon.
Such displacement is a deterministic quantity, intrinsically stemming from the boundary conditions
inasmuch as we determine it from the Lagrangian map.

This choice of the constraint has several inherent advantages. It yields an intuitive hold on the
realizability of the optimal process. It also preserves the integrability properties of the optimal control
problem specifying the lower bound to the second law. This is so because the constraint allows us to
maintain protocols within the admissible set by exerting on them uniform accelerating or decelerating
forces. On the technical side, the optimal control problem can be handled by a direct application of
the Pontryagin maximum principle [13]. For the same reasons as for the refinement of the second
law [7], the resulting optimal control is of the deterministic type. This circumstance yields a technical
simplification, but it is not a necessary condition in view of extensions of our approach. We will return
to this point in the conclusions.

The structure of the paper is as follows. In Section 2 we briefly review the Langevin–Smoluchowski
approach to non-equilibrium thermodynamics [14]. This section can be skipped by readers familiar
with the topic. In Section 3, we introduce the problem of optimizing the entropy production.
In particular we explain its relation with the Schrödinger diffusion problem [15,16]. This relation,
already pointed out in [17], has recently attracted the attention of mathematicians and probabilists
interested in rigorous application of variational principles in hydrodynamics [18]. In Section 4,
we formulate the Pontryagin principle for our problem. Our main result follows in Section 5,
where we solve in explicit form the optimal protocols. Sections 6 and 7 are devoted to applications.
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In Section 6, we revisit the theoretical model of the experiment [4], the primary motivation of our
work. In Section 7, we apply our results to a stylized model of controlled nucleation obtained by
manipulating a double-well potential. Landauer and Bennett availed themselves of this model to
discuss the existence of an intrinsic thermodynamic cost of computing [19,20]. Optimal control of this
model has motivated in more recent years in several theoretical [21] and experimental works [22–24].

Finally, in Section 8, we compare the optimal control we found with those of [25]. This reference
applied a regularization technique coming from instanton calculus [26] to give a precise meaning to
otherwise ill-defined problems in non-equilibrium thermodynamics, where terminal cost seems to
depend on the control rather than being a given function of the final state of the system.

In the conclusions, we discuss possible extensions of the present work. The style of the
presentation is meant to be discursive, but relies on notions in between non-equilibrium physics,
optimal control theory and probability theory. For this reason, we include in the Appendices some
auxiliary information as a service to the interested reader.

2. Kinematics and Thermodynamics of the Model

We consider a physical process in a d-dimensional Euclidean space (Rd) modeled by
a Langevin–Smoluchowski dynamics:

dξt = −∂ξt
U(ξt, t)dt +

√
2
β

dωt (1)

The stochastic differential dωt stands here for the increment of a standard d-dimensional Wiener
process at time t [6]. U : Rd ⊗R �→ R denotes a smooth scalar potential, and β−1 is a constant sharing
the same canonical dimensions as U. We also suppose that the initial state of the system is specified by
a smooth probability density:

P(q ≤ ξtι
< q + dq) = pι(q)ddq (2)

Under rather general hypotheses, the Langevin–Smoluchowski Equation (1) can be derived
as the scaling limit of the overdamped non-equilibrium dynamics of a classical system weakly
coupled to a heat bath [27]. The Wiener process in (1) thus embodies thermal fluctuations of order
β−1. The fundamental simplification entailed by (1) is the possibility to establish a framework of
elementary relations linking the dynamical to the statistical levels of description of a non-equilibrium
process [14,28]. In fact, the kinematics of (1) ensures that for any time-autonomous, confining potential,
the dynamics tends to a unique Boltzmann equilibrium state.

peq(q) ∝ exp
(
− β U(q)

)
Building on the foregoing observations [14], we may then identify U over a finite-time horizon

with the internal energy of the system. The differential of U:

dU(ξt, t) = dt ∂tU(ξt, t) + dξt
1/2· ∂ξt

U(ξt, t) (3)

yields the energy balance in the presence of thermal fluctuations due to interactions with the

environment. We use the notation
1/2· for the Stratonovich differential [6]. From (3), we recover

the first law of thermodynamics by averaging over the realizations of the Wiener process. In particular,
we interpret:

W = E
∫ t f

to
dt ∂tU(ξt, t) (4)
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as the average work done on the system. Correspondingly,

Q = −E
∫ t f

to
dξt

1/2· ∂ξt
U(ξt, t) (5)

is the average heat discarded by the system into the heat bath, and therefore:

W −Q = E
(

U(ξtf
, tf)−U(ξtf

, tf)
)

(6)

is the embodiment of the first law.
The kinematics of stochastic processes [29] allows us also to write a meaningful expression for

the second law of thermodynamics. The expectation value of a Stratonovich differential is in general
amenable to the form:

Q = −E
∫ t f

tι

dt (v · ∂ξt
U)(ξt, t) (7)

where:

v(q, t) = −∂q

(
U(q, t) +

1
β

ln p(q, t)
)

(8)

is the current velocity. For a potential drift, the current velocity vanishes identically at equilibrium. As is
well known from stochastic mechanics [30,31], the current velocity permits couching the Fokker–Planck
equation into the form of a deterministic mass transport equation (see also Appendix B). Hence, upon
observing that:

E
∫ t f

tι

dt (v · ∂ξt
ln p)(ξtf

, tf) = E
∫ t f

tι

dt
(

∂t + vt · ∂ξt

)
ln p(ξtf

, tf) = E ln
p(ξtf

, tf)

p(ξtι
, tι)

(9)

we can recast (7) into the form:

QT = Q− 1
β

E ln
p(ξtf

, tf)

p(ξtι
, tι)

= E
∫ t f

tι

dt ‖ v(ξt, t) ‖2 (10)

which we interpret as the second law of thermodynamics (see, e.g., [32]). Namely, if we define
E = βQT as the total entropy change in [tι tf], (10) states that the sum of the entropy generated by
heat released into the environment plus the change of the Gibbs–Shannon entropy of the system is
positive definite and vanishes only at equilibrium. The second law in the form (10) immediately
implies a bound on the average work done on the system. To evince this fact, we avail ourselves of the
equality:

W = E

(
U(ξtf

, tf)−U(ξtι
, tι) +

1
β

ln
p(ξtf

, tf)

p(ξtι
, tι)

)
+QT (11)

and define the current velocity potential:

F(q, t) = U(q, t) +
1
β

ln p(q, t)

We then obtain:

W = E
(

F(ξtf
, tf)− F(ξtι

, tι)
)
+QT ≥ E

(
F(ξtf

, tf)− F(ξtι
, tι)
)
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In equilibrium thermodynamics, the Helmholtz free energy is defined as the difference:

F = U − β−1 S

between the internal energy U and entropy S of a system at temperature β−1. This relation
admits a non-equilibrium extension by noticing that the information content [33] of the system
probability density:

S(q, t) = − ln p(q, t)

weighs the contribution of individual realizations of (1) to the Gibbs–Shannon entropy. We refer to [29]
for the kinematic and thermodynamic interpretation of the information content as the osmotic potential.
We also emphasize that the notions above can be given an intrinsic meaning using the framework of
stochastic differential geometry [17,31]. Finally, it is worth noticing that the above relations can be
regarded as a special case of macroscopic fluctuation theory [34].

3. Non-Equilibrium Thermodynamics and Schrödinger Diffusion

We are interested in thermodynamic transitions between an initial state (2) at time tι and
a pre-assigned final state at time tf also specified by a smooth probability density:

P(q ≤ ξtf
< q + dq) = pf (q)d

dq (12)

We also suppose that the cumulative distribution functions of (2) and (12) are related by
a Lagrangian map � : Rd �→ Rd such that:

P(ξtι
< q) = P(ξtf

< �(q)) (13)

According to the Langevin–Smoluchowski dynamics (1), the evolution of probability densities
obeys a Fokker–Planck equation, a first order in time partial differential equation. As a consequence, the
price we pay to steer transitions between assigned states is to regard the drift in (1) not as an assigned
quantity, but as a control. A priori, a control is only implicitly characterized by the set of conditions that
make it admissible. Informally speaking, admissible controls are all those drifts steering the process{

ξt, t ∈ [tι , tf]
}

between the assigned end states (2) and (12) while ensuring that at any time t ∈ [tι , tf],
the Langevin–Smoluchowski dynamics remains well defined.

Schrödinger [15] considered already in 1931 the problem of controlling a diffusion process between
assigned states. His work was motivated by the quest for a statistical interpretation of quantum
mechanics. In modern language [35,36], the problem can be rephrased as follows. Given (2) and (12)
and a reference diffusion process, determine the diffusion process interpolating between (2) and (12)
while minimizing the value of its Kullback–Leibler divergence (relative entropy) [37] with respect to
the reference process. A standard application (Appendix A) of the Girsanov formula [6] shows that the
Kullback–Leibler divergence of (1) with respect to the Wiener process is:

K(P ‖ Pω) =
β

2
E
∫ tf

tι

dt ‖∂ξt
U(ξt, t)‖2 (14)

P and Pω denote respectively the measures of the process solution of (1) with drift −∂qU(q, t) and of
the Wiener process ω. The expectation value on the right-hand side is with respect to P as elsewhere in
the text. A now well-established result in optimal control theory (see, e.g., [35,36]) is that the optimal
value of the drift satisfies a backward Burgers equation with the terminal condition specified by the
solution of the Beurling–Jamison integral equations. We refer to [35,36] for further details. What
interests us here is to emphasize the analogy with the problem of minimizing the entropy production
E in a transition between assigned states.
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Several observations are in order at this stage.
The first observation is that also (10) can be directly interpreted as a Kullback–Leibler divergence

between two probability measures. Namely, we can write (Appendix A):

K(P ‖ PR) =
β

2
E
∫ tf

tι

dt ‖v(ξt, t)‖2 (15)

for PR the path-space measure of the process:

dξt = ∂ξt
U(ξt, t)dt +

√
2
β

dωt (16)

evolving backward in time from the final condition (12) [38,39].
The second observation has more far reaching consequences for optimal control. The entropy

production depends on the drift of (1) exclusively through the current velocity (8). Hence, we
can treat the current velocity itself as the natural control quantity for (15). This fact entails major
simplifications [7]. The current velocity can be thought of as deterministic rather than as a stochastic
velocity field (see [29] and Appendix B). Thus, we can couch the optimal control of (15) into the
problem of minimizing the kinetic energy of a classical particle traveling from an initial position q
at time tι and a final position �(q) at time tf specified by the Lagrangian map � (13). In other words,
entropy production minimization in the Langevin–Smoluchowski framework is equivalent to solving
a classical optimal transport problem [8].

The third observation comes as a consequence of the second one. The optimal value of the entropy
production is equal to the Wasserstein distance [40] between the initial and final probability measures
of the system; see [41] for details. This fact yields a simple characterization of the Landauer bound and
permits a fully-explicit analysis of the thermodynamics of stylized isochoric micro-engines (see [42]
and the references therein).

Finally, the construction of Schrödinger diffusions via optimal control of (14) corresponds to
a viscous regularization of the optimal control equations occasioned by the Schrödinger diffusion
problem (15).

4. Pontryagin’s Principle for Bounded Accelerations

An important qualitative feature of the solution of the optimal control of the entropy production
is that the system starts from (2) and reaches (12) with non-vanishing current velocity. This means
that the entropy production attains a minimum value when the end-states of the transition are
out-of-equilibrium. We refer to this lower bound as the refinement of the second law.

Engineered equilibration transitions are, however, subject to at least two further types of
constraints not taken into account in the derivation of the refined second law. The first type of
constraint is on the set of admissible controls. For example, admissible controls cannot vary in
an arbitrary manner: the fastest time scale in the Langevin–Smoluchowski dynamics is set by the
Wiener process. The second type is that end-states are at equilibrium. In mathematical terms, this
means that the current velocity must vanish identically at tι and tf.

We formalize a deterministic control problem modeling these constraints. Our goal is to minimize
the functional:

E =
∫ t f

tι

dt β ‖νt‖2 (17)
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over the set of trajectories generated for any given choice of the measurable control αt by the
differential equation:

χ̇t = νt (18a)

ν̇t = αt (18b)

satisfying the boundary conditions:

χtι
= q & χtf

= �(q) (19)

We dub the dynamical variable χt the running Lagrangian map as it describes the evolution
of the Lagrangian map within the control horizon. We restrict the set of admissible controls A ={

αt, t ∈ [tι , tf]
}

to those enforcing equilibration at the boundaries of the control horizon:

νtι = 0 & νtf = 0 (20)

whilst satisfying the bound:

|α(i)t | ≤
K(i)(q)
(tf − tι)2 ∀ t ∈ [tι , tf] ∀ i = 1, . . . , d (21)

We suppose that the K(i)(q) > 0 i = 1, . . . , d are strictly positive functions of the initial data q of
the form:

K(i)(q) ∝ |�(i)(q)− q(i)| (22)

The constraint is non-holonomic inasmuch as it depends on the initial data of a trajectory. The
proportionality (22) relates the bound on acceleration to the Lagrangian displacement needed to satisfy
the control problem. Finally, we emphasize that the rate of change νt of the running Lagrangian map is
related to the current velocity (8) by a standard change of hydrodynamic coordinates from Lagrangian
to Eulerian, which we write explicitly in formula (33) below.

We resort to the Pontryagin principle [13] to find normal extremals of (17). We defer the statement
of the Pontryagin principle, as well as the discussion of abnormal extremals to Appendix C. We proceed
in two steps. We first avail ourselves of Lagrange multipliers to define the effective cost functional:

A =
∫ t f

tι

dt
(

β ‖ νt ‖2 +ηt · (χ̇t − νt) + θt · (ν̇t − αt)
)

subject to the boundary conditions (19) and (20). Then, we couch the cost functional into an explicit
Hamiltonian form:

A =
∫ t f

tι

dt
(

ηt · χ̇t + θt · ν̇t − H(χt, νt, ηt, θt, αt)
)

(23)

with:

H(χt, νt, ηt, θt, αt) = ηt · νt + θt · αt − β ‖ νt ‖2

Pontryagin’s principle yields a rigorous proof of the intuition that extremals of the optimal control
equations correspond to stationary curves of the action (23) with Hamiltonian:

H�(χt, νt, ηt, θt) = max
α∈A

H(χt, νt, ηt, θt, αt) = ηt · νt +
∑d

i=1 K(i)|θ(i)t |
(tf − tι)2 − β ‖ νt ‖2
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In view of the boundary conditions (19), (20), extremals satisfy the Hamilton system of equations
formed by (18a) and:

ν̇
(i)
t = ∂θt H� =

K(i)

(tf − tι)2 sgn θ
(i)
t (24a)

η̇t = −∂χt H� = 0 (24b)

θ̇t = −∂νt H� = −ηt + 2 β νt (24c)

In writing (24a), we adopt the convention:

sgn 0 = 0

5. Explicit Solution in the 1d Case

The extremal Equations (18a) and (24) are time-autonomous and do not couple distinct vector
components. It is therefore not too restrictive to focus on the d = 1 case in the time horizon [0, T].

The Hamilton equations are compatible with two behaviors: a “push-region” where the running
Lagrangian map variable evolves with constant acceleration:

χ̈t =
K
T2 sgn θt & θt �= 0

and a “no-action” region specified by the conditions:

θt = 0 & − η� + 2 β ν� = 0 (25)

where χt follows a free streaming trajectory:

χ̇t = ν�

We call switching times the values of t corresponding to the boundary values of a no-action region.
Switching times correspond to discontinuities of the acceleration αt. Drawing from the intuition
offered by the solution of the unbounded acceleration case, we compose push and no-action regions to
construct a single solution trajectory satisfying the boundary conditions. If we surmise that during the
control horizon, only two switching times occur, we obtain:

νt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K
T2 t sgn θ0 t ∈ [0, t1)

K t1

T2 sgn θ0 t ∈ [t1, t2]

K
T2 (t1 sgn θ0 + (t− t2) sgn θT) t ∈ (t2, T]

(26)

which implies:

θt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ0 −
β K t (2 t1 − t)

T2 sgn θ0 t ∈ [0, t1)

0 t ∈ [t1, t2]

K (t− t2)
2

T2 sgn θT t ∈ (t2, T]

(27)
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The self-consistence of the solution fixes the initial data in (27):

θ0 =
β K t2

1
T2 sgn θ0

whilst the requirement of vanishing velocity at t = T determines the relation between the
switching times:

t2 = T +
sgn θ0

sgn θT
t1

Self-consistence then dictates:

sgn θtf = − sgn θt0

We are now ready to glean the information we unraveled by solving (24), to write the solution
of (18a):

χt = q +

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K t2

2 T2 sgn θ0 t ∈ [0, t1)

K t1 (2 t− t1)

2 T2 sgn θ0 t ∈ [t1, T − t1]

K
2 t1 (T − t1)− (T − t)2

2 T2 sgn θ0 t ∈ (T − t1, T]

(28)

The terminal condition on χt fixes the values of t1 and sgn θt0 :

�(q) = q +
K(q) t1 (T − t1)

T2 sgn θt0

The equation for t1 is well posed only if:

sgn θt0 = sgn
(
�(q)− q

)
(29)

The only admissible solution is then of the form:

t1 =
T
2

(
1−
√

1− 4 δ
)

(30)

The switching time is independent of q in view of (22). It is realizable as long as:

δ =
|�(q)− q|

K(q)
≤ 1

4
∀ q ∈ R (31)

The threshold value of δ corresponds to the acceleration needed to construct an optimal protocol
consisting of two push regions matched at the half control horizon.

Qualitative Properties of the Solution

Equation (28) complemented by (29) and the realizability bound (31) fully specify the solution
of the optimization problem we set out to solve. The solution is optimal because it is obtained by
composing locally-optimal solutions for a Markovian dynamics. Qualitatively, it states that transitions
between equilibrium states are possible at the price of the formation of symmetric boundary layers
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determined by the occurrence of the switching times. For δ � 1, the relative size of the boundary
layers is:

t1

T
=

T − t2

T
≈ δ

In the same limit, the behavior of the current velocity far from the boundaries tends to the optimal
value of the refined second law [7]. Namely, for t ∈ [t1 , t f ], we find:

K(q) t1

T2 sgn
(
�(q)− q

)
δ�1≈ K(q) δ

T
sgn
(
�(q)− q

)
=

�(q)− q
T

More generally, for any 0 ≤ t1 ≤ T/2, we can couch (28) into the form:

χt = q +
(
�(q)− q

)
×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t2

2 t1 (T − t1)
t ∈ [0, t1)

2 t− t1

2 (T − t1)
t ∈ [t1, T − t1](

1− (T − t)2

2 t1 (T − t1)

)
t ∈ (T − t1, T]

(32)

The use of the value of the switching time t1 to parametrize the bound simplifies the
derivation of the Eulerian representation of the current velocity. Namely, in order to find the field
v : R× [0, T] �→ R satisfying:

νt = v(χt, t) (33)

We can invert (32) by taking advantage of the fact that all of the arguments of the curly brackets are
independent of the position variable q.

We also envisage that the representation (32) may be of use to analyze experimental data when
finite measurement resolution may affect the precision with which microscopic forces acting on the
system are known.

6. Comparison with Experimental Swift Engineering Protocols

The experiment reported in [4] showed that a micro-sphere immersed in water and trapped
in an optical harmonic potential can be driven in finite-time from one equilibrium state to another.
The probability distribution of the particle in and out of equilibrium remained Gaussian within the
experimental accuracy.

It is therefore expedient to describe more in detail the solution of the optimal control problem in
the case when the initial equilibrium distribution in one dimension is normal, i.e., Gaussian with zero
mean and variance β−1. We also assume that the final equilibrium state is Gaussian and satisfies (13)
with Lagrangian map:

�(q) = σ q + h

The parameters h and σ respectively describe a change of the mean and of the variance of the
distribution. We apply (13) and (32) for any t ∈ [0, T] to derive the minimum entropy production
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evolution of the probability density. As a consequence of (22), the running Lagrangian map leaves
Gaussian distributions invariant in form with mean value:

E ξt = h×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t2

2 t1 (T − t1)
t ∈ [0, t1)

(2 t− t1)

2 (T − t1)
t ∈ [t1, T − t1]

2 t1 (T − t1)− (T − t)2

2 t1 (T − t1)
t ∈ (T − t1, T]

(34)

and variance:

V ξt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2 t1 (T − t1) + (σ− 1) t2)2

4 β t2
1 (T − t1)2

t ∈ [0, t1)(
2 (T − t1) + (σ− 1)(2 t− t1)

)2

4 β (T − t1)2 t ∈ [t1, T − t1](
2 t1 (T − t1) + (σ− 1)(2 t1 (T − t1)− (T − t)2)

)2

4 β t2
1 (T − t1)2

t ∈ (T − t1, T]

(35)

Finally, we find that the Eulerian representation (33) of the current velocity at χt = q is:

v(q, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 t (h + q (σ− 1))
2 t1 (T − t1) + (σ− 1) t2 t ∈ [0, t1)

2
(

h + q(σ− 1)
)

2 (T − t1) + (σ− 1) (2 t− t1)
t ∈ [t1, T − t1]

2(T − t)
(

h + q(σ− 1)
)

2 t1 (T − t1) + (σ− 1)(2 t1 (T − t1)− (T − t)2)
t ∈ (T − t1, T]

(36)

From (34)–(36), we can derive explicit expressions for all of the thermodynamic quantities
governing the energetics of the optimal transition. In particular, we obtain the drift in the
Langevin–Smoluchowski dynamics (1) by inverting (8) as in [7]:

(∂qU)(q, t) = − v(q, t) +
q− E ξt

V ξt

The minimum entropy production is:

E
∫ tf

0
dt v2(ξt, t) =

T (3 T − 4 t1)

3 (T − t1)2 E∞ (37)

with:

E∞ =
h2 β + (σ− 1)2

β T
(38)

the value of the minimum entropy production appearing in the refinement of the second law [7].
In Figure 1, we plot the evolution of the running average values of the work done on the system,

the heat released and the entropy production during the control horizon. In particular, Figure 1a
illustrates the first law of thermodynamics during the control horizon. A transition between Gaussian
equilibrium states occurs without any change in the internal energy of the system. The average
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heat and work must therefore coincide at the end of the control horizon. The theoretical results are
consistent with the experimental results of [4].

(a) (b)

Figure 1. First Figure 1a and second law Figure 1b of thermodynamics for the same transition between
Gaussian states as in [4]. The initial state is a normal distribution with variance β−1. The final
distribution is Gaussian with variance β−1/2. The condition K(q) ∝ |�(q) − q| ensures that the
probability density remains Gaussian at any time in the control horizon t ∈ [0, 1]. The proportionality
factor is chosen such that t1 = 0.3 in (32). The behavior of the variance (inset of Figure 1a) is qualitatively
identical to the one observed in [4] (Figure 2). The behavior of the average work and heat also
reproduces the one of Figure 3 of [4]. (a) Work (continuous curve, blue on-line) and heat release
(dashed curve, yellow on-line) during the control horizon. Inset: time evolution of the variance of
the process; (b) Entropy production (continuous curve, blue on-line) and heat release (dashed curve,
yellow on-line) during the control horizon.

7. Optimally-Controlled Nucleation and Landauer Bound

The form of the bound (22) and running Lagrangian map Formula (32) reduce the computational
cost of the solution of the optimal entropy production control to the determination of the Lagrangian
map (13). In general, the conditions presiding over the qualitative properties of the Lagrangian map
have been studied in depth in the context of optimal mass transport [8]. We refer to [11,41] respectively
for a self-contained overview from respectively the mathematics an physics slant.

For illustrative purposes, we revisit here the stylized model of nucleation analyzed in [7].
Specifically, we consider the transition between two equilibria in one dimension. The initial state is
described by the symmetric double well:

pι(q) = Z−1
ι exp−β

(q2 − q̄2)2

σ2

In the final state, the probability is concentrated around a single minimum of the potential:

pf (q) = Z−1
f exp−β

(q− q̄)2
(
(q− q̄) + q̄ (3 q− q̄)

)
σ2

In the foregoing expressions, σ is a constant ensuring the consistency of the canonical dimensions.
We used the ensuing elementary algorithm to numerically determine the Lagrangian map. We first

computed the median z(1) of the assigned probability distributions and then evaluated first the left
and then right branch of the Lagrangian map. For the left branch, we proceeded iteratively in z(k) as
follows:

Step 1 We renormalized the distribution restricted to [−∞, z(k)].
Step 2 We computed the 0.9 quantile z(k + 1) < z(k) of the remaining distribution.
Step 3 We solved the ODE:

d�
dq

=
pι(q)

pf (�(q))
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We skipped Step 3 whenever the difference |z(k)− z(k− 1)| turned out to be smaller than a given
threshold ‘resolution’. We plot the results of this computation in Figure 2.

(a) (b) (c)

Figure 2. Initial (solid curve, blue on-line) and final (dashed curve, blue on-line) probability distribution
of the state of the system for β = 112 σ = 1 and q̄ = 1/2. The evaluation of the Lagrangian map
occasions numerical stiffness in the region in between the two minima. (a) Boundary conditions for the
nucleation problem; (b) Lagrangian map; (c) Numerical derivative of the Lagrangian map.

Once we know the Lagrangian map, we can numerically evaluate the running Lagrangian map (32)
and its spatial derivatives. In Figure 3, we report the evolution of the probability density in the control
horizon for two reference values of the switching time.

(a) t = 0.05 (b) t = 0.25 (c) t = 0.45

(d) t = 0.65 (e) t = 0.85 (f) t = 0.98

Figure 3. Probability density snapshots at different times within the control horizon. The plots are
for T = 1 and switching time t1 = 10−6 (dashed interpolation curve, yellow on-line) and t1 = 0.3
(continuous interpolation curve, blue on-line) q̄ = 0.5, σ = 1 and β = 112. We plot the Lagrangian map
in the interval q ∈ [−2 , 2].

Figure 4 illustrates the the corresponding evolution of the current velocity.
The qualitative behavior is intuitive. The current velocity starts and ends with a vanishing value;

it catches up with the value for t1 ↓ 0, i.e., when the bound on acceleration tends to infinity, in the bulk
of the control horizon. There, the displacement described by the running Lagrangian map occurs at
a speed higher than in the t1 ↓ 0 case. The overall value of the entropy production is always higher
than in the t1 ↓ 0 limit. From (32), we can also write the running values of average heat released by the
system. The running average heat is:

Q(t) = − 1
β

∫
R

ddq pι(q) ln
dχt(q)

dq
+
∫ t

0
ds
∫
R

ddq pι(q) ν2
t (q)
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and the running average work:

W(t) =
∫
R

dq pι(q) F(χt(q), t) +
∫ t

0
ds
∫
R

ddq pι(q) ν2
t (q)

with:

F(χt(q), t) = −
∫ q

0
dy

dχt

dy
(y) νt(y)−

1
β

∫
R

ddq pι(q) ln
dχt(q)

dq
(39)

The second summand on the right-hand side of (39) fixes the arbitrary constant in the Helmholtz
potential in the same way as in the Gaussian case.

In Figure 5, we plot the running average work, heat and entropy production.

(a) t = 0.05 (b) t = 0.25 (c) t = 0.45

(d) t = 0.65 (e) t = 0.85 (f) t = 0.98

Figure 4. Current velocity snapshots at different times within the control horizon. The plots are for
T = 1 and switching time t1 = 10−6 (continuous interpolation, yellow on-line) and t1 = 0.3 (points,
blue on-line).

(a) (b)

Figure 5. First and second law of thermodynamics for the optimally-controlled nucleation transition.
All parameters are as in Figure 2. The qualitative picture is the same as in the Gaussian case, Figure 1,
with the running average work above the running average heat. The numerical values yield, however,
almost overlapping curves. The running average entropy production in Figure 5b is strictly monotonic
in the control horizon. The entropy production rate vanishes at the boundary highlighting the reaching
of an equilibrium state when the switching time is t1 = 0.3. (a) First law of thermodynamics for the
optimally-controlled nucleation. Continuous curve (blue on-line) running average work. Dashed curve
(yellow on-line) running average heat; (b) Running average entropy production. The continuous curve
(blue on-line) is obtained for switching time at t1 = 0.3, the dashed curve (yellow on-line) for t1 = 10−6.
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8. Comparison with the Valley Method Regularization

An alternative formalism to study transitions between equilibrium states in the
Langevin–Smoluchowski limit was previously proposed in [25]. As in the present case, Ref. [25] takes
advantage of the possibility to map the stochastic optimal control problem into a deterministic one via
the current velocity formalism. Physical constraints on admissible controls are, however, enforced by
adding to the entropy production rate a penalty term proportional to the squared current acceleration.
In terms of the entropy production functional (17), we can couch the regularized functional of [25] into
the form:

A = E + ε τ2 ‖δχE‖2

δχE stands for the variation of E with respect to the running Lagrangian map. The idea behind the
approach is the “valley method” advocated by [26] for instanton calculus. The upshot is to approximate
field configurations satisfying boundary conditions incompatible with stationary values of classical
variational principles by adding extra terms to the action functional. The extra term is proportional to
the squared first variation of the classical action. Hence, it vanishes whenever there exists a classical
field configurations matching the desired boundary conditions. It otherwise raises the order of the
time derivative in the problem, thus permitting one to satisfy extra boundary conditions.

Optimal control problems are well posed if terminal costs are pure functionals of the boundary
conditions. The rationale for considering valley method-regularized thermodynamic functionals is to
give a non-ambiguous meaning to the optimization of functionals whenever naive formulations of the
problem yield boundary conditions or terminal costs as the functional of the controls.

Contrasted with the approach proposed in the present work, [25] has one evident drawback
and one edge. The drawback is that the quantities actually minimized are no longer the original
thermodynamic functionals. The edge is that the resulting optimal protocol has better analyticity
properties. In particular, the running Lagrangian map takes the form:

χt = q +
�(q)− q

T − 2 τ
√

ε tanh T
2 τ
√

ε

⎛⎝t− τ
√

ε
sinh 2 t−T

2 τ
√

ε
+ sinh T

2 τ
√

ε

cosh T
2 τ
√

ε

⎞⎠ (40)

In Figure 6a, we compare the qualitative behavior of the universal part of the running Lagrangian
map predicted by the valley method and by the bound (21) on admissible current accelerations. The
corresponding values of the running average entropy production are in Figure 6b.

(a) (b)

Figure 6. Qualitative comparison of universal part of the running Lagrangian maps (32) (continuous
curve, blue on line) and (40) (dashed curve, orange on line), Figure 6a. In (40), we choose τ = 1, ε = 0.3.
Figure 6b evinces, as to be expected, the qualitatively equivalent behaviors of the entropy production
for finite value (t1 = 0.3) of the switching time. The dashed green line is computed from (40). The
continuous blue line is the lower bound for the transition as predicted by [7]. (a) χt−q

�(q)−q ; (b) Running
entropy production.
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The upshot of the comparison is the weak sensitivity of the optimal protocol to the detail of the
optimization once the intensity of the constraint on the admissible control (i.e., the current acceleration)
is fixed. We believe that this is an important observation for experimental applications (see, e.g., the
discussion in the conclusions of [24]), as the details of how control parameters can be turned on and off
in general depend on the detailed laboratory setup and on the restrictions by the available peripherals.

9. Conclusions and Outlooks

We presented a stylized model of engineered equilibration of a micro-system. Owing to explicit
integrability modulo numerical reconstruction of the Lagrangian map, we believe that our model may
provide a useful benchmark for the devising of efficient experimental setups. Furthermore, extensions
of the current model are possible, although at the price of some complications.

The first extension concerns the form of the constraint imposed on admissible protocols. Here,
we showed that choosing the current acceleration constraint in the form of (22) greatly simplifies the
determination of the switching times. It also guarantees that optimal control with only two switching
times exists for all boundary conditions if we allow accelerations to take sufficiently large values.
The non-holonomic form of the constraint (21) may turn out to be restrictive for the study of transitions
for which admissible controls are specified by given forces. If the current velocity formalism is still
applicable to these cases, then the design of optimal control still follows the steps we described
here. In particular, uniformly-accelerated Lagrangian displacement at the end of the control horizon
correspond to the first terms of the integration of the Newton law in Peano–Picard series. The local
form of the acceleration may then occasion some qualitative differences in the form of the running
Lagrangian map. Furthermore, the analysis of the realizability conditions of the optimal control may
also become more involved.

A further extension is optimal control when constraints on admissible controls are imposed
directly on the drift field appearing in the stochastic evolution equation. Constraints of this type are
natural when inertial effects become important and the dynamics is governed by the Langevin–Kramers
equation in the so-called under-damped approximation. In the Langevin–Kramers framework, finding
minimum entropy production thermodynamic transitions requires instead a full-fledged formalism
of stochastic optimal control [42]. Nevertheless, it is possible also in that case to proceed in a way
analogous to the one of the present paper by applying the stochastic version of the Pontryagin
principle [43–45].

We expect that considering these theoretical refinements will be of interest in view of the increasing
available experimental resolution for the efficient design of atomic force microscopes [3,46].
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Appendix A. Evaluation of Kullback–Leibler Divergences

Let us consider first the drift-less process:

dξt =

√
2
β

dωt (A1)
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with initial data (2). If we denote by Pω the path-space Wiener measure generated by (A1) in [tι , tf],
the Girsanov formula yields:

dP
dPω

= exp− β

2

∫ tf

tι

(
dξt · ∂ξt

U + dt
‖∂ξt

U‖2

2

)

The Kullback–Leibler divergence is defined as:

K(P||Pω) = E
∫ tf

tι

ln
dP

dPω

The expectation value is with respect the measure P generated by (1):

K(P ‖ Pω) = −
β

2
E
∫ tf

tι

(
dξt · ∂ξt

U + dt
‖∂ξt

U‖2

2

)

= − β

2
E
∫ tf

tι

(
(dξt + dt∂ξt

U) · ∂ξt
U − dt

‖∂ξt
U‖2

2

)

The last expression readily recovers (14) as dξt + dt ∂ξt
U is a Wiener process with respect to P.

To show that the entropy production is proportional to the Kullback–Leibler divergence between
the path-space measures of (1) and (16), we observe that:

dPR
dPω

= exp
β

2

∫ tf

tι

(
dξt

1· ∂ξt
U − dt

‖∂ξt
U‖2

2

)
(A2)

The stochastic integral is evaluated in the post-point prescription, as the Radon–Nikodym
derivative between backward processes must be a martingale with respect to the filtration of future
event (see, e.g., [47] for an elementary discussion). We then avail ourselves of the time reversal
invariance of the Wiener process to write:

dP
dPR

=
pι(ξtι

)

pf (ξtf
)

exp−β
∫ tf

tι

(
dξt

1/2· ∂ξt
U
)

= exp−β
∫ tf

tι

(
dξt

1/2· ∂ξt

(
U +

1
β

ln p
)
+ dt ∂t ln p

)
Finally, the definition:

K(P ‖ PR) = E
∫ tf

tι

ln
dP

dPR

recovers (15) since the probability conservation entails:

E ∂t ln p = 0

whilst the properties of the Stratonovich integral [31] yield:

E
∫ tf

tι

dξt
1/2· ∂ξt

(
U +

1
β

ln p
)
= −E

∫ tf

tι

dt ‖v‖2

We refer to, e.g., [28,38,39,48] for thorough discussions of the significance and applications of the
entropy production in stochastic models of non-equilibrium statistical mechanics and to [49,50] for
applications to non-equilibrium fluctuating hydrodynamics and granular materials.
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Appendix B. Current Velocity and Acceleration in Terms of the Generator of the
Stochastic Process

The current velocity is the conditional expectation along the realizations of (1) of the time
symmetric conditional increment:

v(q, t) = lim
τ↓0

E
(

ξt+τ − ξt−τ

∣∣∣ξt = q
)

2 τ

A relevant feature of the time symmetry is that the differential can be regarded as the result of the
action of a generator including only first order derivatives in space:

v(ξt, t) = D̄ξt
ξt

where:

D̄ξt
:=

Dξt
+D∗ξt

2
(A3)

On the right-hand side of (A3), there appear the scalar generator of (1):

Dq = ∂t − (∂qU)(q, t) · ∂q +
1
β

∂2
q

and the generator of the dual process conjugated by the time-reversal of the probability density in
[tι , tf] [29,31]:

D∗q = ∂t − (∂qU +
2
β

∂q ln p)(q, t) · ∂q −
1
β

∂2
q

The arithmetic averages of these generators readily define a first order differential operator as in
the deterministic case. Analogously, we define the current acceleration as:

a(q, t) = lim
τ↓0

E
(

v(ξt+τ , t + τ)− v(ξt−τ , t− τ)
∣∣∣ξt = q

)
2 τ

or equivalently:

αt = a(ξt, t) = D̄2
ξt

ξt

Based on the above definitions, the Fokker–Planck Equation of (1) can be couched into the form:(
∂t + ∂q · v(q, t)

)
p(q, t) = 0

Appendix C. Pontryagin Principle

We recall the statement of Pontryagin’s principle for fixed time and fixed boundary
conditions [13,51].

Maximum principle: Let the functional:

A =
∫ tf

tι

dt L(ξt, αt, t) (A4)
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be subject to the dynamical constraint:

ξ̇t = b(ξt, αt, t) (A5)

and the endpoint constraints:

ξtι
= qι & ξtf

= qf

with the parameter αt belonging for fixed t to a set U ⊆ Rn, the variable ξt taking values in Rd or
in a open subset X of Rd and the time interval [tι , tf] fixed. A necessary condition for a function
ᾱt : [tι , tf] �→ U and a corresponding solution ξ̄t of (A5) to solve the minimization of (A4) is that there
exist a function tπ̄t : [tι , tf] �→ Rd and a constant po ≤ 0, such that:

• (π̄t, p̄0) �= (0, 0) ∀ t ∈ [tι , tf] (non-triviality condition)
• for each fixed t:

H�(q, p, p0t) = max
a∈U

(
p · b(q, a, t) + p0 L(q, a, t)

)
(maximum condition)

• (ξ̄t, π̄t) obey the equations:

¯̄̇
ξt = ∂π̄t H�(ξ̄t, π̄t.p̄0, t) & ¯̄̇πt = −∂ξ̄t

H�(ξ̄t, π̄t, p̄0, t)

(Hamilton system condition).

The proof of the maximum principles requires subtle topological considerations culminating
with the application of Brouwer’s fixed point theorem. The maximum principle has, nevertheless,
an intuitive content. Namely, we can reformulate the problem in an extended configuration space by
adding the ancillary equation:

ζ̇t = L(ξt, πt, t) (A6a)

ζtι = 0 (A6b)

and looking for the stationary point of the action functional:

Ã = ζtf +
∫ tf

tι

dt

(
πt · ξ̇t + φt ζ̇t −

(
πt · b(ξt, αt, t) + φtL(ξt, αt, t)

))

Let us make the simplifying assumption that any pair of trajectory and control variables satisfying
the boundary has a non-empty open neighborhood where linear variations are well defined. Looking
for a stationary point of (A4) entails considering variations of ζt under the constraints ζ ′tι

= ζ ′tf
= 0.

Then, it follows immediately that the stationary value of the Lagrange multiplier φt must satisfy:

˙̄φt = 0

This observation clarifies why the maximum principle is stated for some constant po ≤ 0, such
that φt = po. In particular, if po < 0, we can always rescale it to po = −1 and recover the familiar
form of the Hamilton equations. Moreover, the maximum principle coincides with the Hamilton form
of the stationary action principle if b = αt and L is quadratic in αt. If instead, there exist stationary
solutions for p0 = 0, they describe abnormal controls.

Abnormal controls do not occur in the optimization problem considered in the main text. In the
push regions where the acceleration is non-vanishing abnormal control drive the Lagrange multiplier
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θt away from zero, thus, they are not compatible with the occurrence of switching times between push
and no-action regions. Looking for abnormal control in the no-action region yields the requirement
that all Lagrange multipliers vanish against the hypothesis of the maximum principle.
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41. Gawȩdzki, K. Fluctuation relations in stochastic thermodynamics. arXiv 2013, arXiv:1308.1518.
42. Muratore-Ginanneschi, P.; Schwieger, K. How nanomechanical systems can minimize dissipation.

Phys. Rev. E 2014, 90, 060102(R).
43. Bismut, J.M. An introductory approach to duality in optimal stochastic control. SIAM Rev. 1978, 20, 62–78.
44. Kosmol, P.; Pavon, M. Lagrange approach to the optimal control of diffusions. Acta Appl. Math. 1993,

32, 101–122.
45. Rogers, L.C.G. Duality in constrained optimal investment and consumption problems: A synthesis. In

Paris-Princeton Lectures on Mathematical Finance; Bank, P.; Baudoin, F.; Carmona, R.; Föllmer, H.; Rogers, L.C.G.;
Touzi, N.; Soner, M., Eds.; Springer: Berlin, Germany, 2003; Vol. 1814, pp. 95–131.

46. Cunuder, A.L.; Martinez, I.; Petrosyan, A.; Guéry-Odelin, D.; Trizac, E.; Ciliberto, S. Fast equilibrium switch
of a micro mechanical oscillator. Appl. Phys. Lett. 2016, 109, 113502.

47. Meyer, P.A. Géométrie différentielle stochastique, II. Séminaire de Probabilités de Strasbourg 1982, 16, 165–207.
(In German)

48. Maes, C.; Redig, F.; Moffaert, A.V. On the definition of entropy production, via examples. J. Math. Phys.
2000, 41, 1528–1554.

49. Gradenigo, G.; Puglisi, A.; Sarracino, A. Entropy production in non-equilibrium fluctuating hydrodynamics.
J. Phys. Chem. 2012, 137, 014509.

50. Gradenigo, G.; Puglisi, A.; Sarracino, A.; Villamaina, D.; Vulpiani, A. Out-of-equilibrium generalized
fluctuation-dissipation relations. In Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations
and Beyond; Klages, R., Just, W., Jarzynski, C., Eds.; Wiley: Weinheim, Germany, 2013; Chapter 9.

51. Agrachev, A.A.; Sachkov, Y. Control Theory from the Geometric Viewpoint; Encyclopaedia of Mathematical
Sciences: Control Theory and Optimization; Springer: Berlin/Heidelberg, Germany, 2004.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

60



entropy

Article

On Work and Heat in Time-Dependent
Strong Coupling

Erik Aurell 1,2

1 KTH—Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm,
Sweden; eaurell@kth.se

2 Departments of Computer Science and Applied Physics, Aalto University, FIN-00076 Aalto, Finland

Received: 18 August 2017; Accepted: 28 October 2017; Published: 7 November 2017

Abstract: This paper revisits the classical problem of representing a thermal bath interacting with
a system as a large collection of harmonic oscillators initially in thermal equilibrium. As is well
known, the system then obeys an equation, which in the bulk and in the suitable limit tends to the
Kramers–Langevin equation of physical kinetics. I consider time-dependent system-bath coupling
and show that this leads to an additional harmonic force acting on the system. When the coupling is
switched on and switched off rapidly, the force has delta-function support at the initial and final time.
I further show that the work and heat functionals as recently defined in stochastic thermodynamics
at strong coupling contain additional terms depending on the time derivative of the system-bath
coupling. I discuss these terms and show that while they can be very large if the system-bath coupling
changes quickly, they only give a finite contribution to the work that enters in Jarzynski’s equality.
I also discuss that these corrections to standard work and heat functionals provide an explanation for
non-standard terms in the change of the von Neumann entropy of a quantum bath interacting with a
quantum system found in an earlier contribution (Aurell and Eichhorn, 2015).
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1. Introduction

Stochastic thermodynamics has become an established paradigm to describe fluctuating work
and heat on mesoscopic scales. Main results in this field are fluctuation relations. The archetypal
relation is Jarzynski’s Equality (JE) [1]: 〈

e−βδW
〉

eq
= e−βΔF (1)

where the average is over an initial equilibrium state at inverse temperature β = 1
kBT and the realization

of the process, δW is the work done on the system over some time interval and ΔF is the difference in
free energy between the states given by the initial and final values of the parameters. While the initial
state in (1) is taken to be in equilibrium with a bath, later states and in particular the final state do not
have to be. Another key result is the Integral Fluctuation Theorem (IFT) [2], which states that:〈

eΔ log P−βδQ
〉
= 1 (2)

where the average is over the initial position of the system with respect to the initial state (initial
probability density) and over the stochastic trajectory of the system from the initial to the final time.
Δ log P, known as stochastic entropy, is the log-change in probability density from an initial position
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at the initial time to a final position at the final time, and δQ is the heat given off to the environment
during the process. A consequence of (2) is a version of the second law ΔSsys + β 〈δQ〉 ≥ 0 where
Ssys = −∑i pi log pi is the system entropy and ΔSsys is its change from the initial to the final state.
Stochastic thermodynamics is covered by several excellent reviews to which I direct the reader for
further information and pointers to the literature [3–7].

A limitation of stochastic thermodynamics in the standard formulation is that it neglects the energy
stored in the coupling between the system and the bath. This issue was first discussed from different
points of view by Cohen and Mauzerall [8], Jarzynski [9] and later by Esposito and co-workers [10].
The scientific question is whether the theory extends also to this setting and in particular if and
when the relevant mesoscopic quantities (heat, work) can be taken as functionals (typically stochastic
functionals) of the system only. Recently, this has given rise to an active discussion where on one side,
one can find [11–13], and on the other [14]; and an intermediate position taken by [15].

The first goal of the present paper is to circumvent part of the ongoing discussion by taking the
system-bath coupling dependent on time so that it vanishes at the beginning and the end of a process.
Since no energy is then stored in the interactions between the system and the bath, the more involved
definitions that can be found in the literature collapse. The work done by the control is simply the sum
of the energy changes of the system and the bath between the beginning and the end of the process,
while the heat is the change of bath energy. The price to pay are effects arising from the rate-of-change
of the system-bath coupling. In particular, there appears from this process a work that is entirely
dissipated into heat. When the change of the system-bath coupling is fast, this work is large and can
path-wise and on average be (much) larger than the standard Jarzynski work. Due to a cancellation
effect, most of it however does not contribute to the average in JE (1).

The second goal is to explain the results on the classical limit of the corresponding quantum
problem, which were found in an earlier contribution [16]. The background on the Feynman–Vernon
method is well presented in several monographs, e.g., [17], and the extensions to treat heat have now
been considered by two other groups; see [18–20]. A time-dependent system-coupling is a further
extension of these contributions, but also brings important simplifications. As in the classical case,
it allows one to disregard the energy stored in system-bath interaction energy, which is possible, but
rather complicated to treat by the Feynman–Vernon-derived method. It will further be shown that
the extra term found in [16] was an artifact from assuming that the total density matrix of the system
and the bath was initially factorized, while the system and the bath were nevertheless interacting
from the beginning of the process. If instead the system-bath coupling goes to zero smoothly at the
beginning and the end of the process, the classical limit of heat is recovered fully, and quantum-classical
correspondence holds on the level of expected heat.

The paper is organized as follows. In Section 2, I introduce the basic model of a bath of harmonic
oscillators with a time-dependent system-bath coupling. Standard material connecting the dynamics of
a (large) bath of harmonic oscillators to a stochastic description of the system is given in Appendices A
and B. In Section 3, I consider work, internal energy and heat as recently defined in stochastic
thermodynamics at strong coupling and relate them to ΔHB (change of bath energy), and in Section 4,
I show how these functionals of the system history are modified when the system-bath coupling
depends on time. In Section 5, I discuss the extra work referred to above, and in Section 6, I compare
the expectation value of ΔHB to the earlier computed classical limit of the change of the von Neumann
entropy of the bath. In Section 7, I sum up the results. In Appendix C, I discuss for completeness an
additional term in the classical limit of the change of the von Neumann entropy that was also found
in [16], but which has a different origin than the main focus of this paper.
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2. Preliminaries and Definitions of Terms

Throughout this work, I will consider a collection of N harmonic oscillators governed by the
Hamiltonian:

HB = ∑
b

p2
b

2mb
+

1
2

mbω2
bq2

b. (3)

The mass and spring constant of oscillator b are mb and mbω2
b ; ωb is the natural frequency in units

of rad/s, and qb and pb are respectively the oscillator’s coordinate and momentum. The number of
oscillators N will be very large, eventually taken to infinity. I will call the collection of oscillators the
bath. The bath starts in thermal equilibrium at some inverse temperature β, which will be the bath
temperature. I also consider another externally-driven system described by a Hamiltonian:

HS =
P2

2M
+ V(X, t) (4)

where X and P are the position and momentum, and the potential V depends explicitly on time.
The system and the bath interact linearly during some finite time interval. The interaction Hamiltonian
is thus:

HI(t) = −∑
b

Cb(t)qbX (5)

where the Cb(t) are functions of time. For reasons that will be clear in the following. I add also the
Caldeira–Leggett counter-term (a correction to the system potential):

HC(t) = ∑
b

C2
b(t)X2

2mbω2
b

. (6)

The total Hamiltonian of the bath and the system is:

HTOT = HS + HB + HI + HC. (7)

The counter-term in (6), the interaction term in (5) and the potential in (3) together form a sum of

complete squares, ∑b
1
2 mbω2

b

(
qb − Cb(t)X

mbωb

)2
.

The basic setting in the current paper is that all the Cb(t) together rise rapidly from zero to some
steady values Cb after an initial time ti and decrease rapidly back to zero before some final time t f .
The system and the bath are then disconnected before and at time ti, as well as at and after time t f .
It is natural to postulate that δQ, the heat exchanged between the system and the bath during the
process, is ΔHB, the change of the energy of the bath in the time interval [ti : t f ]. It is also natural
to postulate that the work done during a process is the total energy change of the system and the
bath, δW = ΔHB + ΔHS. With these definitions, work and heat satisfy the first law ΔU = δW − δQ
where ΔU = ΔHS is the change of the energy of the system. In Section 3 below, I will show that these
simple prescriptions are in agreement with strong-coupling stochastic thermodynamics, for the cases
under study.

It is well known that a system coupled to an Ohmic bath obeys in the suitable limit the Fokker–Planck
equation with an extra harmonic force when the system-bath coupling depends on time:

Ẋ =
P
M

Ṗ = −V′(X, t) + Ff ric + Fi f + ξ(t) (8)
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where ξ is white noise, and the two deterministic forces from the bath on the system are:

Ff ric = −ηẊ (9)

Fi f = −1
2

η̇(t)
η(t)

X (10)

For completeness, the derivation of (8)–(10) is summarized in Appendix A and B. A main
assumption is that each of the coupling constants Cb(t) is proportional to the square root of a
time-dependent friction coefficient η(t), which encodes all the time-dependence of the system-bath
coupling. For the following discussion, it is convenient to introduce, in analogy with the “Sekimoto
force” [3,21],

FS = ξ + Ff ric + Fi f (11)

It is also convenient to introduce an auxiliary quantity with dimension velocity:

ẊB = −1
2

η̇(t)
η(t)

X (12)

such that:
Ff ric + Fi f = −η

(
Ẋ− ẊB

)
. (13)

The interpretation of ẊB is that it is a time- and coordinate-dependent velocity of the system such
that the force FS from the bath on the system vanishes in expectation. The velocity ẊB is zero when the
system-bath coupling is constant in time.

3. Work and Heat of Stochastic Thermodynamics at Strong Coupling

We start by reviewing the derivation of Jarzynski’s equality at strong coupling following [9],
with adjustments arising from time-dependent system-bath coupling. The system and the bath together
constitute a closed system, and the work done on the combined system is the change of the total energy:

ΔHTOT = ΔHS + ΔHB + ΔHI + ΔHC. (14)

As was first shown in [9], the combined system satisfies a Jarzynski equality:〈
e−βΔHTOT

〉
eq
= e−βΔFTOT (15)

where the average is over the equilibrium state of the combined system and bath and ΔFTOT is
the change of total equilibrium free energy. If FB is the (constant) free energy of the bath, then
F̃s = FTOT − FB is the thermodynamic potential (free energy) of the system appropriate for strong
coupling [11–13,22], and the quantity appearing in the exponent of the right-hand side of (15) is ΔF̃s.

Since we assume that the system and the bath are uncoupled at the initial and the finite time,
ΔFTOT in (1) is however in fact here equal to ΔF, the free energy change of the system only. This is one
major simplification and a reason for considering a time-dependent system-bath coupling. For the
same reason, we can write:

δW = ΔHTOT = ΔHS + ΔHB (16)

the other two terms vanishing on the boundaries. On the other hand, in a mechanical system,
the change of the total Hamiltonian (14) is given by the direct time-dependence only, and therefore,
we also have:

δW =
∫

∂t HS + ∂tHI + ∂t HC (17)

which has two extra terms compared to Jarzynski work when the system-bath coupling depends on
time. The bath Hamiltonian HB does not contribute to (17) as it is independent of time.
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From here, the reader may continue directly below to Equation (21). To however connect to the
recent discussion of heat in stochastic thermodynamics at strong coupling, we note that it starts from a
Hamiltonian of the system at mean force [11,12,14]:

H = HS + HC − β−1 log
〈

e−βHI
〉

B
(18)

where the average is over the Boltzmann distribution of the bath only. From this is derived an internal
energy function at mean force defined as:

E = H+ β∂βH (19)

A main simplification of the model under consideration here is that for a bath of Hamiltonian
oscillators linearly coupled to the system, the average inH cancels with the counter-term HC, so that
for the case at hand, we have simply:

E = H = HS. (20)

The change in this internal energy can be written as a time integral:

ΔE =
∫

∂tHS + Ẋ∂X HS + Ṗ∂P HS. (21)

A definition of a path-wise heat functional that satisfies the first law with (16) and (20) is then:

δQ = δW − ΔE = ΔHB. (22)

In a round-about way, we have thus arrived at the same notion of heat as in Section 2. Using (17)
and (21), we can write δQ as a time integral as:

δQ =
∫

∂tHI + ∂t HC − Ẋ∂X HS − Ṗ∂P HS (23)

4. Work and Heat with a Time-Dependent Ohmic Bath

We start by writing out (21), (17) and (23) explicitly for the model at hand:

ΔE =
∫

∂t HS +
P
M ∑

b
Cb

(
qb −

CbX
mbω2

b

)
dt (24)

δW =
∫

∂t HS − X ∑
b

Ċb

(
qb −

CbX
mbω2

b

)
dt (25)

δQ =
∫

∑
b

(
−ĊbX− P

M
Cb

)(
qb −

CbX
mbω2

b

)
dt (26)

For the change of internal energy, it is seen that the sum over the bath oscillators is the same as that
which gives rise to the force FS in (11) (for details, see Appendixes A and B), and we can thus write:

ΔE =
∫
(∂tHS)dt + FS ◦ dX (27)

The stochastic integral above is in the Stratonovich convention (mid-point prescription in a
discretization), as it is the limit of ordinary integrals when the cut-off frequency Ω of the bath is taken
to infinity.

Equation (27) is the Jarzynski work (
∫

∂t HSdt) plus a term expressing the work done on the
system from the total force FS that arises from system-bath coupling. It can therefore be read as the
sum of the flow of energy into the system from the external system and from the bath, that is the same
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standard form in stochastic thermodynamics [21]. Equation (27) only involves the time-dependence of
the system-bath coupling through the additional force Fi f entering FS.

The work functional can be read off by comparing (24) and (25). The sum over oscillators is now

not multiplied by P
M dt = dX, but by −X Ċb

Cb
dt, which is the virtual increment dXB from (12). The work

is therefore:

δW =
∫
(∂t HS)dt + FS ◦ dXB (28)

which is the Jarzynski work (the first term) plus the work done by the Sekimoto force through the
virtual increment of the system position dXB. To emphasize the parallelism with (27), the second term
has been written as a Stratonovich integral, but it is in fact just an ordinary integral, FS being a random
force acting on momentum variable P and the virtual increment dXB being proportional to dt. The heat
can similarly be written:

δQ =
∫
(−FS) ◦ (dX− dXB) (29)

and is the work done by the Sekimoto reaction force (−FS) through the difference between the actual
increment dX and the virtual increment dXB.

An alternative way to divide up the different contributions to the heat, which will be used in
Section 6 below, is:

δQ =
∫
−ξ ◦ (dX− dXB) +

(
d
dt

(
√

ηX)

)2
dt (30)

When η is constant in time, this reduces to Sekimoto’s heat functional
∫
−ξ ◦ dX + ηẊ2dt.

5. The Work Done by the Time-Dependent System-Bath Coupling

It has been seen above that both the heat and the work contain a term
∫

FS ◦ dXB, which is not
reflected in the internal energy change at all. Changing the system-bath coupling can be considered an
external control acting on the system, which implies a kind of work. An original feature is that this
work is entirely dissipated into heat (change of energy of the bath); nothing remains as internal energy
changes. Since ẊB has been assumed non-zero only near the initial and final time, this work is also
approximately a change of state function.

The first part of this work, corresponding to the first of the three terms in FS, is:∫
Ff ric ◦ dXB =

∫ P
2M

η̇X dt. (31)

Assuming that η changes from zero to a finite value η over a short time period Δt, the force Fi f is
going to dominate all the other forces in the Kramers–Langevin equation (8). This means that we have:

P(t) = Pi −
1
2

ηX +O(
√

Δt) t ∈ [ti, ti + Δt] (32)

while at the same time:
X(t) = Xi +O(Δt) (33)

From this, the contribution to (31), from the beginning of the process, is Xi Pi
2M η − X2

i
8M η2 and

analogously just before the final time. The contribution of this part is therefore the change of an
auxiliary friction-dependent energy:
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∫
Ff ric ◦ dXB = ΔVf rict +O(Δt) (34)

Vf rict = −ηXP
2M

+
η2X2

8M
(35)

The second part of
∫

FS ◦ dXB is:

∫
Fi f ◦ dXB =

∫ 1
4

X2 η̇2

η
dt (36)

Similarly to above, this can be written as a functional of Xi, Pi and the function η in the interval
[ti, ti + Δt] and the same at the final time. We can therefore write:∫

Fi f ◦ dXB = Ai[Xi, Pi, η] + A f [X f , Pf , η] +O(Δt) (37)

with two functionals Ai and A f . The largest (most divergent) contributions to Ai and A f are 1
4 X2

∫ η̇2

η dt,
which diverge as (Δt)−1. The third part of

∫
FS ◦ dXB is:∫

ξ ◦ dXB. (38)

This is a random variable that depends on the realization of ξ just after the initial time and just
before the final time. If dXB is considered an externally-given virtual displacement, then (38) is a
weighted integral of white noise and then a random variable of mean zero. The same result holds also
when dXB is a combination involving X because X is here a smooth function of time (no Itô correction).
The variance of (38) can be computed from the noise-noise correlation and by comparing the increment
dXB with the (similar) boundary force Fi f , with the result:〈(∫

ξ ◦ dXB

)2
〉

= 2kBT
(

Ai + A f

)
(39)

The second and the third part of
∫

FS ◦ dXB are hence potentially both large, and when Δt tends
to zero, they can both be larger than standard Jarzynski work by an arbitrary amount.

Let us now consider the contribution of
∫

FS ◦ dXB to the Jarzynski equality, which we write:〈
e−β(

∫
(∂t HS)+FS◦dXB)

〉
f act.eq

= e−βΔF (40)

to emphasize that the initial equilibrium distribution is factorized between the system and the bath.
For given initial and final coordinates and momenta, the first and second parts contribute simply

e−β(ΔVf ric+Ai+A f ). The third part (38) on the other hand contributes:

∫ 1
N

e
− β

2
x2

2(Ai+A f ) e−βxdx = eβ(Ai+A f ). (41)

The (potentially divergent) contributions from the second and the third part hence cancel for each
given initial and final coordinate and momenta (up to terms as small as Δt), and must therefore cancel
in the Jarzynski equality overall.

Combining this result and (34), we have an alternative form of the Jarzynski equality:〈
e−β

∫
(∂t HS)−βΔVf rict

〉
f act.eq

= e−βΔF. (42)
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This may be compared to the strong-coupling form of the Jarzynski equality, which holds when η

is strictly constant in time: 〈
e−β

∫
(∂t HS)

〉
eq
= e−βΔFTOT (43)

In the above, the average is over the system and the bath initially in joint equilibrium with the
terms HI and HC included, and the free energy change is of the combined system and bath. Path-wise,
the contributions to (42) and (43) from the Jarzynski work

∫
(∂tHS) are the same up to terms O(Δt).

The differences between the two averages therefore stem from the additional term ΔVf rict and the
different distributions over the initial conditions.

6. Comparison to Quantum Heat Exchange

In the present section, I will switch gears and discuss an approach to quantum heat considered
in an earlier contribution, there in the guise of a first-order change of the von Neumann entropy of a
bath [16]. As in the previous sections, the heat will be related to the change of energy of a bath. In the
spirit of Kurchan’s approach to quantum fluctuation relations [23,24], it is assumed that the system
is measured at the beginning and the end of a process. The outcome of the initial measurement will
be state |i > of the system, and the outcome of the final measurement will be state | f >; these letters
will be used as subscripts to compactify some of the following expressions. The first such notational
simplification, introduced by Feynman and Vernon [25], is to write Pi f for the conditional probability
of measuring the system in final state | f > given that it was initially in |i >. It is here assumed that
between the measurements, the system develops in interaction with the bath, which was initially in
equilibrium. Using the shorthand:∫

i f
(· · · ) =

∫
dXidYidX f dYf ψi(Xi)ψ

∗
i (Yi)ψ

∗
f (X f )ψ f (Yf ) (· · · )

where ψi and ψ f are the wave functions of the states |i > and | f >, I will write the transition
probability as:

Pi f =
∫

i f
DXDYe

i
h̄ SS [X]− i

h̄ SS [Y]+ i
h̄ Si [X,Y]− 1

h̄ Sr [X,Y] (44)

where the two path integrals are over respectively the forward path X(t) from Xi to X f and the
backward path Y(t) from Yi to Yf . These two path integrals emanate from a representation of the total
unitary U and its inverse U−1 in the time development of the total density operator of the bath and
the system ρ̂TOT

f = Uρ̂TOT
i U−1 and then integrating out the bath variables. The effects of the bath are

thus captured by the two kernels Si and Sr in (44), which couple the forward and backward paths and
which are referred to as the real and the imaginary part of the Feynman–Vernon action. This important
theory is lucidly explained in the original 1963 paper [25], by Caldeira and Leggett in [26], as well as in
several reviews and monographs; cf. [17,27].

In a slight extension of this well-established theory, we now assume that the Hamiltonians of
the system and the bath are described by operators Ĥs, ĤB, ĤI and ĤC, which are translations to
the quantum domain of the classical Hamiltonians in Section 2. The expected final energy of the
bath, after first measuring the system, is Tr

[
ρ̂

post
B ĤB

]
, where the reduced density matrix of the bath is

ρ̂
post
B = 1

Pi f
< f |ρ̂TOT | f >. Using the shorthand:

〈AB〉i f = TrB < f |ρ̂TOT AB ⊕ 1S| f > (45)

where AB is an operator acting on the bath and 1S is the identity operator on the system, TrB is the
trace of the bath and the system starts out from pure state |i >, the conditional expected quantum
heat is:

E [δQ|i f ] =
1

Pi f

(〈
ĤB(t f )

〉
i f
−
〈

ĤB(ti)
〉

i f

)
(46)
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Path integral expressions for (46) or closely connected quantities have by now been developed
by several groups [16,18,19], notably recently in [20]. I here follow the notation in [16] where the first
main result (Equation (15)) is equivalent to:

E [δQ|i f ] =
1

Pi f

〈
I (2) + I (3)

〉
i f
=

1
Pi f

∫
i f
DXDYe

i
h̄ SS [X]− i

h̄ SS [Y]+ i
h̄ Si [X,Y]− 1

h̄ Sr [X,Y]
(
I (2) + I (3)

)
(47)

where I (2) and I (3) are two quadratic functionals. In this section, their classical limit will be discussed
and shown to be identical to the expected value of the classical heat discussed above in Section 4.
In [16] (Equation (15)), there was also a first functional I (1), which is related to the choice of subtraction
at the initial time and which is for completeness discussed in Appendix C.

Adapting to the setting of the present paper, we from now on take the system-bath coupling
coefficients Cb to depend on time as in Appendix A. This leads to:

I (2) =
∫ t f

ti

∫ t f

ti

XY′h(2)ds′ds (48)

I (3) =
∫ t f

ti

∫ t f

ti

XY′h(3)ds′ds. (49)

where the corresponding two kernels (up to a factor β) are given in [16] Equation 16:

h(2) = i ∑
b

Cb(s)Cb(s′)
2mb

coth(
βh̄ωb

2
) sin ωb(s− s′) (50)

h(3) = ∑
b

Cb(s)Cb(s′)
2mb

cos ωb(s− s′) (51)

Caldeira and Leggett in [26] were the first to explicitly consider the classical open system limit of
the quantum mechanical transition amplitude Pi f in (44). That limit is achieved in three steps. The first
is taking the bath as large and with the Ohmic spectrum as in Appendix B. When the spectral cut-off
Ω is much larger than thermal relaxation time h̄β, the kernel Si in (44) tends to the derivative of the
delta function. The second step is to assume a large bath temperature in the sense that h̄β should
be much smaller than any characteristic time of the system, which turns the other kernel Sr in (44)
into a delta function. The time development of the kernel in (44) is then Markov, i.e., it satisfies a
partial differential equation, first derived in [26], and compared to the Lindblad equation in, e.g., [17].
The Wigner function, which is related to the kernel in (44) by a Fourier transform, then also satisfies
a partial differential equation and, as found in [26], in fact, a Fokker–Planck equation. The standard
interpretation of this result is that the bath “observes” the system and destroys its quantum coherence
such that the open system quantum dynamics is fully described (in this limit) by the open system
classical dynamics.

We now want to consider the same Caldeira–Leggett limit for the functionals I (2) and I (3) in (48)
and (49). Similarly to Si and Sr, the kernels tend to:

h(2) ≈ −β−1 i
h̄

2
√

η(s)η(s′)
d

d(s− s′)
δ(s− s′) (52)

h(3) ≈ −
√

η(s)η(s′)
d2

d(s− s′)2 δ(s− s′) (53)

Assuming that both η and η̇ vanish at the initial and final time, we can integrate by parts freely
to find: 〈

I (2) + I (3)
〉

i f
=

〈∫
β−1 i

h̄

((
d
dt
(
√

ηX)

)
(
√

ηY)− (
√

ηX)

(
d
dt
(
√

ηY)
))

+

(
d
dt
(
√

ηX
)(

d
dt
(
√

ηY
)〉

i f
(54)
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In the above, the (quantum) expectation is the same as in (47), and X and Y are the forward
and backward quantum paths. If we substitute for X and Y a classical path Q and average over
its probability distribution, the term

〈
I (3)

〉
i f

in (54) is the same as the expectation value of the

corresponding term in (30). The other term can be re-expressed as:〈
I (2)

〉
i f
= β−1 i

h̄

〈∫
η

(
d
dt
(X + Y)

)
(Y− X) +

1
2

η̇
(

Y2 − X2
)
+

1
2

d
dt

(
ηX2

)
− 1

2
d
dt

(
ηY2
)〉

i f
(55)

In the above, the last two terms vanish since they are complete integrals, and η has been taken as
zero at the initial and final time. A similar separation was used in [16], Section 5, and there expressed
as 2i

h̄ Smid
i and ΔSb; in that case (where η was constant), the extra term ΔSb was however not zero.

To discuss the first two terms in (55), we use the procedure of [16], Sections 6 and 7. The first step
is to express the quantum averages through the Wigner transform. For the first term in (55) that leads
to the result in [16], we use Equation (34). For the second term in (55), we have that 1

2 (Y
2 − X2) = Qα

where Q = 1
2 (X + Y) is the average (eventually classical) path and α = (Y − X) is the quantum

deviation; a term iα
h̄ translates to a partial derivative with respect to momentum variable P in the

Wigner transform. Collecting both terms, we have hence:

〈
I (2)
〉

i f
= β−1

∫
dsdQdP P(Q, P, Qi, Pi)

(
−2η

M
p∂p −

η

M
− η̇q∂p

)
P(Q f , Pf , Q, P) (56)

P(q′, p′, q, p) in the above is the Wigner function, which in the Caldeira–Leggett limit tends to the
transition kernel of the classical stochastic process (8).

The second step is to compare the right-hand side of (55) to the expectation value of the first term
in (30)

〈∫
−ξ ◦ (dQ− dQB)

〉
i f . The expectation is conditioned on the initial and final states, which are

assumed to be given by definite classical coordinates and momenta. It is convenient to re-write this as:

∫ Q f ,Pf

Qi ,Pi

DProb(path)
[∫ (

− P
M
− η̇

2η
Q
)
◦ dΞ

]
(57)

where Prob(path) is a weight over paths and dΞ is the increment of the aggregated random force,
a Gaussian random variable with mean zero and variance 2kBTηdt. One can therefore discretize the
inner integral in (57) and consider the contribution from the short time interval [s, s + Δs]:

Term from Equation (57) =
∫

dQdPdQ′dP′
(
− P′ + P

2M
− η̇

2η
QΔs

)
ΔΞ P(·, Q′, P′)PΔs(Q′, P′, Q, P)P(Q, P, ·). (58)

The short-time propagator of the Kramers–Langevin process is:

PΔs(Q′, P′, Q, P) =
1
N e
− 1

4kBTηΔs

(
P′−P+

(
∂QV+η

p+p′
2M + 1

2 η̇Q
)

Δs
)2

δ

(
Q′ −Q− P′ + P

2M
Δs
)

(59)

and has the property that:

ΔΞPΔs(Q′, P′, Q, P) = −2kBTηΔs∂P′PΔs(Q′, P′, Q, P) +O
(

Δs2
)

(60)

Integration by parts moves over the derivative with respect to P′ to respectively P(Q f , Pf , Q′, P′)
and P′+P

2M , which gives the expression in (55). The same analysis through the Wigner function as
outlined here can of course also be applied to the last (simpler) term in (54), with the same result as
given above up to terms of order h̄2.

7. Discussion

The study of the interaction of a classical or quantum system with a bath of harmonic oscillators
has a long history, and it behooves the author to motivate the need for another paper on the subject.
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Consider the assumption of the Feynman–Vernon theory that the system and the bath are
originally decoupled and the bath is at equilibrium. If the coupling is not weak, this is questionable
because if the system and the bath were in contact precisely at the initial time, they should have been
so also slightly before, and then, they could not have been initially fully decoupled. Nevertheless,
this assumption is needed to integrate out the bath variables and arrive at the Feynman–Vernon open
system development operator of the system only; although the bath oscillators can be integrated
out also if the system and the bath are originally in equilibrium together, the analysis is then
considerably more complicated [27] and that possibility has not been considered here. It could
therefore be argued that the Caldeira–Leggett theory of quantum Brownian motion [26], which is based
on Feynman–Vernon, is only valid at weak coupling. Indeed, it has been noted several times that the
classical limit (Kramers–Langevin equation) of an Ohmic bath has a delta-function force proportional
to the friction acting at the initial time and that the random and deterministic forces from the bath
therefore do not obey an Einstein relation. It has also been noted that there is a difference whether one
assumes that the decoupled initial conditions pertain exactly at the initial time or only slightly after.

To resolve these (and other) issues, Caldeira and co-workers [28] investigated the possibility
that the bath is initially in equilibrium conditional on the position of the system, i.e., with respect to

Hamiltonian ∑b
p2

b
2mb

+ 1
2 mbω2

b

(
qb − Cb(t)Q

mbω2
b

)2
. These initial conditions are mathematically possible

and physically allowed, but raise the question of how the system and the bath would find themselves
in such a state. If some control would have been exercised on the bath prior to the process, this control
must have been aware of the position of the system, and only a very exquisite procedure would have
resulted in exactly the assumed initial state.

In this paper, I have aimed to address these issues anew by allowing the system-bath coupling to
depend on time. It is then not a problem to have the system and the bath initially decoupled, but the price
to pay is the new effects that arise from the time-dependent friction. On the level of classical equations,
these effects are just the extra force Fi f of (10), which when the switching on and off of the bath-system
coupling is fast, reduces to the previously known delta-function force. On the level of classical heat
and work functionals, the situation is more involved and described by (28) and (29). There appears a
part of the work denoted

∫
FS ◦ dXB, which is entirely dissipated into heat, which has support only at

the beginning and the end of the process and which is potentially quite large. Nevertheless, it only makes
a finite contribution to the work functional that enters Jarzynski’s equality; see (42).

Although the work δWi f =
∫

FS ◦ dXB is (to the author’s knowledge) new, it is in retrospect not
entirely surprising from a physical point of view. If the bath and the system are initially independent
and if they then move so that the bath is in conditional equilibrium with the system, then that is a
relaxation process. By analogy with finite-time (macroscopic) thermodynamics, one would expect the
heat in such a process to be inversely proportional to the duration of the process. To compare, it is well
known that when a system changes state in a finite time interval Δt, the expected heat given off to the
environment diverges as (Δt)−1 [29,30]. The current model is not exactly the same, as the divergent
heat arrives to an explicitly-modeled set of oscillators and not to a system coupled to an external and
more abstract bath. Nevertheless, in both cases, the leading divergence is inversely proportional to the
duration of the process, and the operational meaning is that extra work has to be done on the system
to effectuate a transformation in a finite time. The extra work may hence be assimilated to finite-time
corrections to Landauer’s law [29,30].

On the quantum level of the expected change of the bath energy, the analysis can be carried out
using the Feynman–Vernon formalism, as done previously for constant system-bath coupling in [16].
The classical limit of these expressions can then be seen to be the same as the classical heat functional
with time-dependent friction. This is hence an example of quantum-classical correspondence [31],
on the level of the expected heat. The extra term ΔSb found in [16] arises from using factorized initial
conditions with a finite system-bath interaction present from the very beginning of the process and has
therefore here been shown to be a kind of artifact.
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Appendix A. Recall of the Zwanzig Theory

All the calculations in this section are straightforward and mostly re-statements of known
results [32]. The equations of motion of the bath and the system that follow from (3)–(6) are:

ṗb = −mbω2
bqb + Cb(t)X (A1)

q̇b =
pb
mb

(A2)

Ṗ = −V′(X, t) + ∑
b

Cb(t)

(
qb −

Cb(t)
mbω2

b
X

)
(A3)

Ẋ =
P
M

(A4)

The initial position and momentum of the system (Xi, Pi) are assumed known. All randomness
in this problem is hence due to lack of knowledge of the initial positions and momenta of the bath.

These are 2N real numbers, while the time history of the system over the finite time interval, {X, P}t f
ti

,
needs infinitely many variables to be completely specified. One may therefore assume that a complete
knowledge of the system history uniquely specifies the initial positions and momenta of the bath;

to the equilibrium probability Peq in the bath then corresponds a probability distribution P
[
{X, P}t f

ti

]
on system histories. This will be assumed throughout the following.

The equations of motion for the bath oscillators can be solved as:

(
qb(t)
pb(t)

)
= e

(t−ti)

⎛⎝ 0 1
mb

−mbω2
b 0

⎞⎠ (
qb(ti)

pb(ti)

)
+

∫ t

ti

e
−(t−s)

⎛⎝ 0 1
mb

−mbω2
b 0

⎞⎠ (
0

CbQ

)
(A5)

Observing that the exponentiated matrix multiplying the initial conditions is:(
1 0
0 1

)
cos ωb(t− ti) +

(
0 1

mb

−mbω2
b 0

)
1

ωb
sin ωb(t− ti)

the solution for the position can then be written:

qb(t) = qb(ti) cos ωb(t− ti) + pb(ti)
1

ωbmb
sin ωb(t− ti)

−
∫ t

ti

[
1

ωbmb
sin(ωb(t− s))Cb(s)Q(s)]ds (A6)

which by one integration by parts can be rewritten as:
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qb(t) =

(
qb(ti)−

Cb(ti)X(ti)

mbω2
b

)
cos ωb(t− ti) +

Cb(t)X(t)
mbω2

b
−

1
ω2

b mb

∫ t

ti

[cos(ωb(t− s))
(
Ċb(s)X(s) + Cb(s)Ẋ(s)

)
]ds + pb(ti)

1
ωbmb

sin ωb(t− ti) (A7)

By the assumption that the system and the bath are initially disconnected, Cb(ti)X(ti) vanishes.
Inserting qb(t) into the equations of motion for the system gives:

Ẋ =
P
M

Ṗ = −V′(X, t) + ξ(t)

−
∫ t

ti

γ(t, s)Ẋ(s) + χ(t, s)X(s)ds (A8)

using the ancillary quantities:

ξ(t) = ∑
b

Cb(t)
[
qb(ti) cos ωb(t− ti) +

pb(ti)
1

ωbmb
sin ωb(t− ti)

]
(A9)

γ(t, s) = ∑
b

Cb(t)Cb(s)
mbω2

b
cos ωb(t− s) (A10)

χ(t, s) = ∑
b

Cb(t)Ċb(s)
mbω2

b
cos ωb(t− s) (A11)

Equations (8) and (A9)–(A11) are the solutions to the general problem of a system interacting
linearly with a bath of harmonic oscillators. The physical meaning of γ is friction, while χ is a reaction
force of the bath on the system, a counter-party of the force that the system exerts on each bath oscillator
if it is not in equilibrium with the instantaneous position of the system. The term ξ(t) is on the other
hand a force of the bath on the system, which is explicitly independent of the system. It is a random
force if the initial positions and momenta of the bath are random.

Appendix B. The Time-Dependent Ohmic Bath and Its Forces

In this Appendix, I summarize the additional assumptions needed so that the final Equation (A8)
in Appendix A is the classic Kramers–Langevin equation when the system-bath coupling is constant,
and I make explicit the additional harmonic force that arises from a variable system-bath interaction
and which is given in (8) in the main text.

This extra force is related to the relaxation of the bath to the instantaneous state of the system and
has been known for quite some time in the specialized literature [28,33–36]. A convenient starting
point is to follow Caldeira and Leggett [26] and assume an Ohmic bath, i.e., that the spectrum of the
bath oscillators is continuous up to an upper cut-off Ω and increases quadratically with frequency.
The number of oscillators with frequencies in the interval [ω, ω + dω] is f (ω)dω and:

f (ω) = 2
π ω−3

c ω2 ω < Ω
f (ω) = 0 ω > Ω

(A12)

where ωc is some characteristic frequency less than Ω. The total number of oscillators is hence
2

3π

(
Ω
ωc

)3
. We also assume a function η(s) with dimension (mass/time) such that:

Cb(s) =
√

ω3
c mbη(s) (A13)
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which implies, for every bath oscillator,

Ċb(t) =
1
2

η̇(t)
η(t)

Cb(t). (A14)

It is customary to refer to quantities pertaining to a bath oscillator having angular velocity ω by
that angular velocity, i.e., mω for the mass of the oscillator and Cω for the coupling coefficient. The two
kernels in (A10) and (A11) then follow from:

Cω(t)Cω(s) f (ω)
mω

=
2
√

η(t)η(s)
π ω2 ω < Ω (A15)

and are:

γ(t, s) =
2
√

η(t)η(s)
π

∫ Ω

0
cos ω(t− s)dω (A16)

χ(t, s) =
η̇(t)

π

√
η(s)
η(t)

∫ Ω

0
cos ω(t− s)dω (A17)

We now further assume that Cb(t) changes between zero and the full value on a time scale much
longer than Ω−1 so that the integrals in (A16) and (A17) can be approximated by delta functions.
This leads to:

γ(t, s) ≈ 2η(t)δ(t− s) (A18)

χ(t, s) ≈ η̇(t)δ(t− s) (A19)

which means that the two terms inside the integral in (8) are evaluated as:

Ff ric = −η(t)Ẋ(t) (A20)

Fi f = −1
2

η̇(t)X(t)) (A21)

as given in Equations (9) and (10) in the main text. The first of the above is a standard friction force,
while the second is a time-dependent harmonic force, proportional to the time derivative of the
friction coefficient.

Turning now to force term ξ, it varies rapidly in time and depends directly on the initial positions
and momenta of the bath oscillators. Its statistical properties follow from averaging over these initial
positions and momenta, and it follows from the explicit Formula (A9) that E [ξ(t)] = 0 where the
expectation value is taken with respect to P eq

β , the equilibrium initial distribution of the bath at inverse
temperature β. The second moment for the force is:

E [ξ(t)ξ(s)] =
∫
P eq

β ({qb(ti), pb(ti)})∏
b

dqb(ti)dqb(ti) [ξ(t)ξ(s)]

= ∑
b

Cb(t)Cb(s)
kBT

mbω2
b

cos ωb(t− s) ≈ 2kBTη(t)δ(t− s) (A22)

The random force ξ therefore satisfies an Einstein relation with only the friction force Ff ric.

Appendix C. An Extra Term Found in [16]

The purpose of this Appendix is to detail the connection between the path integral representation
for heat developed in Section 6 and the one for the first order change in von Neumann entropy studied
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in the earlier contribution [16]. To translate, we first note that the central quantity computed in the
earlier paper (Equation (3) in [16]) was:

δSq = E
[

βĤB(t f )|i f
]
− βU(β) (A23)

where U(β) is the equilibrium energy of the bath at inverse temperature β. This differs from (46) by
the factor β that makes the quantity dimensionless and by the subtraction at the initial time. We will
show that an extra term found [16] is explained by this subtraction.

We then note that the first main result (Equation (15)) of [16] reads:

δSq =
1

Pi f

〈
I (1) + I (2) + I (3)

〉
i f
=

1
Pi f

∫
i f
DXDYe

i
h̄ SS [X]− i

h̄ SS [Y]+
i
h̄ Si [X,Y]− 1

h̄ Sr [X,Y]
(
I (1) + I (2) + I (3)

)
(A24)

where the notation is as in Section 6 with only the slight change that I (2) and I (3) include an additional
factor β. The first functional is:

I (1) =
∫ t f
∫ s

(X−Y)(X′ −Y′)h(1)ds′ds (A25)

with the kernel:
h(1) = −∑b

C2
b

4mb
sinh−2( βh̄ωb

2 ) cos ωb(s− s′) (A26)

As noted in [16], Equation (A25) equals ∂β
1
h̄ Sr where Sr is the real part of the Feynman–Vernon

action. Writing the quantum expectation value of I (1) in the Feynman–Vernon theory therefore means:

1
Pi f

〈
I (1)

〉
i f

=
1

Pi f

∫
i f
DXDYe

i
h̄ SS [X]− i

h̄ SS [Y]+ i
h̄ Si [X,Y]− 1

h̄ Sr [X,Y]
(

∂β
1
h̄

Sr

)
= −∂β log Pi f (A27)

where the notation is as in Section 6 above. The second equality follows because in the exponent, only
Sr depends on β.

We want to relate the term in (A27) to the difference between E
[
ĤB(ti)|i f

]
and U(β), where

U(β) is the unconditioned expected energy of the bath at inverse temperature β. To do so, we write
more formally:

Pi f =
〈

f |TrB

[
U
(

ρ
eq
B (β)⊕ |i

〉
〈i|)U†

]
| f
〉

(A28)

E
[
ĤB(ti)

]
=

〈
f |TrB

[
U
((

ĤB ⊕ 1
) (

ρ
eq
B (β)⊕ |i

〉
〈i|)
)

U†
]
| f
〉

(A29)

E
[

ĤB(t f )
]

=
〈

f |TrB

[(
ĤB ⊕ 1

) (
U
(

ρ
eq
B (β)⊕ |i

〉
〈i|)U†

)]
| f
〉

(A30)

U(β) = TrB

[
ĤBρ

eq
B (β)

]
(A31)

where U (not to be confused with U(β)) is the total unitary operation on the system and the bath and
ρ

eq
B (β) is the initial (equilibrium) density matrix of the bath. Using that ρ

eq
B (β) = e−βĤB /Z(β) and

−∂β log Z = U, we have Ei f
[
ĤB(ti)

]
= −∂βPi f + UPi f . Therefore:

−∂β log Pi f =
1

Pi f

〈
ĤB(ti)

〉
i f −U(β). (A32)

which was to be shown.
As a final remark, the expected energy of the bath energy measured at the initial time, conditioned

on the future observation of the final state f of the system, is not the same as the unconditioned
equilibrium internal energy of the bath times the transition probability, an (simple) example of quantum
retro-diction [37,38].
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Abstract: We study the effect of the degeneracy factor in the energy levels of the well-known Landau
problem for a magnetic engine. The scheme of the cycle is composed of two adiabatic processes and
two isomagnetic processes, driven by a quasi-static modulation of external magnetic field intensity.
We derive the analytical expression of the relation between the magnetic field and temperature along
the adiabatic process and, in particular, reproduce the expression for the efficiency as a function of
the compression ratio.

Keywords: quantum thermodynamics; degeneracy effects; magnetic quantum engine

1. Introduction

Quantum thermodynamics is one of the most interesting topics in physics today. The possibility
to create an alternative and efficient nanoscale device, like its macroscopic counterpart, introduces the
concept of the quantum engine, which was proposed by Scovil and Schultz-Dubois in the 1950s [1].
The key point here is the quantum nature of the working substance and of course the quantum
versions of the laws of thermodynamics [2–18]. The combination of these two simple facts leads to very
interesting studies of well-known macroscopic engines of thermodynamics, such as Carnot, Stirling
and Otto, among others [2–4].

The classical Otto engine consists of two isochoric processes and two adiabatic processes. If the
working substance is a classical ideal gas, the first approximation for efficiency depends on the
quotient of the temperatures in the first adiabatic compression [19,20]. This expression is reduced
with the specific condition along the adiabatic trajectory for this kind of gas, given by TVγ−1 = cnt.,
where γ = CP/CV obtaining the expression η = 1 − 1

rγ−1 , where r is defined as a “compression
ratio” that is defined as V1/V2 (with V1 > V2) [19]. On the other hand, the quantum Otto engine
consists of two quantum adiabatic processes, which keeps invariant the probability occupation for
the level of energy, and two quantum isochoric processes, in order to keep constant some parameters
in the Hamiltonian. In this context, the quantum harmonic Otto cycle is a hot research topic [21–24],
fully addressed by Kosloff and Rezek [25]. In addition, a recent experimental result has been
achieved, employing a single ion confined in a linear Paul trap [26]. This research shed lights for a
possible realization of a quantum Otto cycle. In the magnetic scenario, it is useful to think that the
“isochoric processes” are replaced by “isomagnetic” ones where the constant value of the field in these
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Entropy 2017, 19, 639

strokes imply keeping constant value of the cyclotron frequency (or effective frequency depending on
the case) due to the proportional relation between both quantities. This kind of approach is developed
in the reference [13] for the case of a graphene under strain in the presence of an external magnetic
field, exhibiting that the Carnot efficiency is achieved more quickly with the combination of these two
effects as opposed to only applying strain to the sample.

The Landau levels of energy in condensed matter physics constitute a very well-known case and
a typical academic problem. The thermodynamics is fully addressed in the works of Kumar et al. [27]
where one important point is the degeneracy factor present in the partition function, and consequently
also in the entropy.

In this way, a thermodynamic cycle, where the magnetic field can be controlled along the adiabatic
trajectories will lead to very interesting new results which can be contrasted with the harmonic case.
On the other hand, the effects of the degeneracy of energy levels on the efficiency and power of an
engine quantum machine have been reported in many works in the past [21,22,28–30]. In this same
framework, we highlight the work of Mehta and Ramandeep [31], who worked on a quantum Otto
engine in the presence of level degeneracy, finding an enhancement of work and efficiency for two-level
particles with a degeneracy in the excited state. Also, Azimi et al. present the study of a quantum Otto
engine operating with a working substance of a single phase multiferroic LiCu2O2 tunable by external
electromagnetic fields [22] and is extended by Chotorlishvili et al. [21] under the implementation of
shortcuts to adiabaticity, finding a reasonable out power for the proposal machine. Physically it is
nowadays possible to confine electrons in 2D. For instance, quantum confinement can be achieved
in semiconductor hererojunctions, such as GaAs and AlGaAs. At T = 300 K, the band gap of GaAs
is 1.43 eV while it is 1.79 eV for AlxGa1-x As (x = 0.3). Thus, the electrons in GaAs are confined in a
1-D potential well of length L in the Z-direction. Therefore, electrons are trapped in 2D space, where a
magnetic field along Z-axis can be applied [32].

Consequently, the study of electrons under controllable external fields is a topic of growing
interest today. This work proposes to study the novel-magnetic cycle presented in the work [13] for
the Landau problem and to understand the role of the degeneracy factor along the cycle. In particular,
we found an analytical dependence between the magnetic field and temperature along the adiabatic
process, and we use these results to calculate the efficiency of this cycle. We compare this efficiency to
the one corresponding to the harmonic trap with the same parametrization to study how strong is the
influence of this factor on the results.

2. Partition Function for the Single-Particle Landau Problem

We consider the case for an electron with an effective mass m* and charge e placed in a
magnetic field, where the Hamiltonian of this problem working in the symmetric gauge leads to
the known expression

Ĥ =
1

2m∗

[(
px −

eBy
2

)2
+

(
py +

exB
2

)]
, (1)

and the corresponding Landau levels display the energy spectrum

En = h̄ωB

(
n +

1
2

)
. (2)

Here, n = 0, 1, 2, ... is the quantum number, and

ωB =
eB
m∗

, (3)

is the standard definition for the cyclotron frequency [12,13,27]. With the definition of the parameter
ωB, we can define the Landau radius that captures the effect of the intensity of the magnetic field,
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given by lB =
√

h̄/(m∗ωB). The energy spectrum for each level is degenerate with a degeneracy g(B)
given by [27]

g(B) =
eB

2πh̄
A, (4)

with A being the area of the box perpendicular to the magnetic field B. Therefore, with this approach
it is straightforward to calculate the partition function to Landau problem, and it turns out to be

Z =
m∗ωBA

4πh̄
csch

(
βh̄ωB

2

)
, (5)

which corresponds to standard partition function for a harmonic oscillator in the canonical ensemble,
with a degeneracy for level equal to g(B).

3. Thermodynamics and Magnetic Engine

3.1. The First Law of Thermodynamics: A Microscopic Approach.

The first law of quantum thermodynamics is fully addressed in many works [2–18] and gives us
the possibility to explore different quantum cycles and compare them with the classical analogues.
We will follow the treatment of [29,33,34], where they conceive a sequence of quasi-static process
that drives the subsystem along the sequence of equilibrium states. To derivate this law simply (in a
microscopic approach), consider a system describe by a density operator ρ̂ and a Hamiltonian with an
explicit dependence of some parameter that we will call ξ in a generic form [34]. So, you have a set of
eigenvectors of Ĥ that satisfy the eigenvalue problem

Ĥ|n; ξ〉 = En|n; ξ〉, (6)

where n represents a set of indexes that label the spectrum of the Hamiltonian and |n; ξ〉 constitutes
the set of eigenvectors of Ĥ. The variations of work and heat are in general defined as [29]

δW = Tr
{

ρ̂dĤ
}

(7)

δQ = Tr
{

Ĥdρ̂
}

(8)

On the other hand, when the eigenstates of the system Hamiltonian are used as the basis, and the
coupling between the system and the environment is weak, the system can be described by a canonical
distribution determined by Ĥ and the density matrix is diagonal in that representation [29]. Therefore,
the ensemble-average energy E = 〈Ĥ〉 is reduced to

E = ∑
n

Pn(ξ)En(ξ), (9)

for a given occupation distribution with probabilities Pn(ξ) in the nth eigenstate. So, we can describe
the system by the energy levels and states derived from the Hamiltonian [29]. The statistical ensemble
just described can be submitted to an arbitrary quasi-static process, involving the modulation of the
parameter ξ, and hence the ensemble average energy changes accordingly,

dE = ∑n (En(ξ)dPn(ξ) + Pn(ξ)dEn(ξ)) (10)

= δQ + δW.

The last equation corresponds to the microscopic formulation of the first law of
thermodynamics [2–18,25–27,31,34,35]. The first term in Equation (10) is associated with the energy
exchange, while the second term represents the work done. That is, the work performed corresponds to
the change in the eigenenergies En(ξ). This is in agreement with the fact that work can only be carried
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out through a change in generalized coordinates of the system, which in turn gives rise to a change in
the eigenenergies [9,10]. A very important assumption for Equation (10) is very well described in [29],
where it is mentioned that: “small changes in Ĥ, which can be considered as a first-order perturbation,
only shifts the energy levels of the systems and does not modify its eigenstates”.

The usual expression for the entropy is given by the von Neumann form and in the eigenenergy
basis can be rewritten as

S(ξ) = −kB ∑
n

Pn(ξ) ln [Pn(ξ)] , (11)

where the coefficients Pn(ξ) satisfy that 0 ≤ Pn(ξ) ≤ 1 with the normalization condition

∑
n

Pn(ξ) = 1. (12)

3.2. Magnetic Engine

As mentioned above, the result of the efficiency of the conventional Otto cycle can be written
in the form that the results only depend on the quotient of the temperatures in the first adiabatic
compression. By using the properties of the ideal gas, the efficiency can be rewritten as follows:

η = 1− 1
rγ−1 , (13)

where γ = CP/CV is the quotient of the two specific heat (at constant pressure and at constant volume)
and r is known as “compression ratio” which is defined as V1

V2
(with V1 > V2).

On the other hand, the quantum “conventional” Otto engine is composed of two quantum
isochoric processes and two quantum adiabatic processes. For the first mentioned process,
the occupation probabilities Pn(ξ) change and thus the entropy S changes, until the working substance
finally reaches thermal equilibrium with the heat bath. For the case of the quantum adiabatic process,
the population distributions remain unchanged, that is dPn(ξ) = 0. Thus, no transition occurs between
levels, and no heat is exchanged during this process. It is important to recall that in a classical adiabatic
process the occupation of each level is never invariant (unless the classical thermalization condition
is relaxed) [35]. This is a crucial point in the discussion for our magnetic engine, based on the work
presented [13]. In general, a quantum adiabatic stroke does not maintain the system in a thermal
state [28–30]. A power law potential can guarantee the thermal state condition when the degeneracy
does not change, as in the treatment of [36], but not in our case under the study, because the number of
states involved in the process should not increase, even if the degeneracy increases. So, if the cycle is
strictly quantum, the stage after the quantum adiabatic stroke necessarily is a non-equilibrium state
(only in the degenerate case), and cannot be represented for the partition function of Equation (5).
Therefore, our approach uses the condition of a classical thermodynamic adiabaticity, where the
process is identified in terms of the conservation of the entropy and the isolation of the system from
heat exchange with the thermal bath. We recall that we work in a semi-classical scenario where the
quantum part is related to the nature of the working substance and the classical part is due to the
condition imposed over the adiabatic strokes along the cycle that we propose.

The case of conventional quantum Otto engine has been considered in several works for differents
quantum systems [3,9,13,31,36] where the key findings are an expression for the efficiency present in
Equation (13) and establishing the value of γ for that case. For the magnetic case, the two isochoric
trajectories are replaced by two “isomagnetic” ones, in which the magnetic field intensity along the
process remains constant while heat is exchanged between the system and the reservoirs [13].

Let us consider a cycle by devising a sequence of quasi-static trajectories, as depicted in Figure 1.
First, the system, while submitted to an external magnetic field B1, is brought into thermal equilibrium
with macroscopic thermostats at temperature T1. In equilibrium, the probabilities Pn(ξ) take the
Boltzmann form and can work with a partition function in the canonical ensemble, Z(ξ, T). So, the
Helmholtz free energy can be defined by F(ξ, T) = −kBT ln Z(ξ, B) and the entropy given by
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Equation (11) can be written as S(ξ, T) = E(ξ,T)
T + kB ln Z(ξ, T), where the ensemble average energy is

given by

E(ξ, T) = kBT2 ∂

∂T
ln Z(ξ, T). (14)

Here, the ξ parameter is related to the intensity of the magnetic field, so ξ → B for the case under
the study. Then, the system is submitted to a quantum isoentropic process from 1 → 2, increasing
the magnitude of the magnetic field from B1 to B2. The systems performs work along the isoentropic
trajectory according to

W1→2 =
∫ B2

B1

dB
(

∂E
∂B

)
S
= E (T2, B2)− E (T1, B1) . (15)

For the case of the “isomagnetic” heating process with the intensity of magnetic field equal to B2

from 2→ 3, no work is done, but heat is absorbed. The heat absorbed (Q2→3) is given by the expression

Q2→3 =
∫ T3

T2

dT
(

∂E
∂T

)
B2

= E (T3, B2)− E (T2, B2) . (16)

In the same way discussed before, the isoentropic trajectory from 3→ 4, the system perform work
in the form

W3→4 = E (T4, B1)− E (T3, B2) . (17)

A physical interpretation of the work performed by the engine is obtained by considering the
statistical mechanical definition of the ensemble-average magnetization, M = −

(
∂E
∂B

)
S
. Hence, the

works defined in Equations (15) and (17) can also be interpreted as W = −
∫

MdB [12,13].
Similarly, we obtain the heat released to the low temperature sink in the quantum “isomagnetic”

cooling process from 4→ 1

Q4→1 =
∫ T1

T4

dT
(

∂E
∂T

)
B1

= E (T1, B1)− E (T4, B1) . (18)

The efficiency of the engine is then given by the expression

η =

∣∣∣∣W1→2 + W3→4

QH

∣∣∣∣ = 1−
∣∣∣∣E(T1, B1)− E(T4, B1)

E(T3, B2)− E(T2, B2)

∣∣∣∣ . (19)

Figure 1. Pictorial description for the novel-magnetic engine represented as an entropy versus a
magnetic field diagram.
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If we have the analytic function for the entropy, the intermediate temperatures T2 and T4 must be
determined to reduce the expression for efficiency and can take on two different forms:

• Deducting the relation between the magnetic field and the temperature along an isoentropic
trajectory solving the differential equation of first order given by

dS(B, T) =
(

∂S
∂B

)
T

dB +

(
∂S
∂T

)
B

dT = 0, (20)

which can be written as
dB
dT

= − CB

T
(

∂S
∂B

)
T

, (21)

where CB is the specific heat at constant magnetic field.

• The other possibility is connecting the value for the entropy in two isoentropic trajectories in
the form

S(B1, T1) = S(B2, T2)

S(B2, T3) = S(B1, T4),
(22)

finding the function for the magnetic field in terms of the temperature through numerical
calculation. Finally, we parametrize this dependency in the efficiency by defining the ratio

r =
lB1

lB2

, (23)

which represents the analogy of the compression ratio for the classical case. It is important to
remember that the Landau radius is inversely proportional to the magnitude of the magnetic
field. Therefore, for a major (minor) magnitude of the field, the Landau radius is smaller (bigger),
and the r parameter is well defined.

It is important to highlight the work of Zheng and Poletti [36], where they derived a general
form for the efficiency of quantum Otto cycles with power law trapping potentials, corresponding to
Equation (11), and showed that γ must be equal to three. We remark that this result requires that two
conditions are met. First, it is only valid for the non-degenerate cases, or more specifically, when the
degeneracy is independent of the parameter that rules the cycle. The second condition is that the
expansion process, when the system goes to ω′ → ω′′, must follow the following relation

κ ≡ En(ω′)
En(ω′′)

=

(
ω′

ω′′

)α

, (24)

where α depends on the power of the potentials under study. For example, for a conventional harmonic
trap, the spectrum of energy is always En = h̄ω

(
n + 1

2

)
and we quickly obtain the result previously

discussed. Moreover, this value of γ is valid for a family of trapping potentials that fulfills the state
equation PV = 2〈E〉 [36].

The case of the Landau problem is different. The energy spectrum of Equation (2) respects the
condition of Equation (24) and has the structure of a harmonic trap; however, the degeneracy factor is
a function of the magnetic field and the size of the system. Therefore, the results previously discussed
do not hold, because in the first (1 → 2) and third (3 → 4) process, the change in the intensity of
magnetic field leads to a change in the degeneracy factor, thus this problem must be analyzed carefully.
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Magnetic Engine for the Landau Problem

We show that the representation of the partition function for this case can be taken in the form of
Equation (5). The thermodynamic quantities are present in the work of Kumar et al. [27], given by

F = − 1
β

ln
[

g(B)
2

csch
(

βh̄ωB
2

)]
, (25)

E =
h̄ωB

2
coth

(
βh̄ωB

2

)
, (26)

SL =
h̄ωB
2T

coth
(

βh̄ωB
2

)
+ kB ln

[
g(B)

2
csch

(
βh̄ωB

2

)]
, (27)

and the specific heat

CB = kBβ2
(

h̄ωB
2

)2
csch2

(
βh̄ωB

2

)
, (28)

where β = 1
kBT . First, we highlight that Equation (25) imply as natural consequence that the entropy

contains the degeneracy terms, due to relation S = 1
T (E− F). It is in fact due to the structure of von

Neumann entropy, because the probability coefficients contain the information of the degeneracy factor.
For example, in thermal equilibrium, this coefficient takes the Boltzmann form, so

Pn(ξ) = [Z(ξ, T)]−1 g(ξ) e−
En(ξ)
kBT . (29)

An opposite case occurs for the expected value of energy and the specific heat at constant
field because these two physical quantities are obtained as the derivative in the temperature of the
partition function.

To clarify the importance of the degeneracy, we analyze the following case. Instead of the term
g(B)

2 appearing in Equations (25) and (27), we put a factor one, corresponding to treat a single oscillator,
and we call the entropy for that case just S(T, B). It is easy to show that the dependence of the
magnetic field on the temperature for the isoentropic trajectories in the non-degenerate scenario
obeys the proportionality B ∝ T. This trivial relation gives us the possibility to obtain the relations
between the temperatures along the cycle given by T1

T2
= T3

T4
, and the efficiency is reduced to a very

well-known expression

η = 1− ω(B1)

ω(B2)
, (30)

which can be rewritten as
η = 1− 1( lB1

lB2

)2 ≡ 1− 1
r3−1 , (31)

and we get the result γ = 3, as described in the work of Zheng and Poletti [36].

4. Results and Discussion

For the Landau case, it is useful to rewrite the term of the degeneracy factor in the entropy as
g
2 = Φ(B)

2Φ0
, where Φ(B) is the total magnetic flux and Φ0 is the universal quantum of magnetic flux,

given by h/2e. Moreover, we define this degeneracy term in the entropy as g
2 = λB, where λ = A

2Φ0
.

Thus, the entropy for this case given by Equation (27) depends on three variables, SL ≡ SL(T, B, λ).
If the dependence of magnetic field and temperature in the adiabatic process for the Landau

case is analyzed, we clearly see that the condition for entropy SL(T0, B0, λ) = SL(T, B, λ) yields a
relation between the magnetic field and temperature which will not depend on λ. This is because the
degeneracy term g(B) is associated with a logarithmic term, so the degeneracy effect in the cycle is only
reflected in the magnetic field dependence of g(B). To reinforce this idea, we calculate the structure of
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first order differential equation for the adiabatic processes through Equation (21), which for this case
has the form

dB
dT

= −
C2

1
B2

T3 csch2
(

C1
B
T

)
1
B − C2

1
B
T2 csch2

(
C1

B
T

) , (32)

where C1 is a constant given by C1 = eh̄
2kBm . This previous equation has an analytical solution

(see Appendix A for details) given by

C1
B
T

coth
(

C1
B
T

)
+ ln (C1B)− ln

[
sinh

(
C1

B
T

)]
= C2, (33)

where C2 is an integration constant. Note that the additional term in the differential equation which
provides g(B), is the factor (1/B) in the dominator of Equation (32). If this term does not exist,
the differential equation has a simple form dB

dT = B
T and obtains the result previously discussed for the

non-degenerate case.
In Figure 2, we see the behavior of the magnetic field versus the temperature along an isoentropic

trajectory, showing the linear dependence between the magnetic field and the temperature in the case
of g = 1 (non-degenerate) and for the case of high degeneracy. In order to see the scale of entropy
for SL(T, B, λ) for real values, we select λ ∝ 108 T−1, which means an active area of A ∝ 10−7 m2,
by using the fact that the universal flux quantum has an order of Φ0 ∝ 10−15 Wb. In the left panel
of Figure 2, we plot the solution for the case S(T, B) = S(10, 1), and in the right panel we plot the
solution for the case S(T, B, 108) = S(10, 1, 108). The contrast is evident: in the simple scenario an
increase in the magnetic field implies an increase in the temperature. However, for the case with
degeneracy, the rise in the magnetic field leads to a decrease in the temperature. The explanation of
this fact lies in the behavior of the entropy at low temperatures, because of S(T, B, λ)T→0 ∼ kB ln(g),
where g is directly proportional to B. This is discussed in Figure 3 where we show the entropy behavior
in these two different scenarios. In the non-degenerate case, when we increase the magnetic field,
the function S (T, B) intersects the starting value of the entropy always in a higher value than the initial
one, reflected in the left frame of Figure 3. This explains the linearity that we obtain in a plot B vs. T
for the left panel of Figure 2. The opposite occurs for the degenerate case, the function SL

(
T, B, 108),

which intersects the starting value of the entropy always in a lower value than the initial one, as we
see in the right frame of Figure 3. From this same figure, we can conclude that the entropy function for
the degenerate case collapses to approximately the same value for higher temperature for different
values of the magnetic field. Therefore, since the magnetic field is the external parameter that makes
the engine work, we have a region of temperature and magnetic field where it is valid to carry out
this cycle.

Figure 2. Behavior of the magnetic field versus the temperature for the case without the degeneracy
factor (a) and the case with the degeneracy factor Φ(B)

2Φ0
(b). We select the factor A

2Φ0
∝ 108 T−1 for

this example.
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Figure 3. The isoentropic trajectories behavior for the two cases under discussion. In (a) we plot the
non-degenerate case S(T, B) = S(10, 1) and in (b) the degenerate case SL(T, B, 108) = SL(10, 1, 108).

As discussed in Appendix A, with an adequate analysis of the asymptotic behaviours of
Equation (32), we found a critical temperature, given by

Tc = e(C2−1), (34)

which corresponds to the value of the temperature when the magnetic field goes to zero and a critical
value for the magnetic field when it starts to become constant, given by the expression

Bc =
eC2

2C1
. (35)

Therefore, we have the two points for an initial value constant C2 where it makes sense to carry
out the cycle. For the exponential form of Equation (35), the critical value of the constant magnetic
field is always a large quantity. For a real example of a starting field and temperature, we can consider
the example of Figure 2, where the initial values of the intensity field and temperature are 1 T and a
10 K, respectively. The approximate value for the critical values are Tc ≈ 10.1 K and Bc ≈ 20.1 T.

For the starting point previously indicated, we can consider a cycle for the degenerate case like
that in Figure 1 operating between the temperatures 4 K and 10 K. However, due to the behavior
of temperature along the adiabatic trajectory described in Figure 2, initially we brought the system
into thermal equilibrium at T1 > T3. Thus, for that case, the heat defined by Q4→1 corresponds to
the heat absorbed, and for the heat released the correct definition is given by Q2→3, contrary to the
non-degenerate case. To reinforce this idea, we display in the right frame of Figure 4 the behavior
of heat along the cycle for the degenerate case and non-degenerate case. The convention of the sign
(positive for heat absorbed) is satisfied along the entire operation of the engine. The positive work
condition, which plays an essential role for a well defined thermal engine, is shown in the left frame
of Figure 4 for both cases. From the same figure, we can extract relevant information about the
r parameter. For a machine operating between two reservoirs of 4 K and 10 K, we obtain

rmax
non−deg = 1.58 and rmax

deg = 4.47, (36)

which represents the maximum value that can be taken for the compression ratio along the cycle and
corresponds to the point where the Carnot efficiency is obtained. These results are natural only to
see Figure 3 for this example. For the non-degenerate case, it is only necessary to increase the field
by a factor of 2.5, but for the degenerate case it is necessary to increase the field by a factor of 20 to
reach the Carnot efficiency of the problem. However, the two points previously discussed have the
average work and power output equal to zero, as we see in the left panel of Figure 4 and the purpose
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of showing them is only conceptual. From Figure 4 we observe that the two points for the maximum
power output in the two different scenarios under discussion are given by

rW
non−deg ≈ 1.25 and rW

deg ≈ 3.66, (37)

with efficiency values η
(

rW
non−deg

)
≈ 0.34 and η

(
rW

deg

)
≈ 0.26, as we see in Figure 5. This combination

of values is the really important in our problem because it corresponds to the optimal operating region
of the proposed thermal machine.

Figure 4. Total work (a) and input heat (b) versus the r parameter along the cycle for the case with
degeneracy (dot dashed line) and without degeneracy (dashed line).

In Figure 5 we compare the three efficiencies, where we see the effect of the degeneracy. One form
to understand this behavior corresponds to the approximation that we show in Appendix A for the
parametric solution, with the finality to “uncouple” the solution to magnetic field and the temperature
for the adiabatic trajectory getting a function in the form

B(T) =
k

2C1

(
1− e

−k
√

0.64
T2 (1−e T

k )
)

, (38)

where we define k = eC2 . Therefore, for this exponential form for the field as a function of temperature,
when we parametrize the efficiency vs. a function of the typical compression ratio (r), we obtain the
behavior presented in Figure 5.

Figure 5. Efficiency for different cases of interest. For this case, the dotted red line corresponds to the
value of Carnot cycle for a machine operating between the two temperatures T1 = 4 K and T3 = 10 K.

For the definition of work and its interpretation as W = −
∫

MdB, we study the magnetization
along the cycle defined as

M =
eh̄
2m

(
2

βh̄ωB
− coth

(
βh̄ωB

2

))
. (39)
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For the adiabatic trajectory, the temperature and the magnetic field change along the entire process,
so we can use a contour plot to see the value of magnetization displayed in Figure 6. Here, we clearly
see that the values of magnetization are always negative and the same occurs for the different curves in
the “isomagnetic” process, shown in Figure 7, indicating that the response of the system is diamagnetic.

Figure 6. Magnetization as a function of B and T along the adiabatic trajectories.

Figure 7. Magnetization along the first iso-magnetic trajectory as a function of T in the range of 4 K to
10 K. We selected the different values for B2 that we found from numerical calculations.

Our system was studied to prove a concept rather than a practical implementation protocol.
However, we believe the readers will find attractive the study of the “full” quantum version of this
cycle following the treatment of the works [28–30], where treated the magnetic substance under
degenerate conditions using non-equilibrium techniques. Besides, it is promising to treat the quantum
version of our formulation optimized following the work of Kosloff and Rezek [25], for the case of
frictionless adiabats using the methods of shortcuts to adiabaticity [37–39]. Moreover, this problem
can be extended taking in account the edge states of the systems for a more realistic approach.
Additionally, it is important to note that the regime of validity of this semi-classical approach deserves
further investigation.

88



Entropy 2017, 19, 639

5. Conclusions

In this work, we explored the possibility of constructing a single-particle magnetic engine of the
Landau problem. In particular, we found an analytical solution for the dependence of the magnetic
field and temperature in the adiabatic trajectories. We used this relation to obtain the form of the
efficiency showing a radically different behavior of the typical harmonic case and found that a major
increase in the external magnetic field to reach the Carnot efficiency is necessary. We remark that the
useful work of this engine, related to change in the magnetization along the process, can be used for
example in the generation of induction current in other physical systems.

It is important to note that our one-particle approach must be refined to take into account a many
electrons scenario, which yields more precise calculations. However, the one electron case is important
due to simplicity and the arising of richer physics for comparatives cases. For example, we can work
with a one-particle system combining the effects of a cylindrical potential well, which physically
represents an accurate model for a semiconductor quantum dot, and an externally imposed magnetic
field, where the number of electrons can be controlled without problems; thus, the same analysis
presented in this work can be replicated.
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Appendix A

We need to solve the differential equation in the form

dB
dT

= −
C2

1
B2

T3 csch2
(

C1
B
T

)
1
B − C2

1
B
T2 csch2

(
C1

B
T

) . (A1)

We define the parameter u = C1

(
B
T

)
. So, differentiating respect to T, we obtain

du
dT

= −C1
B
T2 +

C1

T
dB
dT

. (A2)

Collecting these two last equations, we obtain the first order differential equation in the
u parameter in the form

du
dT

=
u

T
(

u2csch2(u)− 1
) , (A3)

which corresponds to a differential equation of separable variables that has a solution given by

u coth(u) + ln(u)− ln [sinh(u)] + ln(T) = C2, (A4)

where C2 is a constant of integration. We can compact this solution if we define the two variables
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y =
C1B

k
x =

T
k

, (A5)

where k is given by
k = eC2 , (A6)

with e as the Euler number. So, the solution takes the parametric form

y = e−u coth u sinh u x =
1
u

e−u coth u sinh u. (A7)

The asymptotic behaviors of these solutions is very interesting. The expression in the case of
u << 1, which corresponds to high-temperature or small magnetic field limit, takes the form

y =
1
e

√
6 (1− ex), (A8)

so, we have a critical value, xc, when y→ 0 given by

xc =
1
e

. (A9)

It gives us a critical temperature Tc when the magnetic field goes to zero, and is strongly dependent
on initial values of the problem under study, given by

Tc =
k
e
≡ e(C2−1). (A10)

In the other case, for u >> 1, which corresponds to low temperature or high magnetic field limit,
we obtain

yc =
1
2

, (A11)

and, this represents a critical constant value for the magnetic field, given by

Bc =
k

2C1
≡ eC2

2C1
, (A12)

Thus, it is important to keep in mind that, when we consider a variation of the magnetic field
as the cause for effective work in the system, the limits discussed before impose physical variable
restrictions to operate the quantum machine proposed in the text.

To understand the magnetic field behavior in an explicit form along the adiabatic process,
we propose an approximated curve in the form

y =
1
2

(
1− e

−
√

0.64(1−ex)
x

)
. (A13)

The exact parametric solution, the asymptotic behavior for the limiting cases (u >> 1 and u << 1)
and our proposal function are displayed in Figure A1.
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Figure A1. A parametric solution of the differential equation along the adiabatic trajectories for the
Landau case. The dotted line represents the exact solution and the dot-dashed line the asymptotic case
for u << 1. We can clearly see the constant value 0.5 for the solution in the case of u >> 1 from the
dotted line in the figure. The solid line represents the proposal curve given by Equation (A13) showing
a good fit for the problem under study.
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Abstract: We explored the dynamics of two interacting information systems. We show that for the
Markovian marginal systems, the driving force for information dynamics is determined by both
the information landscape and information flux. While the information landscape can be used to
construct the driving force to describe the equilibrium time-reversible information system dynamics,
the information flux can be used to describe the nonequilibrium time-irreversible behaviors of the
information system dynamics. The information flux explicitly breaks the detailed balance and is
a direct measure of the degree of the nonequilibrium or time-irreversibility. We further demonstrate
that the mutual information rate between the two subsystems can be decomposed into the equilibrium
time-reversible and nonequilibrium time-irreversible parts, respectively. This decomposition of
the Mutual Information Rate (MIR) corresponds to the information landscape-flux decomposition
explicitly when the two subsystems behave as Markov chains. Finally, we uncover the intimate
relationship between the nonequilibrium thermodynamics in terms of the entropy production rates
and the time-irreversible part of the mutual information rate. We found that this relationship and
MIR decomposition still hold for the more general stationary and ergodic cases. We demonstrate the
above features with two examples of the bivariate Markov chains.

Keywords: nonequilibrium thermodynamics; landscape-flux decomposition; mutual information
rate; entropy production rate

1. Introduction

There is growing interest in studying two interacting information systems in the fields of control
theory, information theory, communication theory, nonequilibrium physics and biophysics [1–9].
Significant progresses has been made recently towards the understanding of the information system in
terms of information thermodynamics [10–13]. However, the identification of the global driving forces
for the information system dynamics is still challenging. Here, we aim to fill this gap by quantifying
the driving forces for the information system dynamics. Inspired by the recent development of
landscape and flux theory for the continuous nonequilibrium systems [14–16] and the Markov chain
decomposition dynamics for the discrete systems [17–23], we show that at least for the underlying
marginal Markovian cases, the driving force for information dynamics is determined by both the
information landscape and information flux. The information landscape can be used to construct
the driving force responsible for the equilibrium time-reversible part of the information dynamics.
The information flux explicitly breaks the detailed balance and provides a quantitative measure of
the degree of nonequilibrium or time-irreversibility. It is responsible for the time-irreversible part
of the information dynamics. The Mutual Information Rate (MIR) [24] represents the correlation
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between two information subsystems. We uncovered that the MIR between the two subsystems can be
decomposed into the time-reversible and time-irreversible parts, respectively. Especially when the
two subsystems act as Markov chains, this decomposition can be expressed in terms of information
landscape-flux decomposition for Markovian dynamics. An important signature of nonequilibrium
is the Entropy Production Rate (EPR) [17,25,26]. We also uncover the intimate relation between the
EPRs and the time-irreversible part of the MIR. We demonstrate the above features with two cases
of the bivariate Markov chains. Furthermore, we show that the decomposition of the MIR and the
relationship between the EPRs and the time-irreversible part of the MIR still hold for more general
stationary and ergodic cases.

2. Bivariate Markov Chains

Markov chains have been often assumed for the underlying dynamics of the total system in
random environments. When the two subsystems together jointly form a Markov chain in continuous
or discrete time, the resulting chain is called the Bivariate Markov Chain (BMC, a special case of the
multivariate Markov chain with two stochastic variables). The processes of the two subsystems are
correspondingly said to be marginal processes or a marginal chain. The BMC was used to model
ion channel currents [2]. It was also used to model delays and congestion in a computer network [3].
Recently, different models of BMC appeared in nonequilibrium statistical physics for capturing or
implementing Maxwell’s demon [4–6], which can be seen as one marginal chain in the BMC playing
feedback control to the other marginal chain. Although the BMC has been studied for decades,
there are still challenges on quantifying the dynamics of the whole, as well as the two subsystems.
This is because neither of them needs to be a Markovian chain in general [7], and the quantifications
of the probabilities (densities) for the trajectories of the two subsystems involve the complicated
random matrix multiplications [8]. This leads to the problem not exactly being analytically solvable.
The corresponding numerical solutions often lack direct mathematical and physical interpretations.

The conventional analysis of the BMC focuses on the mutual information [9] of the two subsystems
for quantifying the underlying information correlations. There are three main representations of
this. The first one was proposed and emphasized in the works of Sagawa, T. and Ueda, M. [11] and
Parrondo, J. M. R., Horowitz, J. M. and Sagawa, T. [10], respectively, for explaining the mechanism of
Maxwell’s demon in Szilard’s engine. In this representation, the mutual information between the demon
and controlled system characterizes the observation and the feedback of the demon. This leads to an
elegant approach, which includes the increment of the mutual information into a unified fluctuation
relation. The second representation was proposed by the work of Horowitz, J. M. and Esposito, M. [12]
in an attempt to explain the violation of the second law in a specified BMC, the bipartite model, where
the mutual information is divided into two parts corresponding to the two subsystems, respectively,
which were said to be the information flows. This representation tries to explain the mechanism of
the demon because one can see that the information flows do contribute to the entropy production
for both the demon and controlled system. The first two representations are based on the ensembles
of the subsystem states. This means that the mutual information is defined only on the time-sliced
distributions of the system states, which somehow lack the information of subsystem dynamics: the
time-correlations of the observation and feedback of the demon. The last representation was seen
in the work of Barato, A. C., Hartich, D. and Seifert, U. [13], where a more general definition of
mutual information in information theory was used, which is defined on the trajectories of the two
subsystems. More exactly, this is the so-called Mutual Information Rate (MIR) [24], which quantifies the
correlation between the two subsystem dynamics. However, due to the difficulties from the possible
underlying non-Markovian property of the marginal chains, exactly solvable models and comprehensive
conclusions are still challenging from this representation.

In this study, we study the discrete-time BMC in both stochastic information dynamics and
thermodynamics. To avoid the technical difficulty caused by non-Markovian dynamics, we first
assume that the two marginal chains follow the Markovian dynamics. The non-Markovian case will
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be discussed elsewhere. We explore the time-irreversibility of BMC and marginal processes in the
steady state. Then, we decompose the driving force for the underlying dynamics as the information
landscape and information flux [14–16], which can be used to describe the time-reversible parts and
time-irreversible parts, respectively. We also prove that the non-vanishing flux fully describes the
time-irreversibility of BMC and marginal processes.

We focus on the mutual information rate between the two marginal chains. Since the two marginal
chains are assumed to be Markov chains here, the mutual information rate is exactly analytically
solvable, which can be seen as the averaged conditional correlation between the two subsystem
states. Here, the conditional correlations reveal the time correlations between the past states and the
future states.

Corresponding to the landscape-flux decomposition in stochastic dynamics, we decompose the
MIR into two parts: the time-reversible and time-irreversible parts, respectively. The time-reversible
part measures the part of the correlations between the two marginal chains in both forward
and backward processes of BMC. The time-irreversible part measures the difference between the
correlations in forward and backward processes of BMC, respectively. We can see that a non-vanishing
time-irreversible part of the MIR must be driven by a non-vanishing flux in the steady state, and it can
be seen as the sufficient condition for a BMC to be time-irreversible.

We also reveal the important fact that the time-irreversible parts of MIR contribute to the
nonequilibrium Entropy Production Rate (EPR) of the BMC by the simple equality:

EPR o f BMC = EPR o f 1st marginal chain + EPR o f 2nd marginal chain + 2× time-irreversible part o f MIR.

The decomposition of the MIR and the relation between the time-irreversible part of MIR and
EPRs can also be found in stationary and ergodic non-Markovian cases, which will be given in
the discussions in the Appendix. This may help to develop a general theory of nonequilibrium
non-Markovian interacting information systems.

3. Information Landscape and Information Flux for Determining the Information Dynamics,
Time-Irreversibility

Consider the case that two interacting information systems form a finite-state, discrete-time,
ergodic and irreducible bivariate Markov chain,

Z = (X, S) = {(X(t), S(t)), t ≥ 1}, (1)

We assume that the information state space of X is given by X = {1, ..., d} and the information state
space of S is given by S = {1, ..., l}. The information state space of Z is then given by Z = X × S .
The stochastic information dynamics can then be quantitatively described by the time evolution of the
probability distribution of information state space Z, characterized by the following master equation
(or the information system dynamics) in discrete time,

pz(z; t + 1) = ∑
z′

qz(z|z′)pz(z′; t), for t ≥ 1, and z ∈ Z (2)

where pz(z; t) = pz(x, s; t) is the probability of observing state z (or joint probability of X = x and
S = s) at time t; qz(z|z′) = qz(x, s|x′, s′) ≥ 0 are the transition probabilities from z′ = (x′, s′) to
z = (x, s), respectively, and have ∑z qz(z|z′) = 1.

We assume that there exists a unique stationary distribution πz such that πz(z) = ∑z′ qz(z|z′)πz(z′).
Then, given an arbitrary initial probability distribution, the probability distribution goes to πz

exponentially fast in time. If the initial distribution is πz, we say that Z is in Steady State (SS), and our
discussion is based on this SS.

The marginal chains of Z, i.e., X and S, do not need to be Markov chains in general. For the
simplicity of analysis, we assume that both marginal chains are Markov chains, and the corresponding
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transition probabilities are given by qx(x|x′) and qs(s|s′) (for x, x′ ∈ X and s, s′ ∈ S), respectively.
Then, we have the following master equations (or the information system dynamics) for X and
S, respectively,

px(x; t + 1) = ∑
x′

qx(x|x′)px(x′; t), (3)

and,

ps(s; t + 1) = ∑
s′

qs(s|s′)ps(s′; t), (4)

where px(x; t) and ps(s; t) are the probabilities of observing X = x and S = s at time t, respectively.
We consider that both Equations (3) and (4) have unique stationary solutions πx and πs, which

satisfy πx(x) = ∑x′ qx(x|x′)πx(x′) and πs(s) = ∑s′ qs(s|s′)πs(s′) respectively. Furthermore, we assume
that when Z is in SS, πx and πs are also achieved. The relations between πx, πs and πz read,{

πx(x) = ∑s πz(x, s),

πs(s) = ∑x πz(x, s).
(5)

In the rest of this paper, we let XT = {X(1), X(2), ..., X(T)}, ST = {S(1), S(2), ..., S(T)}, and
ZT = {Z(1), Z(2), ..., Z(T)} = (XT , ST) denote the time sequences of X, S and Z in time T, respectively.

To characterize the time-irreversibility of the Markov chain C in information dynamics in SS,
we introduce the concept of probability flux. Here, we let C denote the arbitrary Markov chain
in {Z, X, S}, and let c, πc, qc and CT denote arbitrary state of C, the stationary distribution of C,
the transition probabilities of C and a time sequence of C in time T and in SS, respectively.

The averaged number transitions from the state c′ to state c, denoted by N(c′ → c), in unit time
in SS can be obtained as:

N(c′ → c) = πc(c′)qc(c|c′).

This is also the probability of the time sequence CT = {C(1) = c′, C(2) = c}, (T = 2). Correspondingly,
the averaged number of reverse transitions, denoted by N(c→ c′), reads:

N(c→ c′) = πc(c)qc(c′|c).

This is also the probability of the time-reverse sequence C̃T = {C(1) = c, C(2) = c′}, (T = 2).
The difference between these two transition numbers measures the time-reversibility of the forward
sequence CT in SS,

Jc(c′ → c) = N(c′ → c)− N(c→ c′)

= P(CT)− P(C̃T) (6)

= πc(c′)qc(c|c′)− πc(c)qc(c′|c), for C = X, S, or Z.

Then, Jc(c′ → c) is said to be the probability flux from c′ to c in SS. If Jc(c′ → c) = 0 for arbitrary c′ and
c, then CT (T = 2) is time-reversible; otherwise, when Jc(c′ → c) �= 0, CT is time-irreversible. Clearly,
we have from Equation (6) that:

Jc(c′ → c) = −Jc(c→ c′). (7)
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The transition probability determines the evolution dynamics of the information system. We can
decompose the transition probabilities qc(c|c′) into two parts: the time-reversible part Dc and
time-irreversible part Bc, which read:

qc(c|c′) = Dc(c′ → c) + Bc(c′ → c), with⎧⎨⎩Dc(c′ → c) = 1
2πc(c′)

(πc(c′)qc(c|c′) + πc(c)qc(c′|c)),

Bc(c′ → c) = 1
2πc(c′)

Jc(c′ → c).

(8)

From this decomposition, we can see that the information system dynamics is determined
by two driving forces. One of the driving forces is determined by the steady state probability
distribution. This part of the driving force is time-reversible. The other driving force for the
information dynamics is the steady state probability flux, which breaks the detailed balance and
quantifies the time-irreversibility. Since the steady state probability distribution measures the
weight of the information state, therefore it can be used to quantify the information landscape. If we
define the potential landscape for the information system as φ = − logπ, then the driving force
Dc(c′ → c) = 1

2 (qc(c|c′) + πc(c)
πc(c′)

qc(c′|c)) = 1
2 (qc(c|c′) + exp[−(φc(c)− φc(c′)]qc(c′|c)) is expressed in

term of the difference of the potential landscape. This is analogous to the landscape-flux decomposition
of Langevin dynamics in [15]. Notice that the information landscape is directly related to the steady
state probability distribution of the information system. In general, the information landscape is
at nonequilibrium since the detailed balance is often broken for general cases. Only when the
detailed balance is preserved, the nonequilibrium information landscape is reduced to the equilibrium
information landscape. Even though the information landscape is not at equilibrium in general, the
driving force Dc(c′ → c) is time-reversible due to the decomposition construction. The steady state
probability flux measures the information flow in the dynamics and therefore can be termed as the
information flux. In fact, the nonzero information flux explicitly breaks the detailed balance because of
the net flow to or from the system. It is therefore a direct measure of the degree of the nonequilibrium
or time-irreversibility in terms of the detailed balance breaking.

Note that the decomposition for the discrete Markovian information process can be viewed as the
separation of the current corresponding to the 2Bc(c′ → c)πc(c′) here and the activity corresponding
to the 2Dc(c′ → c)πc(c′) in a previous study [19]. The landscape and flux decomposition here for
the reduced information dynamics are in a similar spirit as the whole state space decomposition
with the information system and the associated environments. When the detailed balance is
broken, the information landscape (defined as the negative logarithm of the steady state probability
φ = − logπ) is not the same as the equilibrium landscape under the detailed balance. There can be
uniqueness issue related to the decomposition. To avoid the confusion, we make a physical choice,
or in other words, we can fix the gauge so that the information landscape always coincides with the
equilibrium landscape when the detailed balance is satisfied. In other words, we want to make sure
the Boltzmann law applies at equilibrium with detailed balance. In this way, we can decompose the
information landscape and information flux for nonequilibrium information systems without detailed
balance. By solving the linear master equation for the steady state, we can quantify the nonequilibrium
information landscape, and from that, we can obtain the corresponding steady state probability flux.
Some studies discussed various aspects of this issue [18,19,27,28].

By Equations (7) and (8), we have the following relations:{
πc(c′)Dc(c′ → c) = πc(c)Dc(c→ c′),

πc(c′)Bc(c′ → c) = −πc(c)Bc(c→ c′).
(9)

As we can see in the next section, Dc and Bc are useful for us to quantify time-reversible and
time-irreversible observables of C, respectively.
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We give the interpretation that the non-vanishing information flux Jc fully measures the
time-irreversibility of the chain C in time T for T ≥ 2. Let CT be an arbitrary sequence of C in SS, and
without loss of generality, we let T = 3. Similar to Equation (6), the measure of the time-irreversibility
of CT can be given by the difference between the probability of CT = {C(1), C(2), C(3)} and that of its
time-reversal C̃T = {C(3), C(2), C(1)}, such as:

P(CT)− P(C̃T)

= πc(C(1))qc(C(2)|C(1))qc(C(3)|C(2))− πc(C(3))qc(C(2)|C(3))qc(C(1)|C(2))
= πc(C(1)) (Dc(C(1)→ C(2)) + Bc(C(1)→ C(2))) (Dc(C(2)→ C(3)) + Bc(C(2)→ C(3)))−
πc(C(3)) (Dc(C(3)→ C(2)) + Bc(C(3)→ C(2))) (Dc(C(2)→ C(1)) + Bc(C(2)→ C(1))) ,
for C = X, S or Z.

Then, by the relations given in Equation (9), we have that P(CT) − P(C̃T) = 0 holds for arbitrary
CT if and only if Bc(C(1) → C(2)) = Bc(C(2) → C(3)) = 0 or equivalently Jc(C(1) → C(2)) =

Jc(C(2) → C(3)) = 0. This conclusion can be made for arbitrary T > 3. Thus, non-vanishing Jc can
fully describe the time-irreversibility of C for C = X, S or Z.

We show the relations between the fluxes of the whole system Jz and of the subsystem Jx as follows:

Jx(x′ → x) = πx(x′)qx(x|x′)− πx(x)qx(x′|x)
= P({x′, x})− P({x, x′})
= ∑

s,s′

(
P({(x′, s′), (x, s)})− P({(x, s), (x′, s′)})

)
(10)

= ∑
s,s′

(
πz(x′, s′)qz(x, s|x′, s′)− πz(x, s)qz(x′, s′|x, s)

)
= ∑

s,s′
Jz((x′, s′)→ (x, s)).

Similarly, we have:

Js(s′ → s) = ∑
x,x′

Jz((x′, s′)→ (x, s)). (11)

These relations indicate that the subsystem fluxes Jx and Js can be seen as the coarse-grained levels of
total system flux Jz by averaging over the other parts of the system S and X, respectively. We should
emphasize that non-vanishing Jz does not mean X or S is time-irreversible and vice versa.

4. Mutual Information Decomposition to Time-Reversible and Time-Irreversible Parts

According to information theory, the two interacting information systems represented by bivariate
Markov chain Z can be characterized by the Mutual Information Rate (MIR) between the marginal
chains X and S in SS. The mutual information rates represent the correlation between two interacting
information systems. The MIR is defined on the probabilities of all possible time sequences, P(ZT),
P(XT) and P(ST) and is given by [24],

I(X, S) = lim
T→∞

1
T ∑

ZT

P(ZT) log
P(ZT)

P(XT)P(ST)
. (12)

It measures the correlation between X and S in unit time, or say, the efficient bits of information that X
and S exchange with each other in unit time. The MIR must be non-negative, and a vanishing I(X, S)
indicates that X and S are independent of each other. More explicitly, the corresponding probabilities
of these sequences can be evaluated by using Equations (2)–(4); we have:
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⎧⎪⎪⎨⎪⎪⎩
P(XT) = πx(X(1))∏T−1

t=1 qx(X(t + 1)|X(t)),

P(ST) = πs(S(1))∏T−1
t=1 qs(S(t + 1)|S(t)),

P(ZT) = πz(Z(1))∏T−1
t=1 qz(Z(t + 1)|Z(t)).

By substituting these probabilities into Equation (12) (see Appendix A), we have the exact expression
of MIR as:

I(X, S) = ∑z,z′ πz(z′)qz(z|z′) log qz(z|z′)
qx(x|x′)qs(s|s′)

=
〈
i(z|z′)〉z′ ,z ≥ 0, for z = (x, s), and z′ = (x′, s′).

(13)

where i(z|z′) = log qz(z|z′)
qx(x|x′)qs(s|s′) is the conditional (Markovian) correlation between the states x and

s when the transition z′ = (x′, s′) → z = (x, s) occurs. This indicates that when the two marginal
processes are both Markovian, the MIR is the average of the conditional (Markovian) correlations.
These correlations are measurable when transitions occur, and they can be seen as the observables of Z.

By noting the decomposition of transition probabilities in Equation (8), we have a corresponding
decomposition of I(X, S) such as:

I(X, S) = ID(X, S) + IB(X, S), with⎧⎨⎩ID(X, S) = ∑z,z′ πz(z′)Dz(z|z′)i(z|z′) = 1
2 ∑z,z′(πz(z′)qz(z|z′) + πz(z)qz(z′|z))i(z|z′),

IB(X, S) = ∑z,z′ πz(z′)Bz(z|z′)i(z|z′) = 1
2 ∑z,z′ Jz(z|z′)i(z|z′) = 1

4 ∑z,z′ Jz(z|z′)(i(z|z′)− i(z′|z)).
(14)

This means that the mutual information representing the correlations between the two interacting
systems can be decomposed into the time-reversible equilibrium part and the time-irreversible
nonequilibrium part. The origin of this is from the fact that the underlying information system
dynamics is determined by both the time-reversible information landscape and time-irreversible
information flux. These equations are very important to establish the link to the time-irreversibility.
We now give further interpretation for ID(X, S) and IB(X, S):

Consider a bivariate Markov chain Z in SS wherein X and S are dependent on each other,
i.e., I(X, S) = ID(X, S) + IB(X, S) > 0. By the ergodicity of Z, we have the MIR, which measures
the averaged conditional correlation along the time sequences ZT ,

lim
T→∞

1
T
〈
i(Z(t + 1)|Z(t))〉ZT = I(X, S), for 1 < t < T.

Then, IB(X, S) measures the change of the averaged conditional correlation between X and S when
a sequence of Z turns back in time,

lim
T→∞

1
T
〈
i(Z(t + 1)|Z(t))− i(Z(t)|Z(t + 1))

〉
ZT = 2IB(X, S).

A negative IB(X, S) shows that the correlation between X and S becomes strong in the time-reversal
process of Z; A positive IB(X, S) shows that the correlation becomes weak in the time-reversal process
of Z. Both cases show that the Z is time-irreversible since we have a non-vanishing Jz. However,
the case of IB(X, S) = 0 is complicated, since it indicates either a vanishing Jz or a non-vanishing Jz.
Anyway, we see that a non-vanishing IB(X, S) is a sufficient condition for Z to be time-irreversible.
On the other hand, ID(X, S) = I(X, S)− IB(X, S) measures the correlation remaining in the backward
process of Z.

The definition of MIR in Equation (12) turns out to be appropriate for even more general stationary
and ergodic (Markovian or non-Markovian) processes. Consequentially, the decomposition of MIR is
useful to quantify the correlation between two stationary and ergodic processes in a wider sense, i.e.,
to monitor the changes of the correlation in the forward and the backward processes. As a special case,
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the analytical expressions in Equation (14) are the reduced results, which are valid for Markovian cases.
A brief discussion of the decomposition of MIR of more general processes can be found in Appendix B.

5. Relationship between Mutual Information and Entropy Production

The Entropy Production Rates (EPR) or energy dissipation (cost) rate at steady state is a quantitative
nonequilibrium measure, which characterizes the time-irreversibility of the underlying processes.
The EPR of a stationary and ergodic process C (here C = Z, X or S) can be given by the difference
between the averaged surprisal (negative logarithmic probability) of the backward sequences C̃T and
that of forward sequences CT in the long time limit, i.e.,

Rc = lim
T→∞

1
T
〈

log P(CT)− log P(C̃T)
〉

CT

= lim
T→∞

1
T

〈
log

P(CT)

P(C̃T)

〉
CT
≥ 0,

(15)

where Rc is said to be the EPR of C [25]; − log P(CT) and − log P(C̃T) are said to be the surprisal of a
forward and a backward sequence of C, respectively. We see that C is time-reversible (i.e., P(CT) =

P(C̃T) for arbitrary CT for large T) if and only if Rc = 0. Additionally, this is due to the form of
Rc, which is exactly a Kullback–Leibler divergence. When C is Markovian, then Rc reduces into the
following form when Z, X or S is assigned to C, respectively [17,26],⎧⎪⎪⎨⎪⎪⎩

Rz =
1
2 ∑z,z′ Jz(z′ → z) log qz(z|z′)

qz(z′ |z) ,

Rx = 1
2 ∑x,x′ Jx(x′ → x) log qx(x|x′)

qx(x′ |x) ,

Rs =
1
2 ∑s,s′ Js(s′ → s) log qs(s|s′)

qs(s′ |s) ,

(16)

where total and subsystem entropy productions Rz, Rx and Rs correspond to Z, X and S, respectively.
Here, Rz usually contains the detailed interaction information of the system (or subsystems) and
environments; Rx and Rs provide the coarse-grained information of time-irreversible observables
of X and Z, respectively. Each non-vanishing EPR indicates that the corresponding Markov chain
is time-irreversible. Again, we emphasize that a non-vanishing Rz does not mean X or S is
time-irreversible and vice versa.

We are interested in the connection between these EPRs and mutual information. We can associate
them with IB(X, S) by noting Equations (10), (11) and (14). We have:

IB(X, S) =
1
4 ∑

z,z′
Jz(z|z′)(i(z|z′)− i(z′|z))

=
1
4 ∑

z,z′
Jz(z|z′) log

qz(z|z′)
qz(z′|z)

− 1
4 ∑

x,x′
Jx(x|x′) log

qx(x|x′)
qx(x′|x) −

1
4 ∑

s,s′
Js(s|s′) log

qs(s|s′)
qs(s′|s)

=
1
2
(Rz − Rx − Rs).

(17)

We note that IB(X, S) is intimately related to the EPRs. This builds up a bridge between these
EPRs and the irreversible part of the mutual information. Moreover, we also have:⎧⎪⎪⎨⎪⎪⎩

Rz = Rx + Rs + 2IB(X, S) ≥ 0,

Rx + Rs ≥ −2IB(X, S),

Rz ≥ 2IB(X, S).

(18)

This indicates that the time-irreversible MIR contributes to the detailed EPRs. In other words,
the differences of the entropy production rate of the whole system and subsystems provide the origin of
the time-irreversible part of the mutual information. This reveals the nonequilibrium thermodynamic
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origin of the irreversible mutual information or correlations. Of course, since the EPR is related
to the flux directly as is seen from the above definitions, the origin of the EPR or nonequilibrium
thermodynamics is from the non-vanishing information flux for the nonequilibrium dynamics. On the
other hand, the irreversible part of the mutual information measures the correlations, and it contributes
to the EPRs of the correlated subsystems.

Furthermore, the last expression in Equation (17) (also the expressions in Equation (18)) can be
generalized to more general stationary and ergodic processes. A related discussion and demonstration
of this can be seen in Appendix B.

6. A Simple Case: The Blind Demon

As a concrete example, we consider a two-state system coupled to two information baths a and
b. The states of the system are denoted by X = {x : x = 0, 1}, respectively. Each bath sends an
instruction to the system. If the system adopts one of them, it then follows the instruction and makes
the change of the state. The instructions generated from one bath are independently and identically
distributed (Bernoulli trials). Both the probability distributions of the instructions corresponding to
the baths follow Bernoulli distributions and read {εa(x) : x ∈ X , εa(x) ≥ 0, ∑x εa(x) = 1} for bath a
and {εb(x) : x ∈ X , εb(x) ≥ 0, ∑x εb(x) = 1} for bath b, respectively. Since the system cannot execute
two instructions simultaneously, there exists an information demon that makes choices for the system.
The demon is blind to caring about the system, and it makes choices independently and identically
distributed. The choices of the demon are denoted by S = {s : s = a, b}, respectively. The probability
distribution of the demon’s choices reads {P(s) : s ∈ S , P(a) = p, P(b) = 1− p, p ∈ [0, 1]}. Still,
we use Z = (X, S) with X ∈ X and S ∈ S to denote the BMC of the system and the demon.

Consequentially, the transition probabilities of the system read:

qx(x|x′) = pεa(x) + (1− p)εb(x).

The transition probabilities of the demon read:

qs(s|s′) = P(s).

Additionally, the transition probabilities of the joint chain read:

qz(x, s|x′, s′) = P(s)εs′(x).

We have the corresponding steady state distributions or the information landscapes as,⎧⎪⎪⎨⎪⎪⎩
πx(x) = pεa(x) + (1− p)εb(x),

πs(s) = P(s),

πz(x, s) = P(s)πx(x).

We obtain the information fluxes as,⎧⎪⎪⎨⎪⎪⎩
Jx(x′ → x) = 0, for all x, x′ ∈ X
Js(s′ → s) = 0, for all s, s′ ∈ S
Jz((x′, s′)→ (x, s)) = P(s)P(s′)(πx(x′)εs′(x)− πx(x)εs(x′)).

Here, we use the notations εs(x′) and εs′(x) (s, s′ = a or b) to denote the probabilities of the instructions
x′ or x from bath a or b briefly. We obtain the EPRs as:
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⎧⎪⎪⎨⎪⎪⎩
Rx = 0,

Rs = 0,

Rz = ∑x p(1− p)(εa(x)− εb(x))(log εa(x)− log εb(x)).

We evaluate the MIR as:

I(X, S) = −∑
x
πx(x) logπx(x) + p ∑

x
εa(x) log εa(x) + (1− p)∑

x
εb(x) log εb(x).

The time-irreversible part of I(X, S) reads,

IB(X, S) =
1
2

Rz.

7. Conclusions

In this work, we identify the driving forces for the information system dynamics. We show
that for marginal Markovian information systems, the information dynamics is determined by both
the information landscape and information flux. While the information landscape can be used to
construct the driving force for describing the time-reversible behavior of the information dynamics,
the information flux can be used to describe the time-irreversible behavior of the information dynamics.
The information flux explicitly breaks the detailed balance and provides a quantitative measure of
the degree of the nonequilibrium or time-irreversibility. We further demonstrate that the mutual
information rate, which represents the correlations, can be decomposed into the time-reversible
part and the time-irreversible part originated from the landscape and flux decomposition of the
information dynamics. Finally, we uncover the intimate relationship between the difference of the
entropy productions of the whole system and those of the subsystems and the time-irreversible part
of the mutual information. This will help with understanding the non-equilibrium behavior of the
interacting information system dynamics in stochastic environments. Furthermore, we verify that our
conclusions on the mutual information rate and entropy production rate decomposition can be made
more general for the stationary and ergodic processes.
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Appendix A

Here, we derive the exact form of the Mutual Information Rate (MIR, Equation (13)) in the steady
state by using the cumulant-generating function.

We write an arbitrary time sequence of Z in time T in the following form:

ZT = {Z(1), ..., Z(i), ..., Z(T)}, for T ≥ 2,
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where Z(i) (for i ≥ 1) denotes the state at time i. The corresponding probability of ZT is in the
following form:

P(ZT) = πz(Z1)

{
T−1

∏
i=1

qz(Zi+1|Zi)

}
. (A1)

We let the chain U = (X, S) denote a process that X and S follow the same Markov dynamics in
Z, but are independent of each other. Then, we have that the transition probabilities of U read:

qu(u|u′) = q(x, s|x′, s′) = qx(x|x′)qs(s|s′). (A2)

Then, the probability of a time sequence of U, UT , with the same trajectory of ZT reads:

P(UT) = πu(Z1)

{
T−1

∏
i=1

qu(Zi+1|Zi)

}
, (A3)

with πu(x, s) = πx(x)πs(s) being the stationary probability of U.
For evaluating the exact form of MIR, we introduce the cumulant-generating function of the

random variable log P(ZT)
P(UT)

,

K(m, T) = log
〈

exp
(

m log
P(ZT)

P(UT)

)〉
ZT

. (A4)

We can see that:

lim
T→∞

lim
m→0

1
T

∂K(m, T)
∂m

= lim
T→∞

1
T

〈
log

P(ZT)

P(UT)

〉
ZT

= I(X, S).

(A5)

Thus, our idea is to evaluate K(m, T) at first. We have:

K(m, T) = log
〈

exp
(

m log
P(ZT)

P(UT)

)〉
ZT

= log

{
∑
ZT

(P(ZT))m+1

(P(UT))m

}

= log

⎧⎨⎩ ∑
{Z(0),Z(1),...,Z(T)}

(πm+1
z (Z0))

(πm
u (Z0))

T−1

∏
i=0

qm+1
z (Zi+1|Zi)

qm
u (Zi+1|Zi)

⎫⎬⎭ ,

(A6)

where we realize that the last equality can be rewritten in the form of matrix multiplication.
We introduce the following matrices and vectors for Equation (A6) such that:

QQQz =
{
(QzQzQz)(z,z′) = qz(z|z′), for z, z′ ∈ Z

}
,

GGG(m) =
{
(GGG(m))(z,z′) =

qm+1
z (z|z′)
qm

u (z|z′) , for z, z′ ∈ Z
}

,

πππz = {(πππz)z = πz(z), for z ∈ Z} ,

vvv(m) =
{
(vvv(m))z =

πm+1
z (z)
πm

u (z)

}
,

(A7)

where QQQz is the transition matrix of Z; πππz is the stationary distribution of Z. It can be also verified that:
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QQQz = GGG(0),

πππz = vvv(0),

πππz = QQQzπππz,

111†QQQz = 111†,

lim
m→0

dGGG(m)

dm
=

{(
lim
m→0

dGGG(m)

dm

)
(z,z′)

= qz(z|z′) log
qz(z|z′)
qu(z|z′)

, for z, z′ ∈ Z
}

,

lim
m→0

dvvv(m)

dm
=

{(
lim
m→0

dvvv(m)

dm

)
z
= πz(z) log

πz(z)
πu(z)

, for z ∈ Z
}

,

(A8)

where 111† is the vector of all ones with appropriate dimension.
Then, K(m, T) can be rewritten in a compact form such that:

K(m, T) = log
{

111†GGGT−1(m)vvv(m)
}

. (A9)

Then, we substitute Equation (A9) into Equation (A5) and have:

I(X, S) = lim
T→∞

lim
m→0

1
T

∂K(m, T)
∂m

= lim
T→∞

lim
m→0

1
T

∂ log
{

111†GGGT−1(m)vvv(m)
}

∂m

= lim
T→∞

lim
m→0

1
T

{
(T − 1)111†GGGT−2(m)

dGGG(m)

dm
vvv(m) + 111†GGGT−1(m)

dvvv(m)

dm

}
= lim

T→∞

1
T

{
(T − 1)111†GGGT−2(0)

(
lim
m→0

dGGG(m)

dm

)
vvv(0) + 111†GGGT−1(0)

(
lim
m→0

dvvv(m)

dm

)}
.

(A10)

By noting Equation (A8) and T ≥ 2, we obtain Equation (13) from Equation (A10) such that:

I(X, S) = lim
T→∞

1
T

{
(T − 1)111†GGGT−2(0)

(
lim
m→0

dGGG(m)

dm

)
vvv(0) + 111†GGGT−1(0)

(
lim
m→0

dvvv(m)

dm

)}
= lim

T→∞

{(
1− 1

T

)
111†
(

lim
m→0

dGGG(m)

dm

)
πππz +

1
T

111†
(

lim
m→0

dvvv(m)

dm

)}
= 111†

(
lim
m→0

dGGG(m)

dm

)
πππz

= ∑
(x,s),(x′ ,s′)

πz(x′, s′)qz(x, s|x′, s′) log
qz(x, s|x′, s′)

qx(x|x′)qs(s|s′)
.

(A11)

Appendix B

Appendix B.1 Discussions on the Generality of Mutual Information Rate Decomposition and Connections to
Entropy Production in Terms of Equations (14), (17), and (18)

For general cases, indeed, we do not expect that both X and S are Markovian. Even the joint
chain Z may be non-Markovian. This means that Equation (2) may fail to depict the dynamics of Z.
Then, the landscape-flux decomposition needs to be generalized to this situation. Such decomposition
was not developed yet for the non-Markovian cases. This will be discussed in a separate work.
However, when Z is a stationary and ergodic process (also assume that both X and S are stationary
and ergodic), we show that the MIR can be decomposed into two parts as is shown in Equation (14),
and an interesting relation between the MIR and EPRs can still be found in the same form of the last
expression in Equation (17).

104



Entropy 2017, 19, 678

We are interested in the correlation between the forward sequences of X and S, which can be

measured by log P(ZT)
P(XT)P(ST)

(ZT = (XT , ST)), then the MIR can be used to quantify the average rate of
this correlation in the long time limit as shown in Equation (12). Furthermore, we are interested in
the averaged difference between the rate of the correlation of the backward processes and that of the
forward processes. This comes to the time-irreversible part of the MIR defined by:

IB(X, S) = lim
T→∞

1
2T

〈
log

P(ZT)

P(XT)P(ST)
− log

P(Z̃T)

P(X̃T)P(S̃T)

〉
ZT

, (A12)

where log P(Z̃T)

P(X̃T)P(S̃T)
quantifies the correlation between the backward sequences of X and S.

Clearly, the time-irreversible part of MIR depicting the correlation of the forward processes of X
and S is enhanced (IB(X, S) > 0) or weakened (IB(X, S) < 0) compared to that of the backward
processes. The other important part of the MIR, namely the time-reversible part, shows that the
averaged rate of the correlation that remains in both forward and backward processes,

ID(X, S) = lim
T→∞

1
2T

〈
log

P(ZT)

P(XT)P(ST)
+ log

P(Z̃T)

P(X̃T)P(S̃T)

〉
ZT

, (A13)

Consequentially, the MIR I(X, S) is decomposed into two parts shown as I(X, S) = ID(X, S)+ IB(X, S).
In Markovian cases, each part of the MIR reduces to the form in Equation (14) respectively.

The relation between the time-irreversible part of the MIR and EPRs can be shown as follows,

IB(X, S) = lim
T→∞

1
2T

〈
log

P(ZT)

P(XT)P(ST)
− log

P(Z̃T)

P(X̃T)P(S̃T)

〉
ZT

= lim
T→∞

1
2T

{〈
log

P(ZT)

P(Z̃T)

〉
ZT
−
〈

log
P(XT)

P(X̃T)

〉
XT
−
〈

log
P(ST)

P(S̃T)

〉
ST

}
(A14)

=
1
2
(Rz − Rx − Rs) ,

which is in the same form as Equation (17). Additionally, due to the non-negativity of the EPRs, the
inequalities in (18) still hold for general cases.

Appendix B.2. The Smart Demon

To verify the conclusions in more general cases, we constructed a model of a smart demon,
which reflects a more general situation in the nature: the two information subsystems play feedback
to each other. A three-state information system is connected to two information baths labeled a
and b, respectively. The states of the system are denoted by X = {x : x = 0, 1, 2}, respectively.
Each bath sends an instruction to the system. If the system adopts one of them, it then follows
the instruction and makes a change of the state. The instructions generated from one arbitrary
bath are independent and identically distributed. The probability distributions of the instructions
corresponding to the baths read {εs(x) : εs(x) ≥ 0, ∑x∈X εs(x) = 1} (for s = a, b), respectively.
Since the system cannot execute the two incoming instructions simultaneously, there exists an
information demon making choices for the system. The choices of the demon are denoted by
the labels of the baths S = {s : s = a, b}, respectively. The demon observes the state of the
system and plays feedback. The (conditional) probability distribution of the demon’s choices reads
{d(s|x′, s′) : d(s|x′, s′) ≥ 0, ∑s∈S d(s|x′, s′) = 1, x′ ∈ X , s′ ∈ S}. Still, we use X, S and Z = (X, S) to
denote the processes of the system, the demon and the corresponding joint chain, a BMC, respectively.

The transition probabilities of the BMC read:

qz(z|z′) = qz(x, s|x′, s′) = d(s|x′, s′)εs(x),
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where εs(x) denotes the probability of the instruction x from bath s = a, b. We assume that there is
a unique stationary distribution of z, πz such that:

πz(z) = ∑
z′

qz(z|z′)πz(z′).

The stationary distributions of S and X then read:{
πs(s) = ∑x πz(x, s),

πx(x) = ∑s πz(x, s).

The behavior of the demon can be seen as a Markovian process in the steady state. The corresponding
transition probabilities of the system read:

qs(s|s′) =
1

πs(s′)
∑
x′

d(s|x′, s′)πz(x′, s′).

It can be verified that πs is the unique stationary distribution of S. However, the dynamics of the
system always behaves as a non-Markovian process in general.

To characterize the time-irreversibility of Z, X and S, we use the definition of EPR in Equation (15)
and have: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rz =
1
2 ∑z,z′ Jz(z′ → z) log qz(z|z′)

qz(z′ |z) ,

Rs =
1
2 ∑s,s′ Js(s′ → s) log qs(s|s′)

qs(s′ |s) = 0,

Rx = limT→∞
1
T ∑XT P(XT) log P(XT)

P(X̃T)
,

where:

P(XT) = ∑
ST

P(ZT = (XT , ST)).

To quantify the correlation between the system and demon, we use the definition of MIR in Equation (12).
We are also interested in the time-irreversible part of MIR, IB(X, S), which influences the EPR

of the system, Rx. This can be seen from Equation (A14) such that:

Rx = Rz − Rs − 2IB(X, S).

We use numerical simulations, which evaluate Rx, I(X, S) and IB(X, S) directly from the typical
sequences of Z (see [7,8]). The corresponding results can be given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rx ≈ 1
T log P(XT)

P(X̃T)
, for large T,

I(X, S) ≈ 1
T log P(ZT)

P(XT)P(ST)
, for large T,

IB(X, S) ≈ 1
2T log P(ZT)

P(XT)P(ST)
− 1

2T log P(Z̃T)

P(X̃T)P(S̃T)
, for large T,

where ZT = (XT , ST) is a typical sequence of Z (hence, XT and ST are typical sequences of X and S,
respectively). The convergence of this numerical simulation can be observed as T increases. To confirm
the result Rx = Rz − Rs − 2IB(X, S), we use different typical sequences in calculating Rx and IB(X, S),
respectively. Rz and Rs are calculated by using the corresponding analytical results shown above.

For numerical simulations, we randomly choose two groups of the parameters: the probabilities of
the instructions of the baths εa and εb and the probabilities of the demon’s choices d (see Tables A1 and A2).
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We evaluate Rx, I(X, S) and IB(X, S) for both groups. The values of the numerical results are listed in
Table A3.

Table A1. Two groups of εa and εb.

{εa(x = 0), εa(x = 1), εa(x = 2)} {εb(x = 0), εb(x = 1), εb(x = 2)}
Group 1 {0.2344, 0.2730, 0.4926} {0.4217, 0.4094, 0.1689}
Group 2 {0.1305, 0.3972, 0.4723} {0.3358, 0.0010, 0.6633}

Table A2. Two groups of d.

{d(s = a|x = 0, s = a), d(s = b|x = 0, s = a)} {d(s = a|x = 1, s = b), d(s = b|x = 0, s = b)}
Group 1 {0.3844, 0.6156} {0.6811, 0.3189}
Group 2 {0.1072, 0.8928} {0.7473, 0.2527}

{d(s = a|x = 1, s = a), d(s = b|x = 1, s = a)} {d(s = a|x = 1, s = b), d(s = b|x = 1, s = b)}
Group 1 {0.5195, 0.4805} {0.8088, 0.1912}
Group 2 {0.6595, 0.3405} {0.1600, 0.8400}

{d(s = a|x = 2, s = a), d(s = b|x = 2, s = a)} {d(s = a|x = 2, s = b), d(s = b|x = 2, s = b)}
Group 1 {0.3775, 0.6225} {0.3340, 0.6660}
Group 2 {0.0232, 0.9768} {0.0814, 0.9186}

Table A3. Numerical results of Rz, Rx, I(X, S) and IB(X, S).

Rz Rx I(X,S) IB(X,S)

Group 1 0.0645 0.0018 0.0885 0.0313
Group 2 0.5485 0.1291 0.3385 0.2097
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Abstract: Nanopores have become a subject of interest in the scientific community due to their
potential uses in nanometer-scale laboratory and research applications, including infectious disease
diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and
cellular scale physiological processes. Recent advances in information theory have made it possible
to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously
fluctuating nanopore systems, which has enhanced our understanding of the physical systems they
model. We present the results of local (LER) and specific entropy rate (SER) computations from a
simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show
increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in
information generation surrounding these fluctuations.

Keywords: entropy; local entropy rate; specific entropy rate; information dynamics; k-nearest
neighbor estimation; nanopore

1. Introduction

Over the previous three decades there has been an increasing interest in studying nanopore
systems due to their broad applicability to the physical and biological sciences. Advances in
nanometer-scale laboratory techniques have made it possible to create and isolate single nanopores,
allowing detailed study of their properties. In addition to suggesting applicability as physiological
models for molecular and cellular scale processes, and utility for DNA sequencing and rapid
drug/microbial detection, their electronic behavior provides opportunities to study the information
dynamics of nanoscale nonlinear oscillators [1–17].

Significant advances have been made in the development of tools to study information storage,
processing, and transmission. Specifically, our understanding of Shannon entropy measures as
metrics for information flow have progressed with notable momentum in the study of conditional
(time-dependent) entropies, referred to as entropy rates in the literature. Local and specific entropy
rates are among the most recent contributions in this area. These nonlinear measures of information
dynamics can reveal interesting properties not accessible by classical linear methods such as
autocorrelation and spectral analyses [18,19].

Local and specific entropy rates quantify complementary properties of a dynamical system. If we
have a time series representing an observable, the local entropy rate (LER) represents the statistical
surprise of seeing an already observed local future, given a specific past [20–23]. It also can be thought
of as the rate of information generation at a given time point. The specific entropy rate (SER) represents
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the statistical uncertainty in an as yet unobserved future, given a specific past [24]. The LER, in isolation,
is a retrospective measure, and the SER is a prospective measure, and each yields distinct information
about the behavior of the dynamical system.

In [25], the authors use current–voltage data collected from a single, conical nanopore in contact
with an ion solution to motivate a mechanistic model for the electronic behavior of the nanopore
system. The pore is externally biased, but its fluctuations (openings and closings) are autonomous
and result from dynamic formation and dissolution (or passage) of tiny inorganic precipitates [26,27].
They demonstrated that their mathematical model captures important properties of the observable
from the nanopore system, including these fluctuations, which appear as rapid transitions between
high and low conductance states in the time series. One reason this system is an ideal candidate
for analysis via information dynamics is that its fluctuations may be informed by its previous states
(transitions may depend on previous states, as they do in a Markov process).

The structure of this paper is as follows. In Section 2, we present the definitions and estimation
procedures for local and specific entropy rates. We introduce the model of the nanopore in Section 3.
We then investigate the properties of the nanopore system as viewed through the lens of information
dynamics in Section 4. Finally, in Section 5, we conclude by considering other potential avenues of
study for this and other nanoscale systems.

2. Definition and Estimation of Local and Specific Entropy Rates

2.1. Notation

Before beginning a discussion of the details of local and specific entropy rates, it is valuable to
first establish standardized notation that will be used throughout this paper. We will be considering a
stochastic process (current), {Xt}t∈Z, in an autonomously fluctuating nanopore system. Realizations
(or observed values) of this nanopore current will use lower case designation, x1, x2, ..., xt. A block of
states will be denoted Xn

m = (Xm, Xm+1, ..., Xn−1, Xn), where m < n.
Additionally, conditional densities are relevant to the discussion of local and specific entropy rates.

Conditional densities will be expressed in the form fY|X(a | b), which can be read as “the predictive
density of Y conditioned on X = b”. For example, the predictive density of the future Xt, conditioned
on a specific p-step past xt−1

t−p can be expressed as fXt |Xt−1
t−p

(xt | xt−1
t−p). We will assume conditional

stationarity [28] of the process and thus denote the predictive density without time dependence as
f (xt | xt−1

t−p). Note that this is a weaker assumption than strong stationarity which requires that joint
distributions of any length are invariant under translation in time. Instead, we only assume that
the distribution of the future, conditional on a sufficiently long past, is statistically invariant under
translation in time.

2.2. Differential Entropy and Total Entropy Rate

In what follows, we assume familiarity with information theory at the level of [29]. Both local and
specific entropy rates are born from differential entropy, and it is therefore important to introduce these
quantities from the outset. Differential entropy can be thought of as the average uncertainty about the
future if the model for a particular stochastic process is known, but the past is not. The definition of
differential entropy for a random vector X is

H[X] = −E[log f (X)]

= −
∫
Rn

f (x) log f (x) dx
(1)

where f (x) represents the probability density of an n-dimensional distribution. If we know the past,
we can condition the entropy, at any particular time point, on the past and obtain the following total
entropy rate:
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H[Xt | Xt−1
−∞ ] = −E[log f (Xt | Xt−1

−∞)]

= −
∫
R∞

∫
R

f (xt, xt−1
−∞) log f (xt | xt−1

−∞) dxtdxt−1
−∞

(2)

where Equation (2) is defined as lim
p→∞

H[Xt | Xt−1
t−p], if the limit exists. This quantity averages over all

pasts and all futures to compute the uncertainty, but what if we want to know, at any given time point,
our surprise given the realized past and future? We can answer this question with the LER.

2.3. Local Entropy Rate

The LER [20–23] is a time-dependent, locally-determined conditional entropy. The LER quantifies
the surprise of observing a future xt given its preceding values. The LER is defined as the expectand
(the expression internal to the expectation operator) of the total entropy rate evaluated at a particular
past–future pair,

HL
t = HL(xt | xt−1

−∞) = − log f (xt | xt−1
−∞). (3)

In practice, however, the density f is not known, and Equation (3) is not directly calculable.
We must therefore find an estimator for LER through computation of an estimator for the predictive
density. Moreover, because we always estimate f using finite data, it is not tractable to take the block
of past values infinitely far into the past, and we therefore also require an appropriate model order p.

The first step in computing the estimator for LER is to determine the model order p for the
predictive density f (xt | xt−1

t−p) used in its calculation. Conceptually, p quantifies the number of
preceding state values that are necessary to determine the predictive density of Xt. In analyzing
stochastic systems, the goal is to determine whether information contained in the past is useful
to understanding the immediate future. If we do not look back far enough, we may miss useful
information from the past that could help us determine the future. If we look too far back, we may
inadvertently include information not relevant to determining the immediate future. As a concrete
example, consider the case where the observable is well-modeled by a Markov process of some order p.
In that case, after knowing the previous p values of the process, the future is independent of any
values further in the past, so those values do not aid in the prediction of the process. However, they do
increase the burden of the associated estimation problem, through the curse of dimensionality [30].
That is, geometrically more data is necessary to achieve the same level of precision in the estimate
of the density. In the case where the process is not Markovian, a similar argument applies, except
with the added consideration for balancing between the contribution of including more of the past
and its increasing burden to estimation process. We seek the model order that results in a minimum
uncertainty. Using the information theoretic criterion from [31], the model order is chosen to minimize
the negative log predictive likelihood (NLPL)

NLPL(p) = − 1
N − p

N

∑
i=p+1

log f̂−i(Xi | Xi−1
i−p) (4)

where N is the number of points in the time series, and f̂−i is an estimator of the predictive density
estimated holding out the block Xi

i−p. We use a kernel-nearest neighbor estimator for f , which performs
kernel density estimation over the set of nearest neighbors in the future space [32,33]. The estimator
takes the form

f̂−i(Xi | Xi−1
i−p) =

1
J ∑

m∈NJ(Xi−1
i−p)

Kh(Xi − Xm) (5)

where Kh is a Gaussian kernel, J is the number of nearest neighbors to Xi−1
i−p, NJ(Xi−1

i−p) is the index set
of the J-nearest neighbors, and h is a bandwidth for the density estimator over futures. Equation (4)
over h, J, and p is optimized using the constrained Nelder–Mead method from the NLopt library,
where h is constrained to (0, ∞) and J is constrained to {1, ..., Jmax}, where Jmax � N [34].
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Once the optimal model order is determined, it is used to compute the estimator for the LER at
time ti:

ĤL
ti
= − log

{ f̂ (Xi, Xi−1
i−p)

f̂ (Xi−1
i−p)

}
(6)

where the density estimators are computed using a k-th-nearest neighbor method [35]. A free-standing
LER estimator (an estimator of the LER that will not be subsequently used to compute an estimator
of the SER) must be computed using a value of k that scales with a power of N to ensure consistency
in the estimation of the densities [35]. In this work, k(N) = �

√
N� was used. As we will see in

the next section, the estimator of LER is also used in the estimator of the SER. In that case, the LER
estimator may be more efficiently computed using a smaller k due to the impact of averaging on the
bias–variance trade-off. In that case, we use k = 4 in this work.

2.4. Specific Entropy Rate

The SER is a measure of the predictive uncertainty in the future conditional on a specific past.
Unlike the LER, which is retrospective, the SER is completely predictive because it averages over
futures to compute the uncertainty. The SER is an average of LER values conditioned on a specific past.
It takes the following form [24,36]:

HS
ti
= HS[Xi | Xi−1

i−p = xi−1
i−p]

= −E[log f (Xi | Xi−1
i−p) | Xi−1

i−p = xi−1
i−p]

= −
∫
R

f (xi | xi−1
i−p) log f (xi | xi−1

i−p) dxt.

(7)

Similarly, for practical purposes, an estimator for the SER is computed via averaging of the
estimator for the LER. Once the LER estimator values have been computed, k∗ of them are averaged at
each time point to obtain the estimator for the SER at time ti:

ĤS
ti
=

1
k∗ ∑

j∈Nk∗ (Xi−1
i−p)

ĤL(Xj | Xj−1
j−p) (8)

where again Nk∗(Xi−1
i−p) is the index set of the k∗-nearest neighbors of Xi−1

i−p. It is important to note

that k∗ is distinct from k in the previous discussion of LER. k∗ is set at �
√

N� in this work to ensure
consistency of the estimator [35,37–39].

2.5. Specific Information Dynamics with Python

The code for the determination of model order and the estimation of local, specific, and total
entropy rates is available in the Specific Information Dynamics with Python (sidpy) package, hosted
on GitHub [40].

3. Model System

We consider the information dynamics of a nanopore current oscillator, empirically observed and
modeled in [25–27,41]. A single nanopore current oscillator, which is observed in a single state x as
a function of time t, can be modeled as a coupled nonlinear oscillator with bistable potential U(x, y)
forced by dynamical noise:
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dXt = −
1

γx

∂U
∂x

(Xt, Yt) dt + σx dWx

dYt =
1

γy
[k+Θ(Xt)− k−Θ(−Xt)]dt + σydWy

(9)

where Xt is the nanopore current, Yt is an unobserved state variable that controls the opening and
closing behavior of the nanopore, γ is a coefficient of friction, Θ is a Heaviside function with amplitude
determined by rate constants k+ and k−, and Wx and Wy are standard Brownian motions representing
other unaccounted for inputs to the system. The double-well potential U(x, y) is taken to be

U(x, y) =
1
4

ax4 − 1
2

b(V)x2 + cxy (10)

where b(V) is the voltage-dependent parameter that determines the barrier height:

b(V) = b0

(V −Vc

Vc

)
(11)

with Vc as the critical voltage. The behavior of the potential as it relates to both X and Y is critical to
understanding the behavior of the nanopore current and should be examined in more detail. When X
takes positive values, Y will be a random walk with drift k+

γy
plus dynamical noise. As Y drifts to more

positive values, the potential tips towards the negative well, making it likely that a transition will
occur from a positive to a negative current. This effect can be seen in Figure 1A below. Conversely,
when the nanopore current X takes negative values, Y will be a random walk with drift −k−

γy
plus

dynamical noise. Eventually, Y drifts negative to a point of tipping the potential towards the positive
well, making it likely that a transition will occur from a negative current to a positive current. This
effect can be seen in Figure 1B below. Between fluctuations, Y will pass through Y = 0.
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Figure 1. Potential at fixed positive values of y (A) and fixed negative values of y (B). The y = 0
configuration is shown on both plots. As y becomes more positive, it causes the potential to skew
towards a transition to negative x. As y becomes more negative, it causes the potential to skew
towards a transition to positive x. Physically, positive values of x in this graph correspond to positive
current values.

The structure of the potential term as it relates to X and Y acts to ensure that the system undergoes
transitions frequently and never becomes stuck indefinitely in one of the wells. Similar behavior of the
nanopore current should therefore be expected across realizations of data simulated using this model,
despite expected differences in the profiles of individual transitions due to the dynamical noise.

For the simulation, the external bias voltage V is held constant. Values used in this work are
a = b = c = 1, γx = 1, γy = 100, k+ = 1, k− = 5, and σx = σy = 0.1 [25]. Realizations from
Equation (9) were simulated using the SRI2 stochastic integrator from [42] with a time step of 0.25.
The LER and SER were computed for each realization after downsampling to a time step of 0.5,
resulting in a total of 40,000 time points.

113



Entropy 2018, 20, 221

4. Results

Five separate realizations of the stochastic differential Equation (9) were computed. Figure 2
shows the nanopore current, the LER, and the SER for a group of transitions in the nanopore system
(pore open/close events). All three panels are aligned in time. The uppermost panel represents the
nanopore current as a function of time. Each orange point is one measurement. Open/close (transition)
events can be seen in the rapid switching of the nanopore current from positive to negative values or
vice versa. The middle panel is the estimated free-standing LER, computed using Equation (6). We can
see that there are peaks in the free-standing LER aligned with the transition events of the nanopore.
This indicates that information is generated by these events, and there was some surprise associated
with their occurrence. The bottom panel is the SER estimate computed via Equation (8). We see that the
SER also increases around the transition events in the nanopore, indicating an increase in uncertainty
about future states near the transitions. These results are a subset of results from a single realization,
but are representative of the behavior seen in these information measures during transition events
across all five realizations, as is expected for this model.

Figure 2. Top: the nanopore current, with each orange dot representing a measurement. Middle:
the estimate of the local entropy rate (LER) of the nanopore system as a function of time. Bottom:
the estimate of the specific entropy rate (SER) of the nanopore system as a function of time. This is a
representative excerpt from a 40,000 point time series containing on the order of 100 transitions.

The peaks in the LER and SER corresponding to transitions should be considered in the context
of the model. It will be easiest to make a transition between positive and negative currents when
the slope of the potential is greater (i.e., when the magnitude of y is further from zero). Additionally,
when the slope of the potential is large, any small kick from the dynamical noise could lead to a wider
array of possible futures (noise amplification). There will accordingly be a greater uncertainty in an
unseen future (higher SER) during the transition events. There will also be an elevated LER in these
regions because, of the many possible outcomes for current values, when the potential slope is large,
individual outcomes may occur only rarely. This will translate to a relatively high surprise.

It should also be noted that there are substantial peaks in the LER that are not always associated
with transitions. The LER metric is sensitive to viewing any atypical future. In the relatively flatter
(low variation in nanopore current) regions between transitions, any variation above the noise level
from the anticipated trajectory may result in high surprise, even though a transition may not occur.
This is particularly prominent about 6430 au and 6620 au in Figure 2. If the future is unseen, as in
the SER, in these relatively flatter regions there will be low uncertainty about the future. In other
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words, variation above the noise level is not expected. This is why similar peaks not associated with
transitions are rarely seen in the SER.

To further investigate transitions, we consider how the LER and SER vary as a function of the
reconstructed state space of the nanopore system. Figure 3 shows a 3D projection of the p = 4
reconstructed state space, where each point is shaded by the LER (left) and SER (right). We use the
projection (Xt−2, Xt−1, Xt) for the LER and (Xt−3, Xt−2, Xt−1) for the SER. The arrows indicate the
direction of the transitions with respect to time. We know that, if the nanopore is in a closed state,
it is likely to remain closed and that, if it is in an open state, it is likely to remain open. We thus see
relatively low surprise (a low LER) and relatively low uncertainty (a low SER) under those conditions,
corresponding to the points in the bottom left and top right of the reconstructed state space. When a
transition event is occurring, corresponding to the points along the central “tubes”, we are relatively
more surprised (a higher LER) and relatively more uncertain about the immediate future (a higher
SER). It should also be noted that, if all transitions in this system were identical, the reconstructed
state-space trajectory would not show spread about the average path (i.e., the “fuzziness” is due
to differences in the profile of the transitions). Although the LER and SER have similar regions of
relatively high/low values in their corresponding measures, it is important not to conflate them.
The LER measures information generated by seeing the future, and it should not surprise us to see
a high degree of symmetry in the LER plot, with maximal information generated for more atypical
transitions (on the outsides of the transition “tubes”). The SER, by contrast, measures uncertainty in
the future, given a known past, and we might expect high uncertainty in the region of all transitions.
It is additionally noteworthy that there is some anti-symmetry between the two transition tubes in
the SER plot with respect to the location of the onset of elevation in the SER. This, together with the
arrows indicating the direction of the trajectory with time, shows that uncertainty is highest at the
beginning of a transition. Uncertainty decreases as the transition proceeds to completion. This is not
apparent from examination of the time series.

(a) (b)

Figure 3. A projection of the reconstructed state space for the nanopore system shaded by the estimates
of the LER (left) and SER (right) associated with the overall state. The plots reveal a clear trajectory in
the reconstructed state space, and the arrows indicate the direction along the transitions between
open and closed states. Along this trajectory, regions of relatively low surprise (LER) and low
uncertainty (SER) occur when the system is in an open/closed state. Conversely, in the central
regions, corresponding to transitions, we see increases in both the LER and SER. Anti-symmetry is
noted in the onset of increase in SER, which shows that uncertainty is highest at the beginning of
a transition and decreases as the transition proceeds to completion. (a) LER; (b) SER.
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It may also be helpful to look directly at the transition region in both the LER and SER schemes,
i.e., to look inside the trajectory in the transition regions. To do so, we take a cross section of the plots
in Figure 2 at xt = 0 and xt−1 = 0, respectively, and include points that fall within a tolerance of
ε = ± 0.05. This cross section is shown in Figure 4. We can see that the LER is highest in the regions
corresponding to less typical transitions (i.e., on the outside of the tubes), as previously mentioned.
Additionally, as expected, all transitions in the SER scheme are associated with a similarly elevated SER.

(a) (b)

Figure 4. A 2D cross section of the reconstructed state space constructed from points within ε = ± 0.05
of the xt = 0 (left) and xt−1 = 0 (right) planes for each plot, respectively. These plots show that
information is generated most heavily around atypical transition events (the highest LER visible on the
periphery of the transition tubes in the LER plot), and there is relatively uniform, high uncertainty for
all transitions in the SER plot. (a) LER; (b) SER.

5. Discussion

At this point it is worth considering what we have learned from calculating both the LER and
SER that we could not have otherwise learned from visually examining the time series. It would
seem obvious that state transitions in this nanopore system (i.e., pore open or closed) can be observed
through such visual examination, but changes in the information dynamics brought about by those
transitions cannot be gleaned through such observation. The fact that both the LER and the SER vary
with transition behavior suggests that the transitions observed in the time series reflect deeper changes
in the information dynamics of the governing system. This is in contrast with systems where transitions
in the time series occur in the absence of changes in information status, such as fully deterministic
systems or systems where all transitions are alike.

We are able to better understand the complementary value of the LER and SER through
visualization of their values in the reconstructed state space. We see that the maximum uncertainty,
associated with the maximum SER, occurs when the system is undergoing a transition between the
open and closed pore configurations. The uncertainty increased at the start of transitions and falls as
they proceed to completion. We also see that surprise, represented by the LER, is concentrated in the
transition region, but also has secondary peaks occurring in regions with less typical futures.

Information metrics, such as the LER and SER, provide us with new insights into the underlying
dynamics of nanopore systems. This may prove useful in the future to understanding their autonomous
fluctuations and the behavior of other systems modeled by similar mathematics. A natural direction
for a future study would be to extend these analytical techniques to empirical data from a nanopore
system or to empirical data from biological systems, such as gated ion channels. Studying these
nanoscale systems using information dynamics is, to the authors’ knowledge, a novel activity, and may
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reveal interesting properties of these systems not previously accessible. With this new exploration
comes the possibility that these techniques will help illuminate nanoscale biological processes.
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Abstract: We numerically investigate out-of-equilibrium stationary processes emerging in a Discrete
Nonlinear Schrödinger chain in contact with a heat reservoir (a bath) at temperature TL and
a pure dissipator (a sink) acting on opposite edges. Long-time molecular-dynamics simulations
are performed by evolving the equations of motion within a symplectic integration scheme. Mass and
energy are steadily transported through the chain from the heat bath to the sink. We observe two
different regimes. For small heat-bath temperatures TL and chemical-potentials, temperature profiles
across the chain display a non-monotonous shape, remain remarkably smooth and even enter the
region of negative absolute temperatures. For larger temperatures TL, the transport of energy is
strongly inhibited by the spontaneous emergence of discrete breathers, which act as a thermal wall.
A strongly intermittent energy flux is also observed, due to the irregular birth and death of breathers.
The corresponding statistics exhibit the typical signature of rare events of processes with large
deviations. In particular, the breather lifetime is found to be ruled by a stretched-exponential law.

Keywords: discrete nonlinear schrödinger; discrete breathers; negative temperatures; open systems

PACS: 05.60.-k; 05.70.Ln; 63.20.Pw

1. Introduction

The study of nonequilibrium thermodynamics of systems composed of a relatively small
number of particles is motivated by the need for a deeper theoretical understanding of the statistical
laws leading to the possibility of manipulating small-scale systems like biomolecules, colloids,
or nano-devices. In this framework, statistical fluctuations and size effects play a major role and
cannot be ignored as it is customary to do in their macroscopic counterparts.

Arrays of coupled classical oscillators are representative models of such systems and have
been studied intensively in this context [1–3]. In particular, the Discrete Nonlinear Schrödinger
(DNLS) equation has been widely investigated in various domains of physics as a prototype model
for the propagation of nonlinear excitations [4–6]. In fact, it provides an effective description of
electronic transport in biomolecules [7] as well as of nonlinear waves propagation in layered photonic
or phononic systems [8,9]. More recently, a renewed interest for this multi-purpose equation emerged
in the physics of gases of ultra-cold atoms trapped in optical lattices (e.g., see [10] and references
therein for a recent survey).
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The DNLS dynamics are characterized by two conserved quantities: the energy density h and the
mass density a (also termed norm—see the following section for their definitions). Therefore, a generic
thermodynamic state of the DNLS equation can be seen as a point in the (a, h) plane. The equilibrium
thermodynamics of the DNLS model was studied in a seminal paper by Rasmussen et al. [11] within
the grand-canonical formalism. Here, it was shown that an equation of state can be formally derived
with the help of transfer–integral techniques. Accordingly, any thermodynamic equilibrium state (a, h)
can be equivalently represented in terms of a temperature T and a chemical potential μ which can be
numerically determined by implementing suitable microcanonical definitions [12,13]. In Reference [11],
it was found that a line of infinite–temperature equilibrium states in the (a, h) plane separates standard
thermodynamic states, characterized by a positive T, from those characterized by negative absolute
temperatures. The existence of negative temperatures can be traced back to the properties of the two
conserved quantities of the system. From the point of view of dynamics, it was realized that negative
temperatures can be associated to the presence of intrinsically localized excitations, named discrete
breathers (DB) (see e.g., [14–16]). In a series of important papers, Rumpf developed entropy-based
arguments to describe the asymptotic states above this infinite-temperature line [17–20]. It has been
later found that negative–temperature states can form spontaneously via the dynamics of the DNLS
equation. They persist over extremely long time scales, that might grow exponentially with system
size as a result of an effective mechanism of ergodicity–breaking [21].

A related question is whether the dynamics of the system influences non-equilibrium properties
when the system exchanges energy and/or mass with the environment. In a series of papers [21–23],
it has been found that when pure dissipators act at both edges of a DNLS chain (a case sometimes
called boundary cooling [24–27]) the typical final state consists of an isolated static breather embedded
in an almost empty background. The breather collects a sensible fraction of the initial energy and it is
essentially decoupled from the rest of the chain. The spontaneous creation of localized energy spots
out of fluctuations has further consequences on the relaxation to equipartition, since the interaction
with the remaining part of the chain can become exponentially weak [28,29]. A similar phenomenon
occurs after a quench from high to low temperatures in oscillator lattices [30]. Also, boundary driving
by external forces may induce non-linear localization [31–33].

When, instead, the chain is put in contact with thermal baths at its edges, non-equilibrium
stationary states characterized by a gradient of temperature and chemical potential emerge [13].
Local equilibrium is typically satisfied so that the overall state of the chain can be conveniently
represented as a path in the (a, h) plane connecting two points corresponding to the thermodynamic
variables imposed by the two reservoirs. The associated transport of mass and energy is typically
normal (diffusive) and can be described in terms of the Onsager formalism. However, peculiar features,
such as non-monotonous temperature profiles [34] or persistent currents [35], are found as well as
a signature of anomalous transport in the low-temperature regime [36,37].

In this paper we consider a set-up where one edge is in contact with a heat reservoir at temperature
TL and chemical potential μL, while the other interacts with a pure dissipator, i.e., a mass sink.
The original motivation for studying this configuration was to better understand the role of DBs in
thermodynamic conditions. At variance with standard set-ups [1,2], this is conceptually closer to
a semi-infinite array in contact with a single reservoir. In fact, on the pure-dissipator side, mass can
only flow out of the system.

The presence of a pure dissipator forces the corresponding path to terminate close to the point
(a = 0, h = 0), which is singular both in T and μ. This is indeed the point where the infinite- and the
zero-temperature lines collapse. Therefore, slight deviations may easily lead to crossing the β = 0
line, where β = 1/T is the inverse temperature. This is indeed the typical scenario observed for small
TL, when β smoothly changes sign twice before approaching the dissipator (see Figure 1 for a few
sampled paths). The size of the negative-temperature region increases with TL and appears to be stable
over long time scales. Upon further increasing TL, a different stationary regime is found, characterized
by strong fluctuations of mass and energy flux. In practice, the negative-temperature region first
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extends up to the dissipator edge and then it progressively shrinks in favour of a positive-temperature
region (on the other side of the chain). In this regime, the dynamics are controlled by the spontaneous
formation (birth) and disappearance (death) of discrete breathers.

0 0.5 1
a

-1

0

1

2

h

Figure 1. Phase diagram of the DNLS equation in the (a− h) plane of, respectively, energy and mass
densities. The positive-temperature region extends between the ground state β = +∞ line (solid blue
lower curve) and the β = 0 isothermal (red dashed curve). Purple circles show the μ = 0 line, which
has been determined numerically through equilibrium simulations (data are taken from Reference [13]).
Black curves refer to nonequilibrium profiles obtained by employing a heat bath with parameters
TL = 3 and μL = 0 and a pure dissipator located at the left and right edges of the chain, respectively.
Dotted, dot-dashed, dot-dot-dashed and solid curves refer to chain sizes N = 511, 1023, 2047, and
4095, respectively. Upon increasing N, these above profiles tend to enter the negative temperature
region. Simulations are performed by evolving the DNLS chain over 107 time units after a transient
of 4× 107 units. For the system size N = 4095, a further average over 10 independent trajectories
is performed.

In Section 2 we introduce the model and briefly recall the definition of the main observables.
Section 3 is devoted to a detailed characterization of the low-temperature phase, while the
far-from-equilibrium phase observed for large TL is discussed in Section 4. This is followed by
the analysis of the statistical properties of the birth/death process of large-amplitude DBs, illustrated
in Section 5. Finally, in Section 6 we summarize the main results and comment about possible
relationships with similar phenomena previously reported in the literature.

2. Model and Methods

We consider a DNLS chain of size N and with open boundary conditions, whose bulk dynamics
is ruled by the equation

iżn = −2|zn|2zn − zn−1 − zn+1 (1)

where (n = 1, . . . , N) and zn = (pn + iqn)/
√

2 are complex variables, with qn and pn being standard
conjugate canonical variables. The quantity an = |zn(t)|2 can be interpreted as the number of particles,
or, equivalently, the mass in the lattice site n at time t. Upon identifying the set of canonical variables
zn and iz∗n, Equation (1) can be read as the equation of motion generated by the Hamiltonian functional

H =
N

∑
n=1

(
|zn|4 + z∗nzn+1 + znz∗n+1

)
(2)
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through the Hamilton equations żn = −∂H/∂(iz∗n). We are dealing with a dimensionless version of
the DNLS equation: the nonlinear coupling constant and the hopping parameters, which are usually
indicated explicitly in the Hamiltonian (2), have been set equal to unity. Accordingly, also the time
variable t is expressed in arbitrary adimensional units. Without loss of generality, this formulation has
the advantage of simplifying numerical simulations.

A relevant property of the DNLS dynamics is the existence of a second conserved quantity beside
the total energy H, namely the total mass

A =
N

∑
n=1
|zn|2 . (3)

As a result, an equilibrium state is specified by two parameters, the mass density a = A/N ≥ 0
and the energy density h = H/N. The first reconstruction of the equilibrium phase-diagram (a, h) of
the DNLS equation was reported in [11]. It is reproduced in Figure 1 for our choice of parameters,
where the lower solid line defines the (T = 0) ground-state line h = a2 − 2a for different values of the
mass density a. The ground-state corresponds to a uniform state with constant amplitude and constant
phase-differences zn =

√
aei(μt+πn), with μ = 2(a − 1). States below this curve are not physically

accessible. The positive-temperature region lies above the ground-state up to the red dashed line
h = 2a2, which corresponds to the infinite-temperature (β = 0) line. In this limit, the grand-canonical
equilibrium distribution becomes proportional to exp (βμA), where the finite (negative) product
βμ implies a diverging chemical potential. Equilibrium states at infinite temperature are therefore
characterized by an exponential distribution of the amplitudes P(|zn|2) = a−1e−|zn |2/a and random
phases. Finally, states above the β = 0 line belong to the so-called negative-temperature region [11,21].

Finite-temperature equilibrium states do not allow for straightforward analytical treatments.
However, one can determine the relation a(T, μ), h(T, μ) numerically, by putting the system
in interaction with an external reservoir (see below) that imposes T and μ and by measuring
the corresponding equilibrium densities. This method was adopted in Reference [13] to identify the μ = 0
line shown in Figure 1. Upon increasing μ, the curve moves to the right in the (a, h) diagram and becomes
more and more vertical (data not shown). Isothermal lines T = c can be found analogously: they roughly
follow the profile of the T = 0 line and, upon increasing c, they span all the positive-temperature
region, approaching the infinite-temperature line for c→ +∞ [13].

A non-equilibrium steady state can be represented as a path in the (a, h)-parameter space,
where a(x) is the mass density, h(x) the energy density, and x = n/N the rescaled position along
the chain. In our set-up, the first site of the chain (n = 1) is in contact with a reservoir at temperature
TL and chemical potential μL. This is ensured by implementing the non-conservative Monte-Carlo
dynamics described in Reference [13]. In a few words, the reservoir performs random perturbations
δz1 = (δp1 + iδq1)/

√
2 of the state variable z1 that are accepted or rejected according to

a grand-canonical Metropolis cost-function exp [−TL(ΔH − μLΔA)], where ΔH and ΔA are
respectively the variations of energy and mass produced by δz1. The perturbations δp1 and δq1

are independent random variables extracted from a uniform distribution in the interval [−R, R].
The opposite site (n = N) interacts with a pure stochastic dissipator that sets the variable zN equal to
zero, thus absorbing an amount of mass equal to |zN |2. Both the heat bath and the dissipator are
activated at random times, whose separations are independent and identically distributed variables
uniformly distributed within the interval [tmin, tmax]. On average, this corresponds to simulating
an interaction process with decay rate γ ∼ t̄−1, where t̄ = (tmax + tmin)/2. Notice that different
prescriptions, such as for example a Poissonian distribution of times with average t̄ or a constant pace
equal to t̄, do not introduce any relevant modification in the dynamical and statistical properties of
the model (1). Finally, the Hamiltonian dynamics between successive interactions with the environment
has been generated by implementing a symplectic, 4th-order Yoshida algorithm [38]. We have verified
that a time step Δt = 2× 10−2 suffices to ensure suitable accuracy.
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Throughout the paper we deal with measurements of temperature profiles. Since the DNLS
Hamiltonian is not separable, the standard relation between temperature and local kinetic energy
does not hold. Due to the existence of the second conserved quantity A, it is necessary to make use of
the microcanonical definition provided in [39] and further extended in [12]. Its derivation is founded
on the thermodynamic relation

β = T−1 =
∂S
∂E

∣∣∣∣
A=M

(4)

for a system with total energy H = E, total mass A = M and entropy S. The calculation amounts to
derive a measure of the hyper-surface at constant energy and mass in the phase space and to compute
its variation with respect to E at constant mass. The general expression of T is a thermal average of
a non-local function of the dynamical variables zn and z∗n and is rather involved; we refer to [13,21]
and the related bibliography for theoretical and computational details.

In what follows, we consider a situation where all parameters, other than TL, are kept fixed.
In particular, we have chosen μL = 0, R = 0.8 and t̄ = 3× 10−2, with tmax and tmin of order 10−2. We have
verified that the results obtained for this choice of the parameter values are general. A more detailed
account of the dependence of the results on the thermostat properties will be reported elsewhere.

Finally, we recall the observables that are typically used to characterize a steady-state out of
equilibrium: the mass flux

ja = 2〈Im(z∗nzn+1)〉 , (5)

and the energy flux
jh = 2〈Re(żnz∗n+1)〉 , (6)

where the angular brackets denote a time average.

3. Low-Temperature Regime: Coupled Transport and Negative Temperatures

In the left panel of Figure 2, we report the average profile of the inverse temperature β(x)
as a function of the rescaled site position x = n/N, for different values of the temperature of
the thermostat. A first “anomaly” is already noticeable for relatively small TL: the profile is
non monotonous (see for example the curve for TL = 1). This feature is frequently encountered
when a second quantity, besides energy, is transported [13,40,41]. In the present setup, this second
thermodynamic observable is the chemical potential μ(x), set equal to zero at the left edge. Rather than
plotting μ(x), in the right panel of Figure 2, we have preferred to plot the more intuitive mass density
a(x). There we see that the profile for TL = 1 deviates substantially from a straight line, indicating that
the thermodynamic properties vary significantly along the chain and suggesting that the lattice might
not be long enough to ensure an asymptotic behavior.

To clarify this point, we have performed simulations for different values of N. The results
for TL = 1 are reported in Figure 3, where we plot the local temperature T as a function of x.
All profiles start from T = 1, the value imposed by the thermostat and, after an intermediate bump,
eventually attain very small values. Since neither the temperature nor the chemical potential are
directly imposed by the purely dissipating “thermostat”, it is not obvious to predict the asymptotic
value of the temperature (and the chemical potential). The data reported in the inset suggest a sort
of logarithmic growth with N, but this is not entirely consistent with the results obtained for TL = 3
(see below).

If transport were normal and N were large enough, the various profiles should collapse onto
each other, but this is far from the case displayed in Figure 3. The main reason for the lack of
convergence is the growth of the temperature bump. This is because, upon further increases of N,
the system spontaneously crosses the infinite temperature line and enters the negative-temperature
region. For TL = 3, this “transition” has already occurred for N = 4095, as it can be seen in Figure 2.
The crossings of the infinite temperature points (β = 0) at the boundaries of the negative temperature
region correspond to infinite (negative) values of the chemical potential μ in such a way that the
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product βμ remains finite at these turning points (data not reported). To our knowledge, this is the
first example of negative-temperature states robustly obtained and maintained in nonequilibrium
conditions in a chain coupled with a single reservoir at positive temperature. In order to shed light on
the thermodynamic limit, we have performed further simulations for different system sizes. In Figure 4,
we report the results obtained for TL = 3 and N ranging from 511 to 4095. In Figure 4a, we see that the
negative-temperature region is already entered for N = 1023. Furthermore, its extension grows with
N, suggesting that in the thermodynamic limit it would cover the entire profile but the edges.

Since non-extensive stationary profiles have been previously observed both in a DNLS and a rotor
chain (i.e., the XY-model in d = 1) at zero temperature and in the presence of chemical potential
gradients [42], it is tempting to test to what extent an anomalous scaling (say n/

√
N) can account

for the observations. In the inset of Figure 4a, we have rescaled the position along the lattice by
√

N.
For relatively small but increasing values of n/

√
N we do see a convergence towards an asymptotic

curve, which smoothly crosses the β = 0 line. This suggests that close to the left edge, positive
temperatures extend over a range of order O(

√
N), thereby covering a non-extensive fraction of

the chain length. The scaling behavior in the rest of the chain is less clear, but it is possibly a standard
extensive dynamics characterized by a finite temperature on the right edge. A confirmation of
the anomalous scaling in the left part of the chain is obtained by plotting the profiles of h and a again
as a function of n/

√
N (see the panels (b) and(c) in Figure 4, respectively). Further information can be

extracted from the scaling behavior of the stationary mass flux ja. In Figure 5, we report the average
value of ja as a function of the lattice length. There, we see that ja decreases roughly as N−1/2. At a
first glance this might be interpreted as a signature of energy super-diffusion, but it is more likely due
to the presence of a pure dissipation on the right edge (in analogy to what seen in the XY-model [43]).

Figure 2. Average profiles of the inverse temperature β(x) (panel (a)) and mass-density a(x) (panel (b))
for a DNLS chain with N = 4095 and different temperatures TL of the reservoir acting at the left
edge, where μ = 0. The profile β(x) is computed making use of the microcanonical definition of
temperature. Simulations are performed evolving the DNLS chain over 107 time units after a transient
of 4× 107 units. In order to obtain a reasonable smoothing of these time-averaged profiles we have
further averaged each of them over 10 independent trajectories.
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Figure 3. Average profiles of the temperature T(x) for TL = 1 and different system sizes N. The profile
T(x) is computed by means of the microcanonical definition of temperature. The inset shows the
boundary inverse temperature βR (black circles) and chemical potential μR (red squares) close to the
dissipator side as a function of the system size N. The data refers to the microcanonical definitions
of temperature and chemical potential computed on the last 10 sites of the chain. Simulations are
performed evolving the system over 107 time units after a transient of 4× 107 units. For the system
size N = 4095 a further average over 10 independent trajectories has been performed.
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Figure 4. Panel (a): average profiles of inverse temperature β for TL = 3 and different system sizes
N. The profile β is computed by means of the microcanonical definition of temperature. In the inset,
an alternative scaling by 1/

√
N is proposed. For the same setup, panels (b,c) show the behavior of the

energy profile h and the mass profile a, respectively (again scaling the position by
√

N). Simulations are
performed evolving the DNLS chain over 107 time units after a transient of 4× 107 units. For the system
size N = 4095, a further average over ten independent trajectories is performed.
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Figure 5. Average mass flux ja versus system size N for different reservoir temperatures TL. The black
dotted line refers to a power-law decay ja ∼ N−1/2. The inset shows the dependence of ja on
the reservoir temperature TL for the system size N = 4095. Simulations are performed evolving
the DNLS chain over 107 time units after a transient of 4× 107 units. For the system size N = 4095 we
have averaged over 10 independent trajectories.

In stationary conditions, mass, and energy fluxes are constant along the chain. This is not
necessarily true for the heat flux, as it refers only to the incoherent component of the energy transported
across the chain. More precisely, the heat flux is defined as jq(x) = jh − jaμ(x) [43] Since ja and jh
are constant, the profile of the heat flux jq is essentially the same of the μ profile (up to a linear
transformation). In Figure 6a, we report the heat flux for TL = 1. It is similar to the temperature profile
displayed in Figure 3. It is not a surprise to discover that jq is larger where the temperature is higher.
Figure 6b in the same Figure 6 refers to TL = 3. A very strange shape is found: the flux does not only
changes sign twice but exhibits a singular behavior in correspondence of the change of sign, as if a
sink and source of heat were present in these two points, where the chemical potential and the local
temperature diverge (see, e.g., the red dashed line in Figure 6b representing the β profile). The scenario
looks less awkward if the entropy flux js = jq/T is monitored. For TL = 1, the bump disappears
and we are in the presence of a more “natural” shape (see Figure 6d) More important is to note that
the singularities displayed by jq for TL = 3 are almost removed since they occur where T → ∞ (we are
convinced that the residual peaks are due to a non perfect identification of the singularities). If one
removed the singular points, the profile of the entropy flux js = jq/T has a similar shape for the cases
TL = 1 and TL = 3. A more detailed analysis of the scenario is, however, necessary in order to provide
a solid physical interpretation.
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Figure 6. Profiles of heat flux (black lines) for TL = 1 (panel (a)), TL = 3 (panel (b)) and TL = 9
(panel (c)) in a chain with N = 4095 lattice sites. For each boundary temperature, we find the following
values of mass and energy fluxes: panel (a) ja = 3.5× 10−3, jh = −3.3× 10−4; panel (b) ja = 2.5× 10−3,
jh = 3.4× 10−4; panel (c) ja = 1.2× 10−4, jh = 1.5× 10−4. The red dashed line in panel (b) refers to
the rescaled profile of the inverse temperature β′(x) = β(x)/5 measured along the chain (see Figure 2).
Panels (d–f) show the profiles of entropy flux for the same temperatures: TL = 1, TL = 3 and TL = 9,
respectively. Other simulation details are the same as given in Figure 2.

4. High Temperature Regime: DB Dominated Transport

Let us now turn our attention to the high-temperature case. As shown in Figure 2a, for sufficiently
large TL values, the positive-temperature region close to the dissipator disappears (this is already
true for TL = 5) and, at the same time, the positive-temperature region on the left grows. In other
words, negative temperatures are eventually restricted to a tiny region close to the dissipator side.
This stationary state is induced by the spontaneous formation and the destruction of large DBs close
to the dissipator. On average, such a process gives rise to locally steep amplitude profiles that are
reminiscent of barriers raised close to the right edge of the chain, see Figure 2b. As it is well known,
DBs are localized nonlinear excitations typical of the DNLS chain. Their phenomenology has been
widely described in a series of papers where it has been shown that they emerge when energy is
dissipated from the boundaries of a DNLS chain [21–23]. In fact, when pure dissipators act at both chain
boundaries, the final state turns out to be an isolated DB embedded in an almost empty background.
In view of its localized structure and the fast rotation, the DB is essentially uncoupled from the rest
of the chain and, a fortiori, from the dissipators. One cannot exclude that a large fluctuation might
eventually destroy the DB, but this would be an extremely rare event.

In the setup considered in this paper, DB formation is observed in spite of one of the two
dissipators being replaced by a reservoir at finite temperature. DBs are spontaneously produced close
to the dissipator edge only for sufficiently high values of TL. Due to its intrinsic nonlinear character,
this phenomenon cannot be described in terms of standard linear-response arguments. In particular,
the temperature reported in the various figures cannot be interpreted as the temperature of specific
local-equilibrium state: it is at best the average over the many different macrostates visited during
the simulation. Actually, it is even possible for some of theses macrostates to deviate substantially
from equilibrium. Therefore, we limit ourselves to some phenomenological remarks. The spontaneous
formation of small breathers close to the right edge drastically reduces the dissipation and contributed
to a further concentration of energy through the merging of the DBs into fewer larger ones and,
eventually, to a single DB. Mechanisms of DB-merging have already been encountered under different
conditions in the DNLS model [21]. The onset of a DB essentially decouples the left from the right
regions of the chain. In particular, it strongly reduces the energy and mass currents fluxes. One can
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spot DBs simply by looking at the average mass profiles. In Figure 2, the presence of a DB is signaled
by the sharp peak close to the right edge for both TL = 9 and TL = 11.

The region between the reservoir and the DB should, in principle, evolve towards an equilibrium
state at temperature TL. However, a close look at the β-profile in Figure 2 reveals the presence of
a moderate temperature gradient that is typical of a stationary non-equilibrium state. In fact, DBs are
not only born out of fluctuations, but can also collapse due to local energy fluctuations. As shown
in Figure 7a, once a DB is formed, it tends to propagate towards the heat reservoir located at the
opposite edge. The DB position is tagged by black dots drawn at fixed time intervals over a very long
time lapse of O(106), in natural time units of the model. This backward drift comes to a “sudden” end
when a suitable energy fluctuation destroys the DB (see Figure 7a). Afterwards, mass and energy start
flowing again towards the dissipator, until a new DB is spontaneously formed by a sufficiently large
fluctuation close to the dissipator edge (the formation of the DB is signaled by the rightmost black
dots in Figure 7a) and the conduction of mass and energy is inhibited again. The DB lifetime is rather
stochastic, thus yielding a highly irregular evolution. The statistical properties of such birth/death
process are discussed in the following section.
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Figure 7. (a) Qualitative DB trajectory in a stationary state with N = 511 and TL = 10. Each point of
the curve corresponds to the position of the maximum average amplitude of the chain in a temporal
window of 5× 103 time units. (b) Temporal evolution of the outgoing mass flux j∗a through the dissipator
edge during the same dynamics of panel (a). The flux j∗a is computed every 20 time units as the average
amount of mass flowing to the dissipator during such time interval. Higher peaks typically correspond
to the breakdown of one or more DBs. Notice that the boundary mass flux can take only positive values
because the chain interacts with a pure dissipator.

The statistical process describing the appearance/disappearance of the DB is a complex one.
On the one hand, we are in the presence of a stationary regime: the mass and energy currents flowing
through the dissipator are found to be constant, when averaged over time intervals much longer than
the typical DB lifetime. On the other hand, strong fluctuations in the DB lifetime mean that this regime
is not steady but it rather corresponds to a sequence of many different macrostates, some of which are
likely to be far from equilibrium. Altogether, in this phase, the presence of long lasting DBs induces a
substantial decrease of heat and mass conduction. This is clearly seen in Figure 5, where ja is plotted
for different chain lengths. The two set of data corresponding to TL = 9 and 11 are at least one order of
magnitude below those obtained in the low-temperature phase. The sharp crossover that separates the
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two conduction regimes is neatly highlighted in the inset of Figure 5, where the stationary mass flux is
reported as a function of the reservoir temperature for the size N = 4095.

The effect of the appearance and disappearance of the DB in the high reservoir temperature regime
on the transport of heat and mass along the chain is twofold. During the fast dynamics, it produces
bursts in the output fluxes of these quantities as demonstrated in Figure 7b. When the DB is present the
boundary flux to the dissipator decreases, while when the DB disappears, avalanches of heat and mass
reach the dissipator. In the slow dynamics obtained by averaging over many bursts, the conduction
of heat and mass from the heat reservoir to the dissipator is hugely reduced with respect to the low
temperature regime. We can conclude that the most important effect of the intermittent DB in the high
temperature regime is to act as a thermal wall.

Finally, in Figure 6c,f we plot the heat and entropy profiles observed in the high-temperature
phase, respectively. The strong fluctuations in the profiles are a consequence of the large fluctuations
in the DB birth/death events and its motion. It is now necessary to average over much longer time
scales to obtain sufficiently smooth profiles. It is interesting, however, to observe that the profile
of js in Figure 6f exhibits an overall shape similar to that observed in the low temperature regimes
(see Figure 6d,e). This notwithstanding, there are two main differences with the low temperature
behavior. First, close to the right edge of the dissipator we are now in presence of wild fluctuations of
js, and second the overall scale of the entropy flux profile is heavily reduced.

5. Statistical Analysis

In order to gain information on the high-temperature regime, it is convenient to look at
the fluctuations of the boundary mass flux j∗a and the boundary energy flux j∗h flowing through
the dissipator edge. In Figure 8 we plot the distribution of both j∗a (panel (a)) and j∗h (panel (b)) for
TL = 11 for different chain lengths. In both cases, power-law tails almost independent of N are clearly
visible. This scenario is highly reminiscent of the avalanches occurring in sandpile models. In fact, one
such analogy has been previously invoked in the context of DNLS dynamics to characterize the atom
leakage from dissipative optical lattices [44].
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Figure 8. Normalized boundary flux distributions through the dissipator for a stationary state with
TL = 11. Panel (a) shows the mass flux distribution P (j∗a ), while panel (b) refers to the energy flux
distribution P

(
j∗h
)
. Black circles, red squares, and blue triangles refer to system sizes N = 511, 1023,

and 2047, respectively. Power-law fits on the largest size N = 2047 (see black dashed lines) give
P(j∗a ) ∼ j∗a

−4.32 and P(j∗h) ∼ j∗h
−3.17. Boundary fluxes are sampled by evolving the DNLS chain for

a total time t f after a transient of 4× 107 temporal units and averaged over time windows of five
temporal units. For the sizes N = 511 and N = 1023 we have considered a single trajectory with
t f = 108. For the size N = 2047 the distributions are extracted from five independent trajectories with
t f = 2× 107.
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We processed the time series of the type reported in Figure 7b to determine the duration τb of
the bursts (avalanches) and τl of the “laminar” periods in between consecutive bursts (i.e., the DB
life-times). In practice, we have first fixed a flux threshold (s = 4.25× 10−3) to distinguish between
burst and laminar periods. Furthermore, a series of bursts separated by a time shorter than dt0 = 103

has been treated as a single burst. This algorithm has been applied to 20 independent realizations of
the DNLS dynamics in the high-temperature regime. Each realization has been obtained by simulating
a lattice with N = 511 sites, TL = 10, and for a total integration time t = 5× 106. In these conditions
we have recorded nearly 7000 avalanches.

The probability distribution of the burst duration is plotted in Figure 9a. It follows a a Poissonian
distribution, typical of random uncorrelated events. We have also calculated the amount of mass
A and energy E associated with each burst, integrating mass, and energy fluxes during each burst.
The results are shown as a scatter plot in the inset of Figure 9a. They display a clear (and unsurprising)
correlation between these two quantities.
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Figure 9. (a) Probability distribution of the duration of bursts τb. Note the logarithmic scale on
the vertical axis. From an exponential fit P ∼ e−γτb , we find a decay constant γ = 5× 10−4 (red
dashed line). The inset shows the relation between the duration τb and the amount of mass δA (black
dots) and energy δE (red dots) released to the dissipator. (b) Probability distribution of DB lifetimes.
In the inset we show that this is compatible with a stretched exponential law P = P0e−τσ

l , where σ � 0.5
(red dashed line) and P0 is the maximum value of the distribution.

The time interval between two consecutive bursts is characterized by a small mass flux.
Typically, during this period the chain develops a stable DB that inhibits the transfer of mass
towards the dissipator. Figure 9b shows the probability distribution of the duration of these laminar
periods. The distribution displays a stretched-exponential decay with a characteristic constant σ = 0.5.
Such a scenario is consistent with the results obtained in [26] for the Fermi-Pasta-Ulam chain and
in [22] for the DNLS lattice. The values of the power σ found in these papers are not far from the one
that we have obtained here (see also [45] for similar results on rotor models).

Altogether, there is a clear indication that the statistics of the duration of avalanches and walls
is controlled by substantially different mechanisms. It seems that the death of a wall/DB is ruled by
rare event statistics [22,26,45], while its birth appears as a standard activation process emerging when
an energy barrier is eventually overtaken. In fact, when mass starts flowing through the dissipator
edge after the last death of a wall/DB, we have to wait for the spontaneous activation of a new
wall/DB before the mass flux vanishes again. Conversely, the wall/DB is typically found to persist
over much longer time scales and its eventual destruction is determined by a very rare fluctuation,
whose amplitude is expected to be sufficiently large to compete with the energy that, in the meanwhile,
has been collected by the wall/DB during its motion towards the reservoir.
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6. Conclusions

We have investigated the behavior of a discrete nonlinear Schrödinger equation sandwiched
between a heat reservoir and a mass/energy dissipator. Two different regimes have been identified
upon changing the temperature TL of the heat reservoir, while keeping fixed the properties of
the dissipator. For low TL and low chemical potential, a smooth β-profile is observed, which
extends (in the central part) to negative temperatures without, however, being accompanied by
the formation of discrete breathers over the time scales accessible to numerical simulations. In the light
of the theoretical achievements by Rumpf [17–20], the negative-temperature regions are incompatible
with the assumption of local thermodynamic equilibrium, which instead appears to be satisfied in
the positive-temperature part. Therefore, despite the smoothness of the profiles and the stationarity
of mass and energy fluxes, such negative-temperature configurations should be better considered
as metastable states. Unfortunately, it is not easy to investigate this regime; no single heat bath can
impose a fixed negative T in a meaningful way so as to be able to compare with equilibrium states.
It is therefore necessary to simulate larger systems in the hope to observe the spontaneous formation
of breathers, the only obvious signature of negative temperatures. We plan to undertake such a kind of
numerical studies in the near future. It is nevertheless remarkable to see that negative temperatures
are steadily sustained for moderately long chain lengths. As a second anomaly, we report the slow
decrease of the mass-flux with the chain length: the hallmark of an unconventional type of transport.
This feature is, however, not entirely new; a similar scenario has been previously observed in setups
with dissipative boundary conditions and no fluctuations [42].

For larger temperatures TL, we observe an intermittent regime characterized by the alternation of
insulating and conducting states, triggered by the appearance/disappearance of discrete breathers.
Note that this regime is rather unusual, since it is generated by increasing the amount of energy
provided by the heat bath rather than by decreasing the chemical potential, as observed for example in
the superfluid/Mott insulator transition in Bose-Einstein condensates in optical lattices. Although,
for clarity, we referred to the low and high TL cases, there is no special difference to be expected in the
intermediate regime, except for the typical timescale for DB creation that may be, still, exceedingly
large. In fact, for finite N, such a timescale becomes much shorter above some typical TL.

The intermittent presence of a DB/wall makes the chain to behave as a rarely leaking pipe, which
releases mass droplets at random times when the DB disappears according to a stretched-exponential
distribution. The resulting fluctuations of the fluxes suggest that the regime is stationary but not
steady, i.e., locally the chain irregularly oscillates among different macroscopic states characterized,
at best, by different values of the thermodynamic variables. A similar scenario is encountered in the XY
chain, when both reservoirs are characterized by a purely dissipation accompanied by a deterministic
forcing [42]. In such a setup, as discussed in Reference [42], the temperature in the middle of the chain
fluctuates over macroscopic scales. Here, however, given the rapidity of changes induced by the DB
dynamics, there may be no well-defined values of the thermodynamic observables. For example,
during an avalanche it is unlikely that temperature and chemical potentials are well-defined quantities,
as there may not even be a local equilibrium. This extremely anomalous behavior is likely to smear out
in the thermodynamic limit, since the breather life-time does not probably increase with the system
size, however, it is definitely clear that the associated fluctuations strongly affect moderately-long
DNLS chains.

Acknowledgments: This research did not receive any funding. Stefano Lepri acknowledges hospitality of the
Institut Henri Poincaré-Centre Emile Borel during the trimester Stochastic Dynamics Out of Equilibrium where
part of this work was elaborated.

Author Contributions: Stefano Iubini performed the numerical simulations. All Authors contributed to the
research work and to writing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

131



Entropy 2017, 19, 445

Abbreviations

The following abbreviations are used in this manuscript:

DNLS Discrete Nonlinear Schrödinger
DB Discrete Breather
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Abstract: A simplified, but non trivial, mechanical model—gas of N particles of mass m in a box
partitioned by n mobile adiabatic walls of mass M—interacting with two thermal baths at different
temperatures, is discussed in the framework of kinetic theory. Following an approach due to
Smoluchowski, from an analysis of the collisions particles/walls, we derive the values of the main
thermodynamic quantities for the stationary non-equilibrium states. The results are compared with
extensive numerical simulations; in the limit of large n, mN/M
 1 and m/M� 1, we find a good
approximation of Fourier’s law.

Keywords: Fourier’s law; kinetic theory; non equilibrium statistical mechanics

1. Introduction

Fourier’s law, which relates the macroscopic heat flux to the temperature gradient in a solid
system, was introduced almost two centuries ago. Nevertheless, its understanding from microscopic
basis is still an important open issue of the non-equilibrium statistical mechanics [1]. In particular,
among the several theoretical studies on this subject, important results have been derived mainly for
1d systems. The prototype model is a chain of masses and non linear springs (Fermi-Pasta-Ulam-like
systems), whose ends interacts with thermal baths at different temperatures [1–3]. Other investigated
systems are constituted of 1d lattices [4,5], chains of cells, with an energy storage device, which
exchange energy through tracer particles [6,7], spinning disks [8], systems with local thermalization
mechanism [9,10], or a chain of anharmonic oscillators with local energy conserving noise [11]. Despite
the apparent simplicity of the problem, and of the considered models, both the analytical approaches
and the numerical studies are rather difficult in this context.

The main aim of the present paper is the study of Fourier’s law using a mechanical model,
which is rather crude (but still non-trivial), allowing for an approach in terms of kinetic theory. More
specifically, we consider a generalized piston model, made of a certain number of cells, each containing
a non-interacting particle gas. The walls of the cells are mobile, massive objects, that interact with the
particles via elastic collisions. The system at its ends interacts with thermal baths at fixed temperatures.
It is easy to realize the analogy between such a generalized piston model and the systems of masses
and springs: the pistons and the gas compartments play the role of masses and springs, respectively.

Our model is an example of partitioning system (as the adiabatic piston), where previous studies
showed that the presence of mobile walls can induce interesting behaviours [12–21]. Basically, in the
study of partitioning systems, one can adopt two approaches: in terms of a Boltzmann equation [14] or
introducing effective equations (Langevin-like) for suitable observables derived à la Smoluchowski,
i.e., from an analysis of the collisions particles/walls. In our study, we will adopt the latter method.
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The paper is organized as follows. Section 1 is devoted to the introduction of the model;
in Section 2, we show how a thermodynamic approach is not sufficient to determine the values of
macroscopic variables in the steady state. In Section 3, we present a coarse-grained Smoluchowski-like
description of the system, which provides a good prediction for the main quantities of interest.
In Section 4, we compare the theoretical results with numerical simulations and discuss the limit
of validity of the proposed approach. In Section 5, some general conclusions on Fourier’s Law in
mechanical systems are drawn. In Appendix A, we report the details of the analytical computations
presented in Section 3.

2. A Generalized Piston Model

We consider a box of length L, partitioned by n mobile adiabatic walls (also called pistons in the
following), with mass M, average positions zj and velocities Vj (j = 1, 2, . . . n). The walls move without
friction along the horizontal axis (see Figure 1). The external walls are kept fixed in the positions z0 = 0
and zn+1 = L. Each of the n + 1 compartments separated by the walls contains N non-interacting
point-like particles, with mass m, positions xi and velocities vi. The particles interact with the pistons
via elastic collisions:

V′ = V +
2 m

m + M
(vi −V),

v′i = vi −
2 M

m + M
(vi −V),

(1)

where primes denote post-collisional velocities.

T
A

T
B

L

z

Figure 1. Sketch of the system.

The two external walls in z = 0 and z = L act as thermal baths at temperatures TA and TB. The
interaction of the thermostats with the particles is the following: when a particle collides with the wall,
it is reinjected into the system with a new velocity drawn from the probability distribution [22]

ρA,B(v′) =
m

kBTA,B
|v′| e−

mv′2
2kBTA,B Θ(±v′), (2)

with + for the case A and − for B, and kB is the Boltzmann constant, Θ(x) being the Heaviside
step function:

Θ(x) =

{
1, if x > 0,

0, if x ≤ 0.
(3)

For the following discussion, we define the temperature of the i−th piston as

T(p)
i = M〈V2

i 〉, (4)

and the temperature of the particle gas in the compartment j as an average on the particles between
the (j− 1)-th and the j-th piston

Tj = m
1
N

jN

∑
i∈(j−1)N

〈v2
i 〉. (5)
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3. Simple Thermodynamic Considerations

We expect, and this is fully in agreement with the numerical computations, that, given a generic
initial condition, after a certain transient, the system reaches a stationary state. The positions of the
walls fluctuate around their mean values zj, in a similar way to T(p)

i and Ti. The first non-trivial

problem of the non equilibrium statistical mechanics is to determine zj, T(p)
i and Ti as function of the

parameters of the model, i.e., n, L, m, M, TA and TB.
We first analyze the simplest case of a single piston, where thermodynamics is sufficient to provide

a complete description of the stationary state. Then, we consider the more general case of a multiple
piston; in such a situation, thermodynamic relations are not enough to univocally determine the steady
state: it is necessary to adopt a statistical mechanics approach. Such an approach will rely on three
main assumptions, discussed in more detail below: small mass ratio m/M� 1, local thermodynamic
equilibrium in each compartment, and independence of the collisions particles/pistons.

3.1. Single Piston

If n = 1, using the equation for the perfect gas in each compartment, we immediately get
the equations {

pz1 = NkBTA,

p(L− z1) = NkBTB,
(6)

where p is the pressure, yielding

z1 =
TA

TA + TB
L. (7)

Therefore, in this case, thermodynamics univocally determines the stationary state of the system.

3.2. Multiple Piston

We now consider the generalized piston model with n > 1. An analysis of the case n = 2 is
enough to understand how the relations obtained from thermodynamics can be not sufficient to fully
characterize the non equilibrium steady state. Indeed, we have the following relations:⎧⎪⎪⎨⎪⎪⎩

pz1 = NkBTA,

p(z2 − z1) = NkBT1,

p(L− z2) = NkBTB,

(8)

which give the constraints

z1 =
TA

TA + T1 + TB
L,

z2 =
TA + T1

TA + T1 + TB
L.

(9)

Therefore, since we have three variables (z1, z2, T1) and only two constraints, thermodynamics is
not enough to determine the stationary state. The computation can be easily extended to an arbitrary
value of n, leading to ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pz1 = NkBTA,

p(z2 − z1) = NkBT1

...,

p(zn − zn−1) = NkBTn−1,

p(L− zn) = NkBTB,

(10)
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that give the conditions

z1 =
TA

TA + ∑n−1
k=1 Tk + TB

L, · · · zm =
TA + ∑m−1

k=1 Tk

TA + ∑n−1
k=1 Tk + TB

L, · · · zn =
TA + ∑n−1

k=1 Tk

TA + ∑n−1
k=1 Tk + TB

L, (11)

with m = 2, . . . , n− 1, namely, only n constraints for 2n− 1 variables.

4. Coarse-Grained Description and Effective Langevin Equations

In order to obtain a statistical description of the system, we now derive effective stochastic
equations, governing the dynamics of the relevant variables. Previous theoretical studies based
on a Boltzmann equation approach on similar systems were reported in [13–15]. In particular,
a generalized piston model was considered in Reference [15]. In those works, theoretical results
were not compared to numerical simulations, so that the underlying hypotheses and their range of
validity remained unclear.

Here, we present a different analysis. We will assume that the evolution of the observables is
described by Langevin equations. The idea, coming back to Smoluchowski, is to integrate out the fast
degrees of freedom of the gas particles by computing conditional averages, knowing the macroscopic
variables: position z and velocity V of each piston, and temperatures T of the gases. In order to
simplify the notation, let us denote by 〈·〉 this average, meaning the conditional average 〈·|z, V, T〉.
We will compute the average change of a generic observable X in a small time interval Δt, due to the
collisions between the particles of the gas and the pistons.

Let us assume that in the stationary state the particles of the gas, in each compartment, have
uniform space distribution ρ and a Maxwell–Boltzmann distribution φ(v) at temperature T:

φ(v) =
√

m
2πkBT

e−
m

2kBT v2
, ρ(x) =

1
Δz

, (12)

where Δz is the length of the box containing the gas. We can obtain the rate of the collisions by
considering the following equivalent problem: piston at rest and a particle, which moves with the
relative velocity v−V. The point particles which collide against the piston in x in the time interval
dt are:

Nρ(x)(v−V)Θ(v−V)dt, Nρ(x)(V − v)Θ(V − v)dt, (13)

respectively, for particles on the left and on the right with respect to the piston. The Heaviside function
Θ is necessary to have a collision.

Let us now consider a generic observable Xj, depending in general on the velocities of the gas
particles and of the pistons. We want to write down a Langevin equation:

dXj

dt
= Dj(X) + noise, (14)

where both the drift term Dj(X) (X being the vector of all relevant macroscopic variables in the system)
and the noise term are due to collisions with the particles of the gas. We have:

Dj(X) = lim
Δt→0

〈
ΔXj|X

〉
Δt

= lim
Δt→0

1
Δt

[〈
ΔXj

〉L
coll +

〈
ΔXj

〉R
coll

]
, (15)

where〈
ΔXj

〉R
coll = N

∫ ∞

V
dv
∫ zL

zL−(v−V)Δt
dx Xj ρ(x)φ(v)Θ(v−V) =

N
ΔzL

∫ ∞

V
dv Xjφ(v)(v−V)Δt, (16)

〈
ΔXj

〉L
coll = N

∫ V

−∞
dv
∫ zR−(v−V)Δt

zR

dx Xj ρ(x)φ(v)Θ(V − v) =
N

ΔzR

∫ V

−∞
dv Xj φ(v)(V − v)Δt. (17)
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〈
ΔXj

〉R
coll is the variation of the observable due to the collisions with the particles that have the pistons

on the left, while
〈
ΔXj

〉L
coll denotes the variation due to the collisions with the particles which have the

piston on the right.
In the stationary state, the macroscopic variables T, V and z do not depend on time. It means that

the time derivative of the conditional average of a generic observable X is zero, namely:

lim
Δt→0

1
Δt

[〈
ΔXj

〉L
coll +

〈
ΔXj

〉R
coll

]
= 0. (18)

By using a perturbation development in the small parameter ε = m/M, it is possible to derive the
relations between the average positions and the temperatures of the pistons and the temperatures of
the gas. In order to obtain this result, we need to average on the piston velocity, which is a stochastic
variable. Of course, in the steady state, the odd momenta have to be zero:〈

V2α+1
〉
= 0, α = 0, 1, 2, ... (19)

The idea is to compute the average force produced by the particles of the gas, which collide
against the piston, by computing the average momentum exchanged in the collisions.

The evolution of the velocity of the piston is governed by the following stochastic
differential equation:

M
d
dt

V = Fcoll(ΔzL, ΔzR, TL, TR, V) + Kη, (20)

where η is zero-average white noise, usually K is a constant, and Fcoll is the average force which acts
on the piston. This force is due to the collisions with the gas on the left and on the right, and depends
on the average size of the box on the right and on the left of the piston, ΔzL and ΔzR, respectively, and
on the temperatures of the gas on the left and on the right, TL and TR. Now let us set ΔX = V′ −V in
Equation (15). As detailed in the Appendix A, computing the left and right contributions to Fcoll and
expanding in the small mass ratio ε =

√
m/M, we obtain at the lowest orders:

O(1) : NkB

(
TL

ΔzL
− TR

ΔzR

)
, (21)

O(ε) : −2N
√

2kB

√
M
π

[
T1/2

L
ΔzL

+
T1/2

R
ΔzR

]
V. (22)

In the steady state, when the time derivative vanishes, we have from the order O(1) the following
relation between the temperatures of the gas and the average length of the boxes:

ΔzR = ΔzL
TR
TL

. (23)

This relation is nothing but the one that can be derived from thermodynamics. From Equation (22),
we obtain the obvious result 〈V〉 = 0.

Analogous computations, reported in the Appendix A, can be carried out for the variance of the
pistons and the gas temperatures. In particular, for the variable ΔX = M(V′2 −V2), at lowest orders
in ε, we obtain the relations:

O(1) : N2kB

(
TL

ΔzL
− TR

ΔzR

)
, (24)

O(ε) :
N√
π

4
√

2
M1/2

[(
(kBTL)

3/2

ΔzL
+

(kBT)3/2

ΔzR

)
−MV2

(
(kBTR)

1/2

ΔzR
+

(kBTL)
1/2

ΔzL

)]
. (25)
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In the steady state, by using the thermodynamic relations, the order O(1) Equation (24) is
identically zero. After integrating over all values of the piston velocity and by requiring that the order
O(ε) vanishes, we obtain a relation between the temperature of the piston T(p) and those of the gases
on the left and on the right:

T(p) = M
〈

V2
〉
= (TRTL)

1/2 . (26)

Finally, a condition on the temperature of the gas as a function of the velocity variance of the
pistons on its left and on its right can be obtained by considering the variable ΔX = m(v′2 − v2)/N in
Equation (15). This gives (see Appendix A) the relations:

O(1) :
2kBT

Δz
(VL −VR) , (27)

O(ε) :
√

2kB
Δz

4√
π

T1/2

M1/2

[
MV2

R + MV2
L − 2T

]
. (28)

By integrating over the velocity of the piston, because 〈V〉 is zero, the order O(1) is identically
zero. By requiring that, in the stationary state, the order O(ε) vanishes, we eventually obtain:

0 =

√
2kB

Δz
4√
π

T1/2

M1/2

[
M
〈

V2
R

〉
0
+ M

〈
V2

L

〉
0
− 2T

]
=⇒ T =

M
2

(〈
V2

R

〉
+
〈

V2
L

〉)
. (29)

As expected from thermodynamics, one can easily show that the gases in contact with the
thermostats reach the temperatures of the thermal baths (see Appendix A for a detailed explanation).

5. Numerical Simulations

In order to check the range of validity of the above approach, we have performed extensive molecular
dynamics simulations (using an event driven algorithm) of the system, varying the relevant parameters
of the model and comparing the analytical prediction of Section 3 with the actual numerical results. The
system is initialized with the pistons placed at equidistant positions, with zero velocity, while the gas
particles are randomly distributed in each box, with velocities drawn from a Gaussian distribution at
temperature intermediate with respect to those of the thermostats. We have, however, checked that the
stationary state reached by the system is independent of the initial conditions. All data presented in the
following are measured in the steady state, after the transient relaxation dynamics from the initial state.

In Figure 2, we show the piston temperatures T(p)
i , i = 1, 2, 3, for a 3-piston system, as measured

in numerical simulations (symbols) for a certain choice of the parameters, and compare them with
the theoretical predictions of Equation (26) (lines). The approximation is good for the intermediate
piston, while it is not very accurate for the side pistons, and is the worst in the case of a large gradient
TB/TA 
 1. Simulations performed for systems with more pistons give similar results.

Figure 2. Piston temperatures for a 3-piston system, with parameters TA = 15, N = M = 100, m = 1,
L = 1.
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In Figure 3, we consider a system with a large number of pistons (n = 22), where the temperature
profile shows a linear behavior, in agreement with Fourier’s law. We report two sets of data, differing
in the value of the parameter R = mN/M. Notice that the linear behavior extends for a wider range of
z in the case R = 10. Lines represent linear fits of the data. Let us note that, for large n and R 
 1,
T(p) vs. z is in good agreement with a linear behavior in the whole space interval (even close to the
thermal baths).

Figure 3. Temperature profiles for a 22-piston system with R = 1 and R = 10. Other parameters are
TA = 15, TB = 30, M = 50, m = 1, L = 1.

The derivation of the Langevin equation (see Appendix A) is mainly based on the assumptions:

• m/M� 1;
• a local thermodynamic equilibrium, i.e. in each compartment between the piston i− 1 and the

piston i, the spatial distribution of the particles is uniform and the velocity probability distribution
is a Gaussian function, whose variance is given by the gas temperature;

• the collisions particles/pistons are independent.

The first assumption is easily checked, while the other ones are more difficult. We can expect
that a necessary condition for their validity is that N must be large. We have measured the velocity
distribution of the gas particles in the numerical simulations, finding that the above hypothesis is
verified. Moreover, we expect that the number of recollisions decreases with the ratio m/M, and we
have numerically checked that their contribution is negligible (the fraction of recollisions on the total
number of collisions is about 0.1%). Figure 4 shows the probability distribution functions of particles
colliding from left, φL(v), and from right, φR(v), with a moving wall: the agreement with a Gaussian
assumption is rather evident.

In addition, the numerical computations show that the left- and right-moving particles in the
same compartment have the following probability distributions:

φ−(v) =

√
2m

πkBT−
Θ(v)e−

mv2
2kBT− , (30)

φ+(v) =

√
2m

πkBT+
Θ(−v)e−

mv2
2kBT+ , (31)

where T− (T+) denotes the temperature of the particles incident on the piston i (i− 1) from the left
(right), with T− ≈ T+, resulting in a small but finite heat flow proportional to (T− − T+), in agreement
with [15]. Let us note that the above probability distributions are different from the distributions φL(v)
and φR(v), which are computed for particles actually colliding with the piston; this is the origin of the
presence of the factor v appearing in the expressions in the caption of Figure 4.
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Figure 4. Probability distribution function of the velocities φL(v) (φR(v)) of the particles colliding with
the first piston from the left (right), for a system with n = 2. The curves, red and blue, are respectively:
φL = m

kBTL
e−v2/kBTL v θ(−v) and φR = m

kBTR
e−v2/kBTR v θ(v), where TL = 15.0 and TR = 21.6 are the

temperatures of the gas on the left and on the right with respect to the first piston. Other parameters
are: TA = 15, TB = 30, N = 100, M = 100, m = 1, n = 2, L = 1.

The distribution of v in the compartment between pistons i− 1 and i, has the form:

φ(v) ∝ AΘ(v)e−
mv2

2kBT− + BΘ(−v)e−
mv2

2kBT+ ,

where A and B are constants. However, since

T− = T+ + O(ε2),

we have a Gaussian distribution for the particle gas in the compartment:

φi(v) ∝ e
− mv2

2kBTi + O(ε2), Ti = T+ + O(ε2). (32)

Let us note that all our results are based on an expansion in powers of ε, neglecting O(ε2).
In other words, because the heat rate is very small, this heat flux perturbs the Gaussian form of the
probability distribution φ in a negligible way.

In order to better understand the dependence of our theoretical results on the parameter R, we
have performed numerical simulations of the system for different values of R. From the previous
remark, we expect to have an improvement of the agreement between the numerical results and the
analytical predictions by increasing R. In Figure 5, we compare the piston temperature in a 4-piston
system with theoretical predictions from Equation (26), finding a very good agreement for large values
of R. This shows that the total mass of the gas contained in a box has to be larger than the mass of the
piston, in order for the kinetic theory presented in the previous section to be accurate.

Figure 5. Piston temperatures for a 4-piston system as a function of R. Dashed lines are the theoretical
predictions. Other parameters are TA = 15, TB = 30, m = 1, L = 1.
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6. Conclusions

We have studied a generalized piston in contact with two thermal baths at different temperatures.
This system represents a simple but interesting case where the emergence of Fourier’s law from a
microscopic mechanical model can be studied. We have presented a kinetic theory treatment inspired
by an approach à la Smoluchowski, and we have investigated the range of validity of these results with
molecular dynamics numerical simulations. We have found that, in order for the theory to be accurate,
the ratio R = mN/M should be large enough, namely the total mass of the gas in each compartment
should be greater than that of the single piston.

We have considered ideal gas in our model, but we do not expect that the introduction of
short-range interactions among gas particles, at least in not too dense cases, leads to significant
differences in the behavior of the system. An interesting, non-trivial, future line of research in this
model is the study of the relaxation to the steady state and the dynamical properties of the system,
focusing on correlation and response functions.
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Appendix A

In this appendix, we will derive the relations that determine the stationary state of the
multi-component piston model described in the main text.

Appendix A.1. Piston Position

The effective force acting on the piston due to the collisions with gas particles, appearing in
Equation (20), is given by two contributions, Fcoll = FL

coll + FR
coll . By taking into account the elastic

collisions rule, Equation (1), these terms can be computed as follows:

FL
coll =

N
ΔzL

∫ ∞

−∞
dvM(v−V)Θ(v−V)φ(v) (V′ −V) =

N
ΔzL

2mM
m + M

∫ ∞

V
dv (v−V)2

√
m

2πkBTL
e−

m
2kBTL

v2

=
N

ΔzL

M
m + M

[
erfc

(√
m

2 kBTL
V
)
(mV2 + kBTL)−

√
m
π

√
2kBTLVe−

m
2 kBTL

V2
]

,
(A1)

where in the first line we have used Equation (12). In the same way, by putting the observable
ΔX = M(V′ −V) in the Equation (17), we have:

FR
coll =

N
ΔzR

∫ ∞

−∞
dvM(V − v)Θ(V − v)φ(v) (V′ −V) = − N

ΔzR

2mM
m + M

∫ V

−∞
dv (v−V)2

√
m

2πkBTR
e−

m
2kBTR

v2

= − N
ΔzR

M
m + M

[(
1 + erf

(√
m

2 kBTR
V
))

(mV2 + kBTR) +

√
m
π

√
2kBTRVe−

m
2 kBTR

V2
]

.
(A2)

By putting together the previous relations, we obtain:

M
d
dt
〈V〉coll = FL

coll + FR
coll =

NM
m + M

[
kBTL
ΔzL

erfc
(√

m
2 kBTL

V
)
− kBTR

ΔzR

(
erf
(√

m
2 kBTR

V
)
+ 1
)]
−

− NM
m + M

√
2m
π

V
[√

kBTL
ΔzL

e−
m

2 kBTL
V2

+

√
kBTR
ΔzR

e−
m

2 kBTR
V2
]
+

+
NM

m + M
mV2

[
1

ΔzL
erfc

(√
m

2 kBTL
V
)
− 1

ΔzR

(
1 + erf

(√
m

2 kBTR
V
))]

.

(A3)
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By expanding in the small ratio ε =
√

m/M� 1, and assuming that V/v ∼ ε, we have:

O(1) : NkB

(
TL

ΔzL
− TR

ΔzR

)
, (A4)

O(ε) : −2N
√

2kB

√
M
π

[
T1/2

L
ΔzL

+
T1/2

R
ΔzR

]
V. (A5)

In the steady state, when the time derivative vanishes, we have from the order O(1) the following
relation between the temperatures of the gas and the average lengths of the boxes:

ΔzR = ΔzL
TR
TL

. (A6)

Appendix A.2. Piston Fluctuations

Let us now consider the observable ΔX = M(V′2 −V2). From Equation (16), using Equation (1)
for the elastic collisions, we obtain:

M
d
dt

〈
V2
〉L

coll
=

N
ΔzL

∫ ∞

−∞
dv (v−V)Θ(v−V)M(V′2 −V2)φ(v)

=
NM
ΔzL

∫ ∞

V
dv (v−V)

[
(2m)2

(m + M)2 (V − v)2 +
4m

m + M
V(V − v)

]
φ(v).

(A7)

Using Equation (12), we have:

M
d
dt

〈
V2
〉L

coll
=

MN
ΔzL
√

π

4m2

(m + M)2

(
2 kBTL

m

)3/2
−

− MN
ΔzL
√

π

4m
m + M

2 kBTL
m
√

π erfc
(√

m
2 kBTL

V
) [

m
m + M

3
4
− 1

4

]
V+

+
MN

ΔzL
√

π

4m
m + M

√
2 kBTL

m
e−

m
2 kBTL

V2
[

m
m + M

1
2
− 1

2

]
V2−

− MN
ΔzL
√

π

4m
m + M

√
π

2
erfc

(√
m

2 kBTL
V
) [

m
m + M

− 1
]

V3.

(A8)

In the same way, from Equation (17), we obtain:

M
d
dt

〈
V2
〉R

coll
=

N
ΔzR

∫ ∞

−∞
dv (V − v)Θ(V − v)M(V′2 −V2)φ(v)

=
NM
ΔzR

∫ V

−∞
dv (V − v)

[
(2m)2

(m + M)2 (V − v)2 +
4m

m + M
V(V − v)

]
φ(v)

=
MN

ΔzR
√

π

4m2

(m + M)2

(
2 kBTR

m

)3/2
+

+
MN

ΔzL
√

π

4m
m + M

2 kBTR
m
√

π

(
1 + erf

(√
m

2 kBTR
V
)) [

m
m + M

3
4
− 1

4

]
V+

+
MN

ΔzR
√

π

4m
m + M

√
2 kBTR

m
e−

m
2 kBTR

V2
[

m
m + M

1
2
− 1

2

]
V2−

+
MN

ΔzR
√

π

4m
m + M

√
π

2

(
1 + erfc

(√
m

2 kBTR
V
)) [

m
m + M

− 1
]

V3.

(A9)
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Putting together the contributions from the relations (A8) and (A9), we have

M
d
dt

〈
V2
〉

coll
=

MN√
π

4m2

(m + M)2

(
2kB
m

)3/2 1
2

[
T3/2

L
ΔzL

e−
m

2 kBTL
V2

+
T3/2

R
ΔzR

e−
m

2 kBTR
V2
]
+

+ MN
4m

m + M
2kB
m

[
3
4

m
m + M

− 1
4

]{
TR

ΔzR

(
erf
(√

m
2 kBTR

V
)
+ 1
)
−

− TL
ΔzL

erfc
(√

m
2 kBTL

V
)}

V + MN
4m

m + M
1

2
√

π

√
2kB
m

[
m

m + M
− 1
]

×
{√

TL
ΔzL

e−
m

2 kBTL
V2

+

√
TR

ΔzR
e−

m
2 kBTR

V2
}

V2 + MN
4m

m + M
1
2

[
m

m + M
− 1
]

×
{

1
ΔzR

(
erf
(√

m
2 kBTR

V
)
+ 1
)
− 1

ΔzL
erfc

(√
m

2 kBTL
V
)}

V3.

(A10)

By using a Taylor expansion in the small parameter ε =
√

m
M � 1, we obtain:

O(1) : 2N
(

kBTL
ΔzL

− kBTR
ΔzR

)
V, (A11)

O(ε) :
N

M1/2
4
√

2√
π

[(
(kBTL)

3/2

ΔzL
+

(kBTR)
3/2

ΔzR

)
−MV2

(
(kBTL)

1/2

ΔzL
+

(kBTR)
1/2

ΔzR

)]
. (A12)

In the steady state, by using the thermodynamic relations, the order O(1) Equation (A11) is
identically zero. After integrating over all values of the piston velocity and by requiring that the order
O(ε) vanishes, we obtain a relation between the temperature of the right piston and that of the left one:

T(p) ≡ M
〈

V2
〉
= kB (TRTL)

1/2 , (A13)

where we have used also the thermodynamic relation Equation (A6).

Appendix A.3. Temperature of the Gas

Let us now compute the average temperature of the gas. We have to distinguish between two
different cases:

• Gas between two moving walls
• Gas between a moving wall and a thermostat

Appendix A.3.1. Gas between Two Moving Walls

Let us consider the observable ΔX equal to the difference of the gas energy before and after the
collision: ΔX = m(v′2 − v2)/N. By putting the observable into the relation (16) and by taking into
account the Equation (1), we obtain:

m
N

d
dt

〈
v2
〉L

coll
=

m
Δz

∫ ∞

−∞
dv (v−VR)Θ(v−VR)[v′2 − v2]φ(v)

=
m
Δz

∫ ∞

VR

dv (v−VR)

[
4M2

(m + M)2 (VR − v)2 +
4M

m + M
v(VR − v)

]
φ(v).

(A14)
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By integrating, we have:

m
N

d
dt

〈
v2
〉L

coll
=

m
Δz

1√
π

4M
m + M

(
2 kBT

m

)3/2
e−

m
2 kBT V2

R

[
− m

m + M

]
+

+
m
Δz

4M
m + M

2kBT
m

erfc
(√

m
2 kBT

VR

) [
− M

m + M
+

2m
m + M

]
VR
4
+

+
m
Δz

1√
π

4M
m + M

√
2kBT

m
1
2

M
m + M

e−
m

2 kBT V2
R V2

R −
m
Δz

2M2

(M + m)2 erfc
(√

m
2 kBT

VR

)
V3

R.

(A15)

In the same way, we obtain:

m
N

d
dt

〈
v2
〉R

coll
=

m
Δz

∫ ∞

−∞
(VL − v)Θ(VL −V)[v′2 − v2]φ(v)

=
m
Δz

∫ VL

−∞
dv (VL − v)

[
4M2

(m + M)2 (VL − v)2 +
4M

m + M
v(VL − v)

]
φ(v)

=
m
Δz

1√
π

4M
m + M

(
2 kBT

m

)3/2
e−

m
2 kBT V2

R

[
− m

m + M

]
−

− m
Δz

4M
m + M

2kBT
m

(
1 + erf

(√
m

2 kBT
VL

)) [
− M

m + M
+

2m
m + M

]
VL
4
+

+
m
Δz

1√
π

4M
m + M

√
2kBT

m
1
2

M
m + M

e−
m

2 kBT V2
L V2

L+

+ 2
m
Δz

M2

(M + m)2

(
1 + erf

(√
m

2 kBT
VL

))
V3

L .

(A16)

Putting together Equations (A15) and (A16), one has:

m
N

d
dt

〈
v2
〉

coll
= − m

Δz
1√
π

4M
m + M

m
m + M

(
2kBT

m

)3/2
⎡⎣ e−

m
2 kBT V2

L

2
+

e−
m

2 kBT V2
R

2

⎤⎦+
+

m
Δz

4M
m + M

2kBT
m

1
4

[
2m

m + M
− M

m + M

]{
VR erfc

(√
m

2 kBT
VR

)
−

−VL −VL erf
(√

m
2 kBT

VL

)}
+

m
Δz

1
2

4M2

(m + M)2

√
2 kBT

m
1√
π
×

×
[

V2
Re−

m
2 kBT V2

R + V2
L e−

m
2 kBT V2

L

]
− m

Δz
4M2

(m + M)2
1
2
×

×
[

V3
R erfc

(√
m

2 kBT
VR

)
−V3

L

(
1 + erf

(√
m

2 kBT
VL

))]
,

(A17)

and using a Taylor expansion around the small parameter ε =
√

m
M � 1 yields:

O(1) :
2kBT

Δz
(VL −VR) , (A18)

O(ε) :
√

2kB
Δz

4√
π

T1/2

M1/2

[
MV2

R + MV2
L − 2T

]
. (A19)

By integrating over the velocity of the piston, because 〈V〉 is zero, the order O(1) is identically
zero. By requiring that in the stationary state the order O(ε) vanishes, we obtain a relation between
the temperature of the gas and those of the near pistons:

0 =

√
2kB

Δz
4√
π

T1/2

M1/2

[
M
〈

V2
R

〉
0
+ M

〈
V2

L

〉
0
− 2T

]
=⇒ T =

M
2

(〈
V2

R

〉
+
〈

V2
L

〉)
. (A20)
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Appendix A.3.2. Gas between a Piston and a Thermostat

Consider the gas that is near a thermostat and piston. The variation of the temperature due to the
piston is the same as before and is given by the Equations (A15) or (A16), respectively, for a piston on
the right or on left, with respect to the considered gas. On the side of the thermostat, after the collision,
the particle takes a velocity according to the distribution given by the Equation (2). For instance, if the
thermostat is that one on the left at temperature T0, we have:

〈T〉Lther =
m
Δz

∫ ∞

−∞
dv
∫ ∞

−∞
dv′ (v′2 − v2)φ(v) |v|Θ(−v)ΦT0(v′)

m
Δz

∫ ∞

−∞
dv
∫ ∞

−∞
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√
m

2πkBT
e−

m
2kBT v2

θ(−v) |v| v′ Θ(v′)
m

kBT0
e−

m
2kBT0

v′2

m
Δz

m
kBT0

√
m

2πkBT

∫ 0

−∞
dv
∫ ∞

0
dv′v v′(v′2 − v2)e−

m
2 kBT v2

e−
m

2kBT0
v′2 .

(A21)

By integrating, we obtain:

〈T〉Lther =

√
2

π m
k3/2

B
Δz

√
T[T0 − T]. (A22)

In order to compute the variation of the temperature, we have to put together Equations (A22)
and (A15):

d
dt
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π

4M
m + M

(
m

2 kBT

)3/2 e−
m

2 kBT V2
R

2

[
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m
2 kBT
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− M
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+
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(A23)

By solving perturbatively around the small parameter ε =
√

m
M � 1, we obtain:

O
(

1
ε

)
:

√
2
π

k3/2
B

M1/2

√
T

Δz
(T0 − T), (A24)

O(1) : −2
kBT
Δz

VR. (A25)

In the steady state, from relation (A24) at order O(1/ε), we have T = T0. This means that a gas
near a thermostat reaches the temperature of the thermal bath: this is the result one can obtain from
thermodynamics. We can obtain exactly the same result for a thermostat on the right with respect to
the considered gas.
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Abstract: We investigate the stationary and dynamic properties of the celebrated Nosé–Hoover
dynamics of many-body interacting Hamiltonian systems, with an emphasis on the effect of
inter-particle interactions. To this end, we consider a model system with both short- and long-range
interactions. The Nosé–Hoover dynamics aim to generate the canonical equilibrium distribution
of a system at a desired temperature by employing a set of time-reversible, deterministic equations
of motion. A signature of canonical equilibrium is a single-particle momentum distribution that is
Gaussian. We find that the equilibrium properties of the system within the Nosé–Hoover dynamics
coincides with that within the canonical ensemble. Moreover, starting from out-of-equilibrium initial
conditions, the average kinetic energy of the system relaxes to its target value over a size-independent
timescale. However, quite surprisingly, our results indicate that under the same conditions and with
only long-range interactions present in the system, the momentum distribution relaxes to its Gaussian
form in equilibrium over a scale that diverges with the system size. On adding short-range interactions,
the relaxation is found to occur over a timescale that has a much weaker dependence on system
size. This system-size dependence of the timescale vanishes when only short-range interactions
are present in the system. An implication of such an ultra-slow relaxation when only long-range
interactions are present in the system is that macroscopic observables other than the average kinetic
energy when estimated in the Nosé–Hoover dynamics may take an unusually long time to relax to its
canonical equilibrium value. Our work underlines the crucial role that interactions play in deciding
the equivalence between Nosé–Hoover and canonical equilibrium.

Keywords: Hamiltonian systems; classical statistical mechanics; ensemble equivalence; long-range
interacting systems

1. Introduction

Often, one needs in studies in nonlinear dynamics and statistical physics to investigate the
dynamical properties of a many-body interacting Hamiltonian system evolving under the condition of
a constant temperature. For example, one might be interested in studying the dynamical properties of
the system in canonical equilibrium at a certain temperature T, with the temperature being proportional
to the average kinetic energy of the system by virtue of the Theorem of Equipartition (In this work, we
measure temperatures in units of the Boltzmann constant). To this end, one may devise a dynamics
having a temperature Ttarget as a dynamical parameter that is designed to relax an initial configuration
of the system to canonical equilibrium at temperature Ttarget, and then make the choice Ttarget = T.
A common practice is to employ a Langevin dynamics, i.e., a noisy, dissipative dynamics that mimics the
interaction of the system with an external heat bath at temperature Ttarget in terms of a deterministic
frictional force and an uncorrelated, Gaussian-distributed random force added to the equation of
motion [1]. In this approach, one then tunes suitably the strength of the random force such that the
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Langevin dynamics relaxes at long times to canonical equilibrium at temperature Ttarget. The presence
of dissipation renders the dynamics to be irreversible in time. A complementary approach to such
a noisy, dissipative dynamics was pioneered by Nosé and Hoover, in which the dynamics is fully
deterministic and time-reversible, while achieving the same objective of relaxing the system to canonical
equilibrium at the desired temperature Ttarget [2,3]; for a review, see [4,5]. The time evolution under
the condition of relaxation at long times to canonical equilibrium at a given temperature is said to
represent isokinetic ensemble dynamics when taking place according to the Nosé–Hoover equation
of motion and to represent Langevin/canonical ensemble dynamics when taking place following the
Langevin equation of motion.

To illustrate in detail the distinguishing feature of the Nosé–Hoover vis-à-vis Langevin dynamics,
consider an interacting N-particle system characterized by the set {qj, πj} of canonical coordinates and
conjugated momenta. The particles, which we take for simplicity to have the same mass m, interact
with one another via the two-body interaction potential Φ({qj}). In the following, we consider qj’s
and πj’s to be one-dimensional variables for reasons of simplicity. Our analysis, however, extends
straightforwardly to higher dimensions. The Hamiltonian of the system is given by

Hsystem =
N

∑
j=1

π2
j

2m
+ Φ({qj}), (1)

where the first term on the right-hand side stands for the kinetic energy of the system.
In the approach due to Langevin, the dynamical equations of the system are given by

dqj

dt
=

πj

m
,

dπj

dt
= −γ

πj

m
−

∂Φ({qj})
∂qj

+ ηj(t), (2)

where t denotes time, γ > 0 is the dissipation constant, while ηj(t) is a Gaussian, white noise satisfying

ηj(t) = 0, ηj(t)ηk(t′) = 2Dδjkδ(t− t′). (3)

Here, the overbars denote averaging over noise realizations, while D > 0 characterizes the
strength of the noise. The dynamics (2) are evidently not time-reversal invariant. Choosing D = γTtarget

ensures that the dynamics (2) relaxes at long times to the canonical distribution at Ttarget given by [1]

P({qj, πj}) ∝ exp(−Hsystem/Ttarget), (4)

in which the kinetic energy density of the system fluctuates around the average value Ttarget/2.
In the approach due to Nosé and Hoover, a degree of freedom s augmenting the set {qj, πj} is

introduced, which is taken to characterize an external heat reservoir that interacts with the system
through the momenta πj’s. The Hamiltonian of the combined system is given by

H =
N

∑
j=1

π2
j

2ms2 + Φ({qj}) +
p2

s
2Q

+ (N + 1)Ttarget ln s, (5)

where Q is the mass and ps is the conjugated momentum of the additional degree of freedom.
The dynamics of the system is given by the following Hamilton equations of motion:

dqj

dt
=

πj

ms2 ,
dπj

dt
= −

∂Φ({qj})
∂qj

,

(6)

ds
dt

=
ps

Q
,

dps

dt
=

N

∑
j=1

π2
j

ms3 − (N + 1)
Ttarget

s
.
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It may be easily checked that unlike dynamics (2), dynamics (6) is invariant under time reversal. In
terms of new variables

pj ≡
πj

s
, ζ ≡ ps

Q
, (7)

and rescaled time
t̃ ≡ t

s
, (8)

one obtains from the Hamilton Equations (6) the following dynamics:

dqj

dt̃
=

pj

m
, (9)

dpj

dt̃
= −

∂Φ({qj})
∂qj

− ζ pj, (10)

ds
dt̃

= ζs, (11)

dζ

dt̃
=

1
Q

(
N

∑
j=1

p2
j

m
− (N + 1)Ttarget

)
=

1
τ2

(K(P)
K0
− 1
)

, (12)

where K(P) ≡ ∑N
j=1 p2

j /(2m) is the kinetic energy, while we have defined

K0 ≡ (N + 1)
Ttarget

2
, τ2 ≡ Q

2K0
. (13)

From Equations (9)–(12), we observe that a complete description of the time evolution of the
system is given in terms of Equations (9), (10), and (12), without any reference to Equation (11) for s,
so that, as far as the description of the system is concerned, the variable s is an irrelevant one that may
be ignored. We note in passing that a different, but closely related, Hamiltonian giving directly the
Nosé-Hoover equations of motion but without any time scaling, as in Equation (8), is discussed in [6].
We will from now on drop the tilde over time in order not to overload the notation. Let us note that, in
terms of the variables pj’s, the Hamiltonian (5) takes the form

H =
N

∑
j=1

p2
j

2m
+ Φ({qj}) +

Qζ2

2
+ (N + 1)T ln s. (14)

From Equation (12), we find that, in the stationary state (dζ/dt = 0), the kinetic energy of the
system equals (N + 1)Ttarget/2 (the extra factor of unity takes care of the presence of the additional
degree of freedom s). For large N 
 1, we then have the desired result: an ensemble of initial conditions
under the evolution given by Equations (9), (10), and (12) evolves at long times to a stationary state
in which the average kinetic energy density has the value Ttarget/2. The quantity τ in Equation (12)
denotes a relaxation timescale over which the kinetic energy relaxes to its target value. Beyond the
average kinetic energy, it has been demonstrated by invoking the phase space continuity equation that
the distribution

f ∝ exp

[
−
(

N

∑
j=1

p2
j

2m
+ Φ({qj}) + Qζ2/2

)
/Ttarget

]
(15)

is a stationary state of the Nosé–Hoover dynamics [3]. It then follows that the corresponding stationary
distribution for the system variables {qj, pj} is the canonical equilibrium distribution:

P({qj, pj}) ∝ exp

[
−
(

N

∑
j=1

p2
j

2m
+ Φ({qj})

)
/Ttarget

]
, (16)

150



Entropy 2017, 19, 544

normalized as
∫ (

∏N
j=1 dqjdpj

)
P({qj, pj}) = 1. Thus, the dynamics (9)–(12) that includes the

additional dynamical variable s nevertheless preseves the canonical equilibrium distribution of the
system. A general formalism for constructing modified Hamiltonian dynamical systems that preserve
a canonical equilibrium distribution on adding a time evolution equation for a single additional
thermostat variable is discussed in [7].

Equation (16) implies that the single-particle momentum distribution P(p), defined such that
P(p)dp gives the probability that a randomly chosen particle has its momentum between p and p + dp,
is a Gaussian distribution with mean zero and width equal to Ttarget:

P(p) =
1√

2πmTtarget
exp

(
− p2

2mTtarget

)
. (17)

Consequently, the moments 〈pn〉 ≡
∫ ∞
−∞ dp pnP(p), with n = 1, 2, 3, . . ., satisfy 〈p4〉/〈p2〉2 = 3.

In the above backdrop, the principal objective of this work is to answer the question: what is
the effect of inter-particle interactions on the relaxation properties of the Nosé–Hoover dynamics?
More specifically, considering a system embedded in a d-dimensional space, we ask: do systems with
long-range interactions, in which the inter-particle interaction decays slower than 1/rd, behave in
a similar way to short-range systems that have the inter-particle interaction decaying faster than 1/rd?
How does the timescale over which the phase space distribution relaxes to its canonical equilibrium
form behave in the two cases, and, in particular, is there a system-size dependence in the timescale for
long-range systems with respect to short-range ones? Studying these issues is particularly relevant and
timely in the wake of recent surge in interest across physics in long-range interacting (LRI) systems.

LRI systems may display a notably distinct thermodynamic behavior with respect to short-range
ones [8–12]. These systems are characterized by a two-body interaction potential V(r) that decays
asymptotically with inter-particle separation r as V(r) ∼ r−α, with 0 ≤ α ≤ d in d spatial dimensions.
The limit α → 0 corresponds to the case of mean–field interaction. Examples of LRI systems are
self-gravitating systems, plasmas, fluid dynamical systems, and some spin systems. One of the
striking dynamical features resulting from long-range interactions is the occurrence of non-equilibrium
quasi-stationary states (QSSs) during relaxation of LRI systems towards equilibrium. These states
have lifetimes that diverge with the number of particles constituting the system, so that, in the
thermodynamic limit, the system remains trapped in QSSs and does not attain equilibrium. Only for
a finite number of particles do the QSSs eventually evolve towards equilibrium. Even in equilibrium,
LRI systems may exhibit features such as ensemble inequivalence and a negative heat capacity in the
microcanonical ensemble that are unusual for short-range systems.

In this work, we address our aforementioned queries within the ambit of a model system
comprising classical XY-spins occupying the sites of a one-dimensional periodic lattice and interacting
via a long-range (specifically, a mean–field interaction in which every spin interacts with every other
and a short-range (specifically, a nearest-neighbor interaction in which every spin interacts with its
left and right neighbors) interaction. With an aim to study the equilibrium properties as well as
relaxation towards equilibrium, we simulate the Nosé–Hoover dynamics of the model by integrating
the corresponding equations of motion in time. A signature of canonical equilibrium is a single-particle
momentum distribution that is Gaussian (see Equation (17)). We find that the equilibrium properties
of our model system evolving under the Nosé–Hoover dynamics coincide with those within the
canonical ensemble. As regards relaxation towards canonical equilibrium, we observe that starting
from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target
canonical-equilibrium value over a size-independent timescale. However, quite surprisingly, our results
indicate that under the same conditions and with only long-range interactions present in the system,
the momentum distribution relaxes to its Gaussian form in equilibrium over a scale that diverges with
the system size. On adding short-range interactions, the relaxation is found to occur over a timescale
that has a much weaker dependence on system size. This system-size dependence vanishes when only
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short-range interactions are present in the system. An implication of such an ultra-slow relaxation
when only long-range interactions are present in the system is that macroscopic observables other than
the average kinetic energy when estimated in the Nosé–Hoover dynamics may take an unusually long
time to relax to its canonical equilibrium value. Our work underlines the crucial role that interactions
play in deciding the equivalence between Nosé–Hoover and canonical equilibrium.

The paper is organized as follows. In Section 2, we describe the model of study. In Section 3, we
obtain the so-called caloric curve of the model within the canonical ensemble, which we eventually
invoke in later parts of the paper to decide on the equivalence of the equilibrium properties of the
Nosé–Hoover dynamics and canonical equilibrium. In Section 4, we present results from simulations
of the Nosé–Hoover dynamics of the model, and discuss the implications and relevance of the results.
The paper ends with conclusions in Section 5.

2. Model of Study

Our system of study comprises a one-dimensional periodic lattice of N sites. Each site of the
lattice is occupied by a unit-inertia rotor characterized by its angular coordinate θj ∈ [0, 2π) and the
corresponding conjugated momentum pj, with j = 1, 2, . . . , N. One may also think of the rotors as
representing classical XY-spins. Note that both of the θj’s and the pj’s are one-dimensional variables.
There exist both a long-range (specifically, a global or a mean–field) coupling and a short-range
(specifically, nearest-neighbor) coupling between the rotors. Thus, a rotor on site j interacts with
strength J/(2N) with rotors on all the other sites and with strength K with the rotor occupying the
(j− 1)-th and the (j + 1)-th site. The Hamiltonian of the system is given by [13,14]

H =
N

∑
j=1

p2
j

2
+

J
2N

N

∑
j,k=1

[
1− cos(θj − θk)

]
+ K

N

∑
j=1

[
1− cos(θj+1 − θj)

]
; θN+1 ≡ θ1, pN+1 ≡ p1. (18)

Note that, for K = 0, the Hamiltonian (18) reduces to that of the widely-studied Hamiltonian
mean–field (HMF) model [15], which is regarded as a paradigmatic model to study statics and
dynamics of LRI systems [10]. On the other hand, for J = 0, the model (18) reduces to a short-ranged
XY model in one dimension.

In the following, we take both the mean–field coupling J and the short-range coupling K to
be positive, thereby modeling ferromagnetic global and nearest-neighbor couplings. Consequently,
both the long-range and the short-range coupling between the rotors favor an ordered state in which
all the rotor angles are equal, thereby minimizing the potential energy contribution to the total
energy. Such a tendency is, however, opposed by the kinetic energy contribution whose average
in equilibrium may be characterized by a temperature by invoking the Theorem of Equipartition.
Noting that, for a given N, the total potential energy is bounded from above while the total kinetic
energy is not, one expects the system to show in equilibrium an ordered/magnetized phase at
low energies/temperatures and a disordered/unmagnetized phase at high energies/temperatures.
This scenario holds even with K = 0.

The amount of order in the system is characterized by the XY magnetization

m ≡ 1
N

(
N

∑
j=1

cos θj,
N

∑
j=1

sin θj

)
, (19)

which is a vector whose length m has the thermodynamic value in equilibrium denoted by meq that is
nonzero in the ordered phase and zero in the disordered phase. For K = 0, the corresponding HMF
model is known to display a second-order phase transition between a high-temperature unmagnetized
phase and a low-temperature magnetized phase at the critical temperature Tc = J/2, with the
corresponding critical energy density being uc = 3J/4 [10]. On the other hand, invoking the Landau’s
argument for the absence of any phase transition at a finite temperature in a one-dimensional model

152



Entropy 2017, 19, 544

with only short-range interactions, one may conclude for J = 0 that the corresponding short-ranged
XY model does not display any phase transitions, though it has been shown to have interesting
dynamical effects [16]. For general J �= 0, K �= 0, when both long-range and short-range interactions
are present, the model displays a second-order phase transition between an ordered and a disordered
phase [13,14]. Note that all the mentioned phase transitions are continuous. Although ensemble
equivalence is not guaranteed for LRI systems, it has been argued that inequivalence arises when one
has a first-order phase transition in the canonical ensemble, and not when one has a second-order
transition [17]. Consequently, we may regard the phase diagram of model (18) to be equivalent within
microcanonical and canonical ensembles. For an explicit demonstration of ensemble equivalence for
the model (18), one may refer to [14].

In the following section, we will obtain the caloric curve of model (18) that relates the equilibrium
internal energy with the equilibrium temperature of the system.

3. The Caloric Curve within the Canonical Ensemble

As mentioned in the preceding section, model (18) is known to have equivalent microcanonical
and canonical ensemble descriptions in equilibrium. Consequently, in obtaining the caloric curve of
the model, which will be invoked to decide the equivalence between the equilibrium properties of
the Nosé–Hoover dynamics and canonical equilibrium, it will suffice to restrict our analysis to the
canonical ensemble description of the model.

The Langevin/canonical ensemble dynamics (2) for the model (18) comprises the set of
time-evolution equations

dθj

dt
= pj,

(20)
dpj

dt
= −γpj +

J
N

N

∑
k=1

sin(θk − θj) + K
[
sin(θj+1 − θj) + sin(θj−1 − θj)

]
+ ηj(t),

with the properties of the noise ηj(t) given by Equation (3) with D = γT. Within the microcanonical
ensemble description of the system, the time evolution of the variables {θj, pj} is given by Hamilton
equations obtained from Equation (20) by setting γ to zero. The Nosé–Hoover dynamics of the
variables {θj, pj} is obtained from Equations (9) and (10) as

dθj

dt
= pj,

(21)
dpj

dt
=

J
N

N

∑
k=1

sin(θk − θj) + K
[
sin(θj+1 − θj) + sin(θj−1 − θj)

]
− ζ pj,

where the time evolution of the variable ζ is given by Equation (12).
In order to derive the desired caloric curve of model (18) within the canonical ensemble,

we start with the canonical partition function of the system at temperature T given by
ZN ≡

∫ (
∏N

j=1 dθjdpj

)
exp[−βH({θj, pj})], with β ≡ 1/T. Using Equation (18), we get

ZN =
(

2π
β

)N/2
e−βJN/2−βKN ∫ (∏N

j=1 dθj

)
exp

[
βJ
2N

{(
∑N

j=1 cos θj

)2
+
(

∑N
j=1 sin θj

)2
}
+ βK ∑N

j=1 cos(θj+1 − θj)
]
. (22)
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Using the Hubbard–Stratonovich transformation exp(ax2) =

1/(
√

4πa)
∫ ∞
−∞ dz exp

(
− z2

4a + zx
)

, a > 0 in Equation (22), we obtain

ZN =

(
2π

β

)N/2
e−βJN/2−βKN NβJ

2π

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ( N

∏
j=1

dθj

)
exp

[
− NβJ

2
(z2

1 + z2
2)

+βJz1

N

∑
j=1

cos θj + βJz2

N

∑
j=1

sin θj + βK
N

∑
j=1

cos(θj+1 − θj)
]
. (23)

Writing z1 = z cos φ, z2 = z sin φ, with real z = (z2
1 + z2

2)
1/2 > 0 and φ ∈ [0, 2π) given by

φ = tan−1(z2/z1), we get

ZN =

(
2π

β

)N/2
e−βJN/2−βKN NβJ

2π

∫ 2π

0
dφ
∫ ∞

0
dz z

∫ ( N

∏
j=1

dθj

)
exp

[
− NβJ

2
z2

+βJz
N

∑
j=1

cos(θj − φ) + βK
N

∑
j=1

cos(θj+1 − θj)
]
. (24)

In view of the invariance of the Hamiltonian (18) under rotation by an equal amount of all the
θj’s, we get [18]

ZN =
(

2π
β

)N/2
e−βJN/2−βKN NβJ

∫ ∞
0 dz z

∫ (
∏N

j=1 dθj

)
exp

[
− NβJ

2 z2 + βJz ∑N
j=1 cos θj + βK ∑N

j=1 cos(θj+1 − θj)
]
. (25)

In order to proceed further, we consider separately the cases K = 0 and K �= 0 in the following.

3.1. K = 0

For K = 0, Equation (25) yields

ZN =

(
2π

β

)N/2
NβJ

∫ ∞

0
dz z exp

[
−N

{
βJ
2
(1 + z2)− ln

(∫ 2π

0
dθ exp(βJz cos θ)

)}]
. (26)

In the thermodynamic limit, ZN may be approximated by invoking the saddle-point method to
perform the integration in z on the right-hand side; one gets

ZN =

(
2π

β

)N/2
NβJzs exp

[
−N

{
βJ
2
(1 + z2

s )− ln
(∫ 2π

0
dθ exp(βJzs cos θ)

)}]
, (27)

where the saddle-point value zs solves the equation

zs =
I1(βJzs)

I0(βJzs)
, (28)

with In(x) = (1/(2π))
∫ 2π

0 dθ exp(x cos θ) cos(nθ) being the modified Bessel function of first kind
and of order n. It may be shown by following the arguments given in [18] that zs is nothing but the
stationary magnetization meq. Equation (28) has a trivial solution meq = 0 valid at all temperatures,
while a non-zero solution exists for β ≥ βc = 2/J [10]. In fact, the system shows a continuous transition,
from a magnetized phase (meq �= 0) at low temperatures to an unmagnetized phase (meq = 0) at high
temperatures at the critical temperature Tc = J/2 [10].

In the thermodynamic limit, the internal energy density of the system
u = − limN→∞(1/N)d ln ZN/dβ is obtained by using Equations (27) and (28) as

u =
1

2β
+

J
2

(
1− (meq)2

)
; meq =

I1(βJmeq)

I0(βJmeq)
, (29)
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yielding the critical energy density

uc =
3J
4

. (30)

Equation (29) gives the caloric curve of the model (18) at canonical equilibrium for J �= 0, K = 0.

3.2. K �= 0

For K �= 0, Equation (25) gives

ZN =

(
2π

β

)N/2
NβJ

∫ ∞

0
dz z exp

[
−NβJ

2
(1 + z2)− βKN

]
ZN , (31)

ZN ≡
∫ ( N

∏
j=1

dθj

)
exp

[
βJz

N

∑
j=1

cos θj + βK
N

∑
j=1

cos(θj+1 − θj)

]
, (32)

where we may identify the factor ZN with the canonical partition function of a 1d periodic chain of N
interacting angle-only rotors, where a rotor on each site interacts with strength K with the rotor on the
left nearest-neighbor and the right nearest-neighbor site, and also with an external field of strength Jz
along the x direction.

One may evaluate ZN by rewriting it in terms of a transfer operator T(θ, θ′) as

ZN =
∫ ( N

∏
j=1

dθj

)
T (θ1, θ2)T (θ2, θ3) . . . T (θN , θ1), (33)

T (θj, θj+1) ≡ exp
[

βJz
{

cos θj + cos θj+1

2

}
+ βK cos(θj+1 − θj)

]
. (34)

Let {λm} denote the set of eigenvalues of the transfer operator T (θ, θ′). In other words, denoting
the eigenfunctions of T (θ, θ′) as fm(θ), we have

∫
dθ′ T (θ, θ′) fm(θ′) = λm fm(θ). In terms of {λm},

we obtain
ZN = ∑

m
[λm (βJz, βK)]N . (35)

For large N, the sum in Equation (35) is dominated by the largest eigenvalue λmax =

λmax (βJz, βK), yielding
ZN = λN

max. (36)

Substituting Equation (36) in Equation (31), and approximating the integral on the right-hand
side of the latter by the saddle-point method, one gets

ZN =

(
2π

β

)N/2
NβJzs exp

[
−N

{
βJ
2
(1 + z2

s ) + βK− ln λmax (βJzs, βK)
}]

, (37)

where zs solves the saddle-point equation zs ≡ supz φ̃(β, z), with φ̃(β, z) being the free-energy function:

− φ̃(β, z) ≡ −1
2

ln β− βJ
2
(1 + z2)− βK + ln λmax (βJz, βK) . (38)

The saddle-point equation may thus be written as

zs =
∂ ln λmax (βJz, βK)

∂(βJz)

∣∣∣
z=zs

. (39)
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Equation (37) gives the dimensionless free energy per rotor, φ(β) ≡ − limN→∞(ln ZN)/N,
as −φ(β) = supz

[
−φ̃(β, z)

]
, where we have suppressed the dependence of φ(β) on K. We thus have

− φ(β) ≡ −1
2

ln β− βJ
2
(1 + z2

s )− βK + ln λmax (βJzs, βK) . (40)

Note that the free energy at a given temperature has a definite value given by Equation (40),
and is obtained by substituting the saddle-point solution zs into the expression for the free-energy
function φ̃(β, z).

In the thermodynamic limit, the internal energy density of the system
u = − limN→∞(1/N)d ln ZN/dβ is obtained as

u =
1

2β
+

J
2
(1 + z2

s ) + βJzs
dzs

dβ
+ K− d ln λmax(βJz, βK)

dβ

∣∣∣
z=zs

. (41)

Using Equation (39), and the fact that, as for K = 0, the quantity zs is nothing but the stationary
magnetization meq, we get

u =
1

2β
+

J
2

(
1− (meq)2

)
+ βJmeq dmeq

dβ
+ K− K

∂ ln λmax(βJmeq, βK)
∂(βK)

, (42)

with meq satisfying

meq =
∂ ln λmax (βJz, βK)

∂(βJz)

∣∣∣
z=meq

. (43)

To proceed, we need to find λmax(βJz, βK). We consider separately the cases J = 0 and J �= 0.

3.2.1. J = 0

In this case, it may be easily checked that the eigenvalues of T are given by 2π Im(βK) with the
corresponding eigenvector given by plane waves exp(iqθ)/

√
2π [14]. Using I0(x) > I1(x) > I2(x) . . .,

we conclude that λmax(0, βK) = I0(βK). Equation (43) then yields meq = 0, while Equation (42) gives

u =
1

2β
+ K

(
1− I1(βK)

I0(βK)

)
, (44)

where we have used the result dI0(x)/dx = I1(x). Equation (44) is the desired caloric curve of the
model (18) within the canonical ensemble for J = 0, K �= 0.

3.2.2. J �= 0

In this case, not knowing the analytic forms of the eigenvalues of T , we resort to a numerical
scheme to estimate the largest eigenvalue λmax(βJz, βK). To this end, we discretize the angles over

the interval [0, 2π) as θ
(aj)

j = ajΔθ, with aj = 1, 2, . . . , P and Δθ = 2π/P for any large positive integer
P (we choose P = 30). The operator T (θ, θ′) then takes the form of a matrix of size P× P, whose
largest eigenvalue may be estimated numerically by employing the so-called power method [19] (A
FORTRAN90 library that implements the power method and is distributed under the GNU Lesser
General Public License (GPL) is available at [20]). Noting that T (θ, θ′) is a finite-dimensional real
square matrix with positive entries, the application of the Perron–Frobenius theorem implies the
existence of its largest eigenvalue that is real and non-degenerate. At given values of T, K, J, z, once
λmax(βJz, βK) has been estimated numerically, we compute the free-energy function φ̃(β, z) as a
function of z by using Equation (38). We then find numerically the value of z at which the computed
free-energy function attains its minimum value. As discussed above, this minimizer is the equilibrium
magnetization of the system at the given values of T, K, J. In order to obtain the caloric curve, one has
to estimate numerically the derivative ∂ ln λmax(βJmeq, βK)/∂(βK), and then use Equation (42).
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4. Results and Discussion

In this section, we discuss the results on equilibrium as well as relaxation properties of model (18)
obtained by performing numerical integration of the Nosé–Hoover equations of motion (21). The
numerical integration involved using a fourth-order Runge–Kutta method with timestep dt = 0.01.

4.1. Results in Equilibrium

Here, we discuss the Nosé–Hoover equilibrium properties for model (18). The initial condition
corresponds to the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently
sampled from a Gaussian distribution with zero mean and width equal to 0.5. The initial value of
the parameter ζ is 2.0, while we have taken τ = 0.01. In Figure 1, we consider the case when only
long-range interactions are present in system (J = 1.0, K = 0.0). Figure 1a shows for Ttarget = 2.5 that
the average kinetic energy relaxes at long times to the value Ttarget/2, as desired. Figure 1b shows for
the same value of Ttarget that the average internal energy has the same value in the stationary state as
the one in canonical equilibrium given by Equation (29); Figure 1c shows the single-particle momentum
distribution P(p) in the stationary state. We observe that P(p) has the correct canonical-equilibrium
form of a Gaussian distribution, which further corroborates the property of the Nosé–Hoover dynamics
that the canonical distribution (16) is a stationary state of the dynamics. Figure 1d shows for a range of
values of the temperature T = Ttarget that the caloric curve obtained within the Nosé–Hoover dynamics
in equilibrium coincides with that within the canonical ensemble given by Equation (29). Figure 1a–c
refer to the system size N = 128, while Figure 1d refers to two system sizes, namely, N = 128 and
N = 512. The aforementioned observed properties of the Nosé–Hoover dynamics have been checked
to hold for (i) the case when only short-range interactions are present in the system (see Figure 2 that
corresponds to J = 0.0, K = 1.0), in which case the caloric curve within the canonical ensemble is given
by Equation (44), and (ii) when both long- and short-range interactions are present in the system (data
not shown; see, however, Figure 3c).
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Figure 1. Comparison of Nosé–Hoover and canonical equilibrium results for model (18) with J =

0.0, K = 1.0 (that is, with only short-range interactions). (a) variation of the average kinetic energy
density with time. The black line denotes the value Ttarget/2; (b) variation of the internal energy density
with time. The black line denotes the average internal energy density within the canonical ensemble
given by Equation (44); (c) stationary single-particle momentum distribution obtained from momentum
values measured at time t = 5000. The black line denotes a Gaussian distribution with zero mean and
width equal to Ttarget; (d) caloric curve for two system sizes, N = 128 and N = 512. The black line shows
the caloric curve within the canonical ensemble given by Equation (44). The data for the Nosé–Hoover
dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge–Kutta
method with timestep equal to 0.01. The initial condition corresponds to the θj’s independently and
uniformly distributed in [0, 2π) and the pj’s independently sampled from a Gaussian distribution
with zero mean and width equal to 0.5. The initial value of the parameter ζ is 2, while we have taken
τ = 0.01.
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Figure 2. Comparison of Nosé–Hoover and canonical equilibrium results for the model (18) with
J = 1.0, K = 0.0 (that is, with only long-range interactions); (a) variation of the average kinetic energy
density with time. The black line denotes the value Ttarget/2; (b) variation of the internal energy density
with time. The black line denotes the average internal energy density within the canonical ensemble
given by Equation (29); (c) stationary single-particle momentum distribution obtained from momentum
values measured at time t = 5000. The black line denotes a Gaussian distribution with zero mean and
width equal to Ttarget; (d) caloric curve for two system sizes, N = 128 and N = 512. The black line shows
the caloric curve within the canonical ensemble given by Equation (29). The data for the Nosé–Hoover
dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge–Kutta
method with timestep equal to 0.01. The initial condition corresponds to the θj’s independently and
uniformly distributed in [0, 2π) and the pj’s independently sampled from a Gaussian distribution
with zero mean and width equal to 0.5. The initial value of the parameter ζ is 2, while we have taken
τ = 0.01.
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Figure 3. Relaxation properties of the Nosé–Hoover dynamics for model (18) with J = 1.0, K = 0.1. (a)
variation of the average kinetic energy density with time, for four different system sizes. The black line
denotes the value Ttarget/2; (b) variation of the ratio 〈p4〉/〈p2〉2 with time, for four different system
sizes. The black line denotes the value 3 corresponding to a Gaussian distribution; (c) variation of the
magnetization with time, again for four different system sizes. The black line denotes the canonical
equilibriu m value obtained by the method described in Section 3.2.2; (d) single-particle momentum
distribution as a function of time, for system size N = 512. The black line denotes a Gaussian
distribution with zero mean and width equal to Ttarget, Equation (17). The data for the Nosé–Hoover
dynamics are generated by integrating the equations of motion (21) using a fourth-order Runge–Kutta
method with timestep equal to 0.01. The initial condition corresponds to the θj’s independently and
uniformly distributed in [0, 2π) and the pj’s independently and uniformly distributed in [−

√
1.5,
√

1.5].
The initial value of the parameter ζ is 2, while we have taken τ = 1.0.

4.2. Results out of Equilibrium

Here, we discuss the relaxation properties of the Nosé–Hoover dynamics for model (18). The initial
condition corresponds to the so-called water-bag distribution that has both θ and p uniformly
distributed over given intervals [10]. We consider θj’s to be independently and uniformly distributed
in [0, 2π) and the pj’s to be independently and uniformly distributed in [−

√
1.5,
√

1.5]. The initial
value of the parameter ζ is 2.0, while we have taken τ = 1.0.

Let us start with a discussion of the results in Figure 4 that corresponds to the case when only
long-range interactions are present in the system (18). In Figure 4a, we see that, for four different
system sizes, the average kinetic energy density relaxes at long times to the target value Ttarget/2 over
a timescale that does not depend on the system size. A Gaussian distribution for the momentum, expected
in canonical equilibrium, is characterized by a value 3 of the ratio 〈p4〉/〈p2〉2 (see Equation (17)). We
see in Figure 4b that, in contrast to Figure 4a, this ratio, however, relaxes to the canonical equilibrium
value over a time that depends on the system size, and which grows with increase of N. Figure 4c shows
that the long-time magnetization value reached by the Nosé–Hoover dynamics coincides with the
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canonical equilibrium value for all system sizes. On the basis of these results, we conclude that, with
only long-range interactions in system (18), only the second moment of the momentum distribution
relaxes to its canonical equilibrium value over a size-independent timescale, while higher moments
(and consequently, the whole of the momentum distribution) relax to their canonical equilibrium
values over a time that grows with the system size. The latter fact is demonstrated in Figure 4d that
shows for N = 512 the time evolution of the single-particle momentum distribution.

Figure 4. Relaxation properties of the Nosé–Hoover dynamics for the model (18) with J = 1.0, K = 0.0
(that is, with only long-range interactions). (a) variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Ttarget/2; (b) variation of
the ratio 〈p4〉/〈p2〉2 with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution; (c) variation of the magnetization with time, again for four
different system sizes. The black line denotes the canonical equilibrium value given by Equation (28);
(d) single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Equation (17). The data
for the Nosé–Hoover dynamics are generated by integrating the equations of motion (21) using
a fourth-order Runge–Kutta method with timestep equal to 0.01. The initial condition corresponds to
the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently and uniformly
distributed in [−

√
1.5,
√

1.5]. The initial value of the parameter ζ is 2, while we have taken τ = 1.0.

The feature of a size-independent timescale for the relaxation of the average kinetic energy
density to its canonical equilibrium value, observed in the case of purely long-range interactions in
model (18), also holds on adding short-range interactions to the model and when the latter are the
only interactions present in the system (see Figures 3a and 5a). Moreover, in all cases, the long-time
value of the magnetization matches with its canonical equilibrium value (see Figures 3c and 5c).
The most significant difference in the relaxation properties that is observed on adding short-range
interactions may be inferred by comparing Figures 3b and 4b: the very strong size-dependence
observed in the relaxation of the ratio 〈p4〉/〈p2〉2 to its canonical equilibrium value gets substantially
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weakened on adding short-range interactions with coupling strength as low as K = 0.1 compared
to the value of the long-range coupling constant J = 1.0. Similar inference may be drawn
from a comparison of Figures 3d and 4d. This observation has an immediate and an important
implication: additional short-range interactions speed up the relaxation of the momentum distribution
towards canonical equilibrium. The aforementioned system-size dependence vanishes on turning off
long-range interactions, so that the only remnant interactions in the system are the short-range ones
(see Figure 5b,d).

Figure 5. Relaxation properties of the Nosé–Hoover dynamics for the model (18) with J = 0.0, K = 1.0
(that is, with only short-range interactions). (a) variation of the average kinetic energy density with
time, for four different system sizes. The black line denotes the value Ttarget/2; (b) variation of
the ratio 〈p4〉/〈p2〉2 with time, for four different system sizes. The black line denotes the value 3
corresponding to a Gaussian distribution; (c) variation of the magnetization with time, again for four
different system sizes. The equilibrium magnetization goes to zero with increase of N as meq ∼ 1/

√
N;

(d) single-particle momentum distribution as a function of time, for system size N = 512. The black
line denotes a Gaussian distribution with zero mean and width equal to Ttarget, Equation (17). The data
for the Nosé–Hoover dynamics are generated by integrating the equations of motion (21) using
a fourth-order Runge–Kutta method with timestep equal to 0.01. The initial condition corresponds to
the θj’s independently and uniformly distributed in [0, 2π) and the pj’s independently and uniformly
distributed in [−

√
1.5,
√

1.5]. The initial value of the parameter ζ is 2, while we have taken τ = 1.0.

5. Conclusions

In this paper, we investigated the relaxation properties of the Nosé–Hoover dynamics of
many-body interacting Hamiltonian systems, with an emphasis on the effect of inter-particle
interactions. The dynamics aim to generate the canonical equilibrium distribution of a system
at the desired temperature by employing time-reversible, deterministic dynamics. To pursue our
study, we considered a representative model comprising N classical XY-spins occupying the sites
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of a one-dimensional periodic lattice. The spins interact with one another via both a long-range
interaction, modelled as a mean–field interaction in which every spin interacts with every other,
and a short-range one, modelled as a nearest-neighbor interaction in which every spin interacts with
its left and right neighboring spins. We studied the Nosé–Hoover dynamics of the model through
N-body integration of the corresponding equations of motion. Canonical equilibrium is characterized
by a momentum distribution that is Gaussian. We found that the equilibrium properties of our model
system evolving according to Nosé–Hoover dynamics are in excellent agreement with exact analytic
results for the equilibrium properties derived within the canonical ensemble. Moreover, while starting
from out-of-equilibrium initial conditions, the average kinetic energy of the system relaxes to its target
value over a size-independent timescale. However, quite unexpectedly, we found that under the same
conditions and with only long-range interactions present in the system, the momentum distribution
relaxes to its Gaussian form in equilibrium over a scale that grows with N. The N-dependence gets
weaker on adding short-range interactions, and vanishes when the latter are the only inter-particle
interactions present in the system.

Viewed from the perspective of LRI systems, the slow relaxation observed within the
Nosé–Hoover dynamics allows for drawing an analogy with a similar slow relaxation observed within
the microcanonical dynamics of isolated LRI systems, a phenomenon that leads to the occurrence of
nonequilibrium quasistationary states (QSSs) that have lifetimes diverging with the system size [10,21].
Within a kinetic theory approach, the QSSs are understood as stable, stationary solutions of the so-called
Vlasov equation that governs the time evolution of the single-particle phase space distribution. The
Vlasov equation is obtained as the first equation of the Bogoliubov–Born–Green–Yvon–Kirkwood
(BBGKY) hierarchy by neglecting the correlation between particle trajectories, with corrections that
decrease with an increase of N. For large but finite N, the eventual relaxation of QSSs towards
equilibrium is understood as arising due to these finite-N corrections, the so-called collisional terms,
to the Vlasov equation. In models in which the momentum variables are one-dimensional, it has been
shown by analyzing the behavior of the dominant collisional term that Vlasov-stable phase-space
distributions that are homogeneous in the coordinates evolve on times much larger than N, thereby
leading for the distributions to characterize QSSs that have lifetimes diverging with N [8,11,22]. In
light of the foregoing discussions, it is evidently pertinent and of immediate interest to invoke a kinetic
theory approach and investigate in the context of the Nosé–Hoover dynamics of long-range systems
whether additional short-range interactions play the role of collisional dynamics that speed up the
relaxation of the system towards canonical equilibrium. Work in this direction is in progress and will
be reported elsewhere.

The agreement reported in this paper in the value of the average kinetic energy computed in
canonical equilibrium and within the Nosé–Hoover dynamics is reminiscent of a similar agreement
in the large-system limit between ensemble and time averages predicted by Khinchin for the
so-called sum-functions, that is, functions such as the kinetic energy that are sums of single-particle
contributions [23]. The result was obtained for rarefied gases, which was later observed to also hold
for systems with short-range interactions [24,25]. Our work hints at the validity of such a result even
for long-range systems, as is evident from the agreement in the value of the average kinetic energy
computed within the Nosé–Hoover dynamics and in canonical equilibrium (see Figure 4a). This point
warrants a more detailed investigation that will be left for future studies.
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Abstract: An open question in nonlinear dynamics is the relation between the Kolmogorov entropy
and the largest Lyapunov exponent of a given orbit. Both have been shown to have diagnostic
capability for phase transitions in thermodynamic systems. For systems with long-range interactions,
the choice of boundary plays a critical role and appropriate boundary conditions must be invoked.
In this work, we compute Lyapunov spectra for Coulombic and gravitational versions of the
one-dimensional systems of parallel sheets with periodic boundary conditions. Exact expressions
for time evolution of the tangent-space vectors are derived and are utilized toward computing
Lypaunov characteristic exponents using an event-driven algorithm. The results indicate that the
energy dependence of the largest Lyapunov exponent emulates that of Kolmogorov entropy for each
system for a given system size. Our approach forms an effective and approximation-free instrument
for studying the dynamical properties exhibited by the Coulombic and gravitational systems and
finds applications in investigating indications of thermodynamic transitions in small as well as large
versions of the spatially periodic systems. When a phase transition exists, we find that the largest
Lyapunov exponent serves as a precursor of the transition that becomes more pronounced as the
system size increases.

Keywords: Kolmogorov–Sinai entropy, Lyapunov exponents; periodic boundary conditions; chaotic
dynamics; N-body simulation; stochastic thermodynamics

PACS: 52.27.Aj; 05.10.-a; 05.45.Pq; 05.45.Ac; 05.70.Fh

1. Introduction

Our understanding of the collective behavior of macroscopic systems is encompassed in the laws
of thermodynamics. Phase transitions demonstrate that the state space of macroscopic systems is
segmented into regions of strongly differing thermodynamic properties. While phase transitions are
rigorously defined in the thermodynamic limit, it is remarkable that their manifestations can sometimes
be observed in very small systems (see [1] and references therein). In addition to investigating the
occurrence of equilibrium phase transitions, small systems have also been employed to study the
breakdown of the second law [2], as well as various equilibrium and nonequilibrium phenomena [3–5].
Besides the usual changes in equilibrium properties—such as pressure, energy, and density—at phase
transitions typically associated with macroscopic systems, the search for dynamical indicators of phase
transitions has also born fruitful results. In particular, in ergodic systems, it has been demonstrated that
the largest Lyapunov characteristic exponent (LCE) plays a pivotal role in announcing the existence of a
phase transition. While the theory of phase transitions in systems with short-range interactions is well
understood, systems with long-range interactions do not satisfy the usual convergence properties [6].
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Consequently, surprising behavior, such as ensemble inequivalence, can occur. In contrast with
short-range systems, the nature of boundary conditions for long-range systems becomes crucial since
the interaction range can be of the same order as that of the system size. In studying possible indicators
of phase transitions in small systems, it is useful to know the exact behavior of the system in the
thermodynamic limit. One-dimensional systems have proven especially useful in this regard (see [7]
for a review of relevant work).

One dimensional systems are of great interest to physicists in terms of their intrinsic properties
and as a starting point in the analysis of their more-complicated higher-dimensional counterparts
(see [8–12] and references therein). Not only can one-dimensional systems map the behaviors
of experimental results [13], one-dimensional interactions have, in fact, been recently emulated
in the laboratory [14]. In systems with long-range forces, establishing the exact form of the
potential energy is difficult when periodic boundary conditions are involved. In two or three
dimensions, Ewald sums are required and the potential cannot be deduced in a closed form.
However, in one dimension, it is possible to express the inter-particle potential energy analytically [8].
In the analysis of large systems considered in plasma and gravitational physics, periodic boundary
conditions are preferred [15–18] and have been utilized in the study of one-dimensional Coulombic
and gravitational systems [12,19–21]. Such studies often rely on numerical simulations to validate
the predictions made by theory. Moreover, in cases where theoretical relations have not been
mathematically formulated, numerical simulations serve as a powerful approach in characterizing the
dynamical behaviors and thermodynamic properties [12].

Simulation studies usually employ the molecular-dynamics (MD) approach for studying
dynamical systems that undergo phase-space mixing to exhibit ergodic-like behavior. Phase-space
mixing is a necessary condition for equilibrium statistical mechanics to apply and is often characterized
by the existence of positive Lyapunov characteristic exponents (LCEs) [22]. LCEs represent the average
rates of exponential divergence of nearby trajectories from a reference trajectory in different directions
of the phase space and quantify the degree of chaos in a dynamical system [23–27]. In addition, LCEs
have also been reported to serve as indicators of phase transitions [28–33].

Numerical calculation of LCEs may be realized by studying the geometry of the phase-space
trajectories [29,30] for smooth systems. In general, however, if the time evolution of each particles’
position and velocity can be followed for a given system, the largest LCE may be calculated by finding
the rate of divergence between a reference trajectory and a nearby test trajectory obtained by pertubing
the former [26]. This numerical approach was extended to the case of systems with periodic boundary
conditions by Kumar and Miller and was applied to find the largest LCE for a spatially-periodic
one-dimensional Coulombic system [12].

While the largest LCE is a good indicator of the degree of maximum dynamical instability in
a system, the mixing speed, that is, the rate at which a given phase-space volume element diffuses
across the allowed regions of the phase space is indicated by the Kolmogorov–Sinai (KS) entropy.
For ergodic-like Hamiltonian systems, KS entropy is obtained as the sum of the positive LCEs [23].
In simulation, a full spectrum of LCEs may be obtained by finding the time-averaged exponential rates
of growth of perturbation vectors applied to the phase-space flows in the tangent space [25,34–36].
An exact numerical method of calculating the full Lyapunov spectrum was proposed for the case of
one-dimensional gravitation gas [25].

Even though a full spectrum of Lyapunov exponents is highly desirable, the calculation becomes
computationally challenging for systems with a large number of degrees of freedom and it is usually
impractical to aim for a full spectrum through N-body simulations [25]. An improved version of the
approach was presented in [37] for the case of free-boundary conditions (also see [38]). In this paper,
we extend the numerical approach presented in [25] to compute the complete Lyapunov spectra of
spatially-periodic one-dimensional Coulombic and gravitational systems and show that the energy
dependence of the largest LCE emulates that of the sum of all the positive LCEs for both versions of
the system.
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The paper is organized as follows: in Section 2, we describe the Coulombic and gravitational
versions of the model and discuss the potential interactions as well as their implications on the
phase-space characteristics. In Section 3, we recall some theoretical results for LCEs and the general
approach for their numerical computation. Section 4 presents derivations for the time evolution of the
tangent vectors and the results of the N-body simulations. Finally, in Section 5, we discuss the results
and provide concluding remarks.

2. Model

We consider two versions of a spatially periodic lineal system on an x-axis with the primitive
cell extending in [−L, L) and which contains N infinite sheets, each with a surface mass density
m. The positions of the sheets are given by x1, . . . , xN with respect to the center of the cell and
their corresponding velocities by v1, . . . , vN . In one version, the sheets are uncharged and are only
interacting gravitationally. The other version is essentially a one-dimensional Coulombic system
in which the sheets are charged with a surface charge density q and are immersed in a uniformly
distributed negative background such that the net charge is zero. For the case of the charged version
of the system, we neglect the gravitational effects and take into account only the Coulomb interactions.
If we denote momenta as pi ≡ mvi, the Hamiltonian of the system may be expressed as

H =
1

2m

N

∑
i=1

p2
i + κ

N

∑
i<j

(
(xj − xi)

2

2L
− |xj − xi|

)
, (1)

where κ = 2πkq2 for the case of the Coulombic system [12] (with each sheet, henceforth referred to as
a particle or a body, having a surface charge density q in addition to the surface mass density m) and
κ = −2πGm2 for the gravitational system [21].

3. Lyapunov Characteristic Exponents

3.1. Theoretical Overview

We provide here a brief overview of dynamical system theory that will be helpful in developing
the formulations in subsequent sections. While more general and comprehensive discussions are
provided in [25,37,39], we restrict this overview to a smooth Hamiltonian system. We will see later how
the concept may be extended to flows that take place on non-differentiable manifolds. Although the
mathematical definitions used in the following discussions are rather general, we have adopted—and,
for the sake of completion and easy comparison with relevant work, reproduced—their versions as
presented in [25,37] unless noted otherwise.

Let the phase-space flow, φt(z), be a one-parameter group of measure-preserving diffeomorphisms
M→ M, where M is an n-dimensional compact differentiable manifold and z ∈ M. For a Hamiltonian
system with a phase-space dimensionality of 2N, n = 2N − 1. If Tz M is the tangent space to M at z,
then we can define Dφt

z(w) as a linearized flow in the tangent space (Tz M → Tφt
z
M), where w is a

vector in the tangent space. For a non-zero w, there are n independent eigenvectors e1, . . . , en with
χ1, . . . , χn as the corresponding eigenvalues such that |χ1| ≥ |χ2| ≥ · · · ≥ |χn|. For a periodic orbit
with period t0, if we define λi ≡ t−1

0 ln |χi|, then∥∥∥Dφkt0
z (ei)

∥∥∥
‖ei‖

= eλikt0 , (2)

where ‖ ‖ represents the Euclidean norm on Tz M and k is a positive integer [25]. For a tangent-space
vector w with a non-zero component along e1, the divergence for large t will be dominated by eλ1t,
and, therefore,

lim
t→∞

1
t

ln

∥∥Dφt
z(w)

∥∥
‖w‖ = λ1. (3)

167



Entropy 2017, 19, 238

λ1 is usually called the largest Lyapunov characteristic exponent (LCE) of the orbit represented by the
flow φt(z) and is a measure of the overall stability of the orbit; if λ1 ≥ 0, then the nearby trajectories
diverge exponentially. Note that even though we have used a periodic orbit to define the largest LCE,
it may be shown that the limit on the left-hand side of Equation (3) exists and is finite for any given
dynamical system and the result applies rather generally under very weak smoothness conditions [40].

LCE defined in Equation (3) may be thought of as the mean exponential growth rate of a
one-dimensional “volume” (length of a vector w) in the tangent space. Therefore, λ1 is often referred
to as an LCE of order 1. Similarly, λp, that is, LCE of order p (where 1 ≤ p ≤ n, p ∈ Z+), may be
related to the mean exponential rate of growth of a p-dimensional hyperparallelepiped formed by the
evolution of p linearly independent tangent-space vectors w1, . . . , wp. We first find the rate of volume
divergence as

λP = lim
t→∞

1
t

ln
VolP

[
Dφt

z(w1), . . . ,Dφt
z(wp)

]
VolP

[
w1, . . . , wp

] , (4)

where VolP represents the volume spanned by a set of p tangent-space vectors. Finally, following [40],
λp is found as

λp =

⎧⎪⎨⎪⎩
λP , p = 1,

λP − λP−1, 1 < p ≤ n.
(5)

3.2. Numerical Approach

We start with a randomly chosen set of n orthonormal tangent vectors {ŵ0
1, . . . , ŵ0

n}. Clearly, for

each p ≤ n, VolP
[
ŵ0

1, . . . , ŵ0
p

]
= 1. After a fixed time interval τ, the evolved tangent vectors—which

we denote by {w1
1, . . . , w1

n}, where w1
i = Dφt=τ

z (ŵ0
i )—are, in general, no longer mutually orthogonal.

This is because the component of each ŵ0
i along the direction of maximum divergence e1 (that is,

ŵ0
i · e1) will witness a disproportionately larger growth in its value as compared to the remaining

components. In order to avoid numerical errors arising from one component getting increasingly
large in comparison to the others, a new orthonormal set of tangent vectors {ŵ1

1, . . . , ŵ1
n} is defined

after time τ through Gram–Schmidt reduction on the set of evolved {w0
1, . . . , w0

n}. This new set of
ornothormal tangent vectors are then used for the following iteration, and the process is recursively
repeated until λP has converged [25,39].

Numerical calculation of λP involves finding the corresponding p-volume for each iteration. If at
the end of the j-th iteration, wj

i = Dφ
t=jτ
z (ŵj−1

i ) represents the evolved versions of the orthornormal

tangent vectors ŵj−1
i , the p-volume may be found as the norm of the the exterior product involving

the corresponding p vectors, that is,

VolP [wj
1, . . . , wj

p] =
∥∥∥wj

1 ∧ wj
2 ∧ · · · ∧ wj

p

∥∥∥ . (6)

Finally, the average exponential growth rate of the p-volume is found as

λP = lim
l→∞

1
lτ

l

∑
j=1

(
lnVolP [wj

1, . . . , wj
p]
)

, (7)

where l is the total number of iterations. A complete set of LCEs {λ1, . . . , λn}, also known as
the Lyapunov spectrum, may then be obtained for the trajectory by utilizing Equation (5) for all
permissible values of p. Finally, an upper limit on the KS entropy hKS for Hamiltonian systems may be
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obtained as the sum of positive LCEs [23,25]:

hKS ≤ λS =
p+max

∑
p=1

λp, (8)

where p+max is the largest value of p for which λp is positive and where the equality hKS = λS holds for
ergodic-like systems. The sum of the positive LCEs λS is often termed as the density of KS entropy.

In the following section, we discuss how we employ the theory and the numerical approach
presented thus far to obtain Lyapunov spectra for the Coulombic and gravitational systems discussed
in Section 2. While most of the presented theory applies to the two systems in its original form,
non-smoothness arising from the absolute valued linear terms in the potential demand additional
consideration. As we shall see, following the time evolution of the tangent-space vectors involves
treating the motion as a flow in between two consecutive events of interparticle crossings and as a
mapping at each event of such crossings. Consequently, it is indispensable to have the ability to find
the exact time corresponding to each crossing.

4. N-Body Simulation

4.1. Equations of Motion

Positions and velocities of the particles are obtained using event-driven algorithms based on the
approaches proposed in [12] for the Coulombic system and in [21] for the gravitational system. The
algorithms employ analytic expressions for the time dependencies of the relative separations Zj(t) and
relative velocities Wj(t) between two consecutive particles in the primitive cell, where Zj = (xj+1 − xj)

and Wj = (vj+1 − vj), with xj and vj representing, respectively, the position and velocity of the j-th
particle, whereas xj+1 and vj+1 representing those of the (j + 1)-th particle. Combining the results
of [12,21], we find that

d
dt

Wj(t) = −
κ

m

{
N
L

Zj(t)− 2
}

. (9)

Crossing times may be found by solving Zj(t) = 0 for t. The corresponding positions xj and
velocities vj are obtained using a matrix-inversion subroutine as described in [12].

4.2. Time Evolution of Tangent-Space Vectors

In order to follow the time evolution of the tangent vectors, we adopt an approach based on
the “exact” numerical method proposed in [25]. The method invokes that, for a one-dimensional
Hamiltonian system with N particles, one does not have to restrict to the (2N − 1)-dimensional
manifold ΓE. One may alternatively choose to represent the flow φt in the entire 2N-dimensional phase
space (say, Ω) whereby the tangent space TzΓE becomes a subspace of TzΩ.

Let z(x, v) be a point in the phase space Ω, where x = (x1, . . . , xN) and v = (v1, . . . , vN).
The equations of motion representing the system are given by

ẋj = vj, (10)

and
v̇j = −

1
m

∂

∂xj
V(x), (11)

with

V(x) = κ
N

∑
i<j

(
(xj − xi)

2

2L
− |xj − xi|

)
. (12)
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Similarly, if we have a vector w(ξ, η) in the tangent space TzΩ, then the variational equations [25]
governing the evolution of w are given by(

ξ̇

η̇

)
=

(
0 IN

A(x) 0

)(
ξ

η

)
, (13)

where IN is the N × N identity matrix and A(x) is an N × N matrix whose elements are given by

Aij(x) = − 1
m

∂2

∂xi∂xj
V(x). (14)

For the potential expressed in Equation (12), one finds that

Aij(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− κ

m

[
− 1

L − 2δ(xi − xj)
]

, i �= j,

− κ
m

[
N−1

L −
N
∑

i �=k=1
2δ(xi − xk)

]
, i = j.

(15)

Using Equations (13) and (15), we may deduce that

ξ̇ j = ηj, (16)

and

η̇j = −
κ

m

[
Nξ j − ΞS

L
− 2

N

∑
i �=j=1

(ξ j − ξi)δ(xj − xi)

]
, (17)

where

ΞS =
N

∑
j=1

ξ j . (18)

Equations (16) and (17) imply that

d2ξ j

dt2 = − κ

m

[
Nξ j − ΞS

L
− 2

N

∑
i �=j=1

(ξ j − ξi)δ(xj − xi)

]
. (19)

Time evolution of ΞS between the events of interparticle crossings may be deduced by adding
Equation (19) for all values of j as

N

∑
j=1

d2ξ j

dt2 = 0, (20)

which implies that
d2ΞS
dt2 = 0. (21)

Solution to Equation (21) yields

ΞS(t) = HS(0)t + ΞS(0), (22)

where

HS =
N

∑
j=1

ηj. (23)
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Hence, in between the events of crossings, the evolution of tangent vectors takes the form

d2ξ j

dt2 = − κ

m

[Nξ j − HS(0)t + ΞS(0)
L

]
. (24)

With the two values of κ, one for the Coulombic system and the other for the gravitational system,
one may solve Equation (24) to find the exact dependencies of ξ j and ηj on time.

4.2.1. Coulombic System

Utilizing the initial conditions for the Coulombic system with κ = 2πkq2, we obtain the solutions
to Equation (24) for ξ j and ηj in between crossings as

ξ j(t) =
HS(0)

N
t +

ΞS(0)
N

+
1
ω

{
ηj(0)−

HS(0)
N

}
sin ωt +

{
ξ j(0)−

ΞS(0)
N

}
cos ωt, (25)

and,

ηj(t) =
HS(0)

N
+

{
ηj(0)−

HS(0)
N

}
cos ωt− ω

{
ξ j(0)−

ΞS(0)
N

}
sin ωt, (26)

where ω ≡
√

κN
mL =

√
2πkq2 N

mL .
If the r-th and s-th particles undergo a crossing at time t = tc, and t− and t+, respectively, denote

the instants just before and after t = tc, then

ηr(t+) = ηr(t−) +
4πkq2

m
(ξr(t−)− ξs(t−))
|vr(t−)− vs(t−)|

, (27)

ηs(t+) = ηs(t−)−
4πkq2

m
(ξr(t−)− ξs(t−))
|vr(t−)− vs(t−)|

. (28)

4.2.2. Gravitational System

For the gravitational system, κ = −2πGm2. Similar to the Coulombic case, we utilize the initial
conditions to find solutions to Equation (24) for ξi and ηj as functions of time for the gravitational case
in between the events of crossings:

ξ j(t) =
1

2Λ
{AgeΛt + Bge−Λt}+ HS(0)

N
t +

ΞS(0)
N

, (29)

ηj(t) =
1
2
{AgeΛt − Bge−Λt}+ HS(0)

N
, (30)

where,

Ag = Λξ j(0) + ηj(0)−
HS(0)

N
−Λ

ΞS(0)
N

, (31)

Bg = Λξ j(0)− ηj(0) +
HS(0)

N
−Λ

ΞS(0)
N

, (32)

and Λ ≡
√

kN
mL =

√
2πGmN

L . For the r-th and s-th particle involved in a crossing, we get

ηr(t+) = ηr(t−)− 4πGm
(ξr(t−)− ξs(t−))
|vr(t−)− vs(t−)|

, (33)

ηs(t+) = ηs(t−) + 4πGm
(ξr(t−)− ξs(t−))
|vr(t−)− vs(t−)|

, (34)
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where we have used the same definitions of tc, t−, and t+ as we did in the expressions’
Coulombic counterparts.

4.3. p-Volume and Lyapunov Spectrum

We perform numerical computations using algorithms that are driven by tracking the events
of interparticle crossings. Since the time derivatives of the velocities of the particles involved in
a crossing undergo abrupt changes, tracking of crossing becomes indispensable. In other words,
even if we were to sample the positions and velocities at fixed intervals of time, we would still need
to track every crossing [25]. Therefore, instead of choosing fixed time intervals for Gram–Schmidt
orthonormalization of the tangent-space vectors, we choose to do it after each crossing. It should be
noted that the duration of each iteration, fixed or variable, is irrelevant as long it remains short enough
for the various components of the tangent vectors to remain comparable with a given precision offered
by the computing platform utilized.

After an iteration, say, the (j− 1)-th iteration, ending at time t = tj−1
c , each of the 2N orthonormal

tangent vectors ŵj−1
1 , . . . , ŵj−1

N is allowed to evolve for the duration δtj
c of the j-th iteration. δtj

c may be
thought of as the time elapsed between the instants right after the (j− 1)-th crossing and right before

the j-th crossing. Then, the evolved vectors may be given by wj
i = Dφtj

c
z (ŵ

j−1
i ), where

tj
c = tj−1

c + δtj
c = δt1

c + δt2
c + · · ·+ δtj

c. (35)

For the j-th iteration, p-volume is found as follows: we define a p× p symmetric matrix G j
p whose

elements G j
pμν

are inner products between wj
μ and wj

ν, where 1 ≤ μ, ν ≤ p (with μ, ν ∈ Z+). That is,

G j
p =

⎛⎜⎜⎜⎜⎝
〈wj

1, wj
1〉 〈w

j
1, wj

2〉 · · · 〈w
j
1, wj

p〉
〈wj

2, wj
1〉 〈w

j
2, wj

2〉 · · · 〈w
j
2, wj

p〉
...

...
. . .

...
〈wj

p, wj
1〉 〈w

j
p, wj

2〉 · · · 〈w
j
p, wj

p〉

⎞⎟⎟⎟⎟⎠ . (36)

The matrix G j
p, also referred to as Gram matrix, encapsulates the necessary geometric information

about the subspace spanned by the set of vectors {wj
1, . . . , wj

p} such as the lengths of the vectors and

the angles between them. The absolute value of the determinant of G j
p, known as the Gramian, is

essentially the square of the norm of the exterior product [41]. Using Equation (6), the p-volume is
found as

VolP [wj
1, . . . , wj

p] =

√∣∣∣det
(
G j

p

)∣∣∣. (37)

With the ability to find each p-volume for a given iteration, the final value of the corresponding
λP are found as

λP = lim
l→∞

1
tl
c

l

∑
j=1

ln
(

VolP [wj
1, . . . , wj

p]
)

, (38)

where tl
c, as defined in Equation (35), is the total time elapsed for l crossings to occur. Finally, LCEs λp

and Kolmogorov-entropy density λS are obtained using Equations (5) and (8), respectively.

4.4. Results

In our simulation, the initial conditions are chosen as follows: for a given number of particles
N and per-particle energyH, ifH is lower than the maximum allowed value of the potential energy
Vmax, then the particle positions are chosen randomly such that the potential energy is slightly smaller
than the target value ofH. ForH greater than Vmax, the particle positions are randomly selected such
that the potential energy is close to Vmax. Velocities are chosen randomly from a Gaussian distribution

172



Entropy 2017, 19, 238

and are scaled such that the sum of the potential and kinetic energies exactly equals the target value of
H [12].

Simulations are performed by rescaling the system parameters using dimensionless units such
that the number density N/2L = 1 and the characteristic frequencies ω, Λ equal unity [12,21]. Energies
Hc andHg (respectively for Coulombic and gravitational systems) are measured with respect to the
minimum values of the corresponding potential energies allowed for each N.

Before running the Lyapunov algorithm, we allowed the system to evolve for a relaxation period
of 500 time units (in terms of 1/ω or 1/Λ). In the calculation of LCEs, the total number of iterations l
for each λP in Equation (38) is decided by an adaptive algorithm that runs a minimum preliminary
number of iterations assigned beforehand and then continues running until the value of λP has
converged to within a pre-specified tolerance for the standard deviation. The tolerance value that we
specified was 0.1 percent of the mean from the newest 500, 000 iterations, with a minimum of 1 million
iterations. In each run, we found that the values converged to within our specified tolerance after the
preliminary run of 1 million iterations.

We computed Lyapunov spectra for the Coulombic and gravitational systems with a varying
number of particles N with 5 ≤ N ≤ 20. Figure 1 shows examples of the dependence of the various
LCEs on the per-particle energy for the Coulombic and gravitational systems with N = 11. The figure
also shows the sum of all LCEs for each case. As expected, the sums were found to be close to zero.
It should be noted that versions of the systems with N < 5 may exhibit largely segmented phase-space
distributions with a coexistence of chaotic and stable regions for a given energy value (N = 2 being
purely trivial with completely integrable phase space) [11,12,25,42]. Hence, there is a considerable
probability that a randomly chosen initial condition ends up in one of the stable regions whose
trajectories exhibit no stochasticity and which results in values of LCEs close to zero in simulation.

The energy dependencies of the largest LCE and the Kolmogorov-entropy density with
N = 5, 8, 11, 15, and 20 have been shown for the Coulombic and gravitational systems in Figures 2 and 3,
respectively. It can be seen in each case that the behavior of λS versus H/N resembles, in general,
a scaled version of λ1 versus H/N. To elucidate this, we have presented comparative plots of the
normalized versions, λ̂1 and λ̂S, of λ1 and λS against per-particle energy for N = 11 in Figure 4,
where we have divided λ1 and λS by their respective maximum values to get the normalized values.
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Figure 1. Full spectra of Lyapunov characteristic exponents (LCEs) plotted against per-particle energy
for (a) Coulombic system, and (b) gravitational system, with N = 11. The topmost curve shows λ1,
the second to top curve shows λ2, and so on all the way to the curve on the very bottom representing
λ22 in (a,b). The central solid (blue) line in each plot shows the sum of LCEs. Hc andHg are expressed
in units of 2L

N |κ|. λi are expressed in units of (a) ω, and (b) Λ.
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Figure 2. Energy dependence of (a) the largest LCE, and (b) Kolmogorov-entropy density for
Coulombic system with different degrees of freedom. λ1 and λS are expressed in units of ω, whereas
Hc is expressed in units of 2L

N |κ|.
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Figure 3. Energy dependence of (a) the largest LCE, and (b) Kolmogorov-entropy density for
gravitational system with different degrees of freedom. λ1 and λS are expressed in units of Λ, whereas
Hg is expressed in units of 2L

N |κ|.
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Figure 4. Energy dependence of the normalized values of the largest LCE and Kolmogorov-entropy
density for (a) Coulombic system, and (b) gravitational system for N = 11. Hc andHg are expressed
in units of 2L

N |κ|, whereas λ̂ is dimensionless.

5. Discussion

Our study provides insight into the chaotic dynamics of the two versions of the periodic system
under conditions of varying energy and degrees of freedom. The results for the Coulombic system are
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consistent with those provided in [12]. λ1 for the Coulombic system stays zero as long as the energy is
low enough for the particles to not undergo crossings. As the energy is increased from a low value, λ1

sees an initial increase, reaches a maximum and then decreases as the energy is progressively raised.
However, with an increase in the number of particles, the right edge of the “hill” near the maximum
opens up to form a “plateau” and flattens out asymptotically as shown in Figure 2a. Interestingly,
our results also suggest that all the other LCEs are, more or less, scaled (and inverted, for the case of
negative LCEs) versions of the largest LCE, as we can see in Figure 1a for N = 11.

Unlike the Coulombic version, the gravitational system shows a maximum degree of chaos at
low energies. Our results suggest that the largest LCE starts off with a high value at low energies
and decreases to a minimum as the energy is increased for a given N. With further rise in energy,
λ1 increases, reaches a maximum and then decreases asymptotically. As the number of particles is
increased, the local trough near the local minimum and the hill near the local maximum start opening
up to the right with the asymptotic edge rising up to a form a plateau as shown in Figure 3b. Moreover,
it can also be seen in Figure 3b that the local minimum and maximum themselves shift to the right as
well with an increase in the number of particles. It should be noted that, in the thermodynamic limit,
that is, for versions of the system with sufficiently large N, the LCEs may exhibit discontinuities in
their values or their slopes near the troughs and crests when plotted against temperature. Such an
observation may indicate toward the existence of phase transitions [31,32].

While the energy dependencies of λ1 differs dramatically for each version of the system, the other
LCEs for the gravitational system are also, in general, scaled versions of λ1, similar to the Coulombic
system, as exemplified in Figure 1b for N = 11. Moreover, in both versions of the spatially-periodic
system, the energy dependence of LCEs tends to approach a common limiting behavior as N is
increased. This is in contrast to the free-boundary gravitating case in which the values of LCEs were
shown to increase linearly with an increase in the number of particles [25].

From a dynamical perspective, the results are consistent with the theoretical predictions for
Hamiltonian systems [25] as outlined below:

(a) The sum of LCEs was found to converge to zero for all energies and N.

(b) For the ordered set {λi} (λ1 ≥ λ2 ≥ . . . ≥ λ2N), the results show that

λi ∼ −λ2N−i+1, i = 1, 2, . . . , 2N. (39)

(c) In addition, our results show that

λN−1 ∼ λN ∼ λN+1 ∼ λN+2 ∼ 0. (40)

Result (c) is nothing but a consequence of the conservation of momentum [25].
To summarize, we have provided an exact method to compute the full spectra of LCEs for the

spatially periodic versions of the one-dimensional Coulombic and gravitational systems. Analytic
expressions for the time evolution of the tangent vectors were derived and used in numerically
computing LCEs using an efficient event-driven algorithm. While the resulting values of the largest
LCE for the Coulombic system agree with those reported previously [12], our exact approach offers
striking advantages over the method used in [12] in that it allows one to calculate a full spectrum
of LCEs rather than just the largest LCE. Second, the results of the exact method do not depend on
the size of the perturbation. In finding the largest LCE using finite perturbations to a reference orbit
as discussed in [12], one has to first make sure that the value chosen for initial perturbation is small
enough. This becomes challenging for systems in which particles tend to stay clumped together.
An example of such behavior is seen in the gravitational system at low energies. Finally, the exact
approach circumvents the need for defining a test trajectory altogether, which, as discussed in [12],
poses difficulties in expressing phase-space separations for systems with periodic boundary conditions.
Nevertheless, the method discussed in [12] still remains powerful, and perhaps the only resort, in
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dealing with spatially-periodic systems for which analytic evolution of tangent-space vectors may not
be obtained.

In our exposition, we started with the general mathematical definitions for the computation
of Lyapunov exponents arising in nonlinear dynamics that have been known for quite some time.
We subsequently developed those general analytic expressions to account for the particular changes
brought upon by the introduction of periodic boundary conditions. As it became evident early in the
treatment, the resulting mathematical relations, although somewhat reminiscent of those arrived at
in [25] in their differential form, are considerably more complex in their final form.

The results of our study further indicate that the energy dependence of the largest LCE captures the
general behavior of the dependence of the Kolmogorov-entropy density on energy for both Coulombic
and gravitational systems. This result is particularly significant because of the numerical difficulties
encountered while calculating the full Lyapunov spectra of large systems. For the two versions of the
spatially-periodic system, our study suggests that one may gain insights into the full spectrum of LCEs
by simply looking at the largest LCE, thereby allowing one to avoid the computational complications
faced when calculating a full spectrum. Note that this is in contrast with the recent study of Lyapunov
spectra in the HMF model [43]. A possible explanation lies in the fact that, unlike the HMF model,
the systems considered in the present work are truly one-dimensional and rigorously obey Poisson’s
equation [21].

It should be noted that, for a given number of particles, the energy dependence of the LCEs
roughly followed the same behavior for any randomly selected initial conditions with only slight
deviations. As the number of particles was increased, the deviations became smaller, leading the
behaviors to converge to a single universal one, suggesting that the systems approach ergodicity.
Moreover, the convergence times of the LCNs for different randomly-chosen initial conditions also
showed uniformity for a larger number of particles, thereby pointing toward a consistent relaxation to
equilibrium with increasing degrees of freedom. However, the exact dependence of relaxation time on
the number of particles requires further investigation and we plan to pursue it in our future work.

Finally, it is worth emphasizing that if a phase transition occurs in either of the two
spatially-periodic systems, the temperature dependence of the largest LCE is expected to show a
transitioning behavior in the thermodynamic limit (large-N limit) [31,32,44]. Although of only technical
interest for short-range interactions, boundary conditions have a strong influence on the behavior of
matter for long-range interactions. In a related work [7], we showed, using both mean field theory
as well as the simulation approach presented in this paper, the occurrence of a phase transition in a
spatially-periodic, one-dimensional gravitational system. It should be noted that no phase transition
occurs in the free-boundary version of the same system. For the periodic case studied here with
finite N, it turns out that the local peak observed in the largest LCE is the precursor of the phase
transition. When plotted versus temperature, this precursor transforms into a cusp characterized
by a discontinuity of slope for the gravitational system in the thermodynamics limit [7]. Similar
behavior was reported for a self-gravitating ring system [33]. However, as conjectured by Kunz [19],
no such transitioning behavior is indicated for the Coulombic system. As we mentioned earlier, the
ability to emulate a many body, one-dimensional, gravitational system in the laboratory is a recent
development [14]. As experimental techniques progress, it may become possible to control the type of
boundary conditions employed in the laboratory. This offers the promise of experimentally observing
the phase transition that we predicted in our recent work [7].
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Abstract: We analyze the emergence of Kovacs-like memory effects in athermal systems within the
linear response regime. This is done by starting from both the master equation for the probability
distribution and the equations for the physically-relevant moments. The general results are applied
to a general class of models with conserved momentum and non-conserved energy. Our theoretical
predictions, obtained within the first Sonine approximation, show an excellent agreement with the
numerical results. Furthermore, we prove that the observed non-monotonic relaxation is consistent
with the monotonic decay of the non-equilibrium entropy.

Keywords: linear response; Kovacs effect; athermal system; master equation; H-functional

1. Introduction

The equilibrium state of physical systems is characterized by the value of a few macroscopic
variables, for example pressure, volume and temperature in fluids. This characterization of the
equilibrium state is complete, in the sense that different samples sharing the same values of the
macroscopic variables respond identically to an external perturbation. On the contrary, a system in
a nonequilibrium state, even if it is stationary, is not completely characterized by the value of the
macroscopic variables: the response to an external perturbation depends also on additional variables
or, equivalently, on its entire thermal history. Therefore, it is often said that the response depends on
the way the system has been aged.

A pioneering work in the field of memory effects in nonequilibrium systems was carried out by
Kovacs [1]. The Kovacs experiment showed that pressure, volume and temperature did not completely
characterize the state of a sample of polyvinyl acetate that had been aged for a long time at a certain
temperature T1. The pressure was fixed during the whole experiment, and the time evolution of the
volume was recorded. At a certain time tw, the temperature was suddenly changed to T, for which the
equilibrium value of the volume equaled its instantaneous value at tw. Counterintuitively (thinking
in equilibrium terms), the volume did not remain constant. Instead, it displayed a hump, passing
through a maximum before tending back to its equilibrium (and initial) value.

We look into the Kovacs experiment in a more detailed way in Figure 1. In recent studies of
the effect in glassy systems, the relevant physical variable is the energy instead of the volume [2–8].
The system is equilibrated at a “high” temperature T0, and at t = 0, the temperature is suddenly
quenched to a lower temperature T, after which the relaxation function φ(t) of the energy E is recorded.
Specifically, φ(t) = 〈E(t)〉 − 〈E〉e, where 〈E〉e is the average equilibrium energy at temperature T.
Then, a similar procedure is followed, equilibrating the system again at T0, but at t = 0, the temperature
is changed to an even lower value T1, T1 < T < T0. The system relaxes isothermally at T1 for a certain
time tw, such that 〈E〉(t = tw) equals 〈E〉e. At this time tw, the temperature is increased to T, but
the energy does not remain constant: it displays the behavior that is qualitatively shown by K(t).
At first, K(t) increases from zero until a maximum is attained for t = tk, and only afterwards, it goes
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back to zero. Similarly to the relaxation function, we have defined K(t) = 〈E(t)〉 − 〈E〉e, for t ≥ tw.
Note that K(t) ≤ φ(t) for all times, with the equality being only asymptotically approached in the long
time limit.

Figure 1. Scheme of the Kovacs experiment described in the text. The dashed curve on the right,
labeled by φ(t), represents the direct relaxation from T0 to T. The dashed curve on the left stands
for the part of the relaxation from T0 to T1 that is interrupted at t = tw by the second temperature
jump, changing abruptly the temperature from T1 to T. After this second jump, the system follows
the non-monotonic response K(t) (solid line), which reaches a maximum at t = tk and, afterwards,
approaches φ(t) for very long times.

For molecular (thermal) systems, the equilibrium distribution has the canonical form, and it has
been shown that in linear response theory: [6]

K(t) =
T0 − T1

T0 − T
φ(t)− T − T1

T0 − T
φ(t− tw), (1)

where the final temperature T and the waiting time tw are related by:

T − T1

T0 − T1
=

φ(tw)

φ(0)
. (2)

In linear response, the relaxation function φ(t) decays monotonically in time because it
is proportional to the equilibrium time correlation function (fluctuation-dissipation theorem)
〈E(0)E(t)〉e − 〈E〉2e = ∑i ci exp(λit), with ci > 0 and λi < 0 for all i [9].

The linear response results above make it possible to understand the crux of the observed Kovacs
hump in experiments [6]: (i) the inequality 0 ≤ K(t) ≤ φ(t), which assures that the hump always
has a positive sign (from now on, “normal” behavior), (ii) the existence of only one maximum in the
hump and (iii) the increase of the maximum height and the shift of its position to smaller times as tw is
decreased. Nevertheless, it must be noted that the experiments, both real [1] and numerical [2–5,7],
are mostly done out of the linear response regime: thus, it seems that the validity of these results extends
beyond expectations. In fact, it has been checked in simple models that the linear approximation still
gives a fair description of the hump for not-so-small temperature jumps [8].

Very recently, the investigation of Kovacs-like effects in athermal systems has been started.
A granular fluid provides a prototypical example of an athermal system, which is intrinsically
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out-of-equilibrium [10]. A physical mechanism that inputs energy into the system and balances
on average the energy loss in collisions, for instance the so-called stochastic thermostat [11], must be
considered to reach a nonequilibrium steady state (NESS). Moreover, in general, fluctuations are far
more important in granular systems than in molecular systems because of their smallness. The number
of particles N, ranging from 102 to 104, is large enough to make it possible to apply the methods of
statistical mechanics, but definitely much smaller than Avogadro’s number.

The simplest case is that of uniformly-driven granular gases considered in [12,13]. The value of
the kinetic energy (granular temperature Tg) at the NESS is controlled by the driving intensity ξ of the
stochastic thermostat. Therefore, a Kovacs-like protocol can be implemented in a completely analogous
way to the one described above, with the changes T → ξ, E→ Tg. One of the main differences found
is the emergence of “anomalous” Kovacs behavior for large enough dissipation, when K(t) becomes
negative and displays a minimum instead of a maximum. It must be stressed that these results have
been obtained in the nonlinear regime, that is for driving jumps ξ0 − ξ, ξ0 − ξ1 that are not small.

More recently, Kovacs-like behavior has been observed in other, more complex, athermal systems.
This is the case of disordered mechanical systems [14] and also of active matter [15]. In the latter,
a “giant” Kovacs hump has been reported, in the sense that the numerically observed maximum is
much larger than the one predicted by the extrapolation of the linear approximation expression (1)
to the considered protocol. Moreover, an alternative derivation of (1) has been provided in the
supplemental material of [15]. This derivation holds for athermal systems, since it does not make use
of either the explicit form of the probability distribution or the relationship between response functions
and time correlations at the steady state, but is restricted to discrete-time dynamics at the macroscopic
(average) level of description.

The objectives of our paper are two-fold. Firstly, we put forward a rigorous and general derivation
of the linear response expression for the Kovacs hump for systems with a realistic continuous time
dynamics. This is done at both the mesoscopic and macroscopic levels of description, starting from the
master equation for the probability distribution and from the hierarchy of equations for the moments,
respectively. Our proof is also valid for athermal systems, since no hypothesis is needed with regard
to the form of either the stationary probability distribution or the fluctuation-dissipation relation.
Secondly, we apply our results to a simple class of dissipative models that mimic the shear component
of a granular fluid, recently introduced [16–18]. Therein, we obtain explicit expressions for the Kovacs
hump within the first Sonine approximation and compare the theoretical predictions with numerical
results. We also discuss the compatibility of the non-monotonic behavior displayed by the granular
temperature in the Kovacs experiment and the monotonic approach to the NESS of the nonequilibrium
entropy or H-functional [19–21].

2. Linear Theory for Kovacs-Like Memory Effects

2.1. General Markovian Dynamics

Here, we consider a general system, whose state is completely characterized by a vector x with
M components, x = {x1, x2, . . . , xM}. For example, in a one-dimensional Ising chain of N spins,
xi = σi = ±1, and M = N; for a gas comprising N particles with positions ri and velocities vi,
M = 6N, and x = {r1, v1, . . . , rN , vN}. As is customary and for the sake of simplicity, from now on,
we use a notation suitable for systems in which the states can be labeled with a discrete index α,
1 ≤ α ≤ Ω. For example, this is the case of the Ising system above, where Ω = 2N . The generalization
for a continuous index is straightforward, by changing sums into integrals and the Kronecker delta by
the Dirac delta [9].

At the mesoscopic level of description, we assume that x is a Markov process, and its dynamics is
governed by a master equation for the probabilities P(xα, t),

∂tP(xα, t) = ∑̃
α

[W(xα|xα̃; ξ)P(xα̃, t)−W(xα̃|xα; ξ)P(xα, t)] , (3)
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where W(xα|xα̃; ξ) are the transition rates from state xα̃ to state xα, and our notation explicitly marks
their dependence on some control parameter ξ. Equation (3) can be formally written as:

∂t |P(t)〉 = W(ξ) |P(t)〉 , (4)

where |P(t)〉 is a vector (column matrix) whose components are the probabilities P(xα, t) and W(ξ) is
the linear operator (square matrix) that generates the dynamical evolution of |P(t)〉,

W(xα|xα̃; ξ) = W(xα|xα̃; ξ)− δα,α̃ ∑
α′

W(xα′ |xα; ξ). (5)

Let us assume that the Markovian dynamics is ergodic (or irreducible [9]), that is all the states are
dynamically connected through a chain of transitions with non-zero probability. Therefore, there is a
unique steady solution of the master equation |Ps(ξ)〉, which verifies:

W(ξ) |Ps(ξ)〉 = 0, (6)

and depends on the parameter ξ controlling the system dynamics. Note that ergodicity does not imply
detailed balance, so we can have non-zero currents in the steady state. In general, this means that the
system approaches an NESS in the long time limit, not an equilibrium state.

Now, we consider the system evolving from a certain initial state at time t0, characterized by the
distribution |P(t0)〉. The formal solution of the master equation can be written as:

|P(t)−Ps(ξ)〉 = e(t−t0)W(ξ) |P(t0)−Ps(ξ)〉 . (7)

This is the starting point for our derivation of the expression for the Kovacs effect in the linear response
approximation, which is carried out in the next section.

The time evolution of any physical property Y is obtained right away. Let us denote the value of
Y for a given configuration x by Y(x): its expected or average value is given by :

〈Y(t)〉 = ∑
α

Y(xα)P(xα, t) = 〈Y|P(t)〉 , (8)

where |Y〉 is a ket whose components are Y(xα), and 〈Y| its corresponding bra (row matrix with
the same components. Note that we are assuming that Y is a real quantity for all the configurations.
By substituting (7) into (8), it is obtained that:

ΔY(t; ξ) ≡ 〈Y(t)〉 − 〈Y〉s(ξ) = 〈Y|e(t−t0)W(ξ)|P(t0)−Ps(ξ)〉 , (9)

in which 〈Y〉s(ξ) is the average value at the steady state of the system corresponding to ξ.
Now, we investigate the relaxation of the system from the steady state for ξ0 = ξ + Δξ to the

steady state for ξ. We do so in linear response, that is Δξ is considered to be small, and we neglect all
terms beyond those linear in Δξ. Thus, at t = 0 we have that the probability distribution is:

|P(t = 0)〉 = |Ps(ξ + Δξ)〉 = |Ps(ξ)〉+ Δξ

∣∣∣∣dPs(ξ)

dξ

〉
+ O(Δξ)2. (10)

Substitution of (10) into (9) yields the formal expression for the relaxation of Y in linear response,

ΔY(t; ξ) = Δξ

〈
Y
∣∣∣∣e(t−t0)W(ξ)

∣∣∣∣dPs(ξ)

dξ

〉
. (11)

In order to have an order of unity function, one may define a normalized relaxation function:
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φY(t; ξ) ≡ lim
Δξ→0

ΔY(t; ξ)

Δξ
=

〈
Y
∣∣∣∣e(t−t0)W(ξ)

∣∣∣∣dPs(ξ)

dξ

〉
. (12)

Sometimes, the relaxation function is further normalized by considering φY(t)/φY(t = t0) (see for
instance [6,22]), but such a multiplying factor is clearly not physically relevant and will not be
introduced here.

2.2. The Kovacs Protocol: Linear Response Analysis from the Master Equation

Here, it is a Kovacs-like protocol that we introduce, by considering that the parameter ξ controlling
the dynamics is changed in the following stepwise manner:

ξ(t) =

⎧⎪⎨⎪⎩
ξ0, −∞ < t < 0,
ξ1, 0 < t < tw,
ξ, t > tw.

(13)

Therefore, since ξ0 is kept for an infinite time, at t = 0, the system is prepared in the corresponding
steady state, P(t = 0) = Ps(ξ0). Our idea is to consider that the jumps ξ1 − ξ0 and ξ − ξ1 are small,
in the sense that all expressions can be linearized in the magnitude of these jumps. Note that this
protocol is completely analogous to the Kovacs protocol described in the Introduction (see Figure 1),
but with ξ playing the role of the temperature.

We start by analyzing the relaxation in the first time window, 0 < t < tw. Therein, we apply (7)
with the substitutions t0 → 0 and ξ → ξ1, that is,

|P(t)−Ps(ξ1)〉 = etW(ξ1) |Ps(ξ0)−Ps(ξ1)〉 , 0 ≤ t ≤ tw. (14)

The final distribution function, at t = tw, is the initial condition for the next stage, t > tw, in which the
system relaxes towards the steady state corresponding to ξ. Making use again of (7) with t0 → tw,

|P(t)−Ps(ξ)〉 = e(t−tw)W(ξ) |P(tw)−Ps(ξ)〉
= e(t−tw)W(ξ)

[
etwW(ξ1) |Ps(ξ0)−Ps(ξ1)〉+ |Ps(ξ1)−Ps(ξ)〉

]
, t ≥ tw. (15)

It must be stressed that the above expressions, Equations (14) and (15), are exact, and no approximation
has been made.

The linear response approximation is introduced now: we assume that both jumps ξ0 − ξ1 and
ξ − ξ1 are small, so we can expand both |Ps(ξ0)−Ps(ξ1)〉 and |Ps(ξ1)−Ps(ξ)〉, similarly to what was
done in Equation (10). Namely,

|Ps(ξ0)−Ps(ξ1)〉 = (ξ0 − ξ1)

∣∣∣∣dPs(ξ)

dξ

〉
+ O(ξ0 − ξ1)

2, (16a)

|Ps(ξ1)−Ps(ξ)〉 = (ξ1 − ξ)

∣∣∣∣dPs(ξ)

dξ

〉
+ O(ξ1 − ξ)2. (16b)

Note that in both (16a) and (16b), the derivatives are evaluated at ξ; the difference introduced by
evaluating them at either ξ1 or ξ0 is second order in the deviations. Then,

|P(t)−Ps(ξ)〉 = (ξ0 − ξ1)e(t−tw)W(ξ)etwW(ξ1)

∣∣∣∣dPs(ξ)

dξ

〉
+ (ξ1 − ξ)e(t−tw)W(ξ)

∣∣∣∣dPs(ξ)

dξ

〉
. (17)

This equation can be further simplified: since the two terms on its rhs are first order in the jumps,
we can substitute W(ξ1) with W(ξ), with the result:

|P(t)−Ps(ξ)〉 = (ξ0 − ξ1)etW(ξ)

∣∣∣∣dPs(ξ)

dξ

〉
− (ξ − ξ1)e(t−tw)W(ξ)

∣∣∣∣dPs(ξ)

dξ

〉
. (18)

183



Entropy 2017, 19, 539

This is the superposition of two responses: the first term on the rhs gives the relaxation from ξ0 to ξ1,
which starts at t = 0, whereas the second term stands for the relaxation from ξ1 to ξ, which starts at
t = tw. We have chosen to write −(ξ − ξ1) in the second term because ξ > ξ1 in the Kovacs protocol.

The same structure in Equation (18) is transferred to the average value. Taking into account
Equation (9):

ΔY(t) = (ξ0 − ξ1)

〈
Y
∣∣∣∣etW(ξ)

∣∣∣∣dPs(ξ)

dξ

〉
− (ξ − ξ1)

〈
Y
∣∣∣∣e(t−tw)W(ξ)

∣∣∣∣dPs(ξ)

dξ

〉
, t ≥ tw, (19)

in which we recognize the relaxation function in linear response, defined in Equation (12). We can also
normalize the response in this experiment, by defining a function K(t) as follows,

KY(t) ≡ lim
ξ0→ξ

ΔY(t)
ξ0 − ξ

=
ξ0 − ξ1

ξ0 − ξ
φY(t)−

ξ − ξ1

ξ0 − ξ
φY(t− tw). (20)

It is understood that, as ξ0 − ξ → 0, both prefactors ξ0−ξ1
ξ0−ξ and ξ−ξ1

ξ0−ξ are kept of the order of unity.
A few comments on Equation (20) are in order. Hitherto, no restriction has been imposed on the

state of the system at t = tw; therefore, (20) is valid for arbitrary (ξ0, ξ1, ξ), provided that the jumps are
small enough and the ratio of the jumps is of the order of unity. The function K(t) corresponds to a
Kovacs-like experiment when ξ is chosen as a function of tw in such a way that 〈Y(tw)〉 = 〈Y〉s(ξ) or
KY(tw) = 0, that is,

ξ − ξ1

ξ0 − ξ1
=

φY(tw)

φY(0)
. (21)

Alternatively, one may consider that (21) defines tw as a function of ξ.
The complete analogy between Equations (20) and (21) and Equations (1) and (2) is apparent.

Nevertheless, we have made use neither of the explicit form of the steady state distribution
(in general non-canonical), nor of the relation between response functions and time correlation
functions (fluctuation-dissipation relation), which were necessary in [6] to demonstrate Equation (1).
Therefore, the proof developed here is more general, being valid for any steady state, equilibrium or
nonequilibrium, and thus, it specifically holds in athermal systems. Furthermore, it must be noted that
it can be easily extended to the Fokker–Planck, or the equivalent Langevin, equation.

2.3. Linear Response from the Equations for the Moments

In this section, we do not start from the equation for the probability distribution, but from the
equations for the relevant physical properties of the considered system. For example, one may think
of the hydrodynamic equations for a fluid or the law of mass action equations for chemical reactions.
Of course, these equations can be derived in a certain “macroscopic” approximation [9], which typically
involves neglecting fluctuations, from the equation for the probability distribution by taking moments,
but this is not our approach here. Anyhow, we borrow this term to call our starting point “equations
for the moments”.

We denote the relevant moments by zi, i = 1, . . . , J, where J is the number of relevant moments.
The equations for the moments have the general form:

d
dt

zi = fi(z1, . . . , zJ ; ξ), (22)

where fi are continuous, in general nonlinear, functions of the moments. This is a key difference
between moment equations and the master (or Fokker–Planck) equation, since the latter is always
linear in the probability distribution. Therefore, unlike the master equation, Equation (22) cannot
be formally solved for arbitrary initial conditions. This notwithstanding, in the linear response
approximation, we show here that a procedure similar to the one carried out in the previous section
leads to the same expression for the Kovacs hump.
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We assume that there is only one steady solution of Equation (22) that is globally stable, at which
the corresponding values of the moments are zs

i (ξ). Linearization of the dynamical system around the
steady state gives:

d
dt
|Δz(t)〉 = M(ξ) |Δz(t)〉 , |Δz(t)〉 ≡ |z(t)− zs(ξ)〉 . (23)

We are using a notation completely similar to that in the previous section: |z〉 is a vector, represented
by a column matrix with components zi, and M(ξ) is a linear operator, represented by a square matrix
with elements:

Mij(ξ) = ∂zj fi

∣∣∣
|z〉=|zs(ξ)〉

. (24)

Note that the dimensions of these matrices are much smaller than those for the master equation, since J
is of the order of unity and does not diverge in the thermodynamic limit. In general, Mij �= Mji, and
the operator M is not Hermitian. However, we do not need M to be Hermitian to solve the linearized
system in a formal way, as shown below.

Analogously to what was done for the master equation, the formal solution of Equation (23) is:

|Δz(t)〉 = e(t−t0)M(ξ) |Δz(t0)〉 . (25)

In particular, if the initial condition is chosen to correspond to the steady state for ξ0 = ξ + Δξ, one has:

|Δz(t)〉 = Δξ e(t−t0)M(ξ)

∣∣∣∣dzs(ξ)

dξ

〉
. (26)

The response for any of the relevant moments can be extracted by projecting the above result onto the
“natural” basis |ui〉, whose components are uij = δij. Then, the normalized linear response function for
zi can be defined by:

φzi (t) = lim
Δξ→0

〈ui|Δz(t)〉
Δξ

=

〈
ui

∣∣∣∣e(t−t0)M(ξ)

∣∣∣∣dzs(ξ)

dξ

〉
. (27)

Note the utter formal analogy of Expression (27) with Equation (12), which was obtained from the
master equation. The proof of the expression for the Kovacs hump follows exactly the same line of
reasoning, and the result is exactly that in Equations (20) and (21); thus, it is not repeated here.

3. A Lattice Model with Conserved Momentum and Non-Conserved Energy

3.1. Definition of the Model: Kinetic Description

Here, we briefly put forward a class of models for the shear component of the velocity in a
granular gas, focusing on the features that are needed for the discussion of memory effects. A more
complete description of the model, including its physical motivation, can be found in [16–18,23].

The system is defined on a 1d lattice: there is a particle with velocity vl at each site l.
The system configuration is thus given by v ≡ {v1, ..., vN}. The dynamics proceeds through inelastic
nearest-neighbor binary collisions: each pair (l, l + 1) collides inelastically with a characteristic rate
proportional to |vl − vl+1|β, with β ≥ 0. For β = 0, nearest-neighbor particles collide independently
of their relative velocity (the so-called Maxwell-molecule model [24]), whereas for β = 1 and β = 2,
we have a collision rate analogous to that of hard spheres and very hard spheres, respectively [10,25].
The pre-collisional velocities are transformed into the post-collisional ones by the operator b̂l ,
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b̂lvl = vl −
1 + α

2
(vl − vl+1) , (28a)

b̂lvl+1 = vl+1 +
1 + α

2
(vl − vl+1) , (28b)

where 0 < α ≤ 1 is the normal restitution coefficient. Momentum is always conserved in collisions,
(b̂l − 1)(vl + vl+1) = 0, but energy is not; in fact, (b̂l − 1)(v2

l + v2
l+1) = (α2 − 1)(vl − vl+1)

2/2 ≤ 0,
with equality holding only in the elastic limit α = 1.

In order to have a steady state, a mechanism that injects energy into the system, and thus
compensates on average the energy loss in collisions, must be introduced. For the sake of simplicity,
we consider here that the system is “heated” by a white noise force, that is the so-called stochastic
thermostat [11,26]. The velocity change introduced by the stochastic forcing is:

∂τvi(τ)|noise = ξi(τ)−
1
N

N

∑
j=1

ξ j(τ), (29)

and ξi(τ) are Gaussian white noises of amplitude χ:

〈ξi(τ)〉noise = 0, 〈ξi(τ)ξ j(τ
′)〉noise = χδijδ(τ − τ′), (30)

for i, j = 1, . . . , N. This version of the stochastic thermostat conserves total momentum, which is
needed to assure the existence of a well-defined steady state [27,28].

We do not write here the master-Fokker–Planck equation for the N-particle PN(v, τ) probability
density of finding the system in state v at time τ. Instead, we directly write the “kinetic” equation for
the one-particle distribution function, namely P1(v; l, τ) =

∫
dvPN(v, τ)δ(vl − v). Therefrom, all the

one-site velocity moments, which are the relevant physical quantities for our present purposes, can be
derived, 〈vn

l (τ)〉 ≡
∫ +∞
−∞ dv vnP1(v; l, τ). As usual in kinetic theory, a closed equation for P1 can be

written only after introducing the molecular chaos assumption: spatial correlations at different sites
are of the order of N−1 and then negligible.

We analyze here homogeneous states; if the initial state is homogeneous, the above dynamics
preserves homogeneity. Moreover, we employ the usual notation in kinetic theory, f (v, τ) ≡ P1(v, �l; τ)

and consider the quasi-elastic limit, that is ε ≡ 1− α2 � 1. This allows us to write a simpler expression
for the inelastic collision term. Proceeding along the same lines as in [17,21], it is obtained that [29]:

∂τ f (v, τ) =
ωε

2
∂v

∫ +∞

−∞
dv′(v− v′)|v− v′|β f (v, τ) f (v′, τ) +

χ

2
∂2

v f (v, τ). (31)

We can define a dimensionless time scale, t = ωετ, over which:

∂t f (v, t) =
1
2

∂v

∫ +∞

−∞
dv′(v− v′)|v− v′|β f (v, t) f (v′, t) +

ξ

2
∂2

v f (v, t), (32)

where ξ is the rescaled strength of the noise, ξ = χ
ωε . Note that this kinetic equation is, like Boltzmann’s

or Enskog’s, nonlinear in f (v, t).
The main physical magnitude is the granular temperature T, which we define as:

T ≡ 〈v2〉 =
∫ +∞

−∞
dv v2 f (v, t). (33)

We used the notation Tg for the granular temperature in the Introduction, to differentiate it from the
usual thermodynamic temperature T. Since the latter plays no role in our system, we employ the usual
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notation T for the granular temperature hereafter. It is also customary to define the thermal velocity
v0 =

√
2T to make v dimensionless, with the change:

v = v0c, f (v, t)dv = ϕ(c, t)dc⇔ ϕ(c, t) = v0 f (v, t). (34)

Taking moments in (32) and making the change of variables above, one gets:

d
dt

T = −ζ T1+ β
2 + ξ, ζ = 2

β
2

∫ +∞

−∞
dc
∫ +∞

−∞
dc′|c− c′|2+β ϕ(c, t)ϕ(c′, t) (35)

The first term on the rhs stems from collisions and cools the system, in the sense that it always makes
the granular temperature decrease. The second term stems from the stochastic thermostat and heats
the system, and thus, in the long time limit, an NESS is attained in which both terms counterbalance
each other.

3.2. First Sonine Approximation

The equation for the granular temperature is not closed in general, and then an expansion in
Sonine (or Laguerre) polynomials is typically introduced,

ϕ(c, t) =
e−c2

√
π

[
1 +

∞

∑
k=2

ak(t)L(
− 1

2 )
k (c2)

]
, (36)

where L(m)
k (x) are the associated Laguerre polynomials [30]. In kinetic theory, m = d

2 − 1, with d

being the spatial dimension, and often, the notation Sk(x) ≡ L(
d
2−1)

k is used. Here, we mainly use the
so-called first Sonine approximation, in which (i) only the term with k = 2 is retained and (ii) nonlinear
terms in a2 are neglected. The coefficient a2 is the excess kurtosis, 〈c4〉 = 3(1 + a2)/4.

Although the linearization in a2 is quite standard in kinetic theory, we derive firstly the evolution
equations considering just Step (i) of the first Sonine approximation, that is we truncate the expansion
for the scaled distribution (36) after the k = 2 term. Henceforth, we call this approximation the
nonlinear first Sonine approximation. Afterwards, in the numerical results, we will discuss how both
approximations, nonlinear and standard, give almost indistinguishable results.

In the nonlinear first Sonine approximation, the evolution equation for the temperature is readily
obtained [29]:

d
dt

T = −ζ0 T1+ β
2

[
1 +

β(2 + β)

16
a2 +

β(2 + β)(2− β)(4− β)

1024
a2

2

]
+ ξ, (37a)

where ζ0 = π−1/2 21+β Γ
(

3+β
2

)
. Unless β = 0 (Maxwell molecules), the equation for the temperature

is not closed. Then, we write down the equation for a2: again, after a lengthy, but straightforward
calculation, we derive:

T
d
dt

a2 =− 2ξa2 −
ζ0
3

β T1+ β
2

×
[

1 +
56 + β(6 + β)

16
a2 −

(2 + β)[384 + (2− β)β(4 + β)]

1024
a2

2 −
3(4− β)(2− β)(2 + β)

512
a3

2

]
. (37b)

The evolution equations in the standard first Sonine approximation are easily reached just neglecting
nonlinear terms in a2 in Equations (37), that is:

d
dt

T = −ζ0 T1+ β
2

[
1 +

β(2 + β)

16
a2

]
+ ξ, (38a)
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T
d
dt

a2 = − ζ0

3
β T1+ β

2

[
1 +

56 + β(6 + β)

16
a2

]
− 2ξa2. (38b)

For ξ �= 0, the steady solution of these equations is:

Ts =

⎛⎝ ξ

ζ0

[
1 + β(2+β)

16 as
2

]
⎞⎠

2
2+β

, as
2 = − 16β

96 + 56β + 6β2 + β3 . (39)

Note that (i) 0 ≤ |as
2| ≤ 0.133 for 0 ≤ β ≤ 2, which makes it reasonable to use the first Sonine

approximation, and (ii) as
2 is independent of the driving intensity ξ. This will be useful in the linear

response analysis, to be developed below, because a sudden change in the driving only changes the
stationary value of the temperature, but not that of the excess kurtosis. If ξ = 0, the system evolves
towards the homogeneous cooling state, in which the excess kurtosis tends to the value:

aHCS
2 = − 16

56 + β(6 + β)
, (40)

as predicted by Equation (38b) and the temperature decays following Haff’s law, dT/dt ∝ −T1+ β
2 .

From now on, we use reduced temperature and time,

θ =
T
Ts

, s = ζ0Tβ/2
s t. (41)

The steady temperature Ts plays the role of a natural energy (or granular temperature) unit. In reduced
variables, the evolution equations are:

d
ds

θ = 1− θ1+ β
2 +

β(2 + β)

16

(
as

2 − a2θ1+ β
2

)
, (42a)

θ
d
ds

a2 = κ1

(
a2 − aHCS

2

) (
1− θ1+ β

2

)
− κ2 (a2 − as

2) , (42b)

where we have introduced two parameters of the order of unity,

κ1 = − β

3aHCS
2

, κ2 = − β

3as
2

, (43)

0 ≤ κ1 ≤ 3 and 2 ≤ κ2 ≤ 5 for 0 ≤ β ≤ 2.
The evolution equations in the first Sonine approximation, (38) or (42), are the particularization of

the equations for the moments (22) to our model: J = 2, and z1 = T (or θ), z2 = a2. Consistently, they are
nonlinear, although here, due to the simplifications introduced in the first Sonine approximation, only
nonlinear in θ. When the system is close to the NESS, Equation (42) can be linearized around it by
writing θ = 1 + Δθ, a2 = as

2 + Δa2,

d
ds

(
Δθ

Δa2

)
= M ·

(
Δθ

Δa2

)
, M =

⎛⎝ − 2(2+β)(12+β)
48+4β+β2 − β(2+β)

16

−κ1

(
1 + β

2

) (
as

2 − aHCS
2
)

−κ2

⎞⎠ . (44)

Of course, the general solution of this linear system for arbitrary initial conditions Δθ(0) and Δa2(0)
can be immediately written, but we omit it here.

3.3. Kovacs Hump in Linear Response

Now, we look into the Kovacs hump in the linear response approximation. Following the
discussion leading to Equation (20), first we have to calculate the relaxation function φT for the
granular temperature. The system is at the steady state corresponding to a driving ξ0 for t < 0; at t = 0,
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the driving is instantaneously changed to ξ, and only the linear terms in Δξ = ξ − ξ0 are retained.
We choose the normalization of φT(s) in such a way that φT(0) = 1, that is:

φT(s) ≡ lim
ΔT(0)→0

ΔT(s)
ΔT(0)

= lim
Δθ(0)→0

Δθ(s)
Δθ(0)

. (45)

Since Ts changes with ξ, but a2 does not, we have to solve Equation (44) for Δa2(0) = 0 and
arbitrary (small enough) Δθ(0). The solution is:

φT(s) = c+eλ+s + c−eλ−s, (46a)

c+ =
M11 − λ−
λ+ − λ−

, c− =
λ+ −M11

λ+ − λ−
, (46b)

where Mij is the (i, j) element of the matrix M and λ± its eigenvalues,

λ± =
Tr M ±

√
(Tr M)2 − 4 det M

2
=

Tr M ±
√
(M11 −M22)2 + 4M12M21

2
. (47)

Both eigenvalues λ± are negative, since Tr M < 0 and det M > 0 for all β > 0. Therefore, |λ+| < |λ−|,
and it is λ+ that dominates the relaxation of the granular temperature for long times. Moreover, c± > 0,
and thus, the linear relaxation function φT(s) is always positive and decays monotonically to zero.

Next, we consider a Kovacs-like experiment: the system was at the NESS corresponding to a
driving ξ0, with granular temperature Ts,0 for t < 0; the driving is suddenly changed to ξ1 at t = 0 so
that the system starts to relax towards a new steady temperature Ts,1 for 0 ≤ t ≤ tw, and this relaxation
is interrupted at t = tw, because the driving is again suddenly changed to the value ξ such that the
stationary granular temperature Ts equals its instantaneous value at tw. The time evolution of the
granular temperature for t ≥ tw is given by the particularization of Equations (20) and (21) to our
situation, that is,

KT(s) =
ξ0 − ξ1

ξ0 − ξ
φT(s)−

ξ − ξ1

ξ0 − ξ
φT(s− sw),

ξ − ξ1

ξ0 − ξ1
= φT(sw), (48)

where we have made use of the normalization φT(0) = 1. In the linear response approximation,
the jumps in the driving values can be substituted by the corresponding jumps in the stationary values
of the granular temperature.

The structure of the linear relaxation function φT(s), as a linear combination of decreasing
exponentials exp(λ±t), λ± < 0, with positive weights c±, assures that the Kovacs behavior is normal:
(i) KT(s) is always positive and bounded from above by φT(s) and (ii) there is only one maximum at a
certain time sk > sw [6]. The anomalous behavior found in the uniformly heated hard-sphere granular
for large enough inelasticity is thus not present here. This is consistent with the quasi-elastic limit we
have introduced to simplify the collision operator.

3.4. Nonlinear Kovacs Hump

Here, we consider the Kovacs hump for arbitrary large driving jumps. In our model, we can make
use of the smallness of a2, which is assumed in the first Sonine approximation, in order to introduce a
perturbative expansion of Equations (42) in powers of as

2. The procedure is completely analogous to
that performed in [12,13] for a dilute gas of inelastic hard spheres, and thus, we omit the details here.

We start by writing a2 = as
2 A2, with A2 of the order of unity, and:

θ(s) = θ0(s) + as
2θ1(s) + . . . , A2(s) = A20(s) + as

2 A21(s) + . . . . (49)
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These expansions are inserted into Equations (42), which have to be solved with initial conditions
θ(sw) = 1, A2(sw) = Aini

2 . To the lowest order, θ0(s) = 1, whereas A20(s) decays exponentially to one,

A20(s)− 1 ∼
(

Aini
2 − 1

)
e−κ2(s−sw). (50)

In order to describe the Kovacs hump, we compute θ1(s) that verifies the differential equation:

dθ1

ds
= −

(
1 +

β

2

)
θ1 +

β(2 + β)

16
(A20 − 1) , (51)

which can be immediately integrated to give:

θ(s)− 1 ∼
(

aini
2 − as

2

) β(2 + β)

8(2 + β− 2κ2)

[
e−κ2(s−sw) − e−

(
1+ β

2

)
(s−sw)

]
, s ≥ sw, (52)

The structure of this result is completely analogous to those in [12,13], and thus, the conclusions can
also be drawn in a similar way. In particular, we want to highlight that (i) the factor that controls
the size of the hump is proportional to aini

2 − as
2 and (ii) the shape of the hump is codified in the

factor between brackets that only depends on β. Note that (aini
2 − as

2) > 0 for the cooling protocols
(ξ1 < ξ < ξ0) considered here, and thus, no anomalous Kovacs hump is expected in the nonlinear
regime either.

4. Numerical Results

Here, we compare the theoretical approach above to numerical results of our model. Specifically,
we focus on the case β = 1 that gives a collision rate similar to that of hard-spheres. All simulations
have been carried out with a restitution coefficient α = 0.999, which corresponds to the quasi-elastic
limit in which our simplified kinetic description holds. Furthermore, we set ω = 1 without loss
of generality.

4.1. Validation of the Evolution Equations and Linear Relaxation

First of all, we check the validity of the first Sonine approximation, as given by Equations (38),
to describe the time evolution of our system. In order to do so, we compare several relaxation
curves between the NESS corresponding to two different noise strengths. In particular, we always
depart from the stationary state corresponding to χ0 = 1 and afterwards let the system evolve with
χ = {0.2, 0.6, 0.8, 1} for t > 0. In Figure 2, we compare the Monte Carlo simulation (see Appendix A
for details) of the system with the numerical solution of the evolution equations in the first Sonine
approximation (38). In addition, we also have plotted the analytical solution of the linear response
system, Equation (44). The agreement is complete between simulation and theory, and it can be
observed how the linear response result becomes more accurate as the temperature jump decreases.

In order not to clutter the plot in Figure 2, we have not shown the results for the nonlinear first
Sonine approximation, Equation (37). The relative error between their numerical solution and that
of the standard first Sonine approximation (38) is at most of order 0.1%, for all the cases we have
considered. Henceforth, we always use the latter, which is the usual approach in kinetic theory.
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Figure 2. (Color online) Direct relaxation of the granular temperature T for different final noise
amplitudes. All curves start from the stationary state corresponding to χ0 = 1. We compare Monte
Carlo simulation results for a system of N = 100 sites (symbols) with the numerical solution of the
first Sonine approximation, Equation (38) (solid lines), and the analytic solution of the linear response
system, Equation (44) (dashed lines).

4.2. Kovacs Hump

Since the numerical integration of the first Sonine approximation perfectly agrees with Monte
Carlo simulations, we compare the analytical results for the Kovacs hump with the former. Specifically,
we work in reduced variables, and therefore, we integrate numerically Equations (42).

4.2.1. Linear Response

It is convenient to rewrite the expression for the Kovacs hump in an alternative form to compare
our theory to numerical results. We take advantage of the simple structure of the relaxation function in
the first Sonine approximation, which is the sum of two exponentials, to introduce the factorization [6]:

KT(s) = K0(sw)K1(s− sw), (53a)

where:

K0(sw) = c+c−
eλ+sw − eλ−sw

1− φT(sw)
, K1(s− sw) = eλ+(s−sw) − eλ−(s−sw). (53b)

Firstly, this factorization property shows that the position sk of the maximum relative to the waiting
time sw, that is, sk − sw, is controlled by the function K1. Thus, sk − sw does not depend on the waiting
time, but only on the two eigenvalues λ±. Namely,

sk − sw =
1

λ+ − λ−
ln
(

λ−
λ+

)
�

β=1
0.442. (54)

Secondly, the height of the maximum Kmax does depend on the waiting time sw due to the factor
K0(sw). Specifically, it can be shown that Kmax is a monotonically decreasing function of the waiting
time sw that vanishes in the limit as sw → ∞.
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In order to check the above results, we have fixed the initial and final drivings in the Kovacs
protocol χ0 and χ and changed the intermediate driving value χ1. We do so to simplify the comparison,
because the time scale s involves the steady value of the temperature; see Equation (41). Note that the
smaller χ1 is, the shorter the waiting time becomes. Therefore, one expects to get a Kovacs hump whose
maximum remains at s− sw � 0.44, but raises as χ1 decreases. This is shown in Figure 3, where the
numerical solution of the first Sonine approximation equations (42) and the analytical result (53) are
compared. Their agreement is almost perfect for the two lowest curves, corresponding to χ1 = 0.99
and χ1 = 0.95, as expected, but is still remarkably good for the two topmost ones, corresponding to
the not-so-small jumps for χ1 = 0.8 and χ1 = 0.5.

Figure 3. (Color online) Kovacs hump in linear response. We have fixed the initial and final drivings,
χ0 = 1.05 and χ = 1, and considered four values for the intermediate driving χ1 = {0.5, 0.8, 0.95, 0.99}.
The linear response theory result (53) (solid line) perfectly agrees with the numerical solution of the
first Sonine approximation (symbols), Equation (42). Furthermore, the theoretical prediction for the
maximum (54), which again agrees with the numerical results, is plotted (dotted line).

4.2.2. Nonlinear Regime

Furthermore, we explore the Kovacs effect out of the linear regime. Figure 4 is similar to Figure 3,
but for larger temperature (or driving) jumps. We have also fixed the initial and final values of the
driving, χ0 = 10 and χ = 1. The intermediate values of the driving are the same as in the linear case
except for the largest one, χ1 = 0.99, which we have omitted for the sake of clarity (its hump is too
small in the scale of the figure). Now, the linear response theory results just provide the qualitative
behavior of the hump, correctly predicting the position of the maximum, but not its height. On the
one hand, and consistent with the numerical results in an active matter model [15], the Kovacs hump
out of the linear response regime is larger than the prediction of linear response theory. On the other
hand, the position of the maximum remains basically unchanged, and its height still increases as
χ1 decreases.
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Figure 4. (Color online) Kovacs hump out of the linear regime. The initial driving is much higher than
that in Figure 3, χ0 = 10, whereas the final and intermediate values of the driving are again χ = 1 and
χ1 = {0.5, 0.8, 0.95}. The linear response theoretical expression (48) (solid line) remains quite below the
numerical solutions of the first Sonine approximation (42) (symbols). The theoretical expression for the
maximum in linear response (54) (dotted line) still gives a good description thereof; see also Figure 5.

We also compare our analytical expansion in as
2 with the numerical solutions of Equations (42)

for large jumps. Specifically, in order to make things as simple as possible, we choose χ1 = 0. If the
waiting time is long enough, the system reaches the homogeneous cooling state and a2(sw) = aHCS

2 ,
which is then the initial condition for the final stage of the Kovacs protocol. Moreover, we can compute
the location of the maximum of the hump from Equation (52), obtaining:

sk − sw =
2

κ2 − 2− β
ln
(

2κ2

2 + β

)
�

β=1
0.437. (55)

This result is numerically indistinguishable from that of linear response, as given by Equation (54),
since the relative error is around 1%.

In Figure 5, we put forward a comparison between the Kovacs hump obtained from the numerical
solution of the first Sonine approximation equations and our theoretical expression for the nonlinear
regime, Equation (52). Fixing ξ1 = 0 and ξ = 1, as ξ0 increases (as the waiting time is increased),
the hump approaches Equation (52) with aini

2 = aHCS
2 . Moreover, our theory perfectly reproduces all

the numerical curves when we substitute the actual values of aini
2 into Equation (52).
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Figure 5. (Color online) Kovacs hump in the nonlinear regime and prediction of the perturbative
expansion in as

2. We have considered the following values of the drivings: χ0 = {2, 10, 50}, χ1 = 0
and χ = 1. Symbols stand for the numerical solutions of the first Sonine approximation (42), whereas
lines correspond to the theoretical expression (52). For the solid line, aini

2 = aHCS
2 , while for the dashed

lines, we have used the value of aini
2 in the numerical solution. A perfect agreement is observed. Finally,

we have plotted the theoretical expression for the maximum position in nonlinear response (dotted
line), Equation (55), which also shows an excellent agreement with numerics.

4.3. Monotonicity of an H-Functional

The non-monotonicity in the relaxation of the granular temperature that is brought about by the
Kovacs protocol is not automatically transferred to other relevant physical magnitudes. Specifically,
here, we deal with the H-functional:

H(t) =
∫ +∞

−∞
dv f (v, t) log

[
f (v, t)
fs(v)

]
, (56)

There is strong numerical evidence about H(t) being a Lyapunov functional for granular fluids, thus
allowing it to be considered as an out-of-equilibrium entropy relative to that of the NESS, in this
context [19,20]. Moreover, it has been analytically proven that H(t) is a Lyapunov functional in our
system for the Maxwell collision rule β = 0 [21].

We have computed H(t) numerically from Equation (56) within the first Sonine approximation
(that is, we have substituted both f (v, t) and fs(v) by their expressions in the first Sonine approximation
and calculated the integral numerically) for the Kovacs protocols considered in Figures 3 and 4.
Once more, we have taken β = 1, for which the analytical proof in [21] does not hold. The results
are shown in Figure 6 and make it clear that H(t) still monotonically decreases for the Kovacs-like
protocols, in both the linear (left panel) and nonlinear (right panel) regimes. At the time of the
maximum in the hump, s− sw � 0.44, no special signature is observed in the entropy.
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Figure 6. (Color online) Time evolution of the H-functional. The relaxation of H is shown to be
monotonic even for Kovacs-like experiments. The left and right panels correspond to the protocols in
Figures 3 (filled symbols) and 4 (open symbols), that is to the linear and nonlinear regimes. The vertical
dotted line marks the theoretical position of the maximum in the corresponding regime.

5. Discussion

One of the main results in our paper is the extension of the linear response expression for the
Kovacs hump in thermal systems, as given by Equations (1) and (2), to the realm of athermal systems,
Equations (20) and (21). This extension is (i) not trivial, since athermal systems tend in the long time
limit to an NESS, not to an equilibrium state, and (ii) very general, since it can be done starting from
the evolution equations at either the mesoscopic or the macroscopic level of description. Therefore,
it means that a Kovacs-like effect is to be expected for a very wide class of physical properties Y in a
very wide class of systems, basically as long as the relaxation function φY(t) to the NESS is monotonic.

This theoretical result has been checked in a class of systems that mimic the dynamics of the
shear component of the velocity of a granular fluid. In the linear response regime, we have found a
good agreement between the theoretical prediction and the numerical results. Furthermore, we have
investigated how the linear response result extends to the nonlinear regime. In this region, the linear
response theory results remain useful at a qualitative level, but the actual values for the hump lie well
above the linear prediction. Interestingly, this kind of giant Kovacs hump has been recently reported
in active systems [15]. In addition, the nonlinear Kovacs hump can be theoretically explained by an
expansion in the excess kurtosis.

Our work also opens new interesting perspectives for future research. Remarkably, the Kovacs-like
memory effects analyzed here involve only jump protocols for the control parameter, which is
time-independent both in the waiting time window 0 < t < tw (value ξ1) and in the return
to stationarity region t > tw (value ξ). Very recently, the response of the system to continuous
perturbations [31,32] has been studied, which raises the interesting question of building up a theory,
similar to ours, in which the control is continuously varied up to tw in a first stage and then abruptly
changed to the value that corresponds to the stationary value of the relaxing physical observable.
To the best of our knowledge, a thorough study of this kind of response is lacking. Moreover,
the analysis of the nonlinear response in light of generalized fluctuation-dissipation relations [33] is
worthy of consideration.

On another note, our analysis of the Kovacs effect in the model, being restricted to the quasi-elastic
limit, has not found the anomalous behavior shown by a gas of inelastic hard spheres for large enough
inelasticity in the nonlinear regime [12,13]. The possibility of such a behavior in linear response,
either in the model or in the granular gas, deserves further investigation. In addition, our work
clearly shows the compatibility of the non-monotonic decay of the granular temperature (or the
corresponding relevant physical variable) and the monotonic decay of the nonequilibrium entropy or
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H-functional [19–21,34]. In this respect, to elucidate if the hump leaves some signature in the decay of
the nonequilibrium entropy is compelling.
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Appendix A. Simulation Algorithm

We have made use of a residence time algorithm that gives the numerical integration of a master
equation in the limit of infinite trajectories [35,36]. The basic numerical recipe is as follows:

1. At time τ, a random “free time” τf > 0 is extracted with an exponential probability density

Ω(v) exp
[
−Ω(v)τf

]
, where Ω(v) = ∑l ω|vl − vl+1|β depends on the state of the system v;

2. Time is advanced by such a free time τ → τ + τf ;
3. A pair (l, l + 1) is chosen to collide with probability ω|vl − vl+1|β/Ω(v);
4. All particles are heated by the stochastic thermostat, by adding independent Gaussian random

numbers of zero mean and variance χτf to their velocities;
5. In order to conserve momentum, the mean value of the random numbers generated in the

previous step is subtracted from the velocities of all particles;
6. The process is repeated from Step 1.

References

1. Kovacs, A.J.; Aklonis, J.J.; Hutchinson, J.M.; Ramos, A.R. Isobaric volume and enthalpy recovery of glasses. II.
A transparent multiparameter theory. J. Polym. Sci. 1979, 17, 1097–1162.

2. Bertin, E.M.; Bouchaud, J.P.; Drouffe, J.M.; Godreche, C. The Kovacs effect in model glasses. J. Phys. A
2003, 36, 10701.

3. Buhot, A. Kovacs effect and fluctuation–dissipation relations in 1D kinetically constrained models. J. Phys. A
2003, 36, 12367.

4. Mossa, S.; Sciortino, F. Crossover (or Kovacs) effect in an aging molecular liquid. Phys. Rev. Lett. 2004,
92, 045504.

5. Aquino, G.; Leuzzi, L.; Nieuwenhuizen, T.M. Kovacs effect in a model for a fragile glass. Phys. Rev. B 2006,
73, 094205.

6. Prados, A.; Brey, J.J. The Kovacs effect: A master equation analysis. J. Stat. Mech. 2010, 2010, 368–369.
7. Diezemann, G.; Heuer, A. Memory effects in the relaxation of the Gaussian trap model. Phys. Rev. E 2011,

83, 031505.
8. Ruiz-García, M.; Prados, A. Kovacs effect in the one-dimensional Ising model: A linear response analysis.

Phys. Rev. E 2014, 89, 012140.
9. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; North-Holland: Amsterdam,

The Netherlands, 1992.
10. Pöschel, T.; Luding, S. Granular Gases Vol. 564 of Lecture Notes in Physics; Springer: Berlin/Heidelberg,

Germany, 2001.
11. Van Noije, T.P.C.; Ernst, M.H. Velocity distributions in homogeneous granular fluids: The free and the

heated case. Granul. Matter 1998, 1, 57–64.
12. Prados, A.; Trizac, E. Kovacs-Like Memory Effect in Driven Granular Gases. Phys. Rev. Lett. 2014, 112, 198001.
13. Trizac, E.; Prados, A. Memory effect in uniformly heated granular gases. Phys. Rev. E 2014, 90, 012204.
14. Lahini, Y.; Gottesman, O.; Amir, A.; Rubinstein, S.M. Nonmonotonic Aging and Memory Retention in

Disordered Mechanical Systems. Phys. Rev. Lett. 2017, 118, 085501.

196



Entropy 2017, 19, 539

15. Kürsten, R.; Sushkov, V.; Ihle, T. Giant Kovacs-Like Memory Effect for Active Particles. Phys. Rev. Lett.
2017, in press.

16. Lasanta, A.; Manacorda, A.; Prados, A.; Puglisi, A. Fluctuating hydrodynamics and mesoscopic effects of
spatial correlations in dissipative systems with conserved momentum. New J. Phys. 2015, 17, 083039.

17. Manacorda, A.; Plata, C.A.; Lasanta, A.; Puglisi, A.; Prados, A. Lattice Models for Granular-Like Velocity
Fields: Hydrodynamic Description. J. Stat. Phys. 2016, 164, 810–841.

18. Plata, C.A.; Manacorda, A.; Lasanta, A.; Puglisi, A.; Prados, A. Lattice models for granular-like velocity
fields: Finite-size effects. J. Stat. Mech. 2016, 2016, 093203.

19. Marconi, U.M.B.; Puglisi, A.; Vulpiani, A. About an H-theorem for systems with non-conservative
interactions. J. Stat. Mech. 2013, 2013, 114–124.

20. García de Soria, M.I.; Maynar, P.; Mischler, S.; Mouhot, C.; Rey, T.; Trizac, E. Towards an H-theorem for
granular gases. J. Stat. Mech. 2015, 2014, P11009.

21. Plata, C.A.; Prados, A. Global stability and H-theorem in lattice models with nonconservative interactions.
Phys. Rev. E 2017, 95, 052121.

22. Brey, J.J.; Prados, A. Stretched exponential decay at intermediate times in the one-dimentional Ising model
at low temperatures. Physica A 1993, 197, 569–582.

23. Prasad, V.V.; Sabhapandit, S.; Dhar, A.; Narayan, O. Driven inelastic Maxwell gas in one dimension.
Phys. Rev. E 2017, 95, 022115.

24. Ben-Naim, E.; Krapivsky, P.L. The inelastic Maxwell model. In Granular Gas Dynamics; Pöschel, T.,
Brilliantov, N., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 624,
pp. 65–94.

25. Ernst, M.H.; Trizac, E.; Barrat, A. The rich behavior of the Boltzmann equation for dissipative gases.
EPL 2006, 76, 56–62.

26. Montanero, J.M.; Santos, A. Computer simulation of uniformly heated granular fluids. Granul. Matter
2000, 2, 53–64.

27. Maynar, P.; García de Soria, M.I.; Trizac, E. Fluctuating hydrodynamics for driven granular gases.
Eur. Phys. J. Spec. Top. 2009, 179, 123–139.

28. Prasad, V.V.; Sabhapandit, S.; Dhar, A. High-energy tail of the velocity distribution of driven inelastic
Maxwell gases. EPL 2013, 104, 54003.

29. Plata, C.A.; Prados, A. Kinetic description of a class of systems with non-conservative interactions. 2018,
unpublished.

30. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972.
31. Falasco, G.; Baiesi, M. Temperature response in nonequilibrium stochastic systems. EPL 2016, 113, 20005.
32. Falasco, G.; Baiesi, M. Nonequilibrium temperature response for stochastic overdamped systems.

New J. Phys. 2016, 18, 043039.
33. Lippiello, E.; Corberi, F.; Sarracino, A.; Zannetti, M. Nonlinear response and fluctuation-dissipation

relations. Phys. Rev. E 2008, 78, 041120.
34. Brey, J.J.; Prados, A. Normal solutions for master equations with time-dependent transition rates:

Application to heating processes. Phys. Rev. E 1993, 47, 1541.
35. Bortz, A.B.; Kalos, M.H.; Lebowitz, J.L. A new algorithm for Monte Carlo simulation of Ising spin systems.

J. Comput. Phys. 1975, 17, 10–18.
36. Prados, A.; Brey, J.J.; Sánchez-Rey, B. A dynamical Monte Carlo algorithm for master equations with

time-dependent transition rates. J. Stat. Phys. 1997, 89, 709–734.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

197



entropy

Article

Hydrodynamics of a Granular Gas in
a Heterogeneous Environment

Francisco Vega Reyes 1,* and Antonio Lasanta 2

1 Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain
2 G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Department of Materials

Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid,
28911 Leganés, Spain; alasanta@ing.uc3m.es

* Correspondence: fvega@unex.es

Received: 21 August 2017; Accepted: 9 October 2017; Published: 11 October 2017

Abstract: We analyze the transport properties of a low density ensemble of identical macroscopic
particles immersed in an active fluid. The particles are modeled as inelastic hard spheres (granular gas).
The non-homogeneous active fluid is modeled by means of a non-uniform stochastic thermostat.
The theoretical results are validated with a numerical solution of the corresponding the kinetic equation
(direct simulation Monte Carlo method). We show a steady flow in the system that is accurately
described by Navier-Stokes (NS) hydrodynamics, even for high inelasticity. Surprisingly, we find
that the deviations from NS hydrodynamics for this flow are stronger as the inelasticity decreases.
The active fluid action is modeled here with a non-uniform fluctuating volume force. This is a relevant
result given that hydrodynamics of particles in complex environments, such as biological crowded
environments, is still a question under intense debate.

Keywords: granular gas; heterogeneous media; hydrodynamics; active matter non-equilibrium

1. Introduction

Biological Systems, and more specifically, systems with active particles, are in general out of
equilibrium, which implies that for these systems the results of equilibrium statistical mechanics do
not in general apply. The term active matter refers to a system with an ensemble of particles that are
able to transform energy—internal or environmental—into movement [1]. A correct description of
transport phenomena in this type of systems can be achieved via a specific kinetic theory, that takes
into account the peculiar energy processing of these particles, see for example [2–5] for the well known
Vicsek-like models [6].

In recent years, the study of active particles in crowded environments has become the subject of
intense study [7]. One of the motivations is the large number of promising applications derived from
the use of active particles as micro-machines [7]. In addition, the behaviour of inert particles inside
complex active environments remains an open question. For instance, there are experimental studies
on inert Brownian particles trapped by a harmonic potential in a fluid composed by bacteria [8].
Also, Sándor et al. [9] study active Brownian particles on a travelling-wave substrate. Other
works study particles which can be trapped by holes [10,11]. More realistic active systems such
as biological tissues, share important analogies with granular matter, namely glass transition, cage
effect, fluidization, solidification and the appearance of giant density fluctuations [12–15]. There,
active complex non-homogeneous forces appear. Also the non-Gaussian behaviour of diffusing
non-active particles in heterogeneous media has been studied recently for a spatially varying diffusion
coefficient [16].

On the other hand, the transport properties of granular matter are of interest at a fundamental
level and also for applications, since granular matter is present in a variety of industry and technology

Entropy 2017, 19, 536; doi:10.3390/e19100536 www.mdpi.com/journal/entropy198



Entropy 2017, 19, 536

sectors [17–20]. Granular transport theories usually make a connection with traditional continuum
mechanics theories, due to fundamental similarities observed with classical fluids [17,19]. Granular
particles loose a fraction of their kinetic energy after collision and for this reason we need to
continuously excite the system, in order to sustain the dynamics. This excitation usually comes
from the system boundaries, which results in inhomogeneous flows that may eventually become
steady [17,19,21].

We propose in this work a study that tries to model a system of macroscopic inert particles that
are immersed in an active fluid with inhomogeneous temperature. For this, we model the system as
a granular fluid [22] subject to a nonuniform stochastic volume force (in the form of a white noise [23]).
The inelastic cooling term, inherent in a granular fluid [19], and a stochastic force allow us in this
work to model the energy sink and source terms that are characteristic to active particle systems [1,7].
More specifically, we focus on a very low density granular system (i.e., a granular gas) surrounded by
a low density (inhomogeneous) fluid that can be considered as a coarse grained version of an active
matter system. Since the system has very low density, particle velocity correlations can be neglected
and thus the the inelastic Boltzmann equation applies [19,24]). Moreover, systems of solid particles
suspended in a low density interstitial fluid usually fall into the grain-grain collision dominated
regime [25], as opposed to the interstitial fluid viscosity-dominated regime, that applies for most cases
of interstitial liquids [26].

In previous theoretical works, granular gas fluidization has been studied only in the simplistic
case of a homogeneous interstitial fluid [27–32]. And yet this theoretical homogeneous state is not
quite a realistic situation [33]. Neat examples of inhomogeneous granular gas suspensions are the large
sand plumes that can be observed in the Earth’s atmosphere for weeks [34]. A homogeneous energy
source is obviously not a realistic situation either in active fluids, at a biological level [1]. For this
reason we focus in this work on the more elaborate case of a non-uniform interstitial fluid.

However, the intent of this work is not experimental validation but to extract a more clear picture
of the relevant physics of this kind of systems. As a result, we show there are granular gas flows
immersed in an inhomogeneous active fluid that can be accurately described with Navier-Stokes
(NS) hydrodynamics, even at high inelasticities. Furthermore, we surprisingly found cases where NS
hydrodynamics is a better approximation for the granular gas than for a perfectly elastic gas subjected
to the same boundary forcing conditions. In particular, we will show that, once the granular gas is
fluidized, the intensity of the spatial gradients in response to external excitations (those coming from
the boundaries) can actually be weaker for granular gases than for elastic gases.

In a previous experimental work [35], local balance between the total energy input (fluctuating
force plus boundary heating) and the energy sink was found. We use now this kind of balance
condition. As we will show below, this local balance results, in the specific set-up considered in the
present work, in a steady flow with uniform heat flux throughout the system. This balance condition is
in fact analogous to the one occurring in well known non-Newtonian granular flows like the uniform
shear flow [36,37].

The structure of the paper is as follows: in Section 2 we present a description of the system and
the corresponding steady state equations. In Section 3 we describe the flows where there is a balance
between inelastic cooling coming from particle collisions and volume energy input (and with no
shear). Section 4 is devoted to a brief discussion on the steady flows resulting from adding a weak
shear Section 5 presents a discussion on the transport coefficients and rheology properties of the
studied flows and the paper conclusions are drawn in Section 6. The simulation method and transport
coefficient equations are discussed in the Appendices A and B respectively.
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2. System and Steady Base State Equations

2.1. Description of the System

Our system consists of a set of identical inert smooth hard spheres (or disks) immersed in an active
fluid. The system is limited by two infinite parallel hard walls, located at planes y = ±L/2 respectively.
The walls act like two distinct kinetic energy sources, characterized with temperatures T±. They may have
relative movement (wall velocities U± respectively), eventually inducing the particles to continuously
flow along the channel between them.

Collisions between the inert particles do not preserve energy (i.e., particle collisions are inelastic).
The particles have a diameter (radius) that we denote as σ and their mass is m. For inelastic smooth
hard spheres/disks, inelasticity may be characterized accurately, in a range of experimental situations,
by a constant coefficient of normal restitution α [38,39]. This coefficient ranges from 1 for purely elastic
collisions to 0 for purely inelastic collisions. In addition, we model the interstitial active fluid injection
of thermal energy onto the granular gas particles as a stochastic force Fst. The equation of motion for
a particle i can be written

mv̇i = Fst
i (r, t) + Fcoll

i , (1)

where Fcoll
i is the force due to inelastic collisions, Fst

i (r, t) is the force exerted by the heterogeneous
medium and m the mass of particles (set to 1 for simplicity).

We can model this interaction by means of a fluctuating volume force [40], that we denote as
Fst(r) and fulfills the conditions [32,35,40,41]

〈Fst
i (r, t)〉 = 0,
〈Fst

i (r, t)Fst
j (r, t′)〉 = 1m2ξ(r)2δijδ(t− t′), (2)

being ξ2(r) the fluctuating force intensity [32,41] (that has dimensions of velocity squared times time),
1 the unit matrix in d dimensional space, δij is the Kronecker delta function and 〈A〉 indicates average of
magnitude A over a sufficiently long time interval (long compared with the characteristic microscopic time
scale). It has been shown in the case of the large mass limit and homogeous energy injection, that Equation (1)
for a particle can be written as a Langevin equation corresponding to a granular brownian particle [42].

On the other hand, collisions between two grains follow the inelastic smooth hard sphere
collisional model

v′1 = v1 −
1 + α

2
(σσσ · g)σσσ (3)

v′2 = v2 −
1 + α

2
(σσσ · g)σσσ (4)

with σσσ = (r1 − r2)/|r1 − r2| and g = v1 − v2. The primes denote pre-collisional velocities.
Notice that in (2) we have ξ = ξ(r) (a space-dependent noise intensity). The noisy term appears

in the inelastic Boltzmann equation as a Fokker-Planck-like operator [43,44](
∂

∂t
+ v · ∇ − 1

2
ξ(r)2 ∂2

∂v2

)
f (r, v; t) = J[v| f , f ], (5)

where J is the collisional integral for inelastic hard spheres and whose expression may be found
elsewhere [19,45], v is particle velocity, and v its modulus.

Taking into account the system geometries, we consider only ξ(r) = ξ(y), that is the simplest
space-dependence our geometry configuration allows for an inhomogeneous active fluid. The steady
base states may be deduced from the reduction of the kinetic Equation (5)

vy
∂ f
∂y
− 1

2
ξ(y)2 ∂2 f

∂v2 = J[ f , f ]. (6)
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We have numerically solved the kinetic Equation (6) by means of the Direct Simulation Monte
Carlo method [18,46], applying in each case the corresponding boundary conditions and heterogeneous
fluctuating force properties. For more details on the simulation algorithm, see the corresponding
section in the Appendix A.

2.2. Steady Base State Equations

Multiplying by velocity momenta the kinetic Equation (6) and performing velocity integrals,
we may easily obtain from (6) the mass, momentum and energy balance equations [43,47]

∂Pyy

∂y
= 0, 0 = − 1

mn
∂Pxy

∂y
(7)

Tζ(α)−mξ2(y) = − 2
dn

(
Pxy

∂ux

∂y
+

∂qy

∂y

)
, (8)

where u is the flow velocity field (with uy its y-component), n is the particle density, and P and
q are momentum flux tensor (also called stress tensor) and heat flux vector respectively, and ζ(α)

is the cooling rate, a magnitude that emerges from the energy balance due to inelasticity in the
collisions [18,19]. Equations (7) and (8) contain no approximations; i.e., they are exact for this type of
geometry, even if the steady state were not hydrodynamic. Notice also that the stress tensor element
Pyy is homogeneous and is not a function of time. This condition breaks if the flow is not laminar,
but we will only consider laminar flows in this work.

We take now into account the characteristics of NS hydrodynamics in (7) and (8). In (7) we use
that all diagonal elements of the stress tensor are equal and we also use that the horizontal heat flux qx

is null (they both raise from fluxes terms that are of second order in the gradients [48]) and thus, from
the first equation in (7), we obtain that Pyy = p = constant. We also use the fluxes expressions at NS
order [45]: Pxy = η(α)∂ux/∂y, qy = −λ∂T/∂y− μ∂n/∂y, where η is the viscosity and λ, μ are the heat
flux transport coefficients. With this, the steady state forms of (7) and (8) are

p = constant, Pxy = −η(α)
∂ux

∂y
= constant (9)

Tζ(α)−mξ2(y) =

2
dn

(
η(α)

(
∂ux

∂y

)2
+ κ(α)

∂T
∂y

+ μ(α)
∂n
∂y

)
. (10)

Next, we take into account that the NS transport coefficients and cooling rate scale in the
following forms with temperature [45]: η(α) = η∗(α)η′0T1/2, κ(α) = κ∗(α)κ′0T1/2, μ = μ∗(α)κ′0T3/2/n,
ζ = ζ∗(α)p/(η′0T1/2). Here, the coefficients η′0, κ′0 are related to the elastic gas [49] NS viscosity
η0 = η′0T1/2 and thermal conductivity κ0 = κ′0T1/2, and thus

η′0 =
d + 2

8
Γ(d/2)π−(d−1)/2m1/2σ−(d−1)/8, (11)

κ′0 =
d(d + 2)2

16(d− 1)
Γ(d/2)π−(d−1)/2m−1/2σ−(d−1). (12)
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where Γ is the gamma function [50] and d = 2 for disks and d = 3 for spheres. Thus, the steady state
balance Equations (9) and (10) yield

−η(α)∗η′0

√
T
Tr

∂ux

∂y
= constant, (13)√

T
Tr

∂

∂y

(√
T
Tr

∂T
∂y

)
=

d
2

ζ∗0
β∗0

p2

Tr
− d

2
mξ2(y)nT1/2

β∗0Tr
− η∗0

β∗0

T
Tr

(
∂ux

∂y

)2
, (14)

where β∗(α) ≡ κ∗(α) − μ∗(α), and we call it effective thermal conductivity and Tr is the reference
unit of temperature, that we choose as Tr = T− (temperature at the lower, and colder, wall).
Here, ζ∗(α) is the dimensionless cooling rate [18,51] and the expressions of the reduced transport
coefficients viscosity η∗(α), thermal conductivity κ∗(α), and μ∗(α) that we used are the ones obtained
by Garzó and Montanero [52] for a granular gas heated by a white noise. Their expressions are
displayed in the transport coefficients section in the Appendix B.

We use a scaled space variable l that allows us to find an analytical solution for the flow velocity (13)
and the temperature (14) profiles. This variable is defined by the relation

√
T/Tr∂/∂y = ∂/∂l. When

expressed in terms of this scaled variable, Equations (9) and (10) read

∂ûy

∂l̂
= a, (15)

∂2T̂
∂l̂2

= −γ(α, l), (16)

where a and −γ are dimensionless magnitudes in the system and we call them local shear rate and
temperature curvature, respectively. In (15), (16) and henceforth we use dimensionless variables indicated
with a hat, where we have chosen as set of units: Tr for temperature (already defined), m for mass,
p for pressure (the steady state hydrostatic pressure, that as we said is a global constant for the system).
As a unit for length we use

λr =
√

2(2 + d)Γ(d/2)π−(d−1)/2(
√

2nrσ(d−1))−1, (17)

that is the reference mean free path [49] and for time we use

ν−1
r = λr(

√
m/Tr) (18)

(inverse of reference collision frequency). These two definitions imply that the unit for velocity is√
Tr/m. We indicate the spatial coordinate y in dimensionless form as ŷ, and analogously for all

dimensionless magnitudes.
The reader may infer the physical meaning of a and γ with the aid of (7) and (8): a (reduced

shear rate) measures how rapidly varies the flow velocity field, in units of the mean free path;
| − γ|1/2 measures the degree of imbalance between energy volume sinks and sources per unit
time (as we explain above in Equation (18), this unit being the inverse of the collision frequency).
The differential Equation (16) has been observed for the granular temperature in similar experimental
configurations [33].
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With the presence of the stochastic volume force in the energy balance Equation (8), it is
straightforward to deduce from (14)–(16) and the definitions above that −γ(α, l) has the form

−γ(α) ≡ 2(d− 1)
d(d + 2)β∗(α)

× (19)(
d
2
(ζ∗(α)− ξ̂2(l̂)T̂(l̂)−1/2)− η∗(α)a2

)
,

that, as it can be noticed, depends in general on position through l̂.

3. Steady Base States with Energy Balance and no Shear

We now want to look up for steady states in a granular gas fluidized by an heterogeneous source
that may be accurately described by hydrodynamics at NS order. We will denote them as ’reference
states’. As in rarefied gases, a close to unity Knudsen number (Kn) signals hydrodynamics failure.
Moreover, hydrodynamics at first order in the gradients (NS equations) are usually only valid if Kn takes
low values [19,46]. The Knudsen number Kn is defined as a representative microscopic time or length
scale over a macroscopic time or length scale. However, the choice of reference scales is not unique and
picking an appropriate Knudsen number for each specific flow problem is a subtle question [53].

It was shown in a previous work [47] that Couette-Fourier flows (i.e., those occurring in our system,
under the appropriate circumstances) are characterized by three representative and independent
microscopic vs. macroscopic relative scales (or Knudsen numbers) that happen to be constant
throughout the system: a, |γ|1/2 (look at Equations (15) and (16)) and ΔT/L, with ΔT ≡ T+ − T−,
where ΔT/L measures the size of the temperature gradient imposed by the boundaries, this gradient
being referred to mean free path units. These numbers arise from the specific form of the relevant
differential equations for steady states, and the boundary geometry. Since the geometry of the
differential Equations (15) and (16) and boundary conditions are the same in this work, we may safely
use the same set of reference Knudsen numbers (see previous work [47] for more details on this issue).
Furthermore, another previous analysis [51] for granular gases without an interstitial fluid showed
that ΔT/L has a much weaker effect on the emergence non-Newtonian behavior.

Thus, let us analyze the class of solutions for steady flows where this ΔT/L is the only active
source of spatial gradients; i.e., a = 0, γ = 0 and ΔT/L � 1

∂ûy

∂l̂
= 0, (20)

∂2T̂
∂l̂2

= 0. (21)

Moreover, in the α = 1 limit this state corresponds to the classic Fourier flow of a molecular gas.
In order to obtain γ = 0 (with a = 0), and taking into account (19) we find

ξ̂(l̂)2T̂(l̂)−1/2 = ζ∗(α) ⇒ ξ̂(l̂)2 = ζ∗(α)T̂(l̂)1/2. (22)

Equation (20) implies that flow velocity û is constant respect to l̂, which, from the definition
of l leads to û(ŷ) also constant (and to all physical effects, flow velocity may be considered as null).
Moreover, Equation (21) implies that temperature T̂ is linear in l̂, which (since

√
T/Tr∂/∂y = ∂/∂l)

yields ŷ ∝ l̂3/2 and thus T̂(ŷ) ∝ ŷ2/3; i.e., the stochastic force generates a Fourier-like temperature
profile [37]. At a physical level, this makes sense if we consider that the granular gas is fluidized by
a low viscosity interstitial fluid that is heated from the boundaries. It is easy to deduce from (8), (10)
and (19) that γ = 0 implies that inelastic cooling is balanced by volume energy input and thus, that
heat flux is uniform throughout the system.

Therefore our base steady states are (not previously reported) granular flows with uniform heat
flux. Summarizing, these NS steady states have the following properties: (i) Pxy = η(α)∂ux/∂y,
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qy = −λ∂T/∂y − μ∂n/∂y, (ii) constant hydrostatic pressure p̂, (iii) null normal stress differences
(P̂ii = P̂jj = p) and null q̂x [48], (iv) constant q̂y, and (v) linear T̂(l̂) profiles, or equivalently,
T̂(ŷ) ∝ ŷ3/2 [37]. Properties (i) to (iii) are fulfilled by all Couette-Fourier steady flows at NS order [47]
and conditions (iv) and (v) are fulfilled by all Couette-Fourier steady flows with uniform heat flux [37].

We need to remark that the relation in (22) between fluctuating force intensity and temperature is
not a hypothesis but a consequence of the experimental fact that there is local energy balance. On the
other hand, there is an essential difference of this new flow respect to previously studied granular
flows with uniform heat flux (the simple shear flow included [36,54]).

Very surprisingly, we can show that contrary to other steady granular flows, the kind of state
defined by (22) can be accurately described in the context of Navier-Stokes equations. In order to
prove this feature, we have simulated the system described by Equations (20)–(22) by means of the
DSMC method (more details on simulations are given in the Appendix A). We have checked that the
temperature profiles obtained under steady state in effect follow the behaviour T̂(ŷ) ∝ y2/3, inherent to
gas steady flows with uniform heat flux [37]. Results can be seen in Figure 1, for which the agreement
with the NS theory prediction is excellent, independently of the inelasticity value.

 0

 1

 2

 3

 4

 5

 6

 7

20 10  0  10  20

3/
2

Figure 1. DSMC simulation data (d = 3, spheres) for temperature profile for two different values of
inelasticity: α = 0.9 (solid symbols) and α = 0.7 (open symbols) and with the same boundary condition
for wall temperature difference (T+/T− = 5, ΔL = 15λ) with λ =

√
2πnσd−1, n being the average

density in the system. There is excellent agreement with the theoretical prediction of T̂(ŷ) ∝ y2/3

(solid line stands for the NS theoretical profile), for both α values.

4. Weakly Sheared Steady States

We discuss here weakly sheared states, in order to capture the gradual the eventual appearance of
non-Newtonian behavior. Thus, starting out of the reference base states in the previous subsection; i.e.,
still with condition (22) being fulfilled, we analyze now sheared states (a �= 0), for which we have from (19),

− γ = − (d− 1)
(d + 2)β∗(α)

η∗(α)a2 �= 0. (23)

For this type of flow we have also performed DSMC simulations. Relation (23) helps us understand
that an increase in shear rate a (one of the relevant Knudsen numbers) implies an increase in γ

(one of the other Knudsen numbers). Thus, for increasing shear we should gradually depart from
NS hydrodynamics as both a and |γ|1/2 increase. However, relation (23) is valid only as long as NS
hydrodynamics applies. For non-Newtonian regime, the relation between the temperature curvature
γ, local shear rate a and coefficient of restitution α would be more intricate and in general it must be
solved numerically [51]. A non-linear theory is beyond the scope of the present work, but, fortunately,
we may use results from DSMC to analyze deviations from NS hydrodynamics.
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The results we obtained are quite surprising (see Table 1). In effect, we can see that similar
values of local shear rate a tend to yield greater values of the other Knudsen number |γ| for more
elastic gases than for more inelastic gases. This means that, contrary to what would be expected,
the Knudsen numbers in this type of flow tend globally to be smaller for higher inelasticities, which
could indicate that departures from NS hydrodynamics are more important, for similar shear rates,
for more elastic gases. However, we will confirm this point in the following Section 5, by measuring
from DSMC simulations the set of transport coefficients and rheological properties and comparing
with NS theory predictions.

Table 1. DSMC measurements of Knudsen numbers a and |γ|−1/2, for steady states described by
(20)–(22), with T+/T− = 5, ΔL = 15λ (i.e., ΔT/ΔL = (4/15)((T+ − T−)/λ), and ΔU defined as
ΔU ≡ (U+ −U−)/

√
T−/m.

ΔU = 5 ΔU = 5 ΔU = 3 ΔU = 3

α a |γ|−1/2 a |γ|−1/2

0.99 0.173 0.058 0.115 0.036
0.9 0.191 0.034 0.120 0.018
0.8 0.193 0.027 0.119 0.017
0.7 0.193 0.024 0.119 �1× 10−2

0.6 0.188 �1× 10−2 0.115 �1× 10−2

0.5 0.187 �1× 10−2 0.113 �1× 10−2

We also performed an additional series with varying ΔT/ΔL (not shown in figures) and checked
that the measured transport coefficients do not depend on its value, analogously to the result in
a previous work on granular flows with uniform heat flux [37].

5. Transport Coefficients and Rheology

Results in the preceding section suggest that: (a) our steady states are well described by NS
hydrodynamics, even for strong inelasticities, as long as shearing from the boundaries is not too strong;
(b) deviations from NS hydrodynamics are stronger for more elastic gases. Both observations would be
contrary to what occurs in steady granular flows (like the simple shear flow [36], just to put one example).

Let us analyze in more detail to what extent the reference (no-shear) steady states described in
Section 3 and the sheared states described in Section 4 are strictly NS flows or not, by analyzing the
relevant transport properties. This analysis will be done as a function of the degree of inelasticity in grains
collisions and intensity of shearing. In order to analyze non-Newtonian behavior, we need to define the
cross thermal φ∗ conductivity transport coefficient φ∗ and the reduced normal stresses, defined by

qx = φ∗λ0∂T/∂y, θi = Pii/p, (24)

where λ0 is the thermal conductivity for a gas with elastic particle collisions [49]. For hydrodynamics
at NS order, qx, φ∗ = 0 and θi = Pii/p = 1. The degree of divergence from these numerical values
quantifies eventual departures from NS hydrodynamics. The appearance of qx �= 0 and θi �= 1 occurs
with the emergence in the fluxes of terms of second order in the gradients (Burnett order). For our
geometry, the only remaining second order terms are of form (∂T/∂y)(∂ux/∂y), ∂2ux/∂y2 in the heat
flux and of the form ∂2T/∂y2, (∂T/∂y)2, (∂ux/∂y)2 in the stress tensor (moment flux) respectively
(the rest of the gradient second order terms in the fluxes are null for the geometry of our system) [48,49].

In Figure 2, we present the theory-simulation comparison for reduced viscosity η∗(α) and effective
thermal conductivity β∗(α), for different shearing levels. For sufficiently low shearing, the agreement
between theory and simulation is very good for the range of inelasticities represented here. In the
limit of no shear, the agreement for the thermal conductivity is excellent from α = 1 down to α = 0.7.
The viscosity, however, cannot be measured on the reference (null shear) steady states. Of course,
this limitation is not intrinsic of the granular gas since the same happens for classic fluids. Nevertheless,
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a relatively good viscosity measurement can be obtained in the series with lowest shear used in the
simulations (a � 0.019), for which the agreement at high inelasticities between theory and simulation is
actually slightly better than for the thermal conductivity measured at a = 0. For both coefficients, and at
high inelasticities (α � 0.5), the agreement is improved when the zeroth order distribution function
in the Chapman-Enskog method [49] is not the Maxwellian but an approximation to the solution
of the homogeneous state for the heated granular gas (slightly different from the Maxwellian [55]).
This approximation improve (represented with dashed lines in Figure 2) consists in taking into account
the first term in an expansion in Sonine polynomials around the Maxwellian (for more references
addressing the Sonine polynomials expansion method in kinetic theory, see for instance [48,49,56]).
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η
*
(α

)

(a)

Figure 2. (a) Viscosity vs. coefficient of restitution α. (b) Effective thermal conductivity vs. α. In both
panels, lines represent the results for the theoretical NS coefficient (solid for standard Sonine approximation
and dashed for improved Sonine approximation) whereas the symbols stand for DSMC simulations.
Several DSMC series have been represented, with increasing relative wall velocity. Solid symbols represent
the no-shear case and open symbols are the sheared states for: ΔU = 0.25 with a � 0.019 (black), ΔU = 1
with a � 0.04 (blue) , ΔU = 3 with a � 0.10 (red), ΔU = 5 with a � 0.18 (green).

We report in Figure 3a the reduced normal stresses θx ≡ Pxx/p, θy ≡ Pyy/p measured in the
simulations, as a function of the coefficient of restitution α and for several series with different shearing
intensities. As we see, deviations from the NS behavior (θi �= 1) are small (less than 5%) even at
moderately high values of shear (close to a = 0.2). In this case, the coefficient of restitution seems
not to have an important impact on the behavior of both θx and θy. In Figure 3b we represent the
value of the cross conductivity coefficient φ∗. As we can see, the deviations from linear behavior
(i.e., from φ∗(α) = 0) are more significant here: up to a maximum of approximately 40% for the
highest shear rate series represented here. However, as expected, the NS behavior is recovered for
small shear rate (always less than 6.5% for the lowest non-null shear rate series). It is remarkable that,
again, departures from NS behavior are stronger in the quasi-elastic limit than for more inelastic gases
(i.e., more inelastic flows show less significantly non-Newtonian behavior here). This is consistent with
the non-trivial observation in the previous section that |γ| increases as we approach the quasi-elastic
limit. As we already noticed, a higher |γ| implies higher Knudsen number, and thus, our observations
are self-consistent and not an artifact of the theory. The NS behavior (θi = 1, φ∗ = 0) is strictly
recovered for the reference states (a = 0), for all values of inelasticity.
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Figure 3. (a) DSMC data for reduced normal stresses θx ≡ Pxx/p, θy ≡ Pyy/p vs. coefficient of restitution
α. Square symbols stand for θx and triangles stand for θy. (b) DSMC data for thermal cross conductivity
vs. α. In both panels, solid symbols represent the no-shear case and open symbols are the sheared states
for: ΔU = 1 (black) with a � 0.04, ΔU = 3 with a � 0.10 (blue), ΔU = 5 with a � 0.18 (red).

6. Conclusions

In summary, our results on the transport properties of our system strongly indicate that NS
hydrodynamics may apply for steady flows of inert particles in a heterogeneous medium, as long as
the relevant Knudsen number scales imposed by the boundary conditions in the problem do keep
small. This is in no way different to the condition that is required to a molecular gas in order to obey
hydrodynamics at NS order [53].

More generally, the fact that this result is independent of the degree of inelasticity supports the
hypothesis that inelasticity by itself does not cause necessarily the breakdown of scale separation
in granular gases such as it appears in the Homogeneous Cooling State. A recent work on the
aging time to hydrodynamics for the homogeneous cooling state of the granular gas also supports
this hypothesis [57]. The dynamics is actually a bit more complex and the energy source necessary
to fluidize the system may cancel out the gradients inherently produced by inelasticity, bringing
the granular gas back to the realm of NS hydrodynamics. In fact, theory-simulation comparisons
seem to indicate that a part of the disagreement between theory and simulation can be ruled
out when we consider an improve in the approximation to the reference distribution function in
the Chapman-Enskog method (when a Sonine polynomial expansion to first order [48,56] for the
homogeneous cooling state [58] is used instead of the Maxwellian [55]) and thus, the relatively small
disagreement would not be due to an eventual failure of hydrodynamics but to the inherent weakness
of the perturbative solution used in the Chapman-Enskog procedure [18,49] for calculation of the
transport coefficients.

Therefore, there is no a priori reason for concern respect to the validity of hydrodynamics for
granular gases. This would depend essentially on the specific properties and geometry of the flow of
interest, not just the inelasticity.

Considering a granular gas fluidized by an active fluid should be regarded, not as an artifact,
but as a natural situation since, in the first place, rapid granular flows are possible just because
an energy input is able to compensate for inelastic cooling (otherwise, clustering instabilities and total
freezing of the dynamics occur [19]). However, an interstitial fluid is a very frequent configuration for

207



Entropy 2017, 19, 536

granular dynamics problems present in nature [59]. Applications to biology problems are therefore
promising. Moreover, it has been experimentally proved that this type of fluctuating force like the
one we use to model the active fluid reaches local equilibrium with a granular particle [35]. Based on
these observations, our model for energy input from the active fluid should be closer, in most cases,
to experimental situations [60] where, interestingly, particle clustering instabilities also may occur.

In addition, the results in the present work have helped us to produce further results, since we
have already applied NS hydrodynamics with a non-uniform stochastic force also to problems and
applications like granular segregation [61], where excellent agreement is found between granular
impurity segregation criteria resulting from NS theory and computer simulations. Finally, we plan
to extend this work by developing the corresponding non-Newtonian hydrodynamic theory and
also by calculating the linear stability criteria of theses base flows. On the other hand, this work
could be relevant for the study of transport in crowded active enviroments [7] where the time scales
of the active fluids is faster than the inert particles relaxation time. The existence of a well defined
NS hydrodynamics in heterogeneous active bath [8], is also an important result in order to explain
biological systems. Another possible future work is to study the effect of sorting of active swimmers
with inert particles in heterogeneous active media. Also the study of the behaviour of particles,
mean square displacement, mobility, diffusion coefficient depending on the media. A study of the
hydrodynamics of more complex forms of the volume force, for example with time dependency,
such as for a traveling wave [9], is also a promising line of research.
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Appendix A. Computer Simulations

As we said, we used for this work data from the direct simulation Monte Carlo method
(DSMC) [62] of the kinetic Equation (6). The standard DSMC algorithm consists of two basic
steps: collisions (particle-particle collisions and, in this case, particle-boundaries collisions) and
free drift [46]. The boundaries are modeled as hard walls, similarly to previous works. In the
presence of a volume force, there is an additional step that accounts for the action of the fluctuating
volume force. Implementation of this step, is described for instance in [32,63]. However, for this
work, we consider a more general situation where the noise intensity ξ2(y) is space-dependent.
More specifically, the fluctuating force intensity has a profile obeying equation (22); i.e., of the form
ξ(y)2 ∝ T(y)1/2. For the solution to be self-consistent, the temperature profile should be obtained, as
we explained, from the differential Equation (21), that is the same differential equation that the ’LTu’
profiles obey [37]. For this reason, we have extracted simulation temperature profiles T(y)LTu from
LTu states obtained in a previous work [37]. We introduced them in condition (22), which defines
a force intensity profile that is maintained constant in time during the simulation: ξ(y)2 ∝ T(y)1/2

LTu.
The initial temperature of the granular gas was however always set to the lower wall temperature
(constant): T0(y) = T−. Once the simulation starts, and independently of the value of inelasticity, we
always obtained after a transient a steady temperature profile T(y) with the same form of a Fourier
flow, as expected (see Figure 1). We have considered in all simulation figures presented in this work
a system with T+/T− = 5 and ΔL ≡ L = 15λ (λ =

√
2πnσd−1, n being the average density in the

system). We also performed additional series with different T+/T− = 2, 10 (not shown in figures),
and checked that with this variation we obtained the same results.
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Appendix B. Navier-Stokes Transport Coefficients

The Navier-Stokes (NS) transport coefficients that we use in this work have been calculated by
Garzó and Montanero in a previous work [52]. Their expressions need to be inserted in Equations (19)
and (22) in order to complete the analytical solution of the hydrodynamic profiles, that result from the
differential Equations (15) and (16) for sheared states and (20) and (21) for reference states (no shear).
We write these transport coefficients in this appendix too, for the sake of completion. The reduced
viscosity η∗(α), and reduced heat flux coefficients κ∗(α), μ∗(α) are [52]

η∗(α) =
1
ν∗η

, κ∗(α) =
d− 1

d
1 + c

ν∗κ
,

μ∗(α) =
d− 1

2d
c

ν∗μ
. (A1)

Here, ν∗η , ν∗κ , ν∗μ are the collisional frequencies associated to the transport coefficients and their expressions
were calculated by Brey and Cubero, together with the expression for the reduced cooling rate ζ∗(α) [64]

ζ∗(α) =
d + 2

4d
(1− α2)

(
1 +

3
32

c
)

, (A2)

ν∗η =
3

4d
(1− α +

2
3

d)(1 + α)
(

1− c
64

)
, (A3)

ν∗κ = ν∗μ =
1 + α

d

(
d− 1

2
+

3
16

(d + 8)(1− α)

)
+

1 + α

d

(
4 + 5d− 3(4− d)α

1024
c
)

. (A4)

The coefficient c in (A1)–(A4) was calculated by van Noije and Ernst [58] and has the expression

c =
32(1− α)(1− 2α2)

73 + 56d− 3α(35 + 8d) + 30(1− α)α2 . (A5)

As we already mentioned, the additional (dashed) theoretical curves in Figure 2 correspond to
the transport coefficients calculated with an improved approximation to the reference distribution
function in the Chapman-Enskog method. In effect, in this improved procedure the reference
distribution function an approximate form of the homogeneous state. This approximate form consists
in an expansion in Sonine polynomials, where we only retain the first non-Maxwellian contribution.
For more reference on this alternative procedure, please refer to [55] or [65].
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Abstract: Broadly distributed random variables with a power-law distribution f (m) ∼ m−(1+α) are
known to generate condensation effects. This means that, when the exponent α lies in a certain
interval, the largest variable in a sum of N (independent and identically distributed) terms is for large
N of the same order as the sum itself. In particular, when the distribution has infinite mean (0 < α < 1)
one finds unconstrained condensation, whereas for α > 1 constrained condensation takes places fixing
the total mass to a large enough value M = ∑N

i=1 mi > Mc. In both cases, a standard indicator of
the condensation phenomenon is the participation ratio Yk = 〈∑i mk

i /(∑i mi)
k〉 (k > 1), which takes

a finite value for N → ∞ when condensation occurs. To better understand the connection between
constrained and unconstrained condensation, we study here the situation when the total mass is
fixed to a superextensive value M ∼ N1+δ (δ > 0), hence interpolating between the unconstrained
condensation case (where the typical value of the total mass scales as M ∼ N1/α for α < 1) and the
extensive constrained mass. In particular we show that for exponents α < 1 a condensate phase
for values δ > δc = 1/α− 1 is separated from a homogeneous phase at δ < δc from a transition
line, δ = δc, where a weak condensation phenomenon takes place. We focus on the evaluation of the
participation ratio as a generic indicator of condensation, also recalling or presenting results in the
standard cases of unconstrained mass and of fixed extensive mass.

Keywords: large deviations; condensation phenomenon; ensemble inequivalence; canonical ensemble

1. Introduction

In the context of the sum of a large number of positive random variables, an interesting
phenomenon occurs when a single variable carries a finite fraction of the sum [1]. Such a phenomenon
has been put forward for instance in the context of the glass transition [2,3]. In the framework of
particle or mass transport models [4–13], where the sum of the random variables is fixed to a constant
value due to a conservation law of the underlying dynamics, this phenomenon has been called
“condensation”. This condensation phenomenon has since then been reported in different contexts
like in extreme value statistics [14], and in the sample variance of exponentially distributed random
variables as well as for conditioned random-walks [1,15,16]. A similar mechanism is also at the basis
of the condensation observed in the non-equilibrium dynamics of non-interacting field-theoretical
models [17–20]. A more general type of condensation, induced by interaction, has also been put
forward [21], but in the following we shall focus on cases without interaction, apart from a possible
constraint on the total mass.

As mentioned above, standard condensation results from the presence of a constraint fixing
the sum of the random variables to a given value. However, the fact that a single random variable
carries a finite fraction of the sum is also observed for fat-tailed random variables with infinite
mean—a phenomenon sometimes called the Noah effect [22,23]. The goal of the present paper is to
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Entropy 2017, 19, 517

present a comparative study of these two scenarios, that we shall respectively denote as constrained
condensation and unconstrained condensation. Note that the term “condensation” is commonly used
in the literature to describe the constrained case, but we shall extend its use to the unconstrained
case, to emphasize possible analogies between the two scenarios. Considering the set of N random
variables mi with joint distribution P(m1, . . . , mN), unconstrained condensation takes place when
the sum M = ∑N

i=1 mi, in the limit N → ∞, is dominated by few terms, i.e., a number of terms of
order O(1). This happens for instance to the sum of N independent and identically distributed (iid)
Levy-type random variables, with probability density f (m) decaying asymptotically as a power law,
f (m) ∼ m−(1+α), with an exponent 0 < α < 1. This unconstrained condensation effect (sometimes also
referred to as “localization” [24] depending on the context) is often characterized by the participation
ratio Yk [3,25], defined as

Yk =

〈
∑N

i=1 mk
i(

∑N
i=1 mi

)k

〉
(1)

where k > 1 is a real number, and where the brackets indicate an average over the mi’s. For broadly
distributed random variables it can be shown, with the calculation presented in [25] and briefly
recalled here in Section 2, that there is a critical value αc = 1 for the exponent of the power-law
distribution such that for α > 1 the asymptotic value of the participation ratio is zero, limN→∞ Yk = 0,
whereas for a broad enough tail, 0 < α < 1, one has limN→∞ Yk > 0 for any value k > 1. The average
in Equation (1) is computed with respect to the probability distribution P(m1, . . . , mN) = ∏N

i=1 f (mi).
The participation ratio is therefore the “order parameter” for condensation in the sum of random
variables. It is in fact easy to see from Equation (1) that when all the random variables contribute
“democratically” to the sum, namely when each of them is of order mi ∼ 1/N, then the asymptotic
behaviour of the participation ratio is Yk ∼ 1/Nk−1, which goes to zero when N → ∞. In contrast,
if the sum is dominated by few terms of order mi ∼ N, asymptotically one has Yk ∼ 1.

As a physical example, the relevance of participation ratios to unveil unconstrained condensation
was also shown for the phase-space condensation taking place in the glass phase of the Random
Energy Model (REM) [3,25]. The REM is a system with 2N configurations, where each configuration
i has the Boltzmann weight e−βEi , and the energies Ei are iid random variables, usually assumed to
have a Gaussian distribution with a variance proportional to N. The random variables with respect to
which condensation takes place in the glass phase are the probabilities zi(β) = e−βEi of the different
configurations. The corresponding participation ratio takes the same form as Equation (1), simply
replacing mi by zi(β). It has been shown [3,25] that for values of the inverse temperature β > βc, where
βc is the critical value for the glass transition, the value of the sum Z = ∑2N

i=1 zi(β) is dominated, in the
limit N → ∞, by O(1) terms: in this case the asymptotic value of Yk is finite. In particular one can
prove that for an inverse temperature β > βc the participation ratio of the REM has precisely the same
form as for the sum of iid Levy random variables mi with distribution p(mi) = m1+βc/β

i (the exponent
α = βc/β is thus proportional to temperature).

In the above cases unconstrained condensation occurs for α < 1, that is when the first moment
of the power-law distribution is infinite. The situation is different, though, when one considers
power-law distributed random variables with a fixed total sum M = ∑N

i=1 mi, a case which we refer to
as constraint-driven condensation, or simply constrained condensation. Such a phenomenon, which is
also related to the large of heavy-tailed sums (see, e.g., [26]), is found for instance in the stationary
distribution of the discrete Zero Range Process and its continuous variables generalization [7,8,10].
The latter is represented by a lattice with N sites, each carrying a continuous mass mi, endowed with
some total-mass conserving dynamical rules. For this model the stationary distribution is:

P(m1, . . . , mN |ρ) =
1

ZN(ρ)

N

∏
i=1

f (mi) δ

[
ρN −

N

∑
i=1

mi

]
(2)
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where ρ is the average density fixed by the initial total mass M = ρN, and where

ZN(ρ) =
∫ ∞

0
dm1 . . . dmN

N

∏
i=1

f (mi) δ

[
ρN −

N

∑
i=1

mi

]
(3)

is a normalization constant (or partition function). In mass transport models the shape of the
distribution f (mi) depends on the dynamical rules, and has typically a power-law tail,

fα(m) ≈ A
m1+α

(4)

In [7,8,10] it has been shown that, in the presence of a constraint on the total value of the mass,
constrained condensation never takes place for exponents of the local power-law distribution in the
interval 0 < α < 1, while on the contrary when α > 1 there exists a critical value ρc such that for
ρ > ρc the system is in the condensed phase. It thus turns out that constraining the random variables
to have a fixed sum deeply modifies their statistical properties in this case—while naive intuition
based on elementary statistical physics, like the equivalence of ensembles, may suggest that fixing the
sum may not make an important difference. It is also worth emphasizing that there is a significant
difference between constrained and unconstrained condensation. In the unconstrained case, a few
variables carry a finite fraction of the sum, while in the constrained case, only a single variable takes
a macroscopic fraction of the sum (note that the situation may be different, though, in the presence
of correlations between the variables [21]). We thus see that the “condensation” phenomenon we
define here as a non-vanishing value of the participation ratio in the infinite N limit is a weak notion of
condensation, which is more general than the standard condensation reported in the constrained case.
In particular, this weak condensation effect does not imply the existence of a proper condensate, that is
a “bump” in the tail of the marginal distribution p(m) with a vanishing relative width. The bump may
have a non-vanishing relative width, or may even not exist, the distribution p(m) being monotonously
decreasing in this case (see [8] for an exactly solvable example). When relevant, we shall emphasize
this specific character of the condensation by using the term “weak condensation”.

The goal of the present work is to understand the relation between these two cases, which differ
only by the presence or absence of a constraint on the total mass, but yield opposite ranges of values of
α for the existence of condensation. To better grasp the nature of this difference, we study here the case
where the total mass is fixed to a superextensive value M ∼ N1+δ, with δ > 0, thus extending some of
the results presented in [8]. The choice of a superextensive mass is motivated by the fact that in the
unconstrained case, the total mass M = ∑N

i=1 mi, being the sum of iid broadly distributed variables,
typically scales superextensively, as N1/α, for α < 1. This suggests that the case of a superextensive
fixed mass may be closer to the unconstrained case, and that the value 1 + δ = 1/α may play a specific
role. This will be confirmed by the detailed calculations presented in Section 4. Yet, before dealing
with the superextensive mass case, we will first recall in Section 2 how to compute the participation
ratios in the case of unconstrained condensation, and present in Section 3 a simplified evaluation of
the participation ratio in the case of constrained condensation with an extensive fixed mass.

2. Unconstrained Condensation

In the unconstrained case, where the masses are simply independent and identically distributed
random variables with a broad distribution, the evaluation of the average participation ratio Yk is
well-know and has been performed using different methods [3,25]. We sketch here the derivation of Yk
using the auxiliary integral method put forward in [25].

Noting that
1(

∑N
i=1 mi

)k =
1

Γ(k)

∫ ∞

0
dt tk−1 exp

(
−t

N

∑
i=1

mi

)
(5)
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one obtains, using the property that the random variables mi are independent and identically distributed,

Yk =
N

Γ(k)

∫ ∞

0
dt tk−1〈e−tm〉N−1

α 〈mke−tm〉α (6)

where the brackets 〈. . . 〉α indicate an average over a single variable m with distribution given in
Equation (4); Γ is the Euler Gamma function, defined as Γ(k) =

∫ ∞
0 dt tk−1e−t. For large N, the factor

〈e−tm〉N−1
α in Equation (6) takes very small values except if t is small, in which case 〈e−tm〉α is close to 1.

Using a simple change of variable, one finds for 0 < α < 1 [25]

1− 〈e−tm〉α ≈ a tα (t→ 0) (7)

with a = AΓ(1− α)/α, so that for N → ∞,

〈e−tm〉N−1
α ≈ e−Natα

(8)

again for small t. In a similar way, one also obtains for k > α [25]

〈mke−tm〉α ≈ AΓ(k− α) t−(k−α) (t→ 0) (9)

One thus has for large N

Yk ≈
NAΓ(k− α)

Γ(k)

∫ ∞

0
dt tα−1 e−Natα

(10)

Using now the change of variable v = Natα, the last integral can be expressed in terms of the
Gamma function, eventually leading, in the limit N → ∞, to [3,25],

Yk =
Γ(k− α)

Γ(k)Γ(1− α)
(0 < α < 1) (11)

The participation ratio Yk is thus non-zero for 0 < α < 1, and goes to zero linearly when α→ 1.
A similar calculation in the case α > 1 yields Yk = 0 in the limit N → ∞. Hence condensation occurs
for 0 < α < 1 in the unconstrained case. As we shall see below, the opposite situation occurs in the
constrained case.

3. Constrained Condensation

We now turn to the computation of the participation ratio Yk when the total mass in the system is
constrained to have the extensive value M = ρN, as a function of the exponent α and of the density ρ.
Evaluating Yk as defined in Equation (1) by averaging over the constrained probability distribution
given in Equation (2), the denominator is a constant and can be factored out of the average, yielding
the simple result:

Yk =
1

ρk Nk−1 〈m
k〉 = 1

ρk Nk−1

∫ ∞

0
dm p(m)mk (12)

where the marginal distribution p(m) is defined as

p(m) = fα(m)
ZN−1

(
ρ− m

N
)

ZN(ρ)
(13)

Before discussing what happens for the range of exponents α where constrained condensation
takes place, let us briefly explain why for α < 1 the presence of the constraint removes the condensation
and the participation ratio in Equation (12) vanish when N → ∞.
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3.1. α < 1: Absence of Condensation

The first important issue to clarify is why the condensation taking place in the unconstrained
case for values of the power-law exponent α (see Equation (4)) in the range 0 < α < 1, then disappear
when a constraint on the total mass value is applied. Why the constraint forces the system to stay in
the homogeneous phase? To answer this question, it is useful to recall the expression of the partition
function of the model in terms of its inverse Laplace transform:

ZN(ρ) =
1

2πi

∫ s0+i∞

s0−i∞
ds exp{N[log gα(s) + ρs]} (14)

where
gα(s) =

∫ ∞

0
dm fα(m)e−sm (15)

The values of ρ in the homogeneous “fluid” phase are those for which the integral in Equation (14)
can be solved with the saddle-point method. In contrast, constrained condensation occurs for all values
of ρ such that the saddle-point equation

ρ = − g′α(s)
gα(s)

=

∫ ∞
0 dm fα(m)m e−sm∫ ∞

0 dm fα(m) e−sm
=
〈m e−sm〉α
〈e−sm〉α

(16)

admits no solution on the real axis. It can be checked by inspection that the function h(s) = log gα(s) + ρs
has a branch cut in the complex s plane coinciding with the negative part of the real axis. The domain
over which s can be varied to look for a solution of the saddle point equation is the positive semiaxis
[0,+∞]. When increasing s, the function 〈m e−sm〉α/〈e−sm〉α monotonically decreases from its value
〈m〉α reached for s→ 0 to 0 for s→ ∞.

At this point we just need to recall that for 0 < α < 1 one has 〈m〉α = ∞. This means
that it is possible to find a value s∗ which is a solution of Equation (16) for any given value of ρ.
Hence the integral representation of the partition function in Equation (14) can always be treated in
the saddle-point approximation and condensation, which is related to the breaking of the saddle-point
approximation, never occurs. By exploiting the saddle-point approximation for the partition function
it is then not difficult to compute explicitly the expression in Equation (13), which reads

p(m) ∼ e−s∗m

m1+α
(17)

where s∗ < ∞ is the solution of the saddle point equation. The vanishing of the participation ratio Yk
then follows easily, according to its expression in Equation (12), from the presence of the exponential
cutoff in p(m) (Equation (17)):

Yk =
〈mk〉

ρk Nk−1 (18)

where 〈mk〉 =
∫ ∞

0 dm mk p(m) is a function which does not depend on N in the large N limit, so that

lim
N→∞

〈mk〉
ρk Nk−1 = 0 (19)

We have therefore seen that for any α < 1, if one constrains the system to have an extensive mass
M = ρN, the participation ratio vanishes in the thermodynamic limit: limN→∞ Yk = 0, as expected
since no condensation occurs in this case.

3.2. α > 1: Homogeneous Phase at Low Density (ρ < ρc)

As soon as the exponent α of the single-variable distribution is increased above αc = 1, namely as
soon as the first moment of the distribution fα(m) becomes finite, a condensed phase appears at
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finite ρc. For any given value of α the critical density ρc is the maximal density for which the saddle
point equation Equation (16) has a solution. As we have already noticed in the previous section,
the maximum value which can be attained by the term on the right of Equation (16) is 〈m〉α, so that for
all values ρ > ρc = 〈m〉α the saddle-point approximation breaks down and one has condensation [7,8].
On the contrary, for α > 1 and ρ < ρc the system is still in the homogeneous phase and one can
compute the marginal distribution ρ(m) according to its definition in Equation (13) by using the
saddle-point approximation. The result is also in this case

p(m) ∼ fα(m) e−m/m0 (20)

and we know from [7,8] that the characteristic mass m0 diverges when the density ρ tends to ρc as
m0 ∼ (ρ− ρc)−1 for α > 2 and as m0 ∼ (ρ− ρc)−1/(α−1) for 1 < α < 2.

3.3. α > 1: Condensed Phase at High Density (ρ > ρc)

Let us now study what happens in the condensed phase. For α > 1 and ρ > ρc, one observes
for large N a coexistence between a homogeneous fluid phase carrying a total mass approximately
equal to Nρc and a condensate of mass Mcond ≈ (ρ− ρc)N. The marginal distribution p(m) can be
approximately written as [14]

p(m) ≈ f (m) + pcond(m, ρ, N) (21)

where pcond(m, ρ, N) is the mass distribution of the condensate, normalized according to∫ ∞
0 pcond(m, ρ, N) = 1/N to account for the fact that the condensate is present on a single site. It has

been shown [7,8] that for α > 2, the distribution pcond(m, ρ, N) is Gaussian, with a width proportional
to N1/2. In other words, the condensate exhibits normal fluctuations. In contrast, for 1 < α < 2,
the distribution pcond(m, ρ, N) has a broader, non-Gaussian shape, with a typical scale of fluctuation
∼ N1/α [7,8]. For all values of α > 1, however, the relative fluctuations of Mcond vanish in the large
N limit:

Mcond−Mcond
Mcond

∼ N−(α−1)/α if 1 < α < 2
∼ N−1/2 if α > 2

(22)

with Mcond = (ρ − ρc)N. Hence in order to compute the large N behavior of moments of the
distribution p(m), one can further approximate p(m) as

p(m) ≈ f (m) +
1
N

δ

(
N

∑
i=1

mi −Mcond

)
(23)

Note that more accurate expressions of the distribution p(m) can be found in [8].
From Equation (23), the moment 〈mk〉 is evaluated as

〈mk〉 ≈
∫ ρc N

0
dm mk f (m) +

Mk
cond
N

(24)

The integral in Equation (24), corresponding to the fluid phase contribution to the moment,
has a different scaling with N depending on the values of k and α. If k < α, the integral converges to
a finite limit when N goes to infinity. On the contrary, when k > α, the integral diverges with N and
scales as Nk−α.

The participation ratio reads Yk = 〈mk〉/(ρk Nk−1), so that the contribution of the fluid phase to the
participation ratio scales as 1/Nk−1 for k < α, and as 1/Nα−1 for k > α; in both cases, this contribution
vanishes for N → ∞, when k > 1 and α > 1. The remaining contribution, resulting from the
condensate, simply leads to

Yk =

(
ρ− ρc

ρ

)k
(25)
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where we recall that ρ > ρc in the condensed phase. Hence Yk goes to zero at the onset of condensation
(ρ→ ρc), so that the transition can be thought as continuous if one considers the participation ratio
as an order parameter. In the opposite limit ρ → ∞, the participation ratio goes to 1, indicating
a full condensation.

A phase diagram in the (α, ρ)-plane summarizing the results of this section for the case of
constrained condensation with extensive mass is shown in Figure 1.

Figure 1. Phase diagram for the values of the participation rations in the (α, ρ) plane in the presence of
an extensive constraint on the total value of the mass ∑N

i=1 mi = ρN. The (red) continuous line marks the
separation of the condensed phase (limN→∞ Yk > 0) from the homogeneous phase (limN→∞ Yk = 0).
The vertical dotted (black) line marks the critical value αc = 1 where the critical density ρc for
condensation diverges.

4. Constraint to a Superextensive Total Mass M = ρ̃N1+δ

As explained in the introduction, the unconstrained condensation occurs for α < 1, while the
constraint-driven condensation occurs at α > 1 (and at high enough density). Given that the typical
total mass in the unconstrained case is superextensive for α < 1, it is of interest to study condensation
effects in the more general case of a fixed superextensive total mass M = ρ̃N1+δ, with δ > 0 and
ρ̃ a parameter which generalizes the usual notion of density. The joint probability distribution
p(m1, . . . , mN |ρ̃) reads in this case

p(m1, . . . , mN |ρ̃) =
1

ZN,δ(ρ̃)

N

∏
i=1

f (mi)δ

[
N

∑
i=1

mi − ρ̃N1+δ

]
(26)

where ZN,δ(ρ̃) is a normalization factor (see Equation (3)). We wish to determine for which values of α

and ρ̃ condensation occurs in this case, using as an order parameter for condensation the participation
ratio Yk = N〈mk〉/Mk, which reads in the present case as

Yk =
〈mk〉

ρ̃k Nk−1+kδ
=

1
ρk Nk−1+kδ

∫ ∞

0
dm p(m)mk (27)

The expression of the marginal distribution p(m) in the case of the superextensive total mass is
given below in Equation (41).

In the following paragraphs, we first use in Section 4.1 the integral representation of the partition
function ZN(ρ̃) in order to get indications on the phase diagram in the (α, δ) plane. This preliminary
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analysis will suggest the existence of a transition line, that will be confirmed in Sections 4.2–4.4 by
an explicit determination of the marginal distribution p(m) and the participation ratio Yk respectively
below, above and on the transition line.

4.1. Preliminary Analysis of the Phase Diagram

We start by expressing the partition function ZN,δ(ρ̃) as an integral representation in terms of its
inverse Laplace transform. The Laplace transform ẐN,δ(s) of ZN,δ(ρ̃) is expressed as

ẐN,δ(s) ≡
∫ ∞

0
dρ̃ e−sρ̃ZN,δ(ρ̃) =

1
N1+δ

gα

( s
N1+δ

)N
(28)

where gα(s) is defined in Equation (15). After a simple change of variable, the inverse Laplace
representation of the partition function ZN(ρ̃) reads

ZN,δ(ρ̃) =
1

2πi

∫ s0+i∞

s0−i∞
ds exp{N[log gα(s) + ρ̃Nδs]} (29)

The value of s0, although arbitrary, can be conveniently chosen to be the saddle-point value of
the argument of the exponential in Equation (29), when a saddle-point s0 > 0 exists (this is due to the
presence of a branch-cut singularity on the negative real axis, as discussed in the previous section).
When no saddle-point exists, the equivalence between canonical and grand-canonical ensemble breaks
down, and condensation is expected to occur. A saddle-point solution of the integral in Equation (29)
should satisfy the following equation,

ρ̃Nδ = − g′α(s)
gα(s)

=
〈m e−sm〉α
〈e−sm〉α

(30)

Note that this approach is heuristic, since the saddle-point should in principle not depend on N.
However, the N-dependence is not a problem when testing the existence of a saddle-point. If it exists,
the saddle-point evaluation of the integral then requires a change of variable for (some power of) N to
appear only as a global prefactor in the argument of the exponential.

For α > 1, we know from the results of Section 3 that the saddle-point Equation (30) has a solution
only if ρ̃Nδ < ρc. This condition is never satisfied for δ > 0 and N → ∞, so that no saddle-point exists
and condensation occurs for any value of ρ̃ > 0 when α > 1.

The situation is thus quite similar to the extensive mass case: there is a homogeneous
phase carrying a total mass Nρc which coexists with a superextensive condensate with a mass
Mc = ρ̃N1+δ − Nρc ≈ ρ̃N1+δ, so that the condensate carries a fraction of the total mass equal to
one in the limit N → ∞. It follows that the participation ratio Yk = 1 in this limit.

In contrast, for α < 1, the function g′α(s)/gα(s) spans the whole positive real axis, and the
saddle-point Equation (30) always has a solution s0(N), which goes to 0 when N → ∞. One then
has to factor out the N-dependence through an appropriate change of variable, and to check whether
a saddle-point evaluation of the integral can be made. For s → 0, one has g′α(s)/gα(s) ≈ aαsα−1,
so that s0 ∼ N−δ/(1−α). Using the change of variable s = zN−δ/(1−α) in the integral appearing in
Equation (30), the argument of the exponential can be rewritten as

N1−αδ/(1−α)(−azα + ρ̃z) (31)

with a = A Γ(1− α)/α, and where we have used the small-s expansion gα(s) ≈ 1− asα, valid for
0 < α < 1. The saddle-point evaluation of the integral is valid only if the N-dependent prefactor
diverges, meaning that 1− αδ/(1− α) > 0, or equivalently

δ < δc =
1− α

α
(32)
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Hence for α < 1 and δ < δc, a saddle-point evaluation of the partition function is possible,
and the equivalence between canonical and grand-canonical ensembles holds: the system is in the
homogeneous phase, and no condensation occurs. For δ ≥ δc, the saddle-point evaluation of the
partition function is no longer possible, which suggests that the equivalence of ensembles breaks
down. This is an indication that condensation may occur. We show through explicit calculations in
Sections 4.3 and 4.4 that condensation occurs when δ ≥ δc, in the sense that the participation ratio Yk
takes a nonzero value in the infinite N limit.

Before proceeding to a detailed characterization of this condensation, let us briefly comment on
the value of δc. For δ = δc, the total mass in the system scales as M ∼ N1/α, and this scaling precisely
corresponds to the typical value of the total mass present in the unconstrained case (see Section 2),
as already noticed in [8]. Hence δ < δc corresponds to imposing a total mass much smaller than
the “natural” unconstrained mass, while for δ > δc one imposes a mass much larger than the typical
unconstrained mass, leading to condensation. In this sense, the situation is similar to that of the
extensive mass case for α > 1, where condensation occurs when a mass M larger that the unconstrained
mass Nρc is imposed, M > Nρc. In Figure 2 we present the phase diagram of the model for the
case of a constraint to a superextensive total mass, which is a phase diagram in the plane (α, δ).
Two observations are in order for this phase diagram. First, as will be explained in detail in in
Sections 4.3 and 4.4, the presence of a condensed phase never depends on the value of the parameter
ρ̃, apart on the transition line δc(α). Second, on the transition line δc(α) (see Figure 2), the system is
in the condensed phase (see Section 4.4), at variance with the behaviour on the critical line ρc(α) for
the case of extensive mass (see the phase diagram in Figure 1), in which case the system is not in the
condensed phase on the transition line.

Figure 2. Main: Phase diagram for the values of the participation ratio in the (α, δ) plane in the presence
of a super-extensive constraint on the total value of the mass ∑N

i=1 mi = ρ̃N1+δ. The (red) continuous
line marks the separation of the condensed phase (limN→∞ Yk > 0) and the homogeneous phase
(limN→∞ Yk = 0). Inset: schematic representation of the marginal probability distribution of the local
mass, p(m), in the presence of condensation, namely in the whole region δ ≥ δc.

In the forthcoming sections, we evaluate the distribution p(m) and the participation ratio Yk for
α < 1 in the three cases δ < δc (Section 4.2), δ > δc (Section 4.3) and δ = δc (Section 4.4) respectively.
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4.2. Case δ < δc: Homogeneous Phase

As we have seen above, the system remains homogeneous for α < 1 and δ < δc, and the
equivalence between canonical and grand-canonical ensembles holds. One can thus more conveniently
perform calculations in the grand-canonical ensemble, with a chemical potential μN which depends on
N, and which will be determined below as a function of the total mass. The single-mass distribution
p(m) simply reads

p(m) ≈ f (m) e−μN m (0 < m < M) (33)

where we have neglected the correction to the normalization factor, as the latter remains very close to 1
since μN is very small.

Note that the distribution p(m) monotonously decays at large m as

p(m) ≈ A
m1+α

e−μN m (34)

as is typical for a homogeneous phase. The k-th moment of this distribution is obtained for k > α as

〈mk〉 =
∫ M

0 dm mk p(m)

≈ A
∫ ∞

0 dm mk−1−αe−μN m = A Γ(k−α)

μk−α
N

(35)

The value of μN is then determined from the condition 〈m〉 = M/N = ρ̃Nδ, yielding

μN =

[
A
ρ̃

Γ(1− α)

]1/(1−α)

N−δ/(1−α) (36)

The participation ratio Yk is then given by

Yk = Kρ̃(k−1)/δc N−(k−1)(δc−δ)/δc (37)

with

K = A1−ω Γ(k− α)

Γ(1− α)ω
, ω =

k− α

1− α
(38)

and where δc is defined in Equation (32). One thus obtains that Y1 = 1 as it should, and that for k > 1,
Yk → 0 when N → ∞, which confirms the absence of condensation for δ < δc. Yet, it is interesting to
note that the decay of Yk becomes slower when increasing δ, and becomes approximately logarithmic
in N when (δc − δ)/δc � 1.

4.3. Case δ > δc: Condensed Phase

When δ > δc (and α < 1), the partition function ZN,δ(ρ̃) can no longer be evaluated by
a saddle-point method, and equivalence of ensembles breaks down, so that one has to work in
the canonical ensemble. From Equation (28), the Laplace transform ẐN,δ(s) reads in the large N limit,
using the small-s behavior gα(s) ≈ 1− asα,

ẐN,δ(s) = N−1−δ

(
1− asα

Nν

)
(39)

with ν = α(1 + δ)− 1.
By assuming a scaling function G(x) which satisfies the normalization condition

∫ ∞
0 G(x) dx = 1

and which has the asymptotic behaviour G(x) ≈ A/x1+α for x → ∞, one can guess the following
expression for the partition function ZN,δ(ρ̃) in direct space:

ZN,δ(ρ̃) ≈ N−1−δ+ν/αG(ρ̃Nν/α) (40)
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It is then not difficult to check that the expression in Equation (40) is (asymptotically in N) the
correct one: the expansion for small s of its Laplace transform corresponds precisely to the expression
of ẐN,δ(s) in Equation (39).

From the knowledge of ZN,δ(ρ̃) one can then compute the distribution p(m), which reads as

p(m) = f (m)
ZN,δ(ρ̃)

ZN−1,δ

(
ρ̃− m

(N−1)1+δ

)
≈ f (m)

G(ρ̃Nδ−δc )
G
(

ρ̃Nδ−δc − m
N1/α

) (41)

and has a non-monotonous shape, as seen by evaluating p(m) in the regime m ∼ xM with 0 < x < 1,
which leads to

p(xM) ≈ A
N(1+δ)(1+α)ρ̃1+α[x(1− x)]1+α

(42)

Note that the divergences at x = 0 and x = 1 are regularized for values of x such that
x ∼ M−1 and 1− x ∼ M−1 respectively. The non-monotonic shape of p(xM), which is schematically
represented in the inset of Figure 2, is a strong similarity that the constrained condensation for α < 1
(and superextensive total mass) bears with the constrained condensation for α > 1 (and extensive total
mass). At the same time such a non-monotonic shape of p(m) is a remarkable qualitative difference
with the case of unconstrained condensation found for the same range of the exponent, α < 1,
in which case the local mass distribution decays monotonously at large values as p(m) ∼ 1/m1+α.
Interestingly, the expression Equation (41) of p(m) can be rewritten as

p(m) ≈ f (m)

G(ρ̃Nδ−δc)
G
(

M−m
N1/α

)
(43)

with M = ρ̃N1+δ, which shows that the “bump” occuring for m ≈ M has a width ∼ N1/α. Hence its
relative width scales as N1+δ/N1/α = 1/Nδ−δc and goes to zero when N → ∞ for δ > δc. In this case
it is therefore legitimate to call the bump a condensate, because it has a well-defined mass Mcond ∼ M.

To complete the analysis, let us compute the participation ratio Yk. In the large N limit, the moment
〈mk〉 =

∫ M
0 dm mk p(m) can be computed as, using the change of variable v = ρ̃Nδ−δc −m/N1/α,

〈mk〉 ≈ Mk

N

∫ M/N1/α

0
dv

(
1− vN1/α

M

)k−1−α

G(v) (44)

where we have used the asymptotic (large argument) behavior of f (m) ∼ 1/m1+α and G(x) ∼ 1/x1+α.
It is then easy to show (see Appendix A) that the integral in Equation (44) tends to

∫ ∞
0 dv G(v) = 1

when N → ∞. One thus simply gets

〈mk〉 ≈ Mk

N
(45)

which, using Yk = N〈mk〉/Mk, immediately leads to the conclusion that Yk = 1 in the limit N → ∞.
Hence, as anticipated above, a strong condensation occurs for δ > δc and α < 1, in the sense that the
condensate carries almost all the mass present in the system.

4.4. Case δ = δc: Marginal Condensed Phase

For α < 1 and δ = δc, the Laplace transform of the partition function reads for large N as

ẐN,δc(s) = N−1/α e−asα
(46)

and from the expression in Equation (46) the partition function is obtained as

ZN,δc(ρ̃) = N−1/α H(ρ̃) (47)
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where the function H(ρ̃) is independent of N and is defined by its Laplace transform,∫ ∞

0
dρ̃ e−sρ̃H(ρ̃) = e−asα

(48)

(H is actually a one-sided Lévy distribution). The small s behavior e−asα ≈ 1− asα implies the large
ρ̃ behavior

H(ρ̃) ≈ A
ρ̃1+α

(49)

where again A is defined from the large m behavior f (m) ≈ A/m1+α.
The distribution p(m) is given for large N by

p(m) =
f (m)

H(ρ̃)
H
(

M−m
N1/α

)
(50)

with M = ρ̃N1/α. It is interesting to evaluate p(m) in the regime where m ∼ xM with 0 < x < 1,
which leads to

p(xM) ≈ A
N1+1/αρ̃1+α H(ρ̃)

H
(

ρ̃(1− x)
)

x1+α
(51)

For large enough ρ̃, the shape of p(m) is not monotonous, since the large ρ̃ expansion of
Equation (51) yields

p(xM) ≈ A
N1+1/αρ̃1+α[x(1− x)]1+α

(52)

with a regularization of the divergence appearing at x = 1 for 1− x ∼ ρ̃−1, and of the divergence at
x = 0 for x ∼ M−1. So here again, a bump appears in the distribution, but its width scales as N1/α as
seen from Equation (50), so that the relative width remains of the order of one. Following [8], one may
call this bump a “pseudo-condensate”.

The above argument on the existence of the bump in the distribution p(m) was based on a large ρ̃

limit. The explicit example studied in [8] indeed shows that the bump may disappear below a certain
value of ρ̃.

We now turn to the evaluation of the moment 〈mk〉. Using the change of variable v = ρ̃−m/N1/α,
as well as the asymptotic (large argument) behaviors of f (m) and H(ρ̃), the moment 〈mk〉 can be
evaluated as

〈mk〉 = ρ̃1+αN−1+k/α
∫ ρ̃

0
dv (ρ̃− v)k−1−α H(v) (53)

It follows that Yk = N〈mk〉/Mk is given by

Yk =
1

ρ̃k−1−α

∫ ρ̃

0
dv (ρ̃− v)k−1−α H(v) (54)

which is one of the main results of this paper. Note that the convergence of the integral at the upper
bound implies k− α > 0. Note also that the integral in Equation (54) is a convolution, which in some
cases may be conveniently evaluated using a Laplace transform, given that H(ρ̃) is known through its
Laplace transform. For a numerical evaluation of Yk, one may thus compute analytically the Laplace
transform of the integral in Equation (54), yielding

L
(

ρ̃k−1−αYk(ρ̃)
)
=

Γ(k− α)

sk−α
e−asα

(55)

and perform numerically the inverse Laplace transform.
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The Laplace transform approach is also convenient to determine analytically the small ρ̃ behavior
of Yk, since the inverse Laplace transform can be evaluated through a saddle-point calculation in this
limit. One finds

Yk ≈ B ρ̃λ e−c/ρ̃α/(1−α)
(56)

with parameters λ, c and B given by

λ =
α(2k− 2α− 1)

2(1− α)
(57)

c =
1− α

α
(αa)1/(1−α) (58)

B =
Γ(k− α)√
2π(1− α)

(αa)
1+2α−2k

2−2α (59)

More detailed calculations on the derivation of Equation (56) are reported in Appendix A.
In the large ρ̃ limit, it is easy to show that Yk goes to 1, following a procedure similar to the

one used in the case δ > δc. It is of interest to compute the first correction in ρ̃ (see Appendix A),
and one finds

Yk ≈ 1− B′

ρ̃α
(60)

with

B′ =
A
α

Γ(1− α) Γ(k− α)

Γ(k− 2α)
(61)

Note in particular that if α� 1, the convergence of Yk to 1 is very slow.
In summary, one has in the case δ = δc a non-standard, weak condensation effect, which does

not correspond to the genuine condensation effect reported in the literature [4–13]. Here, the weak
condensation effect simply means that the participation ratio takes a nonzero value in the infinite size
limit, indicating that a few random variables carry a finite fraction of the sum. However, as mentioned
above, there is no well-defined condensate that would coexist with a fluid phase. Depending on the
generalized density ρ̃, the marginal distribution p(m) either decreases monotonously, or has a bump
which corresponds only to a pseudo-condensate, since the relative width of the bump remains of the
order of one, see Equation (50). In addition, the line δ = δc does not correspond to a well-defined
transition line in the (α, δ) plane, in the sense that the state of the system continuously depends on the
generalized density ρ̃, as shown by the expression of the participation ratio Yk given in Equation (54).

5. Conclusions

The general motivation of this work was to better understand the connection between condensation
in the unconstrained case and in the constrained case with extensive mass, because condensation occurs on
opposite ranges of the exponent α (which defines the power-law decay of the unconstrained probability
distribution), respectively α < 1 and α > 1. To this aim, we have studied condensation in the case
where the total mass is constrained to a superextensive value M = ρ̃N1+δ, where δ > 0, motivated by
the fact that the typical scaling of the total mass is also superextensive, M ∼ N1/α, when condensation
takes place in the unconstrained case, which happens for α < 1.

We indeed found that the case of a fixed superextensive total mass interpolates in a sense between
the case with a fixed extensive mass and the unconstrained case: condensation is found for values
of the power law exponent in the interval 0 < α < 1, as in the case of unconstrained condensation,
but with qualitative features more similar to the case of constrained condensation with extensive mass:
for δ > δc (and for δ = δc at large enough ρ̃) the marginal distribution p(m) of the local mass has
a secondary peak related to the condensate fraction, at variance with unconstrained case where p(m)

decays monotonously for increasing values of m.
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The inclusion in the problem of the new parameter δ, which characterizes the superextensive scaling
M ∼ N1+δ of the total mass, allowed us to draw the two-dimensional (α, δ) phase diagram shown in
Figure 2. At variance with the two models usually studied in the literature, where condensation takes
place either for α < 1, without the constraint, or for α > 1, with constrained extensive mass, in the case
of a constrained superextensive mass condensation is found both for α < 1 (when δ > δc) and for α > 1
(when δ > 0).

More in detail, we have shown that as soon as δ > 0, constrained condensation occurs for any
α > 1, irrespective of the value of the generalized density ρ̃, when the system is constrained to have
a superextensive value of the mass. This case is qualitatively similar to the case of an extensive mass
M = ρN with a large density ρ. For α < 1, a weak form of condensation occurs if δ = δc(α), in the
sense that the participation ratio takes a nonzero value in the infinite N limit. Here, 1 + δc = 1/α is
precisely the scaling exponent of the mass in the unconstrained case. When δ = δc, only a pseudo-
condensate with non-vanishing relative fluctuations appears, or the distribution p(m) may even decay
monotonously. This is confirmed by the expression Equation (54) of Yk (α < 1 and constraint to
superextensive mass with δ = δc), which differs from Equation (25) obtained in the case of α > 1 and
a fixed extensive mass. The situation is thus different from standard condensation, but the nonzero
asymptotic value of the participation ratio indicates that some non-trivial phenomenon (that we call
weak condensation) takes place. On the contrary, when δ > δc condensation takes the form of a bump
with vanishing relative width in the marginal distribution p(m). It thus shares similarities with the
standard condensation phenomenon.

To conclude, we note that the qualitative idea that condensation occurs when one imposes a total
mass larger than the “natural” mass the system would have in the unconstrained case remains valid:
this is always the case for α > 1 (both for extensive and superextensive constraints), but it is also the
case to some extent for α < 1, where condensation is present for δ > δc. Yet, one has to be aware
that the notion of “natural mass” is not firmly grounded in this case, and is just a heuristic concept
associated to a typical scaling M ∼ N1/α with the system size N. One further subtlety is whether
condensation occurs or not on the transition line. For the constrained case with an extensive mass,
condensation does not occur at the critical density ρ = ρc. In contrast, a weak form of condensation
occurs at δ = δc (see Section 4.4), which may suggest a discontinuous condensation transition as
a function of δ. However, for δ = δc the condensation properties actually depend on the generalized
density ρ̃, see Equation (54), so that this weak condensation is actually continuous (in the sense that Yk
goes to zero when ρ̃→ 0) if one looks on a finer scale in terms of ρ̃.
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Appendix A. Participation Ratio for M = ρ̃N1+δ

In this appendix, we provide some technical details on the evaluation of participation ratios for
α > 1, in the cases δ > δc and δ = δc.

Appendix A.1. Case δ > δc

Considering the case α < 1 and δ > δc, we wish here to justify the approximation made to go
from Equation (44) to Equation (45) in the evaluation of 〈mk〉. Considering the integral appearing in
Equation (44) as well as its approximation, one can write, setting V0 = M/N1/α
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∫ V0

0
dv G(v)−

∫ V0

0
dv G(v)

(
1− v

V0

)k−1−α

= V0

∫ 1

0
du G(V0u) [1− (1− u)k−1−α]

≈ A
Vα

0

∫ 1

0

du
u1+α

[1− (1− u)k−1−α]

(A1)

where we have used the change of variable v = V0u as well as the asymptotic behavior of the function
G(v). Assuming k − α > 0, the last integral in Equation (A1) converges, so that the difference of
the two integrals in the lhs of Equation (A1) indeed converges to 0 when N → ∞, since V0 → ∞ in
this limit.

Appendix A.2. Case δ = δc

We discuss here the asymptotic, small ρ̃ and large ρ̃, behavior of the participation ratio Yk in the
case δ = δc.

Let us start by the small ρ̃ regime. As discussed in the main text, Yk can be obtained by an inverse
Laplace transform, see Equation (55). Introducing ψ(ρ̃) = ρ̃k−1−αYk(ρ̃), the Laplace transform ψ̂(s) is
given by

ψ̂(s) =
Γ(k− α)

sk−α
e−asα

(A2)

Taking the inverse Laplace transform, one has

ψ(ρ̃) =
1

2πi

∫ s0+i∞

s0−i∞
ds

Γ(k− α)

sk−α
e−asα+sρ̃ (A3)

In order to see whether this integral can be performed through a saddle-point evaluation, we note
that balancing the two terms in the argument of the exponential leads to asα ∼ sρ̃, which results in
s ∼ ρ̃−1/(1−α), eventually leading to −asα + sρ̃ ∼ ρ̃−α/(1−α) (note that the algebraic prefactor in front
of the exponential does not change the location of the saddle-point). The argument can then be made
sharper using the change of variable s = z/ρ̃1/(1−α), yielding

− asα + sρ̃ = ρ̃−α/(1−α)(−azα + z) (A4)

In this form, a diverging prefactor is obtained when ρ̃ → 0, so that a saddle-point calculation
can indeed be performed in this limit. Defining φ(z) = −azα + z, the saddle-point z0 is obtained
for φ′(z0) = 0, yielding z0 = (αa)1/(1−α). Choosing s0 = z0/ρ̃1/(1−α) in the integral Equation (A3),
and setting z = z0 + iy, one can write in the small ρ̃ limit

ψ(ρ̃) ≈ Γ(k−α)
2πsk−α

∫ ∞
−∞ dy exp

(
ρ̃

α
α−1 [φ(z0)− φ′′(z0)

y2

2 ]
)

≈ Γ(k−α)

zk−α
0

√
2πφ′′(z0)

ρ̃λ exp
(

φ(z0) ρ̃−
α

1−α

) (A5)

where λ is given in Equation (57), thus recovering Equation (56).
We now turn to the computation in the large ρ̃ limit. We have seen that the inverse Laplace

transform cannot be computed through a saddle-point evaluation in this limit. We thus come back to
Equation (54) and rewrite it as

Yk =
∫ ρ̃

0
dv
(

1− v
ρ̃

)k−1−α

H(v) (A6)

226



Entropy 2017, 19, 517

Since the integral
∫ ∞

0 dv H(v) converges, one can approximate for large ρ̃ the factor (1− v/ρ̃)k−1−α

in Equation (A6) by 1, assuming k− 1− α > 0. Hence, again for ρ̃→ ∞,

Yk ≈
∫ ρ̃

0
dv H(v)→

∫ ∞

0
dv H(v) = 1 (A7)

The correction to Yk = 1 can be computed as follows:

1−Yk =
∫ ∞

ρ̃
dv H(v) +

∫ ρ̃

0
dv H(v)

[
1−
(

1− v
ρ̃

)k−1−α
]

(A8)

The first integral in Equation (A8) is easily evaluated for large ρ̃ as

∫ ρ̃

0
dv H(v) ≈ A

αρ̃α
(A9)

The second integral in Equation (A8) can be rewritten with the change of variable v = ρ̃u as

ρ̃
∫ 1

0
du H(ρ̃u) [1− (1− u)k−1−α] ≈ A

ρ̃α

∫ 1

0

du
u1+α

[1− (1− u)k−1−α] ≡ A I
ρ̃α

(A10)

where we have denoted as I the last integral, and where we have used the asymptotic behavior of
H(ρ) given in Equation (49). Assuming k− 1− α > 0 (which is consistent since k is in most cases of
interest an integer >1), the integral I can be computed through an integration by part, leading to

I = − 1
α
+

k− 1− α

α

Γ(1− α)Γ(k− 1− α)

Γ(k− 2α)
(A11)

where we have also used the standard result∫ 1

0
du uμ−1(1− u)ν−1 =

Γ(μ)Γ(ν)
Γ(μ + ν)

(A12)

for μ, ν > 0. Then combining Equations (A8)–(A11), one eventually obtains Equation (60).
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Abstract: Many systems in nature and laboratories are far from equilibrium and exhibit significant
fluctuations, invalidating the key assumptions of small fluctuations and short memory time in or near
equilibrium. A full knowledge of Probability Distribution Functions (PDFs), especially time-dependent
PDFs, becomes essential in understanding far-from-equilibrium processes. We consider a stochastic
logistic model with multiplicative noise, which has gamma distributions as stationary PDFs.
We numerically solve the transient relaxation problem and show that as the strength of the
stochastic noise increases, the time-dependent PDFs increasingly deviate from gamma distributions.
For sufficiently strong noise, a transition occurs whereby the PDF never reaches a stationary state,
but instead, forms a peak that becomes ever more narrowly concentrated at the origin. The addition
of an arbitrarily small amount of additive noise regularizes these solutions and re-establishes the
existence of stationary solutions. In addition to diagnostic quantities such as mean value, standard
deviation, skewness and kurtosis, the transitions between different solutions are analysed in terms of
entropy and information length, the total number of statistically-distinguishable states that a system
passes through in time.

Keywords: non-equilibrium statistical mechanics; gamma distribution; stochastic processes;
Fokker-Planck equation; fluctuations and noise

1. Introduction

In classical statistical mechanics, the Gaussian (or normal) distribution and mean-field type
theories based on such distributions have been widely used to describe equilibrium or near equilibrium
phenomena. The ubiquity of the Gaussian distribution stems from the central limit theorem that random
variables governed by different distributions tend to follow the Gaussian distribution in the limit of a large
sample size [1–3]. In such a limit, fluctuations are small and have a short correlation time, and mean
values and variance completely describe all different moments, greatly facilitating analysis.

Many systems in nature and laboratories are however far from equilibrium, exhibiting significant
fluctuations. Examples are found not only in turbulence in astrophysical and laboratory plasmas,
but also in forest fires, the stock market and biological ecosystems [4–23]. Specifically, anomalous
(much larger than average values) transport associated with large fluctuations in fusion plasmas
can degrade the confinement, potentially even terminating fusion operation [6]. Tornadoes are
rare, large amplitude events, but can cause very substantial damage when they do occur. In biology,
the pioneering work of Delbrück on bacteriophages showed that viruses replicate in strongly fluctuating
bursts [24]. The fluctuations of the burst amplitudes were explained mathematically by stochastic

Entropy 2017, 19, 511; doi:10.3390/e19100511 www.mdpi.com/journal/entropy229



Entropy 2017, 19, 511

autocatalytic reaction models first introduced in [25]. Delbrück’s autocatalytic models predict discrete
negative-binomial distributions, which can be well approximated by gamma distributions when
the average number of particles is large. Furthermore, gene expression and protein productions,
which used to be thought of as smooth processes, have also been observed to occur in bursts,
leading to negative binomial and gamma distributed protein copy numbers (e.g., [19–23]). Such rare
events of large amplitude (called intermittency) can dominate the entire transport even if they occur
infrequently [8,26]. They thus invalidate the assumption of small fluctuations with short correlation
time, making mean value and variances meaningless. Therefore, to understand the dynamics of a
system far from equilibrium, it is crucial to have a full knowledge of Probability Distribution Functions
(PDFs), including time-dependent PDFs [27].

The consequences of strong fluctuations in far-from-equilibrium systems are multiple. In physics,
far-from-equilibrium fluctuations produce dissipative patterns, shift or wipe out phase transitions,
etc. In economics, finance and actuarial science, strong fluctuations are important issues of risk
evaluation. In biology, strong fluctuations generate phenotypic heterogeneity that helps multicellular
organisms or microbial populations to adapt to changes of the environment by so-called “bet-hedging”
strategies. In such a strategy, only a part of the cell population adapts upon emergence of new
environmental conditions. The remaining part retains the memory of the old conditions and is thus
already adapted if environmental conditions revert to previous ones [28]. Exceptional behaviour
can also rescue cell subpopulations from drug-induced lethal conditions, thus generating drug
resistance [29]. In particular, because of the skewness and exponential tail of the gamma distribution,
gamma-distributed populations contain a significant proportion of individuals with an exceptionally
high phenotypic variation. Bet-hedging being a dynamic phenomenon, it is important, for biological
studies, to be able to predict not only steady-state, but also time-dependent distributions.

Obtaining good quality PDFs is often very challenging, as it requires a sufficiently large number
of simulations or observations. Therefore, a PDF is usually constructed by averaging data from a
long time series and is thus stationary (independent of time). Unfortunately, such stationary PDFs
miss crucial information about the dynamics/evolution of non-equilibrium processes (e.g., tumour
evolution). Theoretical prediction of time-dependent PDFs has proven to be no less challenging
due to the limitation in our understanding of nonlinear stochastic dynamical systems, as well as the
complexity in the required analysis.

Spectral analysis, for example, using theoretical tools similar to those used in quantum mechanics
(e.g., raising and lower operators) is useful (e.g., [1]), but the summation of all eigenfunctions is
necessary for time-dependent PDFs far from equilibrium. Various different methodologies have also
been developed to obtain approximate PDFs, such as the variational principle, the rate equation
method or the moment method [30–35]. In particular, the rate equation method [31,32] assumes that
the form of a time-dependent PDF during the relaxation is similar to that of the stationary PDF and
thus approximates a time-dependent PDF during transient relaxation by a PDF having the same
functional form as a stationary PDF, but with time-varying parameters.

In this work, we show that this assumption is not always appropriate. We consider a stochastic
logistic model with multiplicative noise. We show that for fixed parameter values, the stationary PDFs
are always gamma distributions (e.g., [36,37]), one of the most popular distributions used in fitting
experimental data. However, we find numerically that the time-dependent PDFs in transitioning
from one set of parameter values to another are significantly different from gamma distributions,
especially for strong stochastic noise. For sufficiently strong multiplicative noise, it is necessary to
introduce additive noise, as well, to obtain stationary distributions at all. We note that in inferential
statistics, gamma distributions facilitate Bayesian model learning from data, as a gamma distribution
is a conjugate prior to many likelihood functions. It is therefore interesting to test whether models
with stationary gamma distributions also have time-dependent gamma distributions.
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2. Stochastic Logistic Model

We consider the logistic growth with a multiplicative noise given by the following Langevin equation:

dx
dt

= (γ + ξ)x− εx2, (1)

where x is a random variable and ξ is a stochastic forcing, which for simplicity, can be taken as a
short-correlated random forcing as follows:

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (2)

In Equation (2), the angular brackets represent the average over ξ, 〈ξ〉 = 0, and D is the strength
of the forcing. γ is the control parameter in the positive feedback, representing the growth rate of x,
while ε represents the efficiency in self-regulation by a negative feedback. γx− εx2 can be considered
as the gradient of the potential V as γx − εx2 = − ∂V

∂x , where V = − γ
2 x2 + ε

3 x3. Thus, V has its
minimum value at x = γ

ε . When ξ = 0, x = γ
ε (the carrying capacity) is a stable equilibrium point

since ∂xxV
∣∣∣
x=γ/ε

= γ > 0; x = 0 is an unstable equilibrium point since ∂xxV
∣∣∣
x=0

= −γ < 0.

The multiplicative noise in Equation (1) shows that the linear growth rate contains the stochastic
part ξ. This model is entirely phenomenological, and x can be interpreted as the size of a critical
physical phenomenon (vortex, tornado, etc.), stock market, number of biological cells, viruses and
proteins. It is reminiscent of Delbrück’s autocatalytic processes [25], but is different from these in many
ways, the most important being the lack of discreteness and the possibility of reaching a steady-state
due to the finite capacity of logistic growth. We will show in the following that in spite of these
differences, our model is capable of producing large fluctuations.

By using the Stratonovich calculus [2,3,38], we can obtain the following Fokker–Planck equation
for the PDF p(x, t) (see Appendix A for details):

∂

∂t
p(x, t) = − ∂

∂x

[
(γx− εx2)p(x, t)

]
+ D

∂

∂x

[
x

∂

∂x

[
x p(x, t)

]]
(3)

corresponding to the Langevin Equation (1). By setting ∂t p = 0, we can analytically solve for the
stationary PDFs as:

p(x) =
ba

Γ(a)
xa−1e−bx, (4)

which is the well-known gamma distribution. The two parameters a and b are given by a = γ/D and
b = ε/D. The mean value and variance of the gamma distribution are found to be:

〈x〉 = a
b
=

γ

ε
, Var(x) = σ2 = 〈(x− 〈x〉)2〉 = a

b2 =
γD
ε2 , (5)

where σ =
√

Var(x) is the standard deviation. We recognise 〈x〉 as the carrying capacity for a
deterministic system with ξ = 0. It is useful to note that 〈x〉 is given by the linear growth rate scaled
by ε, while Var(x) is given by the product of the linear growth rate and the diffusion coefficient, each
scaled by ε. That is, the effect of stochasticity should be measured relative to the linear growth rate.

Therefore, the case of small fluctuations is modelled by values of D small compared with γ and
ε. In such a limit, a and b are large, making

√
Var(x)� 〈x〉 in Equation (5). That is, the width of the

PDF is much smaller than its mean value. In this limit, Equation (4) reduces to a Gaussian distribution.
To show this, we express Equation (4) in the following form:

p ≡ ba

Γ(a)
e− f (x), (6)
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where f (x) = bx− (a− 1) ln x. For large b, we expand f (x) around the stationary point x = xp where
∂x f (x) = 0 = b− (a− 1)/x up to the second order in x− xp to find:

xp =
a− 1

b
∼ a

b
, f (x = xp) ∼ a

(
1− ln

a
b

)
, (7)

f (x) ∼ f (xp) +
1
2
(x− xp)

2∂xx f (x)
∣∣∣
x=xp

= a
(

1− ln
a
b

)
+

b2

2a

(
x− a

b

)2
. (8)

Here, a
 1 was used. Using Equation (8) in Equation (6) then gives us:

p ∝ exp
[
− b2

2a

(
x− a

b

)2
]

∝ exp
[
−β(x− 〈x〉)2

]
, (9)

which is a Gaussian PDF with mean value 〈x〉. Here, β = 1/Var(x) is the inverse temperature, and the
variance Var(x) is given by Equation (5). Therefore, for a sufficiently small D, the gamma distribution
is approximated as a Gaussian PDF, which is consistent with the central limit theorem as small D
corresponds to small fluctuations and large system size. See also [39] for a different derivation.

As D increases, the Gaussian approximation becomes increasingly less valid. Indeed, even the
gamma distribution becomes invalid asymptotically, when t→ ∞, if D > γ; according to Equation (4),
having a < 1 yields lim

x→0
p = lim

x→0

∂p
∂x = ∞. However, from the full time-dependent Fokker–Planck

Equation (3), one finds that if the initial condition satisfies p = 0 at x = 0, then p(x = 0) will remain
zero for all later times. As we will see, the resolution to this seeming paradox is that no stationary
distribution is ever reached for D > γ, but instead, the peak approaches ever closer to x = 0, without
ever reaching it.

If we are interested in obtaining stationary solutions even when D > γ, one way to achieve that is
to return to the original Langevin Equation (1), but now include a further additive stochastic noise η:

dx
dt

= (γ + ξ)x− εx2 + η, (10)

where ξ and η are uncorrelated and η satisfies 〈η(t)η(t′)〉 = 2Qδ(t − t′). The new version of the
Fokker–Planck Equation (3) then becomes:

∂

∂t
p = − ∂

∂x

[
(γx− εx2)p

]
+ D

∂

∂x

[
x

∂

∂x

[
x p
]]

+ Q
∂2

∂x2 p, (11)

which has stationary solutions given by:

ln p(x) =
∫

(γ− D)x− εx2

Dx2 + Q
dx. (12)

This integral can be evaluated analytically, but the final form is not particularly illuminating.
The only point to note is that for non-zero Q, the denominator is never zero, even for x → 0, which
avoids any possible singularities at the origin. For γ > D and Q� D, the solutions are also essentially
indistinguishable from the previous gamma distribution (4). The only significant effect of including η

therefore is to avoid the previous difficulties at the origin when D > γ.
As we have seen, both Fokker–Planck Equations (3) and (11) can be solved exactly for their

stationary solutions. This is unfortunately not the case regarding time-dependent solutions, where
no closed-form analytic solutions exist (see Appendix B for the extent to which analytic progress can
be made). We therefore developed finite-difference codes, second-order accurate in both space and
time. Most aspects of the numerics are standard and similar to previous work [40–42]. The only point
that requires discussion are the boundary conditions. As noted above, for (3), the equation itself states
that p = 0 at x = 0 is the appropriate boundary condition, provided only that the initial condition also
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satisfies this. In contrast, for (11), the appropriate boundary condition is ∂
∂x p = 0 at x = 0. To derive

this boundary condition for (11), we simply integrate (11) over the range x = [0, ∞] and require that
the total probability should always remain one, so that d

dt

∫
p dx = 0. Regarding the outer boundary,

choosing some moderately large outer value for x and then imposing p = 0 there was sufficient.
Resolutions up to 106 grid points were used, and results were carefully checked to ensure they were
independent of the grid size, time step and precise choice of outer boundary.

3. Diagnostics

Once the time-dependent solutions are computed, we can analyse them using a number of diagnostics.
First, we can evaluate the mean value 〈x〉 and standard deviation σ from (5). Next, to explore the extent to
which the time-dependent PDFs differ from gamma distributions, we can simply compare them with
‘equivalent’ gamma distributions and compute the difference. That is, given 〈x〉 and σ, the gamma
distribution pequiv having the same mean and variance would have as its two parameters a = 〈x〉2/σ2

and b = 〈x〉/σ2. With these values, we define:

Difference =
∫
|p− pequiv| dx (13)

to measure how different the actual time-dependent PDF is from its equivalent gamma distribution.
Two other familiar quantities often useful in analysing PDFs are the skewness and kurtosis,

defined by:

Skewness =
〈(x− 〈x〉)3〉

σ3 , Kurtosis =
〈(x− 〈x〉)4〉

σ4 − 3. (14)

Skewness measures the extent to which a PDF is asymmetric about its peak, whereas kurtosis
measures how concentrated a PDF is in the peak versus the tails, relative to a Gaussian having the same
variance (the−3 is included in the definition of the kurtosis to ensure that a Gaussian would yield zero).
For gamma distributions, one finds analytically that the skewness is 2

√
D/γ, and the kurtosis is 6D/γ.

Comparing the skewness and kurtosis of the time-dependent PDFs with these formulas is therefore
another useful way of quantifying how similar or different they are from gamma distributions.

Another quantity that can be useful is the so-called differential entropy as a measure of order
versus disorder (as entropy always is):

S = −
∫

p ln p dx. (15)

In particular, we expect S to be small for localised PDFs and large for spread out ones (e.g., [40–43]).
For unimodal PDFs as the ones studied here, entropy and standard deviation are typically comparably
good measures of localization, but for bimodal peaks, entropy can be significantly better [42]. For the
gamma distribution in Equation (4), the differential entropy can be shown to be given by:

S = a− ln b + ln (Γ(a)) + (1− a)ψ(a), (16)

where ψ(a) = d ln (Γ(x))
dx

∣∣
x=a is the double gamma function.

Our final diagnostic quantity is what is known as information length. Unlike all the previous
diagnostics, which are simply evaluated at any instant in time, but otherwise do not involve t,
information length is a Lagrangian quantity, explicitly concerned with the full time-history of the
evolution of a given PDF. It is thus ideally suited to understanding time-dependent PDFs. Very briefly,
we begin by defining:

E ≡ 1
[τ(t)]2

=
∫ 1

p(x, t)

[
∂p(x, t)

∂t

]2

dx. (17)

Note how τ has units of time and quantifies the correlation time over which the PDF changes, thereby
serving as a time unit in statistical space. Alternatively, 1/τ quantifies the (average) rate of change of
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information in time. E is due to the change in either width (variance) of the PDF or the mean value,
which are determined by γ, D and ε for the gamma distribution (e.g., see Equation (4)). In the standard
Brownian motion, the mean value is zero so that E is due to the change in the variance of a PDF.

The total change in information between initial and final times, zero and t respectively, is then
defined by measuring the total elapsed time in units of τ as:

L(t) =
∫ t

0

dt1

τ(t1)
=
∫ t

0

√∫
dx

1
p(x, t1)

[
∂p(x, t1)

∂t1

]2

dt1. (18)

This information length Lmeasures the total number of statistically distinguishable states that
a system evolves through, thereby establishing a distance between the initial and final PDFs in
the statistical space. Note that L by construction is a continuous variable and thus measures the
total “number” of statistically-different states as a continuous number. See also [40–48] for further
applications and theoretical background of E and L.

4. Results

4.1. γ > D

We start with the case γ > D, where Equation (3) has stationary solutions, given by (4). Keeping
ε and D fixed, we then switch γ back and forth between two values, in the following sense: Take the
gamma distribution (4) corresponding to one value; call it γ1; and use that as the initial condition to
solve (3) with the other value; call it γ2. We then interchange γ1 and γ2 to complete the pair of “inward”
and “outward” processes. Such a pair can be thought of as an order/disorder phase transition [40,41],
caused for example by cyclically adjusting temperature in an experiment. This protocol is also inspired
from adaptation of a biological system. During adaptation, a model parameter can be abruptly changed
in response to the change of environmental conditions, for instance a particle replication parameter γ,
but the resulting changes can be extremely heterogeneous in the population.

Figure 1 shows the result of switching γ between γ1 = 0.5 and γ2 = 0.05, for fixed ε = 1 and
D = 0.02 (one of the three parameters ε, γ and D can of course always be kept fixed by rescaling the
entire equation, so throughout this entire section, we keep ε = 1 fixed and focus on how the various
quantities depend on γ and D). We immediately see that the inward and outward processes behave
differently. When γ is decreased and the peak therefore moves inward, the PDF is relatively narrow,
and the peak amplitude is monotonically increasing. When γ is switched from 0.05 back to 0.5, the PDF
is much broader, and the peak amplitude in the intermediate stages is less than either the initial or
final gamma distributions.

Figure 2 shows how 〈x〉, E andL vary as functions of time, for the three values D = 0.01, 0.02, 0.04.
For 〈x〉, the movement from 0.5 to 0.05 is somewhat slower than the reverse process; but, both processes
occur on a similar time-scale, and both are essentially independent of D. This is in contrast with other
Fokker–Planck systems where the magnitude of the diffusion coefficient can have a very strong
influence on the equilibration time-scales [40,41].
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Figure 1. (a) shows the result of switching γ = 0.5→ 0.05; (b) γ = 0.05→ 0.5, both at fixed ε = 1 and
D = 0.02. The initial (red) and final (blue) gamma distributions are shown as heavy lines. The four
intermediate lines are when the time-dependent solutions have 〈x〉 = 0.1, 0.2, 0.3, 0.4. The arrows are
a reminder of the direction of motion, inward on the left and outward on the right.
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Figure 2. (a) shows 〈x〉 as a function of time; (b) shows E · D (to indicate the E ∼ D−1 scaling);
(c) shows L · D1/2 (to indicate the L ∼ D−1/2 scaling). Solid lines denote γ = 0.5→ 0.05, dashed lines
the reverse. Each solid or dashed “line” is in fact three, occasionally barely distinguishable, lines with
D = 0.01, 0.02, 0.04. The dots on the 〈x〉 curves correspond to the PDFs shown in Figure 1.

For E and L, the equilibration is again somewhat slower for γ = 0.5 → 0.05 than the reverse.
We can further identify clear scalings E ∼ D−1 and L ∼ D−1/2. Finally, L is greater for γ = 0.5→ 0.05
than the reverse. These results are all understandable in terms of the interpretation of L as the number
of statistically-distinguishable states that the PDF evolves through: First, we recall from Figure 1
that γ = 0.5→ 0.05 had consistently narrower PDFs than the reverse. Narrower PDFs means more
distinguishable states, hence larger L for γ = 0.5→ 0.05 than the reverse. The L ∼ D−1/2 scaling has
the same explanation; smaller D yields narrower PDFs, hence larger L.

The first panel in Figure 3 shows the previous quantities 〈x〉 and L ·D1/2, but now plotted against
each other rather than separately against time. The behaviour is exactly as one might expect, with
L growing more or less linearly with distance from the initial position. The right panel in Figure 3
shows the entropy (15), again as a function of 〈x〉 rather than time, to emphasize the cyclic nature
of the two processes. The significance is indeed as claimed above, with more localized PDFs having
smaller entropy values. Note how γ = 0.5→ 0.05, which had the narrower PDFs, has lower entropy
values than the reverse process. Note also how reducing D by a factor of two, thereby making the
PDFs narrower, causes the entire cyclic pattern to shift downward by an essentially constant amount.
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Figure 3. (a) shows L ·D1/2 and (b) entropy, both as functions of 〈x〉. Solid lines denote γ = 0.5→ 0.05,
dashed lines the reverse. Numbers besides curves indicate D = 0.01, 0.02, 0.04. The arrows on the
entropy plot are a reminder of the direction of inward/outward motion.

Figure 4 shows how the standard deviation, skewness and kurtosis behave, again, as functions
of 〈x〉 throughout the two processes. The heavy green lines also show the behaviour that would be
expected if the time-dependent PDFs were always gamma distributions throughout their evolution.
That is, if gamma distributions have 〈x〉 = γ, σ =

√
γD, skewness = 2

√
D/γ and kurtosis =

6D/γ (setting ε = 1), then expressed as functions of 〈x〉, we would have (σ/D1/2) =
√
〈x〉,

(skewness /
√

D) = 2/
√
〈x〉 and (kurtosis /D) = 6/〈x〉. As we can see, the γ = 0.5 → 0.05 process

follows these functional relationships reasonably well (especially for skewness and kurtosis), but for
γ = 0.05→ 0.5, all three quantities deviate substantially.

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

<x>

σ
 / 

D
1/

2

0.01

0.04

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

<x>

Sk
ew

ne
ss

 / 
D

1/
2

0.01

0.04

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

120

<x>

K
ur

to
si

s 
/ D

0.01 0.04

a b c

Figure 4. (a) σ/D1/2, (b) (skewness /D1/2) and (c) (kurtosis /D), as functions of 〈x〉. Solid lines
denote γ = 0.5→ 0.05, dashed lines the reverse. Numbers besides curves indicate D = 0.01, 0.02, 0.04.
The heavy green curves are

√
〈x〉, 2/

√
〈x〉 and 6/〈x〉, respectively, and indicate the behaviour expected

for exact gamma distributions.

Further evidence of significant deviations from gamma distribution behaviour is seen in Figure 5,
showing the difference (13) directly. As expected from Figure 4, γ = 0.05→ 0.5 has a much greater
difference than γ = 0.5→ 0.05. The second and third panels show how the PDFs compare with the
equivalent gamma distributions having the same 〈x〉 and σ values as the actual PDFs at that instant.
The differences are clearly visible, especially for γ = 0.05→ 0.5, but also for γ = 0.5→ 0.05.
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Figure 5. (a) shows the difference (13) between the actual PDF and the equivalent gamma distribution,
as functions of 〈x〉. Solid lines denote γ = 0.5 → 0.05, dashed lines the reverse, with arrows also
indicating the direction of motion. The dots at 〈x〉 = 0.3 for γ = 0.05 → 0.5 and 〈x〉 = 0.1 for
γ = 0.5 → 0.05, correspond to the other two panels: (b) compares the γ = 0.05 → 0.5 PDF with its
equivalent gamma distribution; (c) compares the γ = 0.5 → 0.05 PDF with its equivalent gamma
distribution. The actual PDFs in each case are solid (red), and the equivalent gamma distributions are
dashed (blue). D = 0.04 for both sets.

4.2. D > γ

We next consider the case D > γ, where we demonstrated above that stationary solutions
cannot exist at all, because the time-dependent PDF can only ever get closer and closer to the gamma
distribution singularity at the origin, but can never actually achieve it. To explore what does happen in
this case then, we simply repeat the above procedure, except that there is now only an ‘inward’ process,
and no reverse. That is, instead of γ = 0.5 → 0.05, let us consider γ = 0.5 → 0 (Throughout this
section, we will also take D = 10−3, to facilitate comparison with results in the next section. For γ = 0,
of course, any D is greater than γ.).

Figure 6 shows the resulting PDFs and how they approach ever closer to the origin, but
never actually achieve the x−1 blow-up that would be implied by Equation (4) for a = γ/D = 0.
The peak amplitude simply increases indefinitely, as t1/2. The widths correspondingly also decrease;
the apparent increase is an illusion caused by the logarithmic scale for x. The dashed lines also show the
equivalent gamma distributions, as before. Note how the difference becomes increasingly noticeable;
in line with the fact that the equivalent gamma distribution is tending toward its singular behaviour as
〈x〉 decreases, but the actual PDFs must always have p(0) = 0.
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Figure 6. The initial condition is a gamma distribution with γ = 0.5, ε = 1 and D = 10−3; γ is then
switched to zero, and the solution is evolved according to Equation (3). Numbers besides curves
indicate time, from the initial condition at t = 0 to the final time 1000. The dashed curves indicate the
equivalent gamma distributions having the same 〈x〉 and σ.
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Figure 7 is the equivalent of Figure 2 and directly compares γ = 0.5→ 0 here with the previous
γ = 0.5→ 0.05. We see that 〈x〉 starts out very similarly, but instead of equilibrating to 0.05, it now
tends to zero as t−1. E again starts out similarly, but ultimately tends to zero much more slowly, as t−3

instead of exponentially. This t−3 scaling for E has an interesting consequence for L, namely that L
does saturate to a finite value L∞ (since

∫
t−3/2 dt remains bounded for t→ ∞) even though the PDF

itself never settles to a stationary state.
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Figure 7. As in Figure 2, (a) shows 〈x〉; (b) shows E ·D; and (c) L ·D1/2. Solid lines denote γ = 0.5→ 0
for D = 10−3, dashed lines the previous γ = 0.5→ 0.05 for D = 0.01. Note how the scalings of E and
L with D are still preserved even when D is changed by a factor of 10.

Figure 8 shows entropy, σ, skewness and kurtosis, so some of the results as in Figures 3 and 4.
Entropy and σ are again both good measures of how narrow the PDF is, becoming ever smaller as the
peak moves toward the origin. Skewness and kurtosis seem to follow the expected gamma distribution
relationship extremely well, even though we saw before in Figure 6 that the PDFs are actually different
from gamma distributions. As 〈x〉 → 0, both skewness and kurtosis thus become indefinitely large.
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Figure 8. (a) Entropy, (b) σ/D1/2, (c) (skewness /D1/2) and (d) (kurtosis /D), as functions of 〈x〉, for
the γ = 0.5→ 0 calculation from Figure 6. The heavy green curves in the last three panels are

√
〈x〉,

2/
√
〈x〉 and 6/〈x〉, respectively, and indicate the behaviour expected for exact gamma distributions.

4.3. Q �= 0

Finally, we turn to the Fokker–Planck Equation (11) with additive noise included and use it
to explore the two questions that could not be addressed otherwise. First, how does a process like
γ = 0.5 → 0 then equilibrate to a stationary solution? Second, what does the reverse process
γ = 0→ 0.5 look like?

We will keep D = 10−3 and Q = 10−5 fixed throughout this section. Since the effective diffusion
coefficients in (11) are Dx2 and Q (recall also the denominator of Equation (12)), this means that Q is
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dominant only within x ≤ 0.1; any stationary solutions with peaks much beyond that are effectively
pure gamma distributions.

Figure 9 shows the same type of inward/outward process as before in Figure 1, only now
switching γ between 0.5 and 0.1. Comparing with Figure 1, we see that the dynamics are very similar,
just with all the peaks considerably narrower, which is to be expected if D = 10−3 rather than 0.02.
The only other point to note is how the final peak in the left panel is lower than the previous peak at
〈x〉 = 0.2, which is different from Figure 1, where γ = 0.5→ 0.05 had peaks monotonically increasing
throughout the entire evolution. The reason for the final peak here decreasing slightly is precisely the
influence of Q in this region; if this peak is now seeing just as much diffusion from Q as from D, it is
not surprising that it spreads out somewhat more and is correspondingly somewhat lower than a pure
gamma distribution would be.
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Figure 9. (a) shows the result of switching γ = 0.5 → 0.1, (b) γ = 0.1 → 0.5, both at fixed ε = 1,
D = 10−3 and Q = 10−5. The initial (red) and final (blue) gamma distributions are shown as heavy
lines. The three intermediate lines are when the time-dependent solutions have 〈x〉 = 0.2, 0.3, 0.4.
L∞ = 25 on the left and 16 on the right.

Figure 10 shows the fundamentally new case, namely switching γ between 0.5 and zero. The inward
process γ = 0.5 → 0 is again very similar to either Figure 1 or 9. The only difference from Figure 6
is that the process does actually equilibrate to a stationary solution now, as given by Equation (12).
The reverse process γ = 0→ 0.5 is rather different though. The initial central peak now broadens far
more than previously seen in Figures 1 and 9.
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Figure 10. (a) the result of switching γ = 0.5→ 0, (b) γ = 0→ 0.5, both at fixed ε = 1, D = 10−3 and
Q = 10−5. The initial (red) and final (blue) gamma distributions are shown as heavy lines. The four
intermediate lines are when the time-dependent solutions have 〈x〉 = 0.1, 0.2, 0.3, 0.4. L∞ = 35 on the
left and 9.5 on the right.
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One interesting consequence of this extreme broadening for γ = 0→ 0.5 is on the total information
length L∞. In Figure 9, these values are 25 and 16, respectively, whereas in Figure 10, they are 35
and 9.5. That is, in both cases, decreasing γ yields larger L∞ values than increasing γ does, consistent
with the peaks being narrower, hence passing through more statistically-distinguishable states. Next,
comparing L∞ = 25 for γ = 0.5 → 0.1 versus 35 for γ = 0.5 → 0, this is exactly as one might
expect: having the peak travel somewhat further yields extra information length. However, comparing
L∞ = 16 for γ = 0.1→ 0.5 versus 9.5 for γ = 0→ 0.5 is puzzling then. The peak has further to travel,
but accomplishes it with less information length. The reason is precisely this extreme broadening,
which substantially reduces the number of distinguishable states along the way. See also [40,41],
where the same effect was studied for Gaussian PDFs and values of D as small as 10−7, leading to
fundamentally different scalings of L∞ with D for inward and outward processes.

Returning to the central question of this paper, namely how close the time-dependent PDFs are to
gamma distributions, the results for Figure 9 are similar to the previous ones. In particular, we recall
that before in Figure 5, we had the difference scaling as D1/2, so a smaller D here means a smaller
difference. These results are approaching the small D regime where gamma distributions become very
close to Gaussians anyway, which generally remain close to Gaussian as they move.

However, for the γ = 0→ 0.5 process in Figure 10, the intermediate stages do not look much like
gamma distributions (the final equilibrium is indistinguishable from a gamma distribution though,
consistent with Q being completely negligible for these values of x). For the intermediate stages, these
were found to be so different from gamma distributions that attempting to fit a gamma distribution
having the same 〈x〉 and σ made little sense; this extreme broadening and long tail trailing behind the
peak meant that both 〈x〉 and σ were too different from the normal expectation that they should be
measures of ‘peak’ and ‘width’.

Instead, we simply asked the question, which values of a and b would minimize the quantity∫
|p− pbf| dx, where p is the time-dependent PDF to be fitted and pbf is the best-fit gamma distribution.

Unlike our previous difference formula, this does not yield simple analytic formulas for the a and b to
choose, but is numerically still straightforward to implement. Figure 11 shows the results, for two of
the intermediate stages in the γ = 0→ 0.5 process. We can see that the fit is rather poor, indicating
that these PDFs are significantly different from gamma distributions.

This misfit is also not caused by the inclusion of Q; if this or any similar central peak is evolved for
either small or zero Q in the Fokker–Planck equation, the result is always similar to here. As explained
also in [40,41], the dynamics of how central peaks move away from the origin is simply different from
how peaks already away from the origin move, regardless of whether the final states are Gaussians as
in [40,41] or gamma distributions as here.
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Figure 11. The γ = 0 → 0.5 process as in Figure 10, but now shown in more detail. The dashed
(magenta) curves are the gamma distributions that best fit the two thicker curves at intermediate times.
Note how even a “best-fit” is a rather poor approximation to the actual PDFs.
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5. Conclusions

Gamma distributions are among the most popular choices for modelling a broad range of
experimentally-determined PDFs. It is often assumed that time-dependent PDFs can then simply
be modelled as gamma distributions with time-varying parameters a and b. In this work, we have
demonstrated that one should be cautious with such an approach. By numerically solving the full
time-dependent Fokker–Planck equation, we found that there are three sets of circumstances where
the PDFs can differ significantly from gamma distributions:

• If D < γ, so that stationary solutions exist, but D is also sufficiently close to γ that a gamma
distribution differs significantly from a Gaussian, then the time-dependent PDFs will also differ
significantly from gamma distributions.

• If D > γ, stationary gamma distributions do not exist at all. Instead, peaks move ever closer to
the origin and in the process increasingly differ from gamma distributions.

• If the initial condition is a peak right on the origin—either as a result of adding additive noise to
produce stationary solutions even for D > γ, or simply as an arbitrary initial condition—then
any evolution away from the origin will differ significantly from gamma distributions. Unlike
the previous two items, which become more pronounced for larger D, this effect is most clearly
visible for smaller D, where the mismatch between the naturally narrower peaks and the extreme
broadening seen in Figure 11 becomes increasingly significant.

In summary, our results show that a simple Langevin equation model mimics the strong
fluctuations of far-from-equilibrium systems. This model has gamma distributions as steady-state
solutions, but the time-dependent solutions can deviate considerably from this law. This makes
tasks such as Bayesian and frequentist inference of the model from data more complicated. On the
other hand, the model shows complex asymptotic dynamics with situations when a steady state is
reached or not, different from the one of the deterministic logistic model that invariably evolves to
the maximum capacity. The studied model is general enough and can be applied to many practical
situations in biology, economics, finance and physics. Future work will apply some of these ideas to
fitting actual data.
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Appendix A. Derivation of the Fokker–Planck Equations

In order to derive the Fokker–Planck Equation (3) from the Langevin Equation (1), it is useful to
introduce a generating function Z:

Z = eiλx(t). (A1)

Then, by definition of ‘average’, the average of Z is related to the PDF, p(x, t), as:

〈Z〉 =
∫

dx Z p(x, t) =
∫

dx eiλx(t) p(x, t). (A2)

Thus, we see that 〈Z〉 is the Fourier transform of p(x, t). The inverse Fourier transform of 〈Z〉 then
gives p(x, t):

p(x, t) =
1

2π

∫
dλ e−iλx 〈Z〉. (A3)

We note that Equation (A3) can be written as:

p(x, t) =
〈

1
2π

∫
dλ eiλ(x−x(t))

〉
= 〈δ(x− x(t))〉 , (A4)
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which is another form of p(x, t). To obtain the equation for p(x, t), we first derive the equation for 〈x〉
and then take the inverse Fourier transform as summarised in the following.

We differentiate Z with respect to time t and use Equation (1) to obtain:

∂tZ = iλ∂txZ = iλ(γx− εx2 + ξ(t)x)Z = λ [γ∂λ + iε∂λλ + ξ∂λ] Z, (A5)

where xZ = −i∂λZ was used. The formal solution to Equation (A5) is:

Z(t) = λ
∫

dt1 [γ∂λ + iε∂λλ + ξ(t1)∂λ] Z(t1). (A6)

The average of Equation (A5) gives:

∂t〈Z〉 = λ(γ∂λ + iε∂λλ)〈Z〉+ λ〈ξ(t)∂λZ(t)〉. (A7)

To find 〈ξ(t)∂λZ(t)〉, we use Equation (A6) iteratively as follows:

〈ξ(t)∂λZ〉 =

〈
ξ(t)∂λ

[
λ
∫

dt1 [γ∂λ + iε∂λλ + ξ(t1)∂λ] Z(t1)

]〉
= 〈ξ(t)〉∂λ

[
λ
∫

dt1 [γ∂λ + iε∂λλ] 〈Z(t1)〉
]
+ ∂λ

[
λ
∫

dt1 〈ξ(t)ξ(t1)〉∂λ〈Z(t1)〉
]

= ∂λ

[
λ [D∂λ〈Z(t)〉]

]
. (A8)

Here, we used the independence of ξ(t) and Z(t1) for t1 < t, 〈ξ(t)Z(t1)〉 = 〈ξ(t)〉〈Z(t1)〉 = 0, together
with Equation (2),

∫ t
0 dt1 δ(t− t1) = 1/2, and 〈ξ〉 = 0. By substituting Equation (A8) into Equation (A7),

we obtain:
∂t〈Z〉 = λ(γ∂λ + iε∂λλ)〈Z〉+ λ∂λ

[
λ [D∂λ〈Z(t)〉]

]
. (A9)

The inverse Fourier transform of Equation (A9) then gives us:

∂

∂t
p(x, t) = − ∂

∂x

[
(γx− εx2)p(x, t)

]
+ D

∂

∂x

[
x

∂

∂x

[
x p(x, t)

]]
(A10)

which is Equation (3). Specifically, the inverse Fourier transforms of the first and last terms in
Equation (A9) are shown explicitly in the following:

1
2π

∫
dλ e−iλx〈∂tZ〉 = ∂t

[
1

2π

∫
dλ e−iλx〈Z〉

]
=

∂

∂t
p(x, t), (A11)

D
2π

∫
dλ e−iλxλ∂λ [λ∂λ〈Z〉] = D

∂

∂x

[
x

∂

∂x

[
x p(x, t)

]]
, (A12)

where integration by parts was used twice in obtaining Equation (A12). The additional Q∂xx p term in
the Fokker–Planck Equation (11) can be derived in the same way.

Appendix B. Time-Dependent Analytical Solutions of Equation (3)

We begin by making the change of variables y = 1/x in Equation (1) to obtain:

dy
dt

= −(γ + ξ)y + ε. (A13)

By using the Stratonovich calculus [2,3,38], the solution to Equation (A13) is found as:

y(t) = y0e−(γt+B(t)) + εe−(γt+B(t))
∫ t

0
dt1e(γt1+B(t1)), (A14)
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where y0 = y(t = 0) and B(t) =
∫ t

0 dt1 ξ(t1) is the Brownian motion. Therefore,

x(t) =
x0eγt+B(t)

1 + εx0
∫ t

0 dt1e(γt1+B(t1))
, (A15)

where x0 = x(t = 0). In Equation (A15), eB(t) is the geometric Brownian motion while e−γt−B(t)

is the geometric Brownian motion with a drift (e.g., [2]). The time integral of the latter is used in
understanding stochastic processes in financial mathematics and many other areas [49,50]. In particular,
in the long time limit, its PDF can be shown to be a gamma distribution. However, this PDF of x is not
particularly useful as it involves complicated summations and integrals that cannot be evaluated in
closed form [49,50].
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Abstract: We present a systematic coarse-graining (CG) strategy for many particle molecular systems
based on cluster expansion techniques. We construct a hierarchy of coarse-grained Hamiltonians with
interaction potentials consisting of two, three and higher body interactions. In this way, the suggested
model becomes computationally tractable, since no information from long n-body (bulk) simulations
is required in order to develop it, while retaining the fluctuations at the coarse-grained level.
The accuracy of the derived cluster expansion based on interatomic potentials is examined over a
range of various temperatures and densities and compared to direct computation of the pair potential
of mean force. The comparison of the coarse-grained simulations is done on the basis of the structural
properties, against detailed all-atom data. On the other hand, by construction, the approximate
coarse-grained models retain, in principle, the thermodynamic properties of the atomistic model
without the need for any further parameter fitting. We give specific examples for methane and ethane
molecules in which the coarse-grained variable is the centre of mass of the molecule. We investigate
different temperature (T) and density (ρ) regimes, and we examine differences between the methane
and ethane systems. Results show that the cluster expansion formalism can be used in order to
provide accurate effective pair and three-body CG potentials at high T and low ρ regimes. In the
liquid regime, the three-body effective CG potentials give a small improvement over the typical pair
CG ones; however, in order to get significantly better results, one needs to consider even higher
order terms.

Keywords: cluster expansions; PMF calculations; systematic coarse-graining; three-body
effective potential

1. Introduction

The theoretical study of complex molecular systems is a very intense research area due to both
basic scientific questions and technological applications [1]. A main challenge in this field is to
provide a direct quantitative link between the chemical structure at the molecular level and measurable
macroscopic quantities over a broad range of length and time scales. Such knowledge would be
especially important for the tailored design of materials with the desired properties, over an enormous
range of possible applications in nano-, bio-technology, food science, drug industry, cosmetics, etc.

A common characteristic of all complex fluids is that they exhibit multiple length and time
scales. Therefore, simulation methods across scales are required in order to study such systems.
On the all-atom-level description, classical atomistic models have successfully been used in
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order to quantitatively predict the properties of molecular systems over a considerable range of
different thermodynamic conditions [1–4]. However, due to the broad spectrum of characteristic
lengths and times involved in complex molecular systems, it is desirable to reduce the required
computational cost by describing the system through a small number of degrees of freedom. Thus,
coarse-grained (CG) models have been used in order to increase the length and time scales accessible by
simulations [1,3,5–22].

From a mathematical point of view, coarse-graining is a sub-field of dimensionality reduction;
there are several statistical methods for the reduction of the degrees of freedom under consideration
in a deterministic or stochastic model, such as principal component analysis, polynomial chaos and
diffusion maps [4,20]. Here, we focus our discussion on CG methods based on a combination of
recent computational methods and old theoretical tools from statistical mechanics. Such CG models,
which are developed by lumping groups of atoms into CG particles and deriving the effective CG
interaction potentials directly from more detailed (microscopic) simulations, are capable of predicting
quantitatively the properties of specific molecular systems (see, for example, [5–9,11–13,15,17–19,23–25]
and the references therein).

The most important part in all systematic CG models, based on detailed atomistic data, is to
develop rigorous all-atom to CG methodologies that allow, as accurate as possible, estimation of the
CG effective interaction. With such approaches, the combination of atomistic and hierarchical CG
models could allow the study of specific molecular systems without adjustable parameters and by
that become truly predictive [11,14,15]. There exists a variety of methods that construct a reduced
CG model that approximates the properties of molecular systems based on statistical mechanics.
For example:

(a) In structural, or correlation-based, methods, the main goal is to find effective CG potentials
that reproduce the pair radial distribution function g(r), and the distribution functions of
bonded degrees of freedom (e.g., bonds, angles, dihedrals) for CG systems with intramolecular
interaction potential [6,7,9,10,21,22]. The CG effective interactions in such methods are obtained
using the direct Boltzmann inversion, or reversible work, method [10,26–28], or iterative
techniques, such as the iterative Boltzmann inversion (IBI) [7,29] and the inverse Monte
Carlo (IMC); or inverse Newton approach [22,30].

(b) Force matching (FM) or multi-scale CG (MSCG) methods [5,14,16,31–33] comprise a mean least
squares problem that considers as the observable function the total force acting on a coarse bead.

(c) The relative entropy (RE) [8,18,34] method employs the minimization of the relative entropy, or
Kullback–Leibler divergence, between the microscopic Gibbs measure μ and μθ , representing
approximations to the exact coarse space Gibbs measure. In this case, the microscopic
probability distribution can be thought of as the observable. The minimization of the relative
entropy is performed through Newton–Raphson approaches and/or stochastic optimization
techniques [19,35].

In practice, all of the above numerical methods are employed to approximate a many body
potential of mean force (PMF), UPMF, describing the equilibrium distribution of CG particles observed
in simulations of atomically-detailed models. Besides the above numerical parametrization schemes,
more analytical approaches have also been developed for the approximation of the CG effective
interaction, based on traditional liquid state theory and on pair correlation functions [36–43]. In these
methods, in order to account for the many-body contributions (from the higher order terms), a closure
scheme is performed. However, although these methods do perform well in some cases, there
is no rigorous quantification of the closure error in the corresponding diagrammatic expansions;
see [44,45]. The closures take into account some diagrams from all orders in the expansions (and
hence, can potentially give good approximations in the liquid state), but the sum of the neglected
terms (i.e., the error) has not been quantified. The quantification of these terms is a challenging open
problem, both from a theoretical point of view due to the complicated combinatorial structure, as well
as from the computational one since it involves many-body interactions. Hence, a common idea in
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all methods is to reduce this complexity. We also refer to [46], where simplifications are produced by
considering the infinite dilution limit.

Here, we discuss an approach for estimating UPMF, and the corresponding effective CG
non-bonded potential, based on cluster expansion methods. Such methods originate from the works
of Mayer and collaborators [47] in the 1940s. In the 1960s, numerous approximate expansions
had been further developed [44,48,49] for the study of the liquid state. We also refer to the later
textbook [50]. Later, with the advancement of powerful computational machines, the main focus
has been directed on improving the computational methods such as Monte Carlo and molecular
dynamics. However, the latter are mostly bulk calculations, and they become quite slow for large
systems. Reducing the degrees of freedom by coarse-graining has been a key strategy to construct more
efficient methods, but with many open questions with respect to the error estimation, transferability
and adaptivity of the suggested methods. Based on recent developments of the mathematical theory of
expansion methods in the canonical ensemble [51], our purpose is to combine the two approaches and
obtain powerful computational methods, whose error compared to the target atomistic calculations
can be quantified via rigorous estimates. In principle, the validity of these methods is limited to the gas
regime. Here, we examine the accuracy of these methods in different state points. This attempt consists
of the following: a priori error estimation of the approximate schemes depending on the different
regimes, a posteriori error validation of the method from the coarse-grained data and the design of
related adaptive methods. We note that our suggested approach is a bottom up methodology, in the
sense that we directly sample the CG effective potential based on atomistic simulations of only a few
particles, instead of matching average forces or equilibrium quantities of larger n-body (bulk) systems,
as in (a)–(c). By construction, the effective potential is independent of the density ρ, but naturally,
it depends on the number of hierarchy terms in each computation, as well as on the temperature.
Furthermore, in each regime, different expansions might be appropriate. Note that density-dependent
CG effective interaction potentials, which are often used in the literature, are a non-systematic way to
account for the many-body interactions [52].

In previous years, we have developed CG models, based on cluster expansions, for lattice systems,
obtaining higher order schemes and a posteriori error estimates [53], for both short- and long-range
interactions [54] and designing adaptive methods [55] and investigating possible strategies for
reconstruction of the atomistic information [56]. This is very much in the spirit of the polymer science
literature [10,11,57], and in this paper, we get closer by considering off-lattice models. The proposed
approach is based on typical schemes that are based on isolated molecules [26,27,58]. Here, we
extend such approaches using cluster expansion tools for deriving CG effective potentials. We start
from the typical two-body (pair) effective interaction, but some results can be extended to many-body
interactions, as well. We also present a detailed theoretical investigation about the effect of higher order
terms in obtaining CG effective interaction potentials for realistic molecular systems. In the present
work, we focus on two prototypical examples of molecular systems, one with spherical symmetry
(methane) and one without (ethane). In future work, we will extend these results to longer molecules,
not necessarily with spherical symmetry. We show some first results from the implementation of
three-body terms on the effective CG potential; a more detailed work on the higher order terms will be
given in a forthcoming work [59].

The structure of the paper is as follows: In Section 2, we introduce the atomistic molecular system
and its coarse-graining via the definition of the CG map, the n-body distribution function and the
corresponding n-body potential of mean force. The cluster expansion-based formulation of the CG
effective interaction is presented in Section 3. Details about the model systems (methane and ethane)
and the simulation considered here are discussed in Section 4. Results are presented in Section 5;
we briefly discuss the three-body case in Section 6. Finally, we close with Section 7 summarizing the
results of this work.
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2. Molecular Models

2.1. Atomistic and “Exact” Coarse-Grained Description

Here, we give a short description of the molecular model in the microscopic (all-atom) and
mesoscopic (coarse-grained) scale. Assume a system of N (classical) atoms (or molecules) in a box
Λ(�) := (− �

2 , �
2 ]

d ⊂ Rd (for some � > 0), at temperature T. We will also denote the box by Λ when
we do not need to make explicit the dependence on �. We consider a configuration q ≡ {q1, . . . , qN}
of N atoms, where qi is the position of the i-th atom. The particles interact via a pair potential
V : Rd → R ∪ {∞}, for which we assume the standard conditions of stability and temperedness;
namely, that there exists a constant B ≥ 0 such that: ∑1≤i<j≤N V(qi − qj) ≥ −BN for all N and all
q1, ..., qN and that C(β) :=

∫
Rd |e−βV(r) − 1|dr < ∞, where β = 1

kBT and kB is the Boltzmann’s constant.
The canonical partition function of the system is given by:

Zβ,Λ,N :=
1

N!

∫
ΛN

dq1 . . . dqN e−βHΛ(p,q), (1)

where HΛ is the Hamiltonian (total energy) of the system confined in a domain Λ:

HΛ(p, q) :=
N

∑
i=0

p2
i

2m
+ U(q). (2)

By U(q), we denote the total potential energy of the system, which for pair type potentials is:

U(q) := ∑
1≤i<j≤N

V(qi − qj), (3)

where, for simplicity, we assume periodic boundary conditions on Λ. Integrating over the momenta
in (1), we get:

Zβ,Λ,N =
λN

N!

∫
ΛN

dq1 . . . dqN e−βU(q) =: λN ZU
β,Λ,N , (4)

where λ := ( 2mπ
β )d/2. In the sequel, for simplicity, we will consider λ = 1 and identify Zβ,Λ,N ≡ ZU

β,Λ,N .
Fixing the positions q1 and q2 of two particles, we define the two-point correlation function:

ρ
(2),at
N,Λ (q1, q2) :=

1
(N − 2)!

∫
dq3 . . . dqN

1
Zβ,Λ,N

e−βU(q). (5)

It is easy to see that in the thermodynamic limit, the leading order is ρ2, where ρ = N
|Λ| , and |Λ|

is the volume of the box Λ. Thus, it is common to define the following order one quantity
g(r) := 1

ρ2 ρ
(2),at
N,Λ (q1, q2), for r = |q1 − q2|. More generally, for n ≤ N, we define the n-body version:

g(n)(q1, . . . , qn) =
1

(N − n)!ρn

∫
ΛN−n

dqn+1 . . . dqN
1

Zβ,Λ,N
e−βU(q), (6)

and from that, the order n potential of mean force (PMF), UPMF(q1, . . . , qn)[60,61], given by:

UPMF(q1, . . . , qn) := − 1
β

log g(n)(q1, . . . , qn). (7)

We define the coarse-graining map T : (Rd)N → (Rd)M on the microscopic state space, given by
T : q �→ T(q) ≡ (T1(q), . . . , TM(q)) ∈ RM, which determines the M (M < N) CG degrees of freedom
as a function of the atomic configuration q. We call “CG particles” the elements of the coarse space
with positions r ≡ {r1, . . . , rM}. We further define the effective CG potential energy by:
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Ueff(r1, . . . , rM) := − 1
β

log
∫
{Tq=r}

dq1 . . . dqN e−βU(q), (8)

where the integral is over all atomistic configurations that correspond to a specific CG one using the
coarse-graining map. Note that Ueff is in practice equivalent, up to a constant, to the (conditional) PMF.
In the example we will deal with later, the configuration r will represent the centres of mass of groups
of atomistic particles. This coarse-graining gives rise to a series of multi-body effective potentials of
one, two, up to M-body interactions, which are unknown functions of the CG configuration. Note also
that by the construction of the CG potential in (8), the partition function is the same:

Zβ,Λ,N =
∫

dr1 . . . drM

∫
{Tq=r}

dqe−βU(q) =
∫

dr1 . . . drMe−βUeff(r1,...,rM) =: Zcg
β,Λ,M. (9)

The main purpose of this article is to give a systematic way (via the cluster expansion method)
of constructing controlled approximations of Ueff that can be efficiently computed, and at the same
time, we have a quantification of the corresponding error for both “structural” and “thermodynamic”
quantities. By structural, we refer to g(r), while by thermodynamic to the pressure and the free
energy. Note that both depend on the partition function, but they can also be related [61] to each other
as follows:

βp = ρ− β

6
ρ2
∫ ∞

0
ru′(r)g(r)4πr2dr, (10)

for the general case of pair-interaction potentials u(r).

2.2. Coarse-Grained Approximations

As mentioned above, there are several methods in the literature that give approximations to the
effective (CG) interaction potential Ueff as defined in (8). Below, we list some of them without the claim
of being exhaustive:

(a) The correlation-based (e.g., DBI, IBI and IMC) methods that use the pair radial distribution
function g(r), related to the two-body potential of mean force for the intermolecular interaction
potential, as well as distribution functions of bonded degrees of freedom (e.g., bonds,
angles, dihedrals) for CG systems with intramolecular interaction potential [6,7,9,10,21,22].
These methods will be further discussed below.

(b) Force matching (FM) methods [5,16,31] in which the observable function is the average force
acting on a CG particle. The CG potential is then determined from atomistic force information
through a least-square minimization principle, to variationally project the force corresponding to
the potential of mean force onto a force that is defined by the form of the approximate potential.

(c) Relative entropy (RE)-type [8,18,19] methods that produce optimal CG potential parameters by
minimizing the relative entropy, Kullback–Leibler divergence between the atomistic and the CG
Gibbs measures sampled by the atomistic model.

In addition to the above numerical methods, analytical works for the estimation of the effective
CG interaction, based on integral equation theory, have also been developed for polymers and polymer
blends [40,42]. A brief review and categorization of parametrization methods at equilibrium is given
in [17,62].

The correlation-based iterative methods use the fact that for a pair interaction u(r), by plugging
the virial expansion of p in powers of ρ into (10) and comparing the orders of ρ, one obtains that [61]:

g(r) = e−βu(r)γ(r), where γ(r) = 1 + c1(r)ρ + c2(r)ρ2 + . . . (11)

Given the atomistic “target” g(r) from a free (i.e., without constraints) atomistic run, by inverting (11)
and neglecting the higher order terms of γ(r), one can obtain a first candidate for a pair coarse-grained
potential u(r). Then, one calculates the g(r) that corresponds to the first candidate and by iterating
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this procedure eventually obtains the desired two-body coarse-grained potential. This scheme is based
on the theorem that if there exists a pair CG interaction that reproduces the target g(r), this is unique
[63]. However, this is only an approximation (accounting for the neglected terms of order ρ and higher
in the expansion of γ(r)) since we know that the “true” CG interaction potential should be multi-body,
as a result of integrating atomistic degrees of freedom. Hence, having agreement on g(r), within
numerical accuracy, does not secure proper thermodynamic behaviour, and several methods have
been employed towards this direction; see, for example, [7,40,52] and the references within.

In order to maintain the correct thermodynamic properties, our approach in this paper is based
on cluster expanding (8) with respect to some small, but finite parameter ε depending on the regime in
which we are interested. For technical reasons we will focus here on the low density-high temperature
regime. However, the cluster expansion is a perturbative method that can in principle be applied to
other regimes once the appropriate target system is identified. For example, we refer to [53] where
similar perturbations around mean field models for lattice systems have been implemented. In that
case, the validity of the expansion can go beyond the usual high temperature regime. Extending
this result to off-lattice systems, as is the case here, is more complicated, and we leave it for future
investigation. As will be explained in detail in the next section, the resulting cluster expansion provides
us with a hierarchy of terms. Uniformly in r ≡ r1, . . . , rM, we have:

Ueff(r) = U(2)(r) + O(ε2), or Ueff(r) = U(2)(r) + U(3)(r) + O(ε3),

U(2)(r) := ∑
i,j

W(2)(ri, rj), U(3)(r) := ∑
i,j,k

W(3)(ri, rj, rk), etc., (12)

together with the corresponding error estimates. Note that a precise choice of the error quantity ε,
depending on the density and the temperature, will be given in Section 3.

The above terms can in principle be calculated independently via fast atomistic simulations of 2,
3, etc., molecules, in the spirit of the conditional reversible work (CRW) method [13,27,28,58]. In more
detail, the effective non-bonded (two-body) CG potential can be computed as follows:

(a) One method is by fixing the distance r1,2 := r1 − r2 between two molecules and performing
molecular dynamics with such forces that maintain the fixed distance r1,2. In this way,
we sample atomistic potential energy (and forces) over the constrained phase space and
obtain the conditional partition function as the integral in (8). Alternatively, by integration
of the constrained force (−

∫ rcut
rmin
〈 f 〉r1,2=RdR), the two-body effective potential can be obtained.

These are the W(2),full,U and W(2),full,F terms, respectively. Note that we have not used any kind
of fitting or projection over a basis as in [64,65]; the data are in tabulated form.

(b) Upon inverting g(r) in (11) for two isolated molecules, the two-body effective potential can be
directly obtained, since for such a system, γ(r) = 1; i.e., the low ρ regime. This method is only
used for comparison with (a)as it uses the g(r).

Here, we examine both of the above methods; see Section 5.1. Note also that the validity of
cluster expansion provides rigorous expansions for g(r), the pressure and the other relevant quantities.
Hence, with this approach, we can have a priori estimation of the errors made in (11). Another
benefit of the cluster expansion is that the error terms can be written in terms of the coarse-grained
quantities allowing for a posteriori error estimates and the design of adaptive methods [55]; see also
the discussion in Section 7.

2.3. Thermodynamic Consistency

As already mentioned, several coarse-graining strategies lack thermodynamic consistency; see
also the discussion by Louis [46] and Guenza [40], where thermodynamically-consistent theories
have been developed based on the standard closures of the liquid state theory. However, as the error
in these closures has not been rigorously quantified, we first investigate here a much simpler case;
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namely, what is the contribution of the three-body terms in approximating thermodynamic quantities
in the regimes where the cluster expansion can be valid. Hence, defining the coarse-graining as
in (12), we demonstrate below that these approximations directly imply similar approximations for
thermodynamic quantities, such as the free energy and the pressure, and we also comment on the
isothermal compressibility. This is a direct consequence of the validity of the cluster expansions. Thus,
from (12), by considering only the two-body contribution, for the finite volume free energy fβ,Λ(N),
we have that:

fβ,Λ(N) = − 1
β|Λ| log Zβ,Λ,N =

∫
dre−βUeff(r) = − 1

β|Λ| log
∫

dre−βU(2)(r) + O(ε2), (13)

where the error is uniform in N and |Λ|. Thus, the approximation U(2) of the CG Hamiltonian implies
a good approximation of the free energy. By adding the next order contribution of the three-body
terms U(3), we can further improve the error in computing the free energy and obtain that:

− 1
β|Λ| log Zβ,Λ,N = − 1

β|Λ| log
∫

dre−β(U(2)(r)+U(3)(r)) + O(ε3). (14)

Note once again that these estimates are valid only in the low density regime where these expansions
are justified.

Similarly, in order to construct approximations for the thermodynamic pressure (at finite volume)
pβ,Λ(z) as a function of the activity z, we work in the grand-canonical ensemble and obtain:

pβ,Λ(z) =
1

β|Λ| log ∑
N≥0

zN Zβ,Λ,N =
1

β|Λ| log ∑
N≥0

zN
∫

dre−βU(2)(r) + O(ε2). (15)

Both quantities have limits given by absolutely convergent series with respect to ρ = N/|Λ| for the
first and z or ρ for the second.

In the same spirit, good approximations to the atomistic (full) partition function can give
controlled approximations for other thermodynamic quantities, as well. For example, the isothermal
compressibility can be related to the variance in the number of particles, which, in turn, can be
expressed in terms of the derivative of the density with respect to the chemical potential (in the grand
canonical ensemble). Since the density is again expressed in terms of the derivative of the logarithm of
the partition function, our suggested method is also applicable here. All further manipulations needed
to arrive at an expansion for the isothermal compressibility; namely, taking derivatives, as well as
inverting series, can be made rigorous in the framework of the cluster expansion, but a full analysis
of this and similar cases of other thermodynamic quantities is beyond the scope of the present work,
so we just refer to [45] for an analysis in this direction.

3. Cluster Expansion

The cluster expansion method originates from the work of Mayer and collaborators (see [47] for
an early review) and consists of expanding the logarithm of the partition function in an absolutely
convergent series of an appropriately chosen small, but finite parameter. Here, we will adapt this
method to obtain an expansion of the conditional partition function and consequently the desired
many-body PMF.

For the purpose of this article, we assume that the CG map T is a product T = ⊗M
i=1Ti creating

M groups of l1, . . . , lM particles each (e.g., centre of mass mapping). We index the particles in the i-th
group of the coarse-grained variable ri by ki

1, . . . , ki
li
. We also denote them by qi := (qki

1
, . . . , qki

li
), for

i = 1, . . . , M. Then, (8) can be written as:

Ueff(r1, . . . , rM) := − 1
β

log
M

∏
i=1

λi({Tiqi = ri})−
1
β

log
∫ M

∏
i=1

μ(dqi; ri)e−βU(q), (16)
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where, for simplicity, we have introduced the normalized conditional measure, related to the specific
CG map:

μ(dqi; ri) :=
1
li!

dqki
1

. . . dqki
li

1{Tiqi=ri}
λi({Tiqi = ri})

, (17)

and by λi, we denote the measure 1
li !

dqki
1

. . . dqki
li

.

To perform a cluster expansion in the second term of (16), we rewrite the interaction potential as
follows:

U(q) = ∑
i<j

V̄(qi, qj), where

V̄(qi, qj) :=
li

∑
m=1

lj

∑
m′=1

V(|qki
m
− q

kj
m′
|).

(18)

Then, letting fi,j(q
i, qj) := e−βV̄(qi ,qj) − 1, we have:

e−βU(q) = ∏
i<j

(
1 + e−βV̄(qi ,qj) − 1

)
= ∑

V1,...,Vm
|Vi |≥2,Vi⊂{1,...,N}

m

∏
l=1

∑
g∈CVl

∏
{i,j}∈E(g)

fi,j(q
i, qj), (19)

where for V ⊂ {1, . . . , N}, we denote by CV the set of connected graphs on the set of vertices with
labels in V. Furthermore, for g ∈ CV , we denote by E(g) the set of its edges.

Since μ in (17) is a normalized measure, from (16), we obtain:

Ueff(r1, . . . , rM) =− 1
β

log
M

∏
i=1

λi({Tiqi = ri})−
1
β

log ∑
V1,...,Vm

|Vi |≥2,Vi⊂{1,...,N}

m

∏
l=1

ζ(Vi)

=− 1
β

log
M

∏
i=1

λi({Tiqi = ri})−
1
β ∑

V⊂{1,...,N}
ζ(V) +

1
β ∑

V,V′ :
V∩V′=∅

ζ(V)ζ(V′) + . . . ,

(20)

where:
ζ(V) :=

∫
∑

g∈CV

∏
{i,j}∈E(g)

fi,j(q
i, qj) ∏

i∈V
μ(dqi; ri) (21)

is a function over the atomistic details of the system. Note that the above expression involves a sum
over all possible pairs, triplets, etc., which is a convergent series for the values of the density ρ = N

|Λ|
and of the inverse temperature β such that ρC̄β(r) < c0, where C̄β(r) :=

∫
| fi,j(q

i, qj)|μ(dqi; 0)μ(dqi; r)
and c0 is a known small positive constant [51]. Here, we do not give the full proof, which can be
easily obtained by a slight modification of the one in [51], but in order to motivate the error estimates
in (12), we note that the sum over triplets will give a contribution of the order (N

3 )#{trees on 3 labels}
1
|Λ|3 C̄β(r)2 ∼ ρ(ρC̄β(r))2, i.e., here, ε ∼ ρC̄β(r). If we simplify the sum in (20), one can obtain [51]
Expansion (12), where:

W(2)(r1, r2) := − 1
β

∫
μ(dq1; r1) μ(dq2; r2) f1,2(q

1, q2) (22)

and:

W(3)(r1, r2, r3) := − 1
β

∫
μ(dq1; r1) μ(dq2; r2) μ(dq3; r3) f1,2(q

1, q2) f2,3(q
2, q3) f3,1(q

3, q1). (23)

Recall also the definition of fi,j in (19).
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3.1. Full Calculation of the PMF

Notice that the potentials W(2) and W(3) in (22) and (23), respectively, have been expressed via
the Mayer functions fi,j. However, the full effective interaction potential between two CG particles can
be directly defined as the (conditional) two-body PMF given by:

W(2),full(r1, r2) := − 1
β

log
∫

μ(dq1; r1) μ(dq2; r2) e−βV̄(q1,q2). (24)

By adding and subtracting one and expanding the logarithm, we can relate it to (22):

−βW(2),full(r1, r2) = log
∫

μ(dq1; r1)μ(dq2; r2)e−βV̄(q1,q2)

= log(1 +
∫

μ(dq1; r1)μ(dq2; r2) f1,2(q
1, q2))

=
∫

μ(dq1; r1) μ(dq2; r2) f1,2(q
1, q2)− 1

2
(∫

μ(dq1; r1) μ(dq2; r2) f1,2(q
1, q2)

)2
+ . . .

(25)

Higher order terms in the above equation are expected to be less/more important in high/low temperature.
Similarly, for three CG degrees of freedom r1, r2, r3, the full PMF is given by:

W(3),full(r1, r2, r3) := − 1
β

log
∫

μ(dq1; r1) μ(dq2; r2)μ(dq3; r3) e−β ∑1≤i<j≤3 V̄(qi ,qj). (26)

By adding and subtracting one, we can relate it to (22) and (23) (in the following, we simplify notation
by not explicitly showing the dependence on the atomistic configuration and neglecting the normalized
conditional measure):

e−βW(3),full
=
∫

e−(V12+V13+V23)

=1 +
∫

f12 +
∫

f13 +
∫

f23 +
∫

f12 f13 +
∫

f13 f23 +
∫

f12 f23 +
∫

f12 f23 f13,
(27)

which implies that:

W(3),full = − 1
β

(∫
f12 +

∫
f13 +

∫
f23 +

∫
f12 f23 f13 +

∫
f12 f13 +

∫
f13 f23 +

∫
f12 f23−

[∫
f12

∫
f13 +

∫
f13

∫
f23 +

∫
f12

∫
f23

])
+ . . .

(28)

In principle, we can rewrite (12) with respect to W(2),full and W(3),full. Note, however, that both of
these terms contain the coarse-grained two-body interactions; hence, in order to avoid double-counting,
when we use both, we have to appropriately subtract the two-body contributions. For some related
results, see also the discussion about Figure 11.

Note finally that in the proposed approach, the hierarchy of CG effective potential (two-body,
three-body, etc.) terms is not fitted or included via some uncontrolled closure; they can be computed,
through a conditional sampling of a few (two, three, etc.) CG particles. Furthermore, our work
distinguishes from those using the standard liquid state theory also by the fact that we do not use any
simplified models (PRISM, thread model, etc.), but integrate over the atomistic degrees of freedom.

4. Model and Simulations

4.1. The Model

A main goal of this work, as mentioned before, is to examine the parameterization of a
coarse-grained model using the cluster expansion formalism described above for simple realistic
molecular systems; in this work, we study methane and ethane in various density and temperature
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regimes. We refer the reader to the Supplementary Material for the atomistic models, as well as their
coarse-graining through the cluster expansion formalism. In order to clarify the notation, we refer
to Figure 1; for the three-body clustering case, each set is composed by exactly three interacting CG
molecules (dots connected with solid lines). The centres of mass (COM) of the set i is located at ri and
associated with μ(dqi, ri).

Figure 1. Visualization of the partition in (19) for non-intersecting sets V1 = {2, 3, 4, 5}, V2 = {6, 7},
V3 = {9, 10, 11} in each of which we display by solid lines the connected graphs gi ∈ CVi , i = 1, 2, 3.

4.2. Simulations

The simplest system to simulate is the one with only two interacting methane, or ethane, molecules
in a vacuum. This is a reference system for which the many-body PMF is equal to the two-body one.
In addition, we have also simulated the corresponding systems in various densities, as well as in
the liquid regime. The atomistic and CG model methane systems were studied through molecular
dynamics and Langevin dynamics (LD) simulations. All simulations were conducted in the NVT
ensemble. For the MD simulations, the Nose–Hoover thermostat was used. Langevin dynamics
models a Hamiltonian system that is coupled with a thermostat [66]. The thermostat serves as a
reservoir of energy. The densities of both the liquid methane and ethane systems were chosen as the
average values of NPT runs at atmospheric pressure. NVT equilibration and production runs of a
few ns followed, and the sizes of the systems were 512 CH4 and 500 CH3–CH3 molecules. We note
here that the BBK integrator used for Langevin dynamics exhibits pressure fluctuations of the order of
±40 atm in the liquid phase, whereas temperature fluctuations have small variance, and the system is
driven to the target temperature much faster than with conventional MD. Long production atomistic
and CG simulations have been performed, from 10 ns up to 100 ns, depending on the system. The error
bars (computed via the standard deviation) in all reported data are about 1–2% of the actual values.
Details about the simulation parameters are shown in Table 1.

Table 1. Simulation parameters for CH4.

System N (Molecules) T/K Simulation Time/ns

CH4, CH3–CH3 2, 3 100–900 10–20
CH4 512 80, 100, 120, 300, 900 100

CH3–CH3 500 150, 300, 650 100

In order to compute the hierarchy of CG effective non-bonded potential terms, discussed above,
different simulation runs have been performed, which are discussed below.
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4.2.1. Constrained Runs

The first method that we use in order to estimate the effective CG potential is by constraining the
intermolecular distance between two molecules, r = r1,2, in order to compute the constrained partition
function (9). We call it the “constrained run” of two methane, or ethane, molecules, and special care
had to be taken in order to avoid long sampling of the low probability short distances. This notion
is similar to the free energy calculation methods in which CG degrees of freedom are constrained at
fixed distances. Technically, we pin the centres of mass (COM) of each CG particle in space, and on
every step throughout the stochastic (Langevin) dynamics trajectory, we subtract the total force acting
on each COM. Hence, we allow the atoms to move, resulting in rotations, but not translations of the
CG degrees of freedom OM. During these runs, the constraint forces are recorded. The mean value
〈F〉r12=r is calculated in the same manner, and we get W(2),full, F(r), from f = −∇W, as explained in
Section 2.2. Both W(2),full, F(r) and W(2),full, U(r) are based on the same trajectory.

The constrained run technique described above accelerates the sampling for short distances,
but there is a caveat; the ensemble average at very short distances (left part of the potential well) is
strongly affected by the geometric arrangement of specific atoms between the two molecules, and the
system might be trapped in the minimum of energy. For example, the two CH4 molecules are oriented
according to the highly repulsive forces and rotate around the axis connecting the two COMs. Due to
this specific reason, we utilized stochastic (Langevin) dynamics in order to better explore the subspace
of the phase space, as a random kick breaks this alignment. We determine the minimum amount of
steps needed for the ensemble average to converge, in a semi-empirical manner upon inspection of
the error-bars.

4.2.2. Geometric Direct Computation of PMF

In order to further accelerate the sampling and alleviate the noise problems at high energy
regions, which might become catastrophic in the case of the non-symmetric CH3–CH3 model, we have
also calculated the two-body PMF (constraint partition function) directly, through “full sampling”
of all possible configurations using a geometrical method proper for rigid bodies. In more detail,
the geometric averaged constrained two-body effective potential W(2),geom(r) given in (24) is obtained
by rotating the two (methane or ethane) molecules around their COMs, through their Eulerian angles
and taking account of all of the possible (up to a degree of angle discretization) orientations. The main
idea is to cover every possible (discretized) orientation and associate it with a corresponding weight.
The Euler angles proved to be the easiest way to implement this; each possible orientation is calculated
via a rotation matrix using three (Euler) angles in spherical coordinates.

The above way of sampling is more accurate (less noisy) than constrained canonical sampling
and considerably faster. In addition, the nature of the computations allows massive parallelization
of the procedure. We used a ZYZ rotation with dφ = dψ = dθ = π/20 for CH4 and simple spherical
coordinate sampling with dφ = π/20, dθ = π/45 for CH3–CH3 (as it is diagonally symmetric in the
united atom description). Note, however, that in this case, the molecules are treated as rigid bodies; i.e.,
bond lengths and bond angles are kept fixed; essentially, it is assumed that intra-molecular degrees of
freedom do not affect the intermolecular (non-bonded potential) ones. However, for this system, there
is no considerable difference in the resulting non-bonded effective potential. The advantage of this
method is that we avoid long (and more expensive) molecular simulations of the canonical ensemble,
which might also get trapped in local minima and inadequately sample the phase space. We should
also state that this method is very similar to the one used by McCoy and Curro in order to develop a
CH4 united-atom model from all-atom configurations [58].

All atomistic and coarse-grained simulations have been performed using a home-made simulation
package that has been extensively used in the past [62,67], whereas all analysis has been executed
through home-made codes in MATLAB and Python. In addition, long simulation runs have been
performed resulting in error bars that are of the order of the width of the lines in all figures presented
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below. Characteristic snapshots from two-body, three-body and bulk simulations are shown in Figure 2.

Figure 2. Snapshot of model systems in atomistic and coarse-grained description. (a,b) Two and
three methanes used for the estimation of the coarse-graining (CG) effective potential from isolated
molecules; (c) bulk methane liquid.

5. Results

5.1. Calculation of the Effective Two-Body CG Potential

First, we present data related to the calculation of the two-body potential of mean force for the
ideal system of two (isolated) molecules. For such a system, the conditional M-body CG PMF is a
two-body one. In Figure 3a,b, we provide data for the CG effective interaction between two methane
and ethane molecules, through the following methods:

(a) A calculation of the PMF using the constraint force approach, W(2),full, f, as described in
Section 4.2.1. Alternatively, through the same set of atomistic configurations, the two-body PMF,
W(2),full, u, can be directly calculated through Equation (24).

(b) A direct calculation of the PMF, W(2),geom, using a geometrical approach as described in
Section 4.2.2.

(c) DBI method: The CG effective potential, W(2),g(r), is obtained by inverting the pair (radial)
correlation function, g(r), computed through a stochastic LD run with only two methane
(or ethane) molecules freely moving in the simulation box. The pair correlation function, g(r),
of the two methane molecules is also shown in Figure 3a.

The first two of the above methods refer to the direct calculation of the constrained partition
function (8) with constrained forces and canonical sampling, while the third uses the “direct Boltzmann
inversion” approach. All of the above data correspond to temperatures in which both methane and
ethane are liquid at atmospheric pressure (values of −kBT are also shown in Figure 3).

First, for the case of the two methane molecules (Figure 3a), we see very good agreement between
the different methods. As expected, slightly more noisy is the W(2),full,U(r12) curve as fluctuations in the
〈e−βV(q)〉 term for a given r12 distance in Equation (24) are difficult to cancel out. The small probability
configurations in high potential energy regimes have a large impact on the average containing the
exponent; hence, the corresponding plot is not as smooth as the others are. In addition, as previously
mentioned, W(2),full, F comes from the same trajectory (run), but the integration of the 〈 f 〉r12 from
rcutoff up to r12 washes out any non-smoothness. Note that for the same system, recently CG effective
potentials based on IBI, force matching and relative entropy methods have been derived and compared
against each other [62].

Second, for the case of the two ethane molecules (Figure 3b), we see a good, but not perfect,
agreement between the different sets of data, especially in the regions of high potential energy (short
distances). This is not surprising if we consider that high energy data from any simulation technique
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that samples the canonical ensemble exhibit large error bars, due to difficulties in sampling. The latter
is more important for the ethane compared to the methane case due to its molecular structure; indeed,
the atomistic structure of methane approximates much better the spherical structure of CG particles
than ethane. The only method that provides a “full”, within the numerical discretization, sampling at
any distance is the geometric one; however, as discussed before (see Section 4), such a method neglects
the bond lengths and bond angle fluctuations.

Next, we also examine an alternative method for the computation of the effective CG potential,
by calculating the approximate terms from the cluster expansion approach. For the latter, we use
the data from the constraint runs of two methane molecules integrated over all atomistic degrees of
freedom, as given in Formula (22). In Figure 4a,b, we demonstrate the PMF through cluster expansions
and the effect of higher order terms as shown in Equation (25), of the two isolated molecules, for CH4

and CH3–CH3, respectively. As discussed in Section 3, cluster expansion is expected to be more
accurate at high temperatures and/or lower densities. For this reason, we examine both systems at
higher temperatures, than of the data shown in Figure 3; values of −kBT are shown with full lines.
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Figure 3. Representation of the two-body PMF, for two isolated molecules, as a function of distance r,
through different approximations: geometric averaging, (constrained) force matching and inversion of
g(r). (a) CH4 at T = 100 K; (b) CH3–CH3 at T = 150 K. For the methane, the corresponding g(r) curve
is also shown.

Both systems show the same behaviour. First, it is clear that the agreement between W(2) and
the (more accurate) W(2),full is very good only at long distances (not surprisingly, since the logarithm
expansion holds for every β, as V̄ → 0 in C(β)), whereas there are strong discrepancies in the regions
where the potential is minimum, as well as in the high energy regions (short distances); Second, it is
evident that adding terms up to the second order with respect to β, we obtain a better approximation
of W(2),full. All of the above suggest that geometric averaging is the most accurate and computationally
less expensive.
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Figure 4. Relation of the PMF through cluster expansions and energy averaging at high temperatures,
i.e., W(2)(r1, r2) and W(2),full(r1, r2), through expansion over β for (a) CH4 at T = 300 K; (b) CH3–CH3

at T = 650 K. As expected from the analytic form and the relation between the two formulas, W(2) and
W(2),full tend to converge to the same effective potential.

5.1.1. Effect of Temperature-Density

Next, we further examine the dependence of the PMF, for the two isolated methanes, on the
temperature, by studying the system at T = 80 K , 100 K, 120 K, 300 K and 900 K. In more detail,
in Figure 5a,b, we compare the difference between W(2) and W(2),full at different temperatures.
As discussed in Section 3, the cluster expansion method is valid only in the high temperature regime.
This is directly observed in Figure 5a; at high temperatures, W(2) is very close to W(2),full, which is
exact for the system consisting of two molecules. Note the small differences at short distances, which,
as also discussed in the previous subsection, are even smaller if higher order terms are included in the
calculation of W(2); see also Figure 4.
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Figure 5. (a) PMF through cluster expansions, using (22) and (25) for different temperatures for the CH4

model; (b) PMF through cluster expansions and energy averaging, i.e., W(2)(r1, r2) and W(2),full(r1, r2)

through expansion over β for CH4 at T = 150 K. The expansion is not valid at this temperature.

On the contrary, at low temperatures, there is a strong discrepancy around the potential well,
as shown in Figure 5b. In fact, for values of r close to the potential well and for rather high values of β,
the contribution to the integral C(β) is large, and the latter can exceed one, rendering the expansion
in (25) not valid. In Figure 5b, we see that the term (22) is not small, so the expansion (25) is not valid.
The case for ethane is qualitatively similar.

For completeness, we also plot the potential of mean force at different temperatures for the
system of two CH4 molecules; see Figure 6. In principle, Equation (22) is a calculation of free energy;
hence, it incorporates the temperature of the system, and thus, both approximations to the exact
two-body PMF, W(2) and W(2),full, are not transferable. Indeed, we observe slight differences in the
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CG effective interactions (free energies) for the various temperatures, which become larger for the
highest temperature.
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Figure 6. Potential of mean force at different temperatures (geometric averaging). Two CH4 molecules
at T = 80 K, 100 K, 300 K.

5.2. Bulk CG CH4 Runs Using a Pair Potential

In the next stage, we quantitatively examine the accuracy of the effective CG interaction potential
(approximation of the two-body PMF), in the liquid state based on structural properties like g(r).
Here, we use the different CG models (approximated pair CG interaction potentials) derived above,
to predict the properties of the bulk CG methane and ethane liquids. In all cases, we compare with
structural data obtained from the reference all-atom bulk system, projected on the CG description.

In Figure 7a,b, we assess the discrepancy between the CG (projected) pair distribution function,
g(r), taken from an atomistic run and the one obtained from the corresponding CG run based on
W(2),full, as already seen in Figure 3 of methane and ethane, respectively. Note that g(r) is directly
related to the effective CG potentials (N = 2 in Equation (6)).
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Figure 7. RDF from atomistic and CG using pair potential, W(2), for (a) CH4 at T = 80 K and
(b) CH3–CH3 at T = 150 K. Spherical CG approximation to the non-symmetric ethane molecule
induces discrepancy and implies that there is more room for improvement.

It is clear that for methane (Figure 7a), the CG model with the W(2),full potential gives a g(r) very
close to the one derived from the analysis of the all-atom data. This is not surprising if we consider
that for most molecular systems, small differences in the interaction potential lead to even smaller
differences in the obtained pair correlation function. Interestingly, the CG model with the W(2) is also
in good agreement with the reference one, despite the small differences in the CG interaction potential
discussed above (see Figures 4a and 8b). As expected, the difference comes from the missing higher
order terms of Equation (12).
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The fact that the CG effective potential, which is derived from two isolated methane molecules,
gives a very good estimate for the methane structure in the liquid state is not surprising if we consider
the geometrical structure of methane, which is rather close to the spherical one. On the contrary, for the
case of ethane (Figure 7b), predictions of g(r) using pair CG potential are much different compared to
the atomistic one, especially for the short distances. Even larger differences would be expected for
more complex systems with long-range interactions, such as water [62]. Similar is the case also for the
other temperatures (T = 80 K) studied in this work (data not shown here).
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Figure 8. RDF of methane from atomistic data and CG models using pair potential at different
temperatures: (a) T = 300 K; (b) T = 900 K. In both cases, the density is ρ1 = 0.3799 g

cm3 .

5.2.1. Effect of Temperature-Density

We further study the structural behaviour of the CG systems at different state points; i.e.,
temperature/density conditions, compared to the atomistic ones. First, we examine the temperature
effect by simulating the systems discussed above (see Figure 7) at higher temperatures; however,
keeping the same density. In Figure 8a,b, we present the RDF of methane from atomistic and CG runs
using pair potential at T = 300 K and T = 900 K respectively.

It is clear that the analysis of the CG runs using the W(2),full potential gives a pair distribution
function g(r) close to the atomistic one for both (high) temperatures, similar to the case of the T = 80 K
shown before. In addition, the CG model with the W(2) potential is in very good agreement with
the atomistic data at high temperature (Figure 8b), whereas there are small discrepancies at lower
temperatures (Figure 8a), in particular at the maximum of g(r). This is shown in the inset of Figure 8a,b.
Note also that at this high temperature, the incorporation of the higher order terms in W(2) leads to
very similar potential as the W(2),full (see also Figure 4a) and consequently to very accurate structural
g(r) data, as well.

Next, we examine the structural behaviour of the CG systems at different densities. In Figure 9a, we
present the g(r) from atomistic and CG runs using pair potential at different densities (ρ1 = 0.3799 g

cm3

and ρ2 = 0.0395 g
cm3 and T = 300 K and T = 900 K). There is apparent discrepancy from the reference

(atomistic) system in both densities in agreement with the data discussed above in Figure 8a.
For the case of higher temperature data (T = 900 K) and the same densities, as shown in Figure 9b,

the pair distribution function, g(r), obtained from the CG model with the W(2) effective interaction is
very close to the data derived from the W(2),full one, and in very good agreement with the reference,
all-atom, data. This is not surprising since, as discussed before, at high temperatures, the cluster
expansion is expected to be more accurate, since cluster expansions hold for high T and low ρ.
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Figure 9. RDF of methane from atomistic and CG using pair potential at different densities ρ1 > ρ2.
(a) T = 300K; (b) T = 900 K. For this model, the pair approximation is sufficient, and in low ρ, high T
conditions, W(2) converges to the reference g(r).

Overall, the higher the temperature, the better the agreement in the g(r) derived from the CG models
using any of W(2) and W(2),full. These data are in better agreement with the atomistic data, as well.

6. Effective Three-Body Potential

In the last part of this work, we briefly discuss the direct computation of the three-body effective
CG potential and its implementation in a (stochastic) dynamic simulation. More results about the
three-body terms will be presented in a future work [59].

6.1. Calculation of the Effective Three-Body Potential

In the following, we present data for the three-body potential of mean force estimated from
simulation runs and geometric computations involving three isolated molecules. We have two
suggestions for the three-body PMF: (a) Formula (23) derived from the cluster expansion formalism,
which is valid for rather high temperatures; (b) another one based on the McCoy–Curro scheme given
in Formula (26). Here, we present data using the latter formula, a detailed comparison of the three-body
effective potentials, W(3),full and W(3), using Formulas (23), and (26) will be given elsewhere [59].

Similarly to the two-body potential, the corresponding calculations can be performed by
constrained molecular dynamics (or any other method that performs canonical sampling). For this, one
needs to calculate the derivative of the three-body potential with respect to some distance. However,
as previously stated, deterministic MD simulations of a constrained system might easily get trapped
in local energy minima, so we utilized stochastic dynamics for the three-body case. In addition, rare
events (high energy, low probability configurations) induce noise to the data, despite long equilibration
(burn-in) periods or stronger heat-bath coupling in the simulations. Although smoothing could in
principle have been applied, it would wash-out important information needed upon derivation with
respect to positions ( f = −∇qW(3)). Therefore, we choose here to present results from the “direct”
geometric averaging approach. The total calculations are one order of magnitude more than the
two-body ones (all possible orientations of the two molecules for one of the third one), so special care
was given to spatial symmetries.

The new effective three-body potential, W(3),full, is naturally a function of three intermolecular
distances: r12, r13, r23. The discretization of the COMs in space is on top of the angular discretization
mentioned in Section 4.2.2 and relates to the above three distances. The investigation of W(3),full for all
possible distances is beyond the scope of this article. Here, we only study some characteristic cases,
showing W(3),full data as a function of distance r23 for fixed r12 and r13, comparing always with the sum
of the corresponding two-body terms. In more detail, in Figure 10a–d, we present simulations based
on the effective three body potential W(3),full and the sum ∑ W(2),full (geometric averaging) for CH4 at
T = 80 K for different COM distances (): (a) r12 = 3.9, r13 = 3.9; (b) r12 = 4.0 r13 = 4.0; (c) r12 = 4.3,
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r13 = 4.0; (d) r12 = 3.8, r13 = 5.64. At smaller distances, the potential of the triplet deviates from
the sum of the three pairwise potentials, and this is where improvement in accuracy can be obtained.
As shown in Figure 10, improvement is needed for close distances around the (three-dimensional) well.
We used a three-dimensional cubic polynomial to fit the potential data (conjugate gradient method),
which means that 20 constants should be determined. A lower order polynomial cannot capture the
curvature of the forces upon differentiation. The benefit of this fitting methodology (over partial
derivatives for instance) is the analytical solution of the forces with respect to any of r12, r13, r23 in
contrast to tabulated data that induce some small error.
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Figure 10. Effective potential comparison between the W(3),full three-body and ∑ W(2),full simulations
(geometric averaging) for CH4 at T = 80 K for different fixed centre of mass (COM) distances.
(a) r12 = 3.9, r13 = 3.9; (b) r12 = 4.0, r13 = 4.0; (c) r12 = 4.3, r13 = 4.0; (d) r12 = 3.8, r13 = 5.64.

Overall, there are clear differences between the three-body PMF, W(3),full, and the sum of three
two-body interactions, ∑ W(2),full, at short r12, r13 and r23 distances. On the contrary, for larger
distances, the sum of two-body interactions seems to represent the full three-body PMF very accurately.
This is a clear indication of the rather short range of the three-body terms. Based on the above data,
the range of the three-body terms for this system (methane at T = 80 K) is: r12 ∈ [3.8 : 4.1], r13 ∈ [3.8 : 4.1]
and r23 ∈ [3.8 : 5]; hence, the maximum distance for which three-body terms were considered
is rcut-off,3 = 5. In practice, we need to identify all possible triplets within rcut-off,3. Naturally, by
including higher-order terms, the computational cost has increased, as well. More information about
the numerical implementation of the three-body CG effective potential and its computational efficiency
will be given elsewhere [59]. We should state here that in order to keep the temperature constant (in the
BBK algorithm), due to the extra three-body terms in the CG force field, a larger coupling constant
value for the heat bath was required.

6.2. CG Runs with the Effective Three-Body Potential

Next, we examine the effect of the three-body term on the CG model by performing bulk CG
stochastic dynamics simulations using the new CG model with the three-body terms described above.
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In this case, we incorporate the two-body CG effective potential described before for distances larger
than rcut-off,3, whereas we use W(3),full for triplets with all distances (r12, r13 and r23) below rcut-off,3.
In practice, we compute all possible pair interactions, and for the triplets with distances in the above
defined range, we “correct” by adding the difference between W(3),full and the corresponding sum of
W(2),full; i.e., the difference between the datasets shown in Figure 10a–d.

Results on the pair distribution function, g(r), for bulk (liquid) methane at T = 80 K are shown
in Figure 11. In this graph, data from the atomistic MD runs (projected on the CG description),
the CG model involving only pair CG potentials and the new CG model that also involves three-body
terms are shown. First, it is clear that g(r) data derived from the CG model that involves only pair
CG interactions deviate, compared to the reference all-atom data; Second, the incorporation of the
three-body terms in the effective CG potential slightly improves the prediction of the g(r), mainly in
the first maximum regime.
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Figure 11. RDF from atomistic and CG using pair, W(2),full, and three-body, W(3),full, potential for CH4

(T = 80 K). The three-dimensional cubic polynomial was used for the fitting.

7. Discussion and Conclusions

In recent years, we have experienced an enormous increase of computational power due to
both hardware improvements and clever CPU-architecture. However, atomistic simulations of large
complex molecular systems are still out of reach in particular when long computational times are
desirable. A generic strategy in order to improve the efficiency of the computational methods is to
reduce the dimensionality (degrees of freedom) by considering systematic coarse-grained models.
There have been many suggestions on how to compute the relevant CG effective interactions in
such models; a main issue here is that even if at the microscopic (atomistic) level there are only
pair interactions, after coarse-graining, a multi-body effective potential (many-body PMF) is derived,
which for realistic molecular complex systems cannot be calculated. Therefore, a common trend has
been to approximate them by an “effective” pair potential by comparing the pair correlation function
g(r). This seems reasonable since given the correlation function, one can solve the “inverse problem”
[68] and find an interaction to which it corresponds. However, this is an uncontrolled approximation
without thermodynamic consistency.

Instead, here, we suggest to explicitly compute the constrained configuration integral over
all atomistic configurations that correspond to a given coarse-grained state and from that suggest
approximations with a quantifiable error. This is similar to the virial expansion where one needs to
integrate over all positions of particles that correspond to a fixed density, and it is based on the recent
development of establishing the cluster expansion in the canonical ensemble [51]; see also [45,61]
for the corresponding (in the canonical ensemble) expansions for the correlation functions and the
Ornstein–Zernike equation. See also the references therein for a more comprehensive list of the
literature on the diagrammatic expansions. The main drawback that limits the applicability of these
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expansions is that they are rigorously valid only in the gas phase. To extend them to the liquid state is
an outstanding problem, and even several successful closures like the Percus–Yevick are not rigorously
justified. Therefore, there is the need for further developing these methods and relating them to
computational strategies. Hence, in this paper, working in the rigorous framework of the cluster
expansion, we seek quantifiable coarse-grained approximations, which we compute using molecular
simulations. As a first test, we presented a detailed investigation of the proposed methodology to
derive CG potentials for methane and ethane molecular systems. Each CG variable corresponds to the
centre of mass for each molecule. Below, we summarize our main findings:

(a) The hierarchy of the cluster expansion formalism allowed us to systematically define the CG
effective interaction as a sum of pair, triplets, etc., interactions. Then, CG effective potentials
can be computed as they arise from the cluster expansion. Note, that for this estimation,
no information from long simulations of n-body (bulk) systems is required.

(b) The two-body coarse-grained potentials can be efficiently computed via the cluster expansion
giving comparable results with the existing methods, such as the conditional reversible work.
In addition, we present a more efficient direct geometric computation of the constrained partition
function, which also alleviates sampling noise issues. No basis function is needed in any of
these methods.

(c) The obtained pair CG potentials were used to model methane and ethane systems in various
regimes. The derived g(r) data were compared against the all-atom ones. Clear differences
between methane and ethane systems were observed; for the (almost spherical) methane, pair
CG potentials seem to be a very good approximation, whereas much larger differences between
CG and atomistic distribution functions were observed for ethane.

(d) We further investigated different temperature and density regimes and in particular cases where
the two-body approximations are not good enough compared to the atomistic simulations.
In the latter case, we considered the next term in the cluster expansion, namely the three-body
effective potentials, and we found that they give a small improvement over the pair ones in the
liquid state.

Finally, note that the proposed approach becomes computationally efficient, since the hierarchy of
the effective non-boned CG potentials terms is developed by the conditional sampling of a few CG
particles, and no information from long n-body (bulk) simulations is required. However, for dense
systems and in the liquid regime, numerical estimation of higher, than the three-body, order terms is
required; this is a major computational challenge.

Overall, we conjecture that the cluster expansion formalism can be used in order to provide
accurate effective pair and three-body CG potentials at high T and low ρ regimes. In order to get
significantly better results in the liquid regime, one needs to consider even higher order terms, which
are in general more expensive to compute and more difficult to treat. Furthermore, expansions in the
correlation functions can also be considered, as was already suggested in one of the original works of
Hiroike and Morita [48]. Finally, another future goal is to extend this investigation to larger molecules
(e.g., polymeric chains) that involve intra-molecular CG effective interactions, as well, and to systems
with long range (e.g., Coulombic) interactions.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/8/395/s1: More
details about (a) the model; (b) the two-body and (c) the three-body simulation algorithms.
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Abstract: The spatial block analysis (SBA) method has been introduced to efficiently extrapolate
thermodynamic quantities from finite-size computer simulations of a large variety of physical systems.
In the particular case of simple liquids and liquid mixtures, by subdividing the simulation box into
blocks of increasing size and calculating volume-dependent fluctuations of the number of particles,
it is possible to extrapolate the bulk isothermal compressibility and Kirkwood–Buff integrals in
the thermodynamic limit. Only by explicitly including finite-size effects, ubiquitous in computer
simulations, into the SBA method, the extrapolation to the thermodynamic limit can be achieved.
In this review, we discuss two of these finite-size effects in the context of the SBA method due to (i) the
statistical ensemble and (ii) the finite integration domains used in computer simulations. To illustrate
the method, we consider prototypical liquids and liquid mixtures described by truncated and shifted
Lennard–Jones (TSLJ) potentials. Furthermore, we show some of the most recent developments of
the SBA method, in particular its use to calculate chemical potentials of liquids in a wide range of
density/concentration conditions.

Keywords: computer simulations; finite-size effects; calculation of free energies; thermodynamic limit

1. Introduction

In the last few decades, computational studies of soft matter have gained ground in the no-man’s
land between purely theoretical studies and experimental investigations. Arguably, this success is
due to the use of statistical mechanics relations between macroscopic thermodynamic properties and
microscopic components and interactions of a physical system in the thermodynamic limit (TL) [1,2].
However, and apart from a few examples [3–5], computer simulations are mainly constrained to
consider closed systems with a finite and usually small number of particles N0. These limitations
introduce spurious finite-size effects, apparent in the simulation results, that in spite of the current
computing capabilities are still the subject of intense investigations [6–13].

A meaningful comparison between computer simulations of finite systems and experimental
results has been always a difficult task. In principle, it is possible to extrapolate the simulation data to
the quantities of interest in the thermodynamic limit by considering systems of increasing size and
performing simulations for each of them. The SBA method has been proposed as a more efficient
alternative where only one system is examined and then subdivided into blocks of different size from
which the data are extracted. The method is rather general since it was originally proposed to study
the critical behavior of Ising systems [14,15] and then extended to study liquids [16–21] and even the
elastic constants of model solids [22].

Entropy 2018, 20, 222; doi:10.3390/e20040222 www.mdpi.com/journal/entropy268
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In this paper, we examine the SBA method focusing on the extrapolation of bulk thermodynamic
properties of simple liquids. We use prototypical liquids and mixtures described by truncated
and shifted Lennard–Jones (TSLJ) potentials to discuss the original ideas [16,17] and explore the
background [20,21,23–26] for the most recent developments [6,7,9] of the method. The simple examples
presented here, in addition to the results available in the literature [6], suggest that the method is
suitable for the calculation of trends in the chemical potential of complex liquids in a wide range of
density/concentration conditions.

The paper is organized as follows: In Section 2, we introduce the relevant finite-size effects present
in standard computer simulations. In Section 3, we introduce the finite-size integral equations for
liquids and illustrate the procedure to extrapolate thermodynamic quantities. In Section 4, we discuss
the extension of the block analysis method to liquid mixtures. We conclude the paper in Section 5.

2. Boundary and Ensemble Finite-Size Effects

Statistical mechanics establishes the connection between macroscopic thermodynamic properties
and the microscopic components and interactions of a physical system. An interesting example of
this relation is provided by the compressibility equation that identifies the density fluctuations of
a system in the grand canonical ensemble with the bulk isothermal compressibility κT [27]. In the
thermodynamic limit (TL), the isothermal compressibility of a homogeneous system is related to the
fluctuations of the number of particles via the expression [1]:

χ∞
T =

〈N2〉 − 〈N〉2
〈N〉 , (1)

with 〈N〉 the average number of particles contained in a volume V of the fluid. The reduced isothermal
compressibility χ∞

T = ρkBTκT is the ratio between the bulk isothermal compressibility of the system,
κT , and the isothermal compressibility of the ideal gas (ρkBT)−1 with ρ = 〈N〉/V.

Various finite-size effects can be included in the block analysis aiming at extrapolating interesting
thermodynamic quantities. In practice, let us consider a system of N0 particles where the simulation
box of volume V0 = L3

0 is divided into subdomains of volume V = L3, as illustrated in Figure 1.
By evaluating the fluctuations of the number of particles in these subdomains, it is possible to obtain
the distribution PL,L0(N) of the number of particles, with k-moments given by [25]:

〈Nk〉L,L0 =
N0

∑
N=0

Nk PL,L0(N) . (2)

The second moment of the distribution is related to the reduced isothermal compressibility of the
finite system χT(L, L0) [14,16,17,25]:

χT(L, L0) =
〈N2〉L,L0 − 〈N〉2L,L0

〈N〉L,L0

. (3)

The finite-size reduced isothermal compressibility, χT(L, L0), can be extrapolated to the reduced
isothermal compressibility in the TL, χ∞

T , taking the limits L, L0 → ∞. Originally [17,25], by applying
periodic boundary conditions (PBCs) to the total linear size L0 and taking into account volumes such
that L
 ζ with ζ the correlation length of the system, it has been proposed that the difference between
χT(L, L0) and χ∞

T is related to boundary effects associated with the finite-size of the subdomains.
This difference takes the form [16,17]:

χT(L, L0 → ∞) = χ∞
T +

c
L
+ O

(
1
L2

)
, (4)

with c a constant. Recently, Equation (4) has been obtained [28] using arguments based on the
thermodynamics of small systems [29,30], underpinning the consistency of the result.
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L

L 0

Figure 1. Snapshot of the simulation box for a system of particles interacting via a TSLJ potential at
density ρσ3 = 0.1 and temperature kBT = 1.2ε. In this particular example, a box of linear size L0 has
been subdivided into blocks of linear dimension L = L0/5 as indicated by the different color shades.
The figure has been rendered with the Visual Molecular Dynamics (VMD) program [31].

To investigate this expression, we consider a liquid system whose potential energy is described by
a 12–6Lennard–Jones potential truncated, with cutoff radius rc/σ = 21/6, and shifted. The parameters
ε, σ and m, define the units of energy, length and mass, respectively. All the results are expressed
in LJ units with time σ(m/ε)1/2, temperature ε/kB and pressure ε/σ3. Various system sizes, namely
N0 = 104, 105 and 106, are considered, and the density is fixed at ρσ3 = 0.864, thus defining the linear
size of the simulation box L0. The systems are equilibrated at kBT = 1.2ε, enforced with a Langevin
thermostat with damping coefficient γ(σ(m/ε)1/2) = 1.0, for 2× 106 molecular dynamics (MD) steps
using a time step of δt/(σ(m/ε)1/2) = 10−3. Production runs span 106 MD steps. All the simulations
have been performed with the ESPResSo++ [32] simulation package.

To use the block analysis method, we compute the fluctuations of the number of particles.
In particular, we choose domains of size 1 < L/σ < L0/σ to scan continuously the fluctuations as
a function of domain size. To increase the amount of statistics, we use 100 randomly-positioned
subdomains per simulation frame.

In Figure 2, we report χT(L, L0) as a function of σ/L. The linear behavior predicted in Equation (4)
is apparent for L� L0. There are evident deviations from the linear behavior, which are not included
in Equation (4), since this equation has been obtained for a system in the grand canonical ensemble.
As a matter of fact, the deviations from linearity are mainly related to the fixed size of the system
because when L→ L0, χT(L0, L0) = 0, that is, the fluctuations of the number of particles for a closed
system are equal to zero. In principle, the isothermal compressibility in the TL can be extracted by
extrapolating a line to the y-axis, i.e., σ/L → 0, and determining the y-intercept. This procedure,
however, might lead to ambiguous and strongly-size-dependent results as suggested by the same plot.

From the previous discussion, Equation (4) satisfactorily describes the boundary size effects
present in a system described in the grand canonical ensemble. However, ensemble size effects,
i.e., the fact that we are computing quantities defined in the grand canonical ensemble using
information obtained from a system in a canonical ensemble, are important even in cases where
the size of the system might appear to be enormous (L0/σ = 105 for N0 = 106 where ζ/σ ≈ 10).
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Figure 2. Fluctuations of the number of particles χT(L, L0) as a function of σ/L for systems described
by a TSLJ potential with rc/σ = 21/6. Data corresponding to system sizes N0 = 104, 105 and 106 are
presented using red squares, blue triangles and green circles, respectively. The vertical lines indicate
the limit σ/L0 at which fluctuations become zero. The black horizontal dashed line indicates the value
χ∞

T = ρkBTκT = 0.0295 with κT the bulk compressibility obtained with the method described in [6].

It is thus clear that the isothermal compressibility of a finite-size system in the TL, i.e., L, L0 → ∞
with ρ = N0/L3

0, should equate to the bulk isothermal compressibility κT . An elegant analysis using
probabilistic arguments for the ideal gas case [26,33] shows that the finite-size reduced isothermal
compressibility can be written as:

χT(L, L0) = χ∞
T

(
1−
(

L
L0

)3
)

. (5)

In spite of the simplicity of the system chosen in this study, it cannot be identified with the ideal
gas. However, at very low densities and temperature kBT = 1.2ε, the system behaves more like
a real gas, and a meaningful trend could be identified. Therefore, to investigate Equation (5), we
consider the density range ρσ3 = 0.1 , · · · , 1.0 for systems of size N0 = 105 particles. Results are
presented in Figure 3 for the cases ρσ3 = 0.1, 0.2 and 0.3. The three datasets follow the theoretical
prediction in Equation (5) with deviations from this behavior for L� L0, thus indicating the signature
of boundary finite-size effects. As expected, the data presented also suggest that upon increasing
density, the deviations from the ideal gas behavior become more evident, as can be seen in the case
ρσ3 = 0.3.
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Figure 3. Fluctuations of the number of particles χT(L, L0) as a function of the ratio L/L0 for systems
described by a TSLJ potential with rc/σ = 21/6. Results corresponding to systems of N0 = 105 particles
with densities ρσ3 = 0.1, 0.2 and 0.3 are presented using red squares, blue triangles and green circles,
respectively. The theoretical prediction presented in the text is plotted using the corresponding value
for χ∞

T , obtained as described in [6], and solid-line curves with the same color code.
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This is also seen in Figure 4, where for a system with density ρσ3 = 0.864, the deviations from
the ideal gas case are much more evident. As a matter of fact, even for the largest size considered
(N0 = 106), it is not possible to convincingly reproduce the ideal gas behavior.
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Figure 4. Fluctuations of the number of particles χT(L, L0) as a function of the ratio L/L0 for systems
described by a TSLJ potential with rc/σ = 21/6. Results corresponding to sizes N0 = 104, 105

and 106, with density ρσ3 = 0.864, using red squares, blue triangles and green circles, respectively.
The theoretical prediction presented in the text is plotted as the black dashed curve using χ∞

T = 0.0295.

Nonetheless, one intuitively could imagine that the following expression:

χT(L, L0) = χ∞
T

(
1−
(

L
L0

)3
)
+

c
L
+ O

(
1
L2

)
, (6)

captures the two finite-size effects, ensemble and boundary [25]. By neglecting the O(1/L2) terms,
defining λ = L/L0 and multiplying everything by λ, we obtain:

λχT(λ) = λχ∞
T

(
1− λ3

)
+

c
L0

. (7)

Equation (7) is more convenient to analyze because in the limit λ→ 0, provided that ζ < L < L0,
λ3 is negligible, and this expression can be approximated to a linear function in λ with slope χ∞

T and
y-intercept equal to c/L0. In particular, we use a simple linear regression in the interval 0.0 < λ < 0.3,
with the fluctuations data for N0 = 105, to find χ∞

T = 0.0295(5) and c = 0.415(5)σ. Results of the
scaled fluctuations λχT(λ) minus c/L0 are presented in Figure 5, where the intensive character of the
constant c becomes clear. By replacing the calculated values χ∞

T and c in Equation (7), we obtain the
black curve that superimposes on the simulation data in the full range 0 < λ < 1.
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Figure 5. Scaled fluctuations of the number of particles λχT(L, L0), minus c/L0, versus the ratio
λ = L/L0 for systems described by a TSLJ potential with rc/σ = 21/6. Results corresponding to sizes
N0 = 104, 105 and 106, with density ρσ3 = 0.864, using red squares, blue triangles and green circles,
respectively. The theoretical prediction Equation (7) presented in the text is plotted as the black solid
curve using χ∞

T = 0.0295 and c = 0.415σ.

272



Entropy 2018, 20, 222

In addition to the explicit finite-size effects discussed above, there is another type of effect related
to the periodicity of the simulation box. This is the case of implicit finite-size effects that appear due
to anisotropies in the pair correlation function of the system, generated by the use of PBCs [34,35].
These effects, extremely important for small simulation setups, appear as oscillations in λχT(λ) for
λ ≈ 1 caused by short range interactions between the system and its nearest neighbor images. However,
given the large sizes of the systems considered here, implicit finite-size effects can be safely ignored in
the present discussion.

With the trajectories of the system with N0 = 105 particles in the density interval 0.1 < ρσ3 < 1.0,
we compute the scaled fluctuations λχT(λ) and determine, as before, the ratio χ∞

T = κT/κ IG
T as

a function of the density, with κ IG
T = (ρkBT)−1 the isothermal compressibility of the ideal gas

(see Figure 6). As expected for this system at kBT = 1.2ε, a monotonically-decreasing behavior
is observed since the system becomes less compressible as the density increases.
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Figure 6. Ratio χ∞
T = κT/κ IG

T at kBT = 1.2ε as a function of the density for systems described by a TSLJ
potential with rc/σ = 21/6, with κ IG

T = (ρkBT)−1 the isothermal compressibility of the ideal gas. The
red curve is a guide to the eye.

The isothermal compressibility as a function of the density allows one to investigate more
interesting thermodynamic properties, as has been recently demonstrated [6,7]. For example,
the isothermal compressibility can be written as:

κT =
1
ρ2

∂ρ

∂μ

∣∣∣∣
T

, (8)

which can be rearranged, in terms of the chemical potential μ, as:

δμ =
∫ ρ

ρ0

dρ′

ρ′2κT
(9)

with δμ = μ− μ0 and μ0 the chemical potential of the system at the reference density ρ0. In practice,
one usually is interested in the excess chemical potential (In this context, the word excess should
be replaced with residual. The residual chemical potential is the difference between the chemical
potential of the target system and that of an ideal gas at the same density, temperature and composition.
We misuse the expression excess chemical potential to match the modern literature.):

δμex = δμ− kBT ln ρ, (10)

obtained by subtracting from δμ the density-dependent part of the chemical potential of the ideal gas.
To validate the results obtained using Equation (10), it is necessary to use a different computational

method to evaluate μ0. For that purpose, any computational method aiming at calculating chemical
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potentials could be used. In particular, we use the spatially-resolved thermodynamic integration
(SPARTIAN) method [36], recently implemented by us. In SPARTIAN, the target system, described
with atomistic resolution, is embedded in a reservoir of ideal gas particles. An interface between the
two subdomains is defined such that molecules are free to diffuse, adapting their resolution on the
fly. A uniform density across the simulation box is guaranteed by applying a single-molecule external
potential that is identified with the difference in chemical potential between the two resolutions,
i.e., the excess chemical potential of the target system. This method has been validated by calculating
excess chemical potentials for Lennard–Jones liquids, mixtures, as well as for simple point-charge (SPC)
and extended simple point-charge (SPC/E) water models and aqueous sodium chloride solutions, all
in good agreement with state-of-the-art computational methods.

For the comparison, we consider the same system at the same temperature with densities ρσ3 = 0.2,
0.4, 0.6, 0.8 and 1.0. Results for the excess chemical potential as a function of the density are presented
in Figure 7 where the value of ρ0σ = 0.6 has been used as the reference value. Once δμex is rescaled,
it becomes clear that the agreement between the two methods is remarkable. This result suggests
that the simple calculation of the fluctuations of the number of particles, used in combination with
Equation (7), provides us with an efficient and accurate method to compute the chemical potential of
simple liquids, which can be extended to more complex fluids [6].
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Figure 7. Excess chemical potential μex/ε at kBT = 1.2ε as a function of the density for systems
described by a TSLJ potential with rc/σ = 21/6. Red squares indicate the data obtained with the
spatially-resolved thermodynamic integration (SPARTIAN) method [36], and the blue triangles are the
data points obtained with the method outlined in the text.

In this section, Equation (7) has been introduced in a rather intuitive manner. However,
the presented results suggest that it encompasses the relevant finite-size effects of the system and
allows one to compute bulk thermodynamic quantities. In the following section, we derive Equation (7)
more rigorously and explore, using a different example, its range of validity.

3. Finite-Size Ornstein–Zernike Integral Equation

Fluctuations of the number of particles are related to the local structure of a liquid. Let us consider
a molecular liquid of average density ρ at temperature T in equilibrium with a reservoir of particles,
i.e., an open system. The fluctuations of the number of molecules are related to the local structure of
the liquid via the Ornstein–Zernike integral equation [1,37]:

Δ2(N)

〈N〉 = 1 +
ρ

V

∫
V

∫
V
[go(r1, r2)− 1] dr1 dr2 , (11)
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where Δ2(N)/〈N〉 are the fluctuations of the number of particles, Δ2(N) = 〈N2〉 − 〈N〉2 and go(r1, r2)

is the pair correlation function of the open system and r1, r2 the position vectors of a pair of fluid
particles. To solve the integral in Equation (11), one assumes that the fluid is homogeneous, isotropic
and that the system is in the thermodynamic limit (TL), i.e., V → ∞, 〈N〉 → ∞ with ρ = 〈N〉/V =

constant. An infinite, homogeneous and isotropic system is translationally invariant; therefore,
we rewrite Equation (11) as [1]:

χ∞
T =

Δ2(N)

〈N〉 = 1 + 4πρ
∫ ∞

0
(go(r)− 1) r2 dr , (12)

with χ∞
T = ρkBTκT , κT being the isothermal compressibility of the bulk system. We have replaced

go(r1, r2) with go(r) the radial distribution function (RDF) of the open system, with r = |r2 − r1|.
An alternative version of the OZ integral equation for finite systems has been introduced [25].

For a finite system with total volume V0 with PBCs we have:

χT(V, V0) =
Δ2(N; V, V0)

〈N〉V,V0

= 1 +
ρ

V

∫
V

∫
V
[gc(r12)− 1] dr1 dr2 , (13)

where gc(r12), r12 = |r2 − r1|, is the pair correlation function of the closed system with total number of
particles N0, and Δ2(N; V, V0) = 〈N2〉V,V0 − 〈N〉2V,V0

. The fluctuations of the number of particles thus
depend on both subdomain and simulation box volumes.

For a single component fluid of density ρ at temperature T with fixed number of particles N0 and
volume V0, its RDF can be written in terms of an expansion around N0 as [23–26,33]:

gc(r) =go(r)− χ∞
T

N0
. (14)

As a matter of fact, the expansion includes terms that depend on the partial derivative of go(r)
with respect to the density. However, we anticipate here that for the present analysis, their contribution
is negligible [6]. By replacing gc(r) in the integral on the r.h.s of Equation (13), we obtain:

ρ

V

∫
V

∫
V
(gc(r12)− 1) dr1 dr2 = IV,V −

V
V0

χ∞
T , (15)

where:

IV,V =
ρ

V

∫
V

∫
V
(go(r12)− 1) dr1 dr2 , (16)

and we use that ρ = N0/V0.
Next, we include explicitly the second finite-size effect, i.e., the fact that the volume V is finite

and embedded into a finite volume V0 with PBCs. For this, we rewrite IV,V as [17]:

IV,V0−V = IV,V0 − IV,V ,

with:

IV,V0 =
ρ

V

∫
V

∫
V0

(go(r12)− 1) dr1 dr2

IV,V0−V =
ρ

V

∫
V

∫
V0−V

(go(r12)− 1) dr1 dr2 .

As pointed out by Rovere, Heermann and Binder [17], the two integrals IV,V and IV,V0 are equal
when r1 and r2 are both within the volume V. When r12 > ζ, the integrand (go(r12)− 1) = 0, and it
does not contribute to the integrals. Close to the boundary of the subdomain V, for r12 < ζ, and in
particular when r1 lies inside and r2 outside the volume V, there are contributions missing in IV,V ,
which are present in IV,V0 . Therefore, the difference between the two integrals IV,V0−V = IV,V0 − IV,V
must be proportional to the surface volume ratio of the subdomain V [17], i.e.,
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IV,V0−V =
c1

L
+
( c2

L

)2
+ O

(
1
L3

)
, (17)

with c1, c2 proportionality constants with units of length that, at this point, we assume to be intensive.
To compute IV,V0 , we require that ζ < L < L0. Since we assume PBCs, the system is translationally

invariant. Hence, upon applying the transformation r12 → r = r2 − r1, the expression:
IV,V0 = ρ

∫
V0

(go(r)− 1) dr = χ∞
T − 1 (18)

is obtained, where we assume that go(r > ζ) = 1, thus ignoring fluctuations of the RDF beyond the
volume V. By combining these two results, we obtain:

IV,V = χ∞
T − 1 +

c1

L
+
( c2

L

)2
, (19)

and by including this result in Equation (15), we arrive at the following expression:
ρ

V

∫
V

∫
V
(gc(r12)− 1) dr1 dr2 = χ∞

T

(
1−
(

L
L0

)3
)
− 1 +

c1

L
+
( c2

L

)2
. (20)

Finally, this expression becomes:

χT(L, L0) = χ∞
T

(
1−
(

L
L0

)3
)
+

c1

L
+
( c2

L

)2
, (21)

and by defining λ = L/L0, we write:

λχT(λ) = λχ∞
T

(
1− λ3

)
+

c1

L0
+

(
c2

L0

)2 1
λ

. (22)

Equations (7) and (22) differ in the c2
2/L2

0λ term that appears from considering the boundary
finite-size effects. One possible scenario in which this difference might play a role is in the case of
simulations near critical conditions where the correlation length of the system tends to infinity.

To test this expression, we perform simulations of systems with potential energy described by
the truncated, at rc/σ = 2.5, and shifted 12–6 Lennard–Jones potential. We consider systems with
N0 = 24, 000 particles, with densities spanning the range 0.05 < ρσ3 < 0.70. Two temperatures were
considered, kBT = 2.00ε and 1.15ε. The critical point of this system has been reported at ρcσ3 = 0.319
and kBTc = 1.086ε [38].

We report the reduced fluctuations λχT(λ) as a function of λ for ρσ3 = 0.3 in Figure 8. In the
case kBT = 2.00ε, the effect of the λ−1 term in Equation (22) is negligible, and a linear approximation
in the region λ < 0.3 seems to be well justified. However, for the case close to the critical point,
i.e., kBT = 1.15ε, the effect of this term is evident and should be included in the extrapolation to χ∞

T .
Finally, upon extrapolating to χ∞

T , an interesting behavior is observed for the bulk isothermal
compressibility κT as a function of density (Figure 9). In the case kBT = 2.00ε, as expected,
a monotonically-decreasing behavior with increasing density is observed. More interestingly, in the
case kBT = 1.15ε, the monotonically-decreasing behavior is interrupted by a singularity in the
isothermal compressibility in the vicinity of the critical density. This cusp in the curve is expected since
the isothermal compressibility of a fluid at the critical point is infinite.
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Figure 8. Reduced fluctuations as a function of λ for systems described by a TSLJ potential with
rc/σ = 2.5 with density ρσ3 = 0.3 at temperatures kBT = 2.00ε and 1.15ε. For the latter case, it is
apparent that the contribution proportional to λ−1 is not negligible. The inset shows the full range
0 < λ < 1. The black curves are the result of fitting the data to Equation (22).
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Figure 9. Bulk isothermal compressibility κT as a function of the density ρ at kBT = 1.15ε (red circles)
and kBT = 2.00ε (green squares) for systems described by a TSLJ potential with rc/σ = 2.5. The vertical
black line indicates the location of the critical density ρσ3 = 0.319 [38].

The use of finite-size integral equations is general enough to admit generalizations of other
systems of interest. In the next section, we describe one of such possible extensions: the study of
binary mixtures.

4. Mixtures

Kirkwood–Buff (KB) theory [39] is arguably the most successful framework to investigate the
properties of liquid mixtures that relates the local structure of a system to density fluctuations in
the grand canonical ensemble. These quantities are in turn related to equilibrium thermodynamic
quantities such as the compressibility, the partial molar volumes and the derivatives of the chemical
potentials [2]. Formulated more than sixty years ago, KB enjoys renewed interest in the computational
soft-matter and statistical physics communities [6,7,9–13]. Recent works have shown promising
applications related to solvation of biomolecules [40] and potential uses to compute multicomponent
diffusion in liquids [41] and to study complex phenomena such as self-assembly of proteins [42] and
polymer conformation in complex mixtures [4,43].
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For a multicomponent fluid of species i, j in equilibrium at temperature T, the Kirkwood–Buff
integral (KBI) is defined as:

Go
ij = V

(
〈Ni Nj〉 − 〈Ni〉〈Nj〉

〈Ni〉〈Nj〉
−

δij

〈Ni〉

)
=

1
V

∫
V

∫
V
[go

ij(r12)− 1] dr1 dr2 , (23)

with δij the Kronecker delta. The superscript (o) indicates that this definition holds for an open system,
i.e., a system in the grand canonical ensemble. In practice, we compute fluctuations of the number of
particles in a subdomain of volume V embedded in a reservoir whose size goes to infinity. Thus, 〈Ni〉
is the average number of i-particles inside V, or ρi = 〈Ni〉/V. go

ij(r12) is the multicomponent radial
distribution function (RDF) of the infinite system, with r12 = r2 − r1.

Let us recall that in computer simulations one considers systems with total fixed number of
particles N0 and volume V0 with PBCs. In this case, we have [35]:

Gij(L, L0) = V

(
〈Ni Nj〉′ − 〈Ni〉′〈Nj〉′

〈Ni〉′〈Nj〉′
−

δij

〈Ni〉′

)
=

1
V

∫
V

∫
V
[gc

ij(r12)− 1] dr1 dr2 . (24)

The finite-size KBI Gij(L, L0) is evaluated by computing fluctuations of the number of particles
in finite subdomains of volume V inside a simulation box of volume V0. The average number of
i-particles 〈Ni〉′ ≡ 〈Ni〉V,V0 depends on both subdomain and simulation box volumes. Moreover,
the integral on the r.h.s. of Equation (24) should be evaluated for the RDF of the finite system gc

ij(r12)

with volume V0 by using a finite integration domain V.
As has been done for the single component case, we include in this example both, ensemble and

boundary, finite-size effects. For the former, the following correction has been suggested [44]:

gc
ij(r) = go

ij(r)−
1

V0

(
δij

ρi
+ G∞

ij

)
, (25)

based on the asymptotic limit gc
ij(r 
 ζ) = 1− (δij/ρi + G∞

ij )/V0 discussed in [2]. As expected, when
the total volume V0 → ∞, we recover gc

ij(r) = go
ij(r). By including Equation (25) in the integral on

the r.h.s. of Equation (24) and evaluating the finite-size integral as for the single component case,
we finally obtain:

λGij(λ) = λG∞
ij

(
1− λ3

)
− λ4 δij

ρi
+

αij

L0
, (26)

with λ ≡ L/L0 and αij an intensive parameter with units of length. In the limit L0 → ∞, the following
expression is obtained:

Gij(L, L0 → ∞) = G∞
ij +

αij

L
, (27)

that describes the finite-size effects on the KBIs for a system in the grand canonical ensemble. Consistent
with this limiting case in Equation (26), Equation (27) has been obtained from the thermodynamics of
small systems [45,46].

For the investigation of Equation (26), we perform simulations for binary mixtures (A, B) of
Lennard–Jones (LJ) fluids. We use a purely repulsive 12-6 LJ potential truncated and shifted with
cutoff radius 21/6σ. The potential parameters are chosen as σAA = σBB = σAB = σ, and εAA = 1.2ε,
εBB = 1.0ε with εAB = (εAA + εBB)/2 = 1.1ε. All the results are expressed in LJ units with energy ε,
length σ, mass mA = mB = m, time σ(m/ε)1/2, temperature ε/kB and pressure ε/σ3. As before,
simulations are carried out using ESPResSo++ [32] with a time step of δt/(σ(m/ε)1/2) = 10−3.
Constant temperature kBT = 1.2ε is enforced through a Langevin thermostat with damping coefficient
γ(σ(m/ε)1/2) = 1.0. The size of the system is N0 = 23, 328 in the range of mole fractions of
A-molecules xA = 0.1, · · · , 1.0. The pressure is fixed at Pσ3/ε = 9.8 by adjusting the number
density of the system at values around ρσ3 ≈ 0.86 (or L0/σ ≈ 30). We perform equilibration runs of
64× 106 MD steps and production runs of 2× 106 MD steps. To compute Gij(λ), we select 800 frames
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per trajectory and for each frame identify 1000 randomly-positioned subdomains with linear sizes
ranging from 2 < L/σ < L0/σ.

In Figure 10, results for finite-size KBIs are presented for four mole fractions, namely (a) xA = 0.20;
(b) xA = 0.30; (c) xA = 0.50 and (d) xA = 0.80. Plots of GAB (green circles) tend to zero when λ→ 1, as
indicated by the horizontal green lines. By contrast, GAA → 1/ρA (indicated by horizontal red lines)
when λ→ 1. The region λ < 3, indicated by vertical black lines, is where simple linear regression is
used to find G∞

ij and αij. By replacing such values in Equation (26), we obtained the black curves that,
in all cases, superimpose on the simulation data for the full interval 0 < λ < 1.
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Figure 10. Scaled finite-size Kirkwood–Buff integrals λGij(λ) as a function of λ for different mole
fractions: (a) xA = 0.20; (b) xA = 0.30; (c) xA = 0.50 and (d) xA = 0.80, for mixtures described
by a TSLJ potential with rc/σ = 21/6. For clarity, only the cases GAA (red squares) and GAB (green
circles) are plotted. In the asymptotic case λ → 1, GAB → 0 and GAA → 1/ρA, as indicated by the
horizontal green and red lines, respectively. The black curves correspond to Equation (26) with G∞

ij and
αij obtained from a simple regression analysis in the interval λ < 0.3.

The bulk KBIs are related to various thermodynamic quantities. For example, the isothermal
compressibility is given by [39]:

κT =
1 + ρAGAA + ρBGBB + ρAρB(GAAGBB − G2

AB)

kBT(ρA + ρB + ρAρB(GAA + GBB − 2GAB))
, (28)

with ρA,B the number density of the corresponding species.
Results for the isothermal compressibility obtained from the G∞

ij values are presented in Figure 11.
Single component cases corresponding to systems composed by only type-A and type-B particles are
indicated by the horizontal black lines. As expected, the system composed by strongly interacting
particles, i.e., the type-A, has a lower compressibility. The behavior of the isothermal compressibility is
nearly ideal since it follows closely the relation κT = (1− xA)κ

B
T + xAκA

T , with κA
T ε/σ3 = 0.012(1) and

κB
Tε/σ3 = 0.0281(8), as indicated by the solid black line.
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Figure 11. Isothermal compressibility at kBT = 1.20ε and Pσ3/ε = 9.8 as a function of the mole fraction
of type-A particles xA for mixtures described by a TSLJ potential with rc/σ = 21/6. The horizontal
black lines indicate the compressibility for a pure system of type-A particles κA

T ε/σ3 = 0.012(1) and
for a pure system of type-B particles κB

Tε/σ3 = 0.0281(8). The red line is a guide to the eye. The ideal
case corresponds to κT = (1− xA)κ

B
T + xAκA

T .

Finally, the extrapolated KBIs have been used to compute the derivative of the chemical potential
of type-A particles with respect to the number density ρA using the expression [39]:

1
kBT

(
∂μA
∂ρA

)
P,T

=
1

ρA
+

GAB − GAA
1 + ρA(GAA − GAB)

, (29)

that, as has been done for the single component case, can be integrated to obtain [6]:

δμA = kBT
∫ ρA

ρ0
A

[
1

ρ′A
+

GAB − GAA
1 + ρ′A(GAA − GAB)

]
dρ′A . (30)

This is the chemical potential shifted by a reference chemical potential computed at density
ρ0

A [4,43]. By removing the density and concentration terms of the chemical potential of an ideal
mixture, the excess chemical potential can be written as:

δμex
A = δμA − kBT ln(xA)− kBT ln(ρA) . (31)

We compare the results obtained using Equations (30) and (31) with the results obtained with
the SPARTIAN method [36] and use the excess chemical potential result from xA = 0.3 to find
the reference value. We present the results in Figure 12 where a good agreement between the two
datasets is apparent. To conclude this section, it has been shown that the block analysis method
constitutes a robust strategy to compute chemical potentials of liquids and mixtures in a wide range of
density/concentration conditions.
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Figure 12. Excess chemical potential of type-A particles as a function of the mole fraction xA for
mixtures described by a TSLJ potential with rc/σ = 21/6 at kBT = 1.2ε and Pσ3/ε = 9.8. Data points
obtained with the method in [36], in particular for xA = 0.3, are used as a reference for the data points
obtained with Equations (30) and (31).

5. Summary and Concluding Remarks

In general, a direct comparison between a real system and a finite-size simulation is prevented
by the fixed and relatively small number of particles used in the latter. As has been encoded in the
title of the paper, the spatial block analysis method employs a clever combination of finite-size effects,
ensemble and boundary, and density fluctuations to extrapolate bulk isothermal compressibilities and
Kirkwood–Buff integrals in the thermodynamic limit.

In this work, we have illustrated with prototypical Lennard–Jones liquids and liquid mixtures the
working mechanisms of the method. Upon identifying the relevant finite-size effects and assessing their
impact on the simulation results, we have intuitively introduced an analytical expression connecting
the fluctuations measured in a small subdomain of the simulation box with the bulk isothermal
compressibility for a single component fluid.

Subsequently, the same analytical expression has been rigorously obtained from a finite-size
version of the Ornstein–Zernike integral equation. Using a challenging system close to critical point
conditions, we have tested the range of validity of the method and obtained results in line with
theoretical expectations.

Then, for a multicomponent system, we have applied the same protocol to the Kirkwood–Buff
integrals. Using the corresponding analytical expression, it is possible to obtain the Kirkwood–Buff
integrals in the thermodynamic limit. In both single and multicomponent systems, the method allows
one to compute the chemical potential of a liquid/mixture for a wide range of density/concentration
conditions, provided a single reference chemical potential has been determined using a different
computational method. These results contribute to establishing the spatial block analysis method as a
powerful tool to investigate systems where the accurate computation of the chemical potential is of
paramount importance.
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The following abbreviations are used in this manuscript:

SBA Spatial block analysis
TSLJ Truncated and shifted Lennard–Jones
MD Molecular dynamics
TL Thermodynamic limit
PBCs Periodic boundary conditions
OZ Ornstein–Zernike
KB Kirkwood–Buff

References

1. Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids, 3rd ed.; Academic Press: Cambridge, MA, USA, 2006.
2. Ben-Naim, A. Molecular Theory of Solutions; Oxford University Press: Oxford, UK, 2006.
3. Adams, D. Chemical potential of hard-sphere fluids by Monte Carlo methods. Mol. Phys. 1974, 28, 1241–1252.
4. Mukherji, D.; Kremer, K. Coil-Globule-Coil Transition of PNIPAm in Aqueous Methanol: Coupling All-Atom

Simulations to Semi-Grand Canonical Coarse-Grained Reservoir. Macromolecules 2013, 46, 9158–9163.
5. Wang, H.; Hartmann, C.; Schütte, C.; Site, L.D. Grand-Canonical-like Molecular-Dynamics Simulations by

Using an Adaptive-Resolution Technique. Phys. Rev. X 2013, 3, 011018.
6. Heidari, M.; Kremer, K.; Potestio, R.; Cortes-Huerto, R. Finite-size integral equations in the theory of liquids

and the thermodynamic limit in computer simulations. Submitted.
7. Galata, A.A.; Anogiannakis, S.D.; Theodorou, D.N. Thermodynamic analysis of Lennard–Jones binary

mixtures using Kirkwood–Buff theory. Fluid Phase Equilibria 2017, in press.
8. Site, L.D.; Ciccotti, G.; Hartmann, C. Partitioning a macroscopic system into independent subsystems. J. Stat.

Mech. Theory Exp. 2017, 083201.
9. Strom, B.A.; Simon, J.M.; Schnell, S.K.; Kjelstrup, S.; He, J.; Bedeaux, D. Size and shape effects on the

thermodynamic properties of nanoscale volumes of water. Phys. Chem. Chem. Phys. 2017, 19, 9016–9027.
10. Dawass, N.; Krüger, P.; Schnell, S.K.; Bedeaux, D.; Kjelstrup, S.; Simon, J.M.; Vlugt, T.J.H. Finite-size effects

of Kirkwood–Buff integrals from molecular simulations. Mol. Simul. 2018, 44, 599–612.
11. Milzetti, J.; Nayar, D.; van der Vegt, N.F.A. Convergence of Kirkwood–Buff Integrals of Ideal

and Nonideal Aqueous Solutions Using Molecular Dynamics Simulations. J. Phys. Chem. B 2018,
doi:10.1021/acs.jpcb.7b11831.

12. Rogers, D.M. Extension of Kirkwood–Buff theory to the canonical ensemble. J. Chem. Phys. 2018, 148, 054102.
13. Dawass, N.; Krüger, P.; Simon, J.M.; Vlugt, T.J.H. Kirkwood–Buff integrals of finite systems: Shape effects.

Mol. Phys. 2018, doi:10.1080/00268976.2018.1434908.
14. Binder, K. Finite size scaling analysis of ising model block distribution functions. Z. Phys. B 1981, 43, 119–140.
15. Binder, K. Critical Properties from Monte Carlo Coarse Graining and Renormalization. Phys. Rev. Lett. 1981,

47, 693–696.
16. Rovere, M.; Hermann, D.W.; Binder, K. Block Density Distribution Function Analysis of Two-Dimensional

Lennard–Jones Fluids. EPL 1988, 6, 585.
17. Rovere, M.; Heermann, D.W.; Binder, K. The gas-liquid transition of the two-dimensional Lennard–Jones

fluid. J. Phys. Condens. Matter 1990, 2, 7009–7032.
18. Rovere, M.; Nielaba, P.; Binder, K. Simulation studies of gas-liquid transitions in two dimensions via a

subsystem-block-density distribution analysis. Z. Phys. B 1993, 90, 215–228.
19. Weber, H.; Marx, D.; Binder, K. Melting transition in two dimensions: A finite-size scaling analysis of

bond-orientational order in hard disks. Phys. Rev. B 1995, 51, 14636–14651.
20. Román, F.L.; White, J.A.; Velasco, S. Block analysis method in off-lattice fluids. EPL 1998, 42, 371.
21. Salacuse, J. Particle fluctuations within sub-regions of an N-particle, three-dimensional fluid: Finite-size

effects and compressibility. Phys. A 2008, 387, 3073–3083.

282



Entropy 2018, 20, 222

22. Sengupta, S.; Nielaba, P.; Rao, M.; Binder, K. Elastic constants from microscopic strain fluctuations.
Phys. Rev. E 2000, 61, 1072–1080.

23. Lebowitz, J.L.; Percus, J.K. Long-Range Correlations in a Closed System with Applications to Nonuniform
Fluids. Phys. Rev. 1961, 122, 1675–1691.

24. Salacuse, J.J.; Denton, A.R.; Egelstaff, P.A. Finite-size effects in molecular dynamics simulations: Static
structure factor and compressibility. I. Theoretical method. Phys. Rev. E 1996, 53, 2382–2389.

25. Román, F.L.; White, J.A.; Velasco, S. Fluctuations in an equilibrium hard-disk fluid: Explicit size effects.
J. Chem. Phys. 1997, 107, 4635.

26. Villamaina, D.; Trizac, E. Thinking outside the box: Fluctuations and finite size effects. Eur. J. Phys. 2014,
35, 035011.

27. Rowlinson, J.S. The equation of state of dense systems. Rep. Prog. Phys. 1965, 28, 169.
28. Schnell, S.K.; Vlugt, T.J.; Simon, J.M.; Bedeaux, D.; Kjelstrup, S. Thermodynamics of a small system in a μT

reservoir. Chem. Phys. Lett. 2011, 504, 199–201.
29. Lebowitz, J.L.; Percus, J.K. Thermodynamic Properties of Small Systems. Phys. Rev. 1961, 124, 1673–1681.
30. Hill, T.L. Thermodynamics of Small Systems; Courier Corporation: Dover, UK, 1963.
31. Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38.
32. Halverson, J.D.; Brandes, T.; Lenz, O.; Arnold, A.; Bevc, S.; Starchenko, V.; Kremer, K.; Stuehn, T.; Reith, D.

ESPResSo++: A modern multiscale simulation package for soft matter systems. Comput. Phys. Commun.
2013, 184, 1129–1149.

33. Román, F.L.; González, A.; White, J.A.; Velasco, S. Fluctuations in the number of particles of the ideal gas:
A simple example of explicit finite-size effects. Am. J. Phys. 1999, 67, 1149–1151.

34. Román, F.L.; White, J.A.; González, A.; Velasco, S. Fluctuations in a small hard-disk system: Implicit finite
size effects. J. Chem. Phys. 1999, 110, 9821.

35. Román, F.; White, J.; González, A.; Velasco, S. Theory and Simulation of Hard-Sphere Fluids and Related Systems;
Chapter Ensemble Effects in Small Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 343–381.

36. Heidari, M.; Kremer, K.; Cortes-Huerto, R.; Potestio, R. Spatially Resolved Thermodynamic
Integration: An Efficient Method to Compute Chemical Potentials of Dense Fluids. ArXiv 2018,
arXiv:cond-mat.soft/1802.08045.

37. Ornstein, L.S.; Zernike, F. Accidental deviations of density and opalescence at the critical point of a single
substance. Proc. Akad. Sci. (Amsterdam) 1914, 17, 793–806.

38. Thol, M.; Rutkai, G.; Span, R.; Vrabec, J.; Lustig, R. Equation of State for the Lennard–Jones Truncated and
Shifted Model Fluid. Int. J. Thermophys. 2015, 36, 25–43.

39. Kirkwood, J.G.; Buff, F.P. The Statistical Mechanical Theory of Solutions. I. J. Chem. Phys. 1951, 19, 774–777.
40. Pierce, V.; Kang, M.; Aburi, M.; Weerasinghe, S.; Smith, P.E. Recent Applications of Kirkwood–Buff Theory

to Biological Systems. Cell Biochem. Biophys. 2008, 50, 1–22.
41. Kjelstrup, S.; Schnell, S.K.; Vlugt, T.J.H.; Simon, J.M.; Bardow, A.; Bedeaux, D.; Trinh, T. Bridging scales with

thermodynamics: From nano to macro. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 023002.
42. Ben-Naim, A. Theoretical aspects of self-assembly of proteins: A Kirkwood–Buff-theory approach.

J. Chem. Phys. 2013, 138, 224906.
43. Mukherji, D.; Marques, C.M.; Stuehn, T.; Kremer, K. Depleted depletion drives polymer swelling in poor

solvent mixtures. Nat. Commun. 2017, 8, 1374.
44. Cortes-Huerto, R.; Kremer, K.; Potestio, R. Communication: Kirkwood–Buff integrals in the thermodynamic

limit from small-sized molecular dynamics simulations. J. Chem. Phys. 2016, 145, 141103.
45. Schnell, S.K.; Liu, X.; Simon, J.; Bardow, A.; Bedeaux, D.; Vlugt, T.J.H.; Kjelstrup, S. Calculating

Thermodynamic Properties from Fluctuations at Small Scales. J. Phys. Chem. B 2011, 115, 10911.
46. Ganguly, P.; van der Vegt, N.F.A. Convergence of Sampling Kirkwood–Buff Integrals of Aqueous Solutions

with Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013, 9, 1347–1355.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

283



entropy

Article

Thermodynamics of Small Magnetic Particles

Eugenio E. Vogel 1,2,*, Patricio Vargas 2,3, Gonzalo Saravia 1, Julio Valdes 1,

Antonio Jose Ramirez-Pastor 4 and Paulo M. Centres 4

1 Department of Physics, Universidad de La Frontera, Francisco Salazar 01145, Temuco, Chile;
gonzalo.saravia@gmail.com (G.S.); julio.valdes@ufrontera.cl (J.V.)

2 Center for the Development of Nanoscience and Nanotechnology, 9170124 Santiago, Chile;
patricio.vargas@usm.cl

3 Department of Physics, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
4 Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET,

Ejército de Los Andes 950, San Luis D5700BWS, Argentina; antorami@unsl.edu.ar (A.J.R.-P.);
pcentres@gmail.com (P.M.C.)

* Correspondence: eugenio.vogel@ufrontera.cl; Tel.: +56-45-232-5316

Received: 2 August 2017; Accepted: 13 September 2017; Published: 15 September 2017

Abstract: In the present paper, we discuss the interpretation of some of the results of the
thermodynamics in the case of very small systems. Most of the usual statistical physics is done
for systems with a huge number of elements in what is called the thermodynamic limit, but not all of
the approximations done for those conditions can be extended to all properties in the case of objects
with less than a thousand elements. The starting point is the Ising model in two dimensions (2D)
where an analytic solution exits, which allows validating the numerical techniques used in the present
article. From there on, we introduce several variations bearing in mind the small systems such as the
nanoscopic or even subnanoscopic particles, which are nowadays produced for several applications.
Magnetization is the main property investigated aimed for two singular possible devices. The size of
the systems (number of magnetic sites) is decreased so as to appreciate the departure from the results
valid in the thermodynamic limit; periodic boundary conditions are eliminated to approach the reality
of small particles; 1D, 2D and 3D systems are examined to appreciate the differences established
by dimensionality is this small world; upon diluting the lattices, the effect of coordination number
(bonding) is also explored; since the 2D Ising model is equivalent to the clock model with q = 2
degrees of freedom, we combine previous results with the supplementary degrees of freedom coming
from the variation of q up to q = 20. Most of the previous results are numeric; however, for the
case of a very small system, we obtain the exact partition function to compare with the conclusions
coming from our numerical results. Conclusions can be summarized in the following way: the laws
of thermodynamics remain the same, but the interpretation of the results, averages and numerical
treatments need special care for systems with less than about a thousand constituents, and this might
need to be adapted for different properties or devices.

Keywords: small systems; thermodynamics; magnetization; Ising model; Potts model; dilution

1. Introduction

Recent developments in experimental techniques and refinements of synthesis methods allow for
direct measurements of very small systems [1–6]. Examples of such systems include magnetic domains
in ferromagnets, which are typically smaller than 300 nm, quantum dots and solid-like clusters that are
important in the relaxation of glassy systems and whose dimensions are a few nanometers. Due to the
small size of such systems and the high surface/volume ratio, the usual thermodynamic properties of
macroscopic systems do not apply in the usual sense, and the analysis of fundamental principles of
statistical thermodynamics needs to be reconsidered [7–10]. Phase transitions, specific heat, thermal
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conductivity, magnetization and other phenomena need careful examination of the corresponding
thermodynamic variables used to characterize them. Ergodicity, fluctuations and error bars are among
the aspects that are greatly affected by the small size of the systems.

The increasing interest in the theory of small systems is not limited to physics, but also extends
to biological and chemical systems, such as clusters [11,12], thin films [13] and biological molecular
machines with sizes under 100 nm [14]. This broad picture calls attention to the extension of the
mathematical treatments valid in the (usually called) thermodynamic limit (TL) to systems formed by
a small number of elements.

In 1962, Hill [15,16] developed a formalism for describing the thermodynamics of small systems,
where thermodynamic properties such as enthalpy and Gibbs energy are no longer extensive. The pioneer
work of Hill established the fundamental laws that govern finite-size effects in thermodynamics.
Later, Hill and Chamberlin [17–20] introduced the term nanothermodynamics to denote the study of
systems far away from the TL. Despite these results, there are still many open questions regarding the
thermodynamic behavior and possible applications of very small systems.

Magnetic nanoparticles [21,22] are also examples of small systems whose properties are influenced
by finite size effects. The competition between core and surface effects determines the state of
the particle, which can go from a paramagnetic state to a ferromagnetic state. The temperature
characterizing this transition is the well-known Curie temperature (TC) in the TL. Experimental studies
for different materials show that the TC in nanoparticles is not a unique property of the material (as in
the bulk), since it is strongly size dependent and decreases as the characteristic dimension of the
particle, V1/3 (where V is the volume of the particle), is reduced [23–25].

In a recent work [26], it has been shown that for tiny systems, not only surface sites are special,
but also some inner sites might not be equivalent to each other. This fact can have important
consequences on the thermodynamic properties of small nanoparticles (up to sizes of the order
of ≈10 nm). In the magnetic systems described below, this effect mainly introduces dispersion in the
exchange coupling constants, which in turn may affect the values of the thermodynamical parameters.
These considerations tend to lose importance as the nanoparticle size increases. Moreover, they do not
affect the overall underlying physics, but impose limitations in the interpretation of the magnitudes
defined in the TL.

In the present paper, we would like to answer the following questions: How stable and reliable
are devices built of subnanoscopic magnetic particles? How do the representative properties of these
devices depend on the size, dimensionality, coordination and internal degrees of freedom among other
variables? We will consider two examples offered by very small magnetic particles responding to
temperature changes; such particles could be components of devices.

Let us first consider the magnetic switch shown in Figure 1a where a tiny nanomagnet (nm) sticks
to a ferromagnetic material (F) under a sensitive temperature T∗ (a way to avoid calling it the critical
temperature). To overcome the difficulties of defining temperature for very small isolated systems
we will assume that the devices and everything that is connected to them are immersed in a thermal
bath at temperature T. Changes in temperature are smooth and slow, so there is time to equilibrate.
As temperature raises, nm can decrease its magnetization under a critical value, which will weaken
the attraction to F; then an elastic restoring force (like the spring in the figure) brings nm to its natural
position away from F. This magnetic switch could activate an alarm that goes off over a prefixed
temperature, which ideally is precisely T∗. Let us assume that for this system, mechanical relaxation
times are longer than electronic ones; then, such a device is not sensitive to magnetization reversals, so
it is basically controlled by the absolute value of the magnetization, namely |m(T)|.

Figure 1b presents a tiny rod-like nanomagnet, which can rotate about its center on the plane
of the figure. A stronger fixed magnet (NS) with high TC orientates the tiny magnet. When the
temperature goes over a sensitive temperature T∗∗, a magnetization reversal happens in the small
magnet. Such polarity reversion triggers a rotation of the small particle disconnecting the terminals that
are connected when the conducting element attached to the “black” part of the particle closes the circuit.
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This device is strongly dependent on the polarity of the nanoparticle, namely on the sign of m(T).
Magnetization reversals are usually quite fast as compared to most mechanical processes in materials.
Some orders of magnitude for the switching time (defined as the time in which the magnetization
reverses polarity) have been proposed at about 200 ps for small Co systems [27]. The switching time
could be larger depending on the system size, temperature and magnetic anisotropies, but a few tenths
of ns have been reported for other small systems in the absence of an external magnetic field [28].

Figure 1. Magnetic switches. (a) Top: Under T∗ the magnetic nanoparticle (nm) sticks to the ferromagnetic
material (F) even against a restoring elastic force represented by a zig-zag line. Bottom: As temperature T
goes over T∗, nm loses enough magnetization, so the elastic force dominates switching off the contact;
(b) Top: Under T∗∗, a weak magnet labeled NS, with high enough TC, attracts the north pole (painted
black) of a rod-like nanomagnet made of a material with lower TC; the black part has a conducting
element that closes a circuit. Bottom: Over T∗∗, an internal magnetization reversal occurs in the
nanomagnet; the north pole is now in the sector painted white; the rod rotates with respect to an axis
going through the center of the rod and perpendicular to the figure; in this new position, the circuit is
switched off.

We shall come back to these examples later on since this is the kind of system we have in mind,
rather than statistical averages over different samples or instances. At this stage, we point to the
gross picture, namely the tendency of properties, and not to material-related or geometrical features
controlling a particular device. To focus the discussion, we turn our attention to two general and
well-known models whose properties can be reexamined in this new scenario. We refer to the Ising
model and to the clock model (related to the better-known Potts model).

The Ising model plays a central role in the study of phase transitions in magnetic systems
(transitions from paramagnet to ferromagnet, order-disorder transitions, etc.) [29–37]. Ising [38] gave
an exact solution to the one-dimensional lattice problem in 1925. All other cases are expressed in terms
of series solution [39,40], except for the special case of two-dimensional lattices in zero external field,
which was exactly solved by Onsager [41] in 1944. Close approximate solutions in dimensions higher
than one can be obtained, and the two most important of these are the mean-field approach [42] and
the quasi-chemical approximation [42,43].

In the last few years, the Ising model has been adopted as a prototype for studying the magnetic
properties of systems far away from the TL [44–46]. In [44], Velásquez et al. studied the magnetic
properties and pseudocritical behavior of ferromagnetic pure and metallic nanoparticles in the presence
of atomic disorder, dilution and competing interactions. Using variational and Monte Carlo methods,
the authors reported the particle size dependence of the ordering temperature for pure and random
diluted particles.
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Bertoldi et al. [45] solved analytically the Ising model for small clusters in the microcanonical
formalism, using the mean-field theory and considering the presence of surfaces. In agreement with the
work of Velásquez et al. [44], the authors found that the critical temperature decreases proportionally
to the inverse of the radius of the cluster. Recently [46], the Ising model on a simple-cubic lattice was
used to analyze the main concepts of nanothermodynamics applied to Monte Carlo simulations.

Finally, we increase the internal degrees of freedom at each site upon generalizing the Ising model
to the discretized XY model in what is called the clock model which is a well-known example of
the famous Berezinskii–Kosterlitz–Thouless (BKT) transition [47,48]. In this way, we will be able to
appreciate what is the role of the increase of the configuration space due to the characteristics of the
constituents of small systems and not only the fact that they interact among themselves.

This paper is organized as follows: In Section 2, we present the system and the methodology based
both on theoretical formulations and on computer simulations. In Section 3, we present the results
stressing those points where the analysis concerning the TL is not applicable for very small particles;
the discussion and relations among results are done along with the presentation of the results given by
plots and particular numerical values. In Section 4, we list and comment on the main conclusions.

2. Model and Methods

2.1. General Definitions

Let us begin by considering the Ising model on a square lattice of dimensions L× L = N, where
local magnetic moment or “spin” Si at site i can point either along the positive (+1) or negative
direction (−1) of a given axis. The isotropic Hamiltonian for such a system can be written as:

H = −J
N

∑
i>j

SiSj , (1)

where J is the exchange interaction to nearest neighbors; the sum extends to all pairs through the lattice,
which is indicated by the symbol i > j under the summation symbol. The magnetization m(T, t) of the
system at any temperature T and time t is simply obtained by just adding the spins in an algebraic
manner, namely,

m(T, t) =
1
N

N

∑
i=1

Si , (2)

where we have normalized it over the number of sites N, which is equivalent to normalizing it with
respect to the saturation magnetization.

Large macroscopic systems are modeled by making use of periodic boundary conditions (PBC)
where surface states are ignored; in this approximation, Lars Onsager [41] found an analytic solution
for the magnetization of the system in 2 dimensions (2D):

mO(T) = (1− sinh−4(2J/kBT))1/8 ; T < TC (3)

= 0 ; T ≥ TC

where kB is the Boltzmann constant, which we can take as 1.0 from now on (this is equivalent to
measuring energy and J in T units). The critical temperature TC can be readily obtained at the point
where the magnetization vanishes:

[sinh
(

2J
TC

)
]2 = 1, (4)

Then, the exact numeric solution for this problem for PBC can be easily evaluated, yielding:

TC = 2.269185...J ≈ 2.27 , (5)
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where J has been omitted, as will be done from now on.
The reason to have chosen the 2D Ising model to begin with is precisely this result, namely the

existence of an analytic solution for the transition temperature in the TL. We can use it as a reference
point to compare with other results and simulations where different conditions will be varied.

2.2. Exact Theoretical Approach for a Small System

Next, we consider a very small Ising square lattice, L = 4, where we can calculate everything
exactly. The partition function can be expressed as:

Z(T) =
λ

∑
n=1

cn e−En/T , (6)

where the coefficients cn give all of the possible spin configurations compatible with energy En

according to the Ising Hamiltonian; λ is the number of energy levels.
We can write the exact partition functions ZP(T) and ZF(T) for PBC and free boundary conditions

(FBC), respectively:

ZP(T) =
15

∑
n=1

cPn e−En/T , (7)

ZF(T) =
23

∑
n=1

cFn e−En/T , (8)

where coefficients cPn and cFn are to be obtained from Tables 1 and 2, respectively. These tables list
the corresponding degeneracies p(n, k) (PBC) and f (n, k) (FBC) for the set of states sharing energy En

given by Equation (1) and magnetization Mn,k:

Mn,k = 18− 2k, (9)

which runs between −16 and +16 at intervals of 2, as shown by the second row in the tables.
The coefficients in the expansions given by Equations (7) and (8) can be obtained as:

cPn =
17

∑
k=1

p(n, k), (10)

cFn =
17

∑
k=1

f (n, k), (11)

where we take into consideration the symmetry in Tables 1 and 2, namely p(n, 18− k) = p(n, k) and
f (n, 18− k) = f (n, k) with k = 1, 2, ...8, and

Mn,k = −Mn,18−k , k = 1, 2, ...8. (12)

It should be noticed that Tables 1 and 2 give only those configurations with nil or positive
magnetization. However, the Hamiltonian above is symmetric under the simultaneous reversion of all
spins, so both tables should be continued to the left to include the states with negative magnetization.
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Table 1. Coefficients p(n, k) for periodic boundary condition (PBC) configurations of a given energy En

and magnetization Mn,k. The first column gives n; the second column gives the corresponding energy
En; the following columns give the number of configurations for that energy (row) and magnetization
(column). This table is symmetric and should be extended to the left by means of the symmetry
properties so as to include the 8 negative values of the magnetization following Equations (10) and (12).

k= 9 8 7 6 5 4 3 2 1

n En Mk = 0 2 4 6 8 10 12 14 16

15 32 2
14 24 16
13 20 64
12 16 120 96 56
11 12 576 512 64
10 8 2112 1392 768 128
9 4 3264 3136 1568 448
8 0 4356 3680 2928 1248 228
7 −4 1600 1920 1824 1664 576
6 −8 768 624 704 688 736 208
5 −12 64 96 192 256 256
4 −16 8 24 96 88
3 −20 32
2 −24 16
1 −32 1

Table 2. Coefficients f (n, k) for free boundary condition (FBC) configurations of a given energy En

and magnetization Mk. The first column gives n; the second column gives the corresponding energy
En; the following columns give the number of configurations for that energy (row) and magnetization
(column). This table is symmetric and should be extended to the left so as to include the 8 negative
values of the magnetization following Equations (9) and (11).

k= 9 8 7 6 5 4 3 2 1

n En Mk = 0 2 4 6 8 10 12 14 16

23 24 2
22 20 4
21 18 16 8
20 16 36 16 2
19 14 80 56 16
18 12 192 148 48
17 10 384 296 112 8
16 8 814 596 272 44
15 6 1360 1096 552 136
14 4 1800 1608 864 288 12
13 2 2256 1984 1296 512 72
12 0 2320 2044 1604 740 188
11 −2 1680 1616 1352 872 304 8
10 −4 1008 1032 880 804 392 60
9 −6 544 584 592 520 368 128
8 −8 270 236 286 260 256 144 2
7 −10 80 72 96 120 144 112 24
6 −12 24 36 20 48 68 64 44
5 −14 8 16 16 8 32 32
4 −16 4 8 12 10 4
3 −18 8 8
2 −20 4
1 −24 1
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2.3. Numerical Simulations

In addition to some theoretical calculations, most of the work will deal with numerical calculations
based on Monte Carlo (MC) simulations. A square lattice L× L is chosen; PBC or FBC are imposed;
a site is randomly visited; and the energy cost δ of flipping the corresponding spin is calculated: if
the energy is lowered, the change of orientation is accepted; otherwise, only when exp(−δ/T) ≤ r,
the spin flip is accepted, where r is a freshly-generated random number in the range [0,1]. This is the
usual Metropolis algorithm. A Monte Carlo step (MCS) is reached after N = L× L spin-flip attempts.
One of the main goals here is to report the sensitive temperatures (T∗ or T∗∗ analogues to critical
temperatures in the TL) for different systems.

The energy is computed according to the Hamiltonian given by Equation (1). The instantaneous
magnetization at time t and temperature T is obtained from Equation (2).

For each temperature, 2τ MCSs are performed: the first τ MCS is used to equilibrate at a fixed
temperature T, while the second τ MCS is used to measure the magnetization every 20 MCSs, reaching
a total of 50,000 measurements. Unless specified in a different way τ = 106 in the rest of the paper;
this τ value gives stable results and leads to coincidence with the analytic expressions obtained as
described above.

2.4. The Clock Model

This is the discrete version of the famous 2D XY model, which is probably the most extensively
studied example showing the Berezinskii–Kosterlitz–Thouless (BKT) transition [47,48]. It is often used
as a reference of its peculiar critical behavior at the transition point and universal features [49–53].
Instead of the exclusion of an explicit continuous symmetry essential for the BKT transition, it can
also emerge from a system without explicit continuous symmetry. The q-state clock model is the
discrete version of the XY model, with discrete symmetry. The Hamiltonian of the clock model can be
written as:

H = −J ∑
i<j

cos(θi − θj), (13)

where J > 0 is the ferromagnetic coupling connecting pairs of nearest neighbors i and j; the discrete
angle between the spin orientations is given by θi,j(η, q) = 2πη/q, for η = {0, 1, .., q− 1}. While the
exact XY model is recovered only in the limit of infinite q, it has been found that the BKT characters
appear in the clock models when q ≥ 5 [54–57]. The nature of the phase transitions in the general clock
model has been widely studied with different theoretical and numerical approaches, which however
have given mixed results on the characterization of transitions at the lower bound of q (for instance,
see the summary of the related debates in [58]).

In spite of all that, in this work, we want to use this model as a generalization of the Ising model
presented above allowing for the increase in the number of internal states at each site. All of this is
always aimed at the behavior of small systems. We will focus on a square lattice 8 × 8 with FBC, with
the clock model ranging from q = 2 (Ising model) to q = 20 (one discrete version of the 2D finite
XY model).

3. Results and Discussion

Let us begin by considering the theoretical approach for the Ising lattice with L = 4 introduced in
the previous section. The magnetization per site can be calculated as:

mP(T) =
1

N ZP(T)

15

∑
n=1

∑17
k=1 Mn,k p(n, k)

∑17
k=1 p(n, k)

cPne−En/T (14)

and:

mF(T) =
1

N ZF(T)

23

∑
n=1

∑17
k=1 Mn,k f (n, k)

∑17
k=1 f (n, k)

cFne−En/T , (15)
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both of which give a nil result for any T since negative and positive contributions to the magnetization
cancel out as they are weighted with the same probability due to the symmetry properties of
Tables 1 and 2.

In macroscopic systems, ergodicity is spontaneously broken favoring any of the two halves of
the configuration space. As we will see below, this is not always true for very small systems, but
let us start from the ergodicity breaking approach so widely invoked to approach the TL. This can
be achieved by either considering only the positive magnetization contributions of Tables 1 and 2
plus half of the coefficients for the Mn,k = 0 column of the corresponding table. Equivalently, we can
force ergodicity breaking by considering all of the contributions to the magnetization, but using their
absolute value, namely,

mPe(T) =
1

N ZP(T)

15

∑
n=1

∑17
k=1 |Mn,k|p(n, k)

∑17
k=1 p(n, k)

cPne−En/T (16)

and:

mFe(T) =
1

N ZF(T)

23

∑
n=1

∑17
k=1 |Mn,k| f (n, k)

∑17
k=1 f (n, k)

cFne−En/T , (17)

where e refers to the forced ergodicity breaking.
We invoke now the numeric simulations defined in the previous section to calculate the

magnetization for the same system. Here, the same trick is done to break ergodicity, namely it is always
|m(T, t)| (obtained from Equation (2)) that is considered as the contribution to magnetization from
every configuration visited. In this way, ergodicity breaking is forced to occur in any circumstance.
We will call μPe(T, t) (PBC) and μFe(T, t) (FBC) the magnetizations obtained via numeric simulations
for a temperature T and at an instant t.

We compare now previous approaches. Results from Equations (16) and (17) are shown by up
and down solid triangles respectively in Figure 2. The results for the numeric simulations for PBC and
FBC are shown here by empty diamonds and empty squares respectively. The values for < μPe(T) >
and < μFe(T) > reported in Figure 2 correspond to positive averages over ν = 50,000 measurements.
The corresponding distribution of values allows us to report the error bars for each temperature.

Figure 2. Magnetization for a lattice L = 4 obtained using the analytic expressions (16) (up blue
triangles) and (17) (down yellow triangles) to compare with the results obtained from numeric
simulations using PBC (empty magenta diamonds) and FBC (empty black squares); the Onsager
solution is also plotted to mark the expected TC in the thermodynamic limit (TL) (solid red circles).
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For comparison and discussion, the Onsager solution is also added to this figure by means of
solid circles.

Figure 2 deserves a careful analysis and discussion. The excellent agreement between theory
and numeric simulation is very impressive. However, this should not be very surprising since the
Metropolis algorithm is based on the same probability laws that appear in the partition function, hence,
in the magnetization as well; both approaches consider ergodicity breaking, as already pointed out.
The agreement is stressed in the sense that the computer algorithms used here are very reliable, and
the equilibration times are enough. It can be noticed that both the theoretical and numeric results
for PBC coincide with the Onsager solution up to almost T = 2.0. From there on, both treatments
overestimate the magnetization values partly due to a small size effect, but also due to the forced
ergodicity breaking, which is assumed in these calculations. We will come back to this point below.

Let us now pay attention to the different results obtained for FBC as compared to PBC regardless
of the method employed in the calculation. It is PBC that can be used to compare with the results
valid in the TL, which are illustrated in Figure 2, by the Onsager solution yielding TC ≈ 2.27. As can
be seen, the theoretical results and magnetic simulations using PBC both agree with the Onsager
solution up to T = 2.0 approximately; from there on, both solutions remain at high values, decreasing
smoothly without an indication for a sharp phase transition. In the case of very small particles, PBC
are unthinkable, since in this limit, surface states become very important. This is an indication that
FBC should be used to model the properties of very small particles.

The light and smooth decrease in magnetization due to surface effects will determine that the
nanomagnets involved in the simple systems of Figure 1 will have different responses as those made of
the same basic material, but operating in the bulk sizes, namely in the TL. The sensitive temperatures
T∗ and T∗∗ for which these devices will activate still depend on other features to be examined below,
but this is a first result showing that properties characterized in the bulk need to be reexamined for
very tiny particles.

Actually, we can define the corresponding sensitive temperature simply as the temperature for
which m(T) or < μ(T) > (with any subscripts) takes the value 0.5. This working definition is consistent
with the TL, where a square step magnetization curve is expected at TC (equivalent to our sensitive
temperature), jumping from magnetization 1.0 to 0.0. Then, the sensitive temperatures can be read
from Figure 2 as 2.4 and 3.4 for FBC and PBC, respectively. Both values are larger than the macroscopic
expected result, which requires further discussion.

What is the real meaning of the average values we have just reported? Let us revisit the FBC
data and do a different exercise: let us plot the instantaneous value of the magnetization μF(T, t)
(no ergodicity breaking here) after the τ instants of measurement (last measured value for each
temperature after 2τ total MCSs). This is plotted by solid squares (black) in Figure 3 using the same
data already available from FBC on the 4× 4 lattice. These results allow for just one interpretation:
at least at T = 0.8 (or eventually at even lower T values), a magnetization reversal occurred, and
ergodicity breaking is no longer valid. Therefore, the previous approach intended for the TL has to be
reconsidered to analyze the results obtained in the small world. This is an indication that the ergodicity
breaking assumption is valid only for systems over a minimum size and appropriate for the property
under investigation.

All of the previous procedures are usual for TL analysis. However, the magnetic switches presented
in the Introduction will respond instantaneously and without having the chance of performing derivatives,
averages or even more sophisticated mathematical analyses, like the crossing of Binder cumulants [59]
or the crossing of autocorrelation functions [60], to decide which is the appropriate value for the
sensitive temperature. In these examples and in all nanosized devices, a careful analysis of the
thermodynamics of the object in terms of the desired property should be appropriately done.

In the case of the magnetic switch illustrated by Figure 1a, the nanomagnet (nm) will stick to
the ferromagnetic material (F) regardless of its polarity. This would be the case of systems whose
magnetization reversals are much faster than any mechanical process (like elastic forces) usually
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involving atomic masses. Therefore, such a device would be insensitive to magnetization reversals
and will respond effectively to the magnitude of the magnetization of the nm switching off the circuit
at a certain sensitive temperature T∗.

On the other hand, in the case of the magnetic switch illustrated by Figure 1b, the magnetic
nanorod will always point with its north pole to the fixed magnet on top, which coincides with
the black portion of the rod in the upper part of this figure at low T values. As temperature rises,
a magnetization reversal is possible in the softer magnetic material in the nanorod; the north pole
is now on the white part of the rod, and the nanomagnet will rotate with respect to its fixed center.
Therefore, this device is sensitive to the polarity of the nanomagnet and will disconnect the circuit at a
certain sensitive temperature T∗∗.

Even if the nanomagnets in both switches are made of the same material, T∗ and T∗∗ will be
different in general because they originate from different properties: the former is governed by the
value of the absolute magnetization, and the latter responds to the reversal process depending on the
instantaneous sign of the magnetization. As we will show below, they are different indeed, and for the
systems to be studied, T∗ > T∗∗.

Figure 3 also yields the average of the actual instantaneous magnetization values obtained for
FBC < μF(T) > over the ν = 50,000 instants, namely,

< μF(T) >=
1

50, 000

50,000

∑
t=1

μF(T, t) ; (18)

These results are reported by means of empty circles (red) with the corresponding error bars.
If we look at these data, we should estimate T∗∗F ≤ 0.8.

Figure 3. Solid (black) squares: last instantaneous magnetization μ(T, 2τ) measured after 2× 106 Monte
Carlo steps (MCSs) for each temperature; empty circles (red) represent the average magnetization
over ν = 50,000 instantaneous measurements of magnetization at intervals of 20 MCSs after 106 MCSs
of equilibration.

By enforcing ergodicity breaking in Figures 2 and 4, we are biasing the data in several senses:
magnetization reversals are inhibited as if there is an infinite anisotropy; the instability of the systems
is ignored; the curve is artificially smoothed; the average value of the magnetization is always positive;
and it does not converge to 0.0 as T → ∞. This last result is usually confused with the tails of the
magnetization curves (and other order parameters) for T > T∗ due to finite size effects.
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Figure 4. Simulations on 16× 16 lattices for different effective coordination numbers κ whose values are
given in the inset: 2.000 corresponds to PBC; 1.875 to FBC; 1.75 to the dilution of the lattice according
to the decoration proposed in Figure 5 where four pieces � × � with � = 4 have been withdrawn;
1.500 corresponds to a similar decoration with � = 6; 1.00 corresponds to a similar decoration with
� = 7. B means P when κ = 2.000, and it represents F for all of the other cases. For clarity, not all curves
are shown with error bars.

From the previous discussion, it is clear that a unique definition for a Curie temperature in the
nanoworld faces huge difficulties. At least the usual definition of a Curie temperature, where all
magnetic properties change at one precise temperature, is not longer sustainable. Actually, in the TL,
there would not be a difference between the two switches illustrated in Figure 1. However, we have
just shown that for a magnetic systems of just very few interacting elements, different properties may
have different sensitive temperatures.

The general message here is that when dealing with small particles, instantaneous responses may
have a great importance and could determine completely the performance of the device. The details of
this behavior will depend on the properties involved, geometry and other characteristics.

In any case, what is quite clear is that < μ(T) > is not the only property governing the response
of the device at very small sizes. The large error bars in Figures 2 and 4 indicate that instantaneous
measurements of magnetization can be erratic and at times could disconnect the device at unexpected
temperatures under the desired one. As sizes get larger, error bars progressively decrease, and
< μ(T) > becomes the right parameter to design devices as those shown in Figure 1.

Another important result shown by Figure 2 is the huge size of the error bars, which are likely
associated with the small size of our system. To test this hypothesis, we will do numerical simulations
similar to those of Figure 2 using both PBC and FBC for L = 16. Results (along with others to be defined
immediately below) are presented in Figure 4 by empty squares and solid circles, respectively. In fact,
error bars are now smaller; T∗ has moved to lower values; the slope in the descent is more vertical
(approaching the square step shape expected at the TL); and the remnant absolute magnetization
towards high temperatures has decreased. Therefore, it is clear that we are moving in the direction
where these simulations designed for the TL are effective.

We can make use of this opportunity to discuss another important consideration for small particle
behavior: coordination number (or bonding, to put it in a more general context). Let us define effective
coordination number κ as the ratio of the number of bonds B (nearest neighbors in our case) over the
number of the N individuals (spins) interconnected by these B bonds. For any square lattice with PBC,
B = 2N and κ

(2)
P = 2.0; the upper index (2) refers to 2D. In the case of FBC, we have B = 2L2 − 2L;

N = L2, so:

κ
(2)
F =

2L2 − 2L
L2 = 2− 2

L
, (19)
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which for L = 16, yields κ
(2)
F = 1.875, as illustrated in the inset of Figure 4. It is clear that in the TL,

κ
(2)
F → κ

(2)
P , but for small particles, the difference might matter.

The effective coordination number defined above can be diminished upon diluting the
original lattice. This can be achieved by human decoration on the original lattice (just removing
atoms in a prescribed way) or could be due to some natural process that takes away magnetic atoms of
our 2D sample (corrosion for instance). For simplicity, we will have the first alternative in mind, but
the results for the second one would only add randomness to what we will discuss next.

Let us go back to the ferromagnetic lattice 16× 16, and we will progressively dilute it upon
removing four square sectors � × � each time in the way shown in Figure 5 for the case � = 4.
To be more specific, the lattice is divided into four sectors (L/2)× (L/2), and the extraction of the
�2 sites is done from the lower right corner of each sector. For the example under consideration,
N = L2 − 4× �2 = 192 and B = 336, so κ = 1.75. Then, we remove four sectors with � = 6 and, finally,
four sectors with � = 7, obtaining κ = 1.5 and κ = 1.0, respectively. In all of these cases, FBC are
imposed. The last case is quite interesting because it is equivalent to the linear chain used by Ernest
Ising in his original (and only) paper [38], for which the expected TC is 0.0, namely no phase transition
for finite temperatures.

Figure 5. Diluted 16× 16 lattice upon decoration: four sectors 4× 4 are removed to leave N = 192
spins with a total of B = 336 bonds; FBC are imposed to get κ = 1.750. Other similar decorations are
defined in the text and in the previous figure.

Results for < μ(T) > are given in Figure 4, where the values of κ are given in the inset. Error bars
were also calculated for all κ values, but they are shown for κ = 2.000, 1.750 and 1.000 only for
the simplicity of the figure. Direct comparison shows that error bars for the lattice 16 × 16 are less
pronounced than the corresponding ones for the lattice 4 × 4.

The main result of Figure 4 is to show the way T∗ decreases as the effective coordination number
decreases. This is even more so if ergodicity breaking is imposed, an effect that we will discuss
again below.

Let us stress another shortcoming of the forced ergodicity breaking method mentioned before,
namely the fact that < μ(T) > remains positive at high temperatures. In Figure 2, the last point
of the simulation corresponds to < μ(4.0) > ≈ 0.32 with error bars of about 0.23 for FBC.
For this lattice, we can actually make use of Equation (17) to obtain the exact value in the high
T limit: < μ(T → ∞) >→ 0.196, which indicates that temperature has to be increased in the numeric
simulations to attain a better comparison. We can follow this tendency simulating higher temperatures
including larger lattices. Thus, Figure 6 shows results for L = 4, 8 and 16, where the positive asymptotic
behavior is clearly shown; the values for < μ(40.0) > are 0.204, 0.104 and 0.052, respectively. The first
result is approaching the already quoted theoretical result 0.196. The set of values indicates that this
sort of imposed remnant magnetization tends to be negligible for large lattices in the TL. A different
way to put this is that magnetization reversals decrease as L increases, which makes the imposed
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ergodicity breaking coincide with the real ergodicity breaking. This tendency is shown in the inset
of Figure 6 where in the logarithmic scale, we plot the number of magnetization reversals during the
50,000 measurements as a function of 1/L for T = 1.5. For higher temperatures, reversals are easier,
but the amplitudes are lower; for lower temperatures, reversals are harder, but the amplitudes are
higher (which makes the absolute value of μ(T, t) stay close to unity). When ergodicity breaking is
imposed at low temperatures, magnetization always oscillates between values close to +1 or −1.

Figure 6. Average absolute magnetization for lattices of different sizes showing the tails for the artificial
remnant magnetization induced by forced ergodicity breaking. The inset shows the decrease with the
size of the number of magnetization reversal within 50,000 measurements after equilibration. For clarity,
error bars are given for L = 16 only.

The curve for κ = 1.000 in Figure 4 deserves a special analysis since it is expected that the
magnetization should go down as soon at T > 0. However, this figure is for < μ(T) >, namely for
forced ergodicity breaking, to compare with Figure 2, related to the analytic expressions given by
Equations (16) and (17). If we go back to the data for this case, we can study each temperature to
find that reversions are occurring at all temperatures. For instance, < μ(0.6) > ≈ 0.7 for κ = 1.000 in
Figure 4; however, if we look at the instantaneous data for the 100 leading intervals of the measuring
interval (immediately after equilibration), we find μ(0.6, t) oscillating as given in Figure 7.

Figure 7. Instantaneous magnetization after τ = 106 MCSs of equilibration for the lattice 16× 16,
κ = 1.0, with FBC at T = 0.6. Measurements are separated by 20 MCSs.
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For lower temperatures, oscillations are progressively less and less frequent approaching
alternations between +1.0 and −1.0 only at T = 0.1, where it is necessary to wait a huge amount of
time to get the first reversal. In this way, we approach the result for the 1D Ising lattice: no phase
transition is possible at a finite temperature.

Let us now investigate the role of the effective coordination number towards the 3D case with PBC
(κ(3)P = 3.0). This is shown in Figure 8, where we begin by a single 4× 4 layer with FBC (κ(2)F = 1.875);

then, we continue the series: two layers 4× 4 with FBC (κ(3)F1 = 2.0); three layers 4× 4 with FBC

(κ(3)F2 = 2.167); four layers 4× 4 with FBC (κ(3)F3 = 2.25); four layers 4× 4, two directions with FBC

and one direction with PBC (κ(3)FP = 2.5); four layers 4× 4, one direction with FBC and two directions

with PBC (κ(3)PF = 2.75); four layers 4× 4, all directions with PBC (κ(3)P = 3.0). The result is eloquent:
T∗ moves to higher temperatures as the effective coordination number increases. Moreover, the
dimensionality plays also an important role, which can be appreciated when we compare the second
case here having κ

(3)
F1 = 2.0, with the already seen case κ

(2)
P = 2.0 for the 4× 4 PBC lattice (shown in

Figure 4). It can be appreciated that for the 3D case, T∗ is larger than for the 2D case.

Figure 8. Magnetization for different systems based on 4× 4 layers where the effective coordination
number κ varies as given in the inset: 1.50 (one layer ; B = F); 2.0 (two layers 4× 4; B = F); 2.167 (three
layers 4× 4; B = F); 2.25 (four layers 4× 4; B = F); 2.50 (four layers 4× 4; B = 2F + 1P); 2.75 (four layers
4× 4; B = 1F + 2P); 3.0 (four layers 4× 4; B = P) (the first curve is truly 2D, and part of it was already
included in Figure 2; it is given here for completeness and comparison purposes).

Now, we show results for the q-states clock model simulated on an 8 × 8 square lattice.
The density of magnetic states increases as q increases; therefore, we expect a q dependence of the
sensitive temperature characterizing the transit from an ordered ferromagnetic initial regime to a
magnetically-disordered phase.

Figure 9 shows the sensitive temperature T∗ vs. 1/q ranging from q = 2 to q = 20. Here, we
follow the same approximation as in Figure 2, namely we force ergodic separation starting always
from a ferromagnetic state. T∗ is defined as the temperature where the normalized magnetization is
< μe(T∗) >= 0.5, which is a practical way to define the transition to a disordered state. In order to
sample with the same density the q-possible states for each spin in the 8 × 8 square lattice (there are
q64 states for an 8 × 8 lattice), we increase the number of MCSs as q increases; higher q values need
larger numbers of MCS to reach equilibration. Therefore, we use τq/2 MCSs for the simulations of the
q-clock model.
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Figure 9. Sensitive temperature T∗ from a magnetic ordered to a disordered phase for the q-states clock
model as a function of 1/q. A square lattice 8× 8 with FBC is used. Measurements are obtained after
5× 106 MCSs for averaging.

As we see in Figure 9, there is a monotonous decrease of T∗ with increasing values of q.
Larger values of q mean energy states separated by less energy differences, therefore moving the
initial ferromagnetic state to other states with different magnetizations in an easier way: this implies
that the disorder for higher q values will be reached at lower temperatures as compared with the
starting q = 2 case (Ising model).

A very striking feature is shown by Figure 9: two regimes are clearly shown: for q = 2 to q = 4,
and from q = 5 to q = 20 (and possible larger values). In the first regime, T∗ decreases with a relatively
low slope as a function of 1/q, whereas for q > 4, the slope of the T∗ vs. 1/q curve is larger. This change
of slope could be associated with different types of transitions that occur for different q values. Namely,
there is an order→ disorder transition for q <= 4 and a double transition order→ quasi-ordered→
disordered for q >= 5 as discussed in [58,61].

It is clear from symmetry arguments that as q increases, lower temperatures are sufficient to
originate new ferromagnetic states in any of the q directions irrespective of the starting configuration.
Therefore, as q tends to infinity, T∗ tends to zero. This is known as the Mermin–Wagner theorem [62].
This theorem establishes that there is no magnetic state at any finite temperature (T > 0) in the
XY model. Moreover the formation of vortex-antivortex states is prohibited in an 8 × 8 lattice because
of its small size. Therefore, the BKT transition is also absent in samples of such a small size.

4. Conclusions

As magnetic particles get very tiny, comprising a low number of elements, especially at the
nanoscopic level, the ergodic separation is no longer possible in the way that it is handled in the
TL. This means that as temperature progressively increases, very soon, all of the configuration space
becomes available, with positive and negative components of the magnetization. While the transit time
from a state with one magnetization sign to the opposite one is faster than other characteristic times of
the system (elastic forces, vibrations, etc.), the particle will present a magnetization whose magnitude
could make it stick to a ferromagnetic material, as is shown in Figure 1a. However, as the temperature
continues to increase, such a magnitude will weaken, changing the static magnetic properties of
the particle.

For tiny magnetic particles, statistical fluctuations are larger than the needed reliability of the
particle, which could be reflected by a given experimental accuracy. This fact is reflected in the error
bars found in previous measurements suggesting that at any given temperature, oscillations are large,
and a unique value of magnetization cannot be found at any temperature. This behavior requires
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extreme care when using magnetic particles at the molecular level being part of a device since the
performance of this tiny magnet could be under what could be needed. If the dimensions available
allow it, it would be safer to use slightly larger particles that already behave as macroscopic ones.
The sensitive temperature at which the particle changes according to its magnitude is T∗, which has
to be thought of as a rather large range centered at a value. Towards the TL, such a range should
disappear, and T∗ → TC.

Such considerations are even more important when the response of the particle is based on the
orientation of the nanomagnet, as is proposed in Figure 1b. Here, a magnetization reversal (even if the
magnitude remains high) can trigger a reorientation of the particle. Such magnetization reversals could
happen at almost any temperature for small particles. The main conditions are that they become less
and less frequent as temperature is lowered and size increases. The sensitive temperature at which the
particle changes according to its polarity is T∗∗, which again has to be thought of as a range centered
at a value. From previous results, it follows that T∗∗ < T∗, since reversals at low T tend to fluctuate
between extreme magnetization values. Towards the TL, we can expect that T∗∗ → T∗ → TC.

Previous results show that a definition for the Curie temperature for small systems, even if a
defying and interesting task, does not add any new physical insight for what will be the real response
of a single nanosized ferromagnet of any given material. The different characteristics of the tiny
system contribute to the fluctuations of its magnetization that in the last run dominate its response.
Alternatively, the Curie temperature is a thermodynamic parameter arising from ensemble averages;
in this way, TC finds a unique definition in the TL.

However, even some of the theoretical treatments intended for the TL need a critical reformulation.
One of them is the fact that the high temperature sector of the magnetization curve is lifted since all
magnetizations are taken as positive when ergodic separation is assumed and imposed. Then, critical
temperatures tend to be overestimated. In addition, the zero magnetization value is not reachable for
finite sizes and finite temperatures as presented in Figure 6 since the tails are forced to be always on
the positive side of the magnetization; so not always are the long asymptotic positive tails exclusively
due to finite size effects, as is frequently assumed.

In the case of very small particles, simulations cannot impose PBC since this would ignore the
surface states, which become more important for these systems. The energy spectrum of surface
elements means a more compact and homogeneously-distributed density of states for the same size
(see Tables 1 and 2). In terms of the magnetization of the system, simulations with FBC lead to softer
magnetism (lower T∗) than simulations for a system of the same size, but with PBC.

Dilution of the lattice upon remotion of magnetic sites (intended or accidental) will lead to an
increase of the surface, thus lowering the effective coordination number κ. Materials get softer, namely
sensitive temperatures move to lower values, as κ decreases. This phenomenon has still another
implication since lower effective coordination numbers also mean higher chances of magnetization
reversal. Thus, if magnetic tiny particles lose magnetic mass through corrosion, the sensitive temperatures
could move to lower values due to aging. Previous effects were tested through several κ values ranging
from 1.0 through 3.0 (namely from one to three dimensions). This allowed one to appreciate that for
similar κ values, materials are harder in the higher dimensionality realization.

The instabilities due to magnetization reversal events decrease very rapidly with size. In the case of
a 16× 16 lattice, FBC, at T = 1.5, the ergodicity breaking was violated just once for 50,000 instantaneous
measurements. This result seems to indicate that for lattices over 32× 32 (about 103 magnetic sites),
magnetization reversals can be progressively ignored for most of the practical applications.

When the density of states gets denser due to more internal degrees of freedom, the sensitive
temperatures decrease. This was tested with the clock model varying q, the number of independent
orientations of the spin on the 2D lattice. Actually, as q increases, T∗ tends to approach 0.0 in the
expected Mermin–Wagner theorem valid for q→ ∞. It is quite interesting that this result obtained for
macroscopic systems is also obtained for a lattice as small as an 8× 8 lattice with FBC.
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Finally, we want to stress that in the present study, we have not found any evidence for failure
of any of the basic thermodynamic principles, which seem to be very robust. However, we have
presented evidence indicating that some approximations done in the TL cannot a priori be applied
to magnetic particles with a thousand elements or less. Care has to be paid to the way averages are
performed or even if taking averages to describe instant responses of the system makes any sense;
actually, such a small magnetic particle could exhibit properties associated with its proper fluctuations.
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Glossary of Symbols

The following alphabetic list gives the main symbols used in this article, their basic meaning and
the number of the equation (if any) where they were defined or used for the first time.

B number of bonds in the lattice.
cFn degeneracy of the n-th energy level for FBC, (8).
cPn degeneracy of the n-th energy level for PBC, (7).
δ energy cost due to the possible flip of the visited spin.
e subindex to represent that ergodic separation has been enforced.
En energy on the n-th level, (6).
fn,k degeneracy of the k-th configuration within the n-th energy level for FBC, (11).
F denotes free boundary conditions (FBC).
H Hamiltonian of a systems of N spins, (1).
i or j position of spin Si or Sj, (1).
J exchange interaction (J = 1), (1).
κ effective coordination number, (19).
L side of the square lattice L× L.
m(T, t) magnetization for temperature T and at time t, (2).
mO(T) magnetization for Onsager solution at temperature T, (4).
mF(T) Magnetization at temperature T for FBC from analytic expressions.
mP(T, t) Magnetization at temperature T for PBC from analytic expressions.
Mn,k magnetization for the k-th configuration within the n-th energy level, (9).
MCS Monte Carlo step (plural: MCSs).
μF(T, t) Magnetization at instant t and temperature T for FBC from numeric calculations.
μP(T, t) Magnetization at instant t and temperature T for PBC from numeric calculations.
< μ(T) > average value of the numeric magnetization over 50,000 instants after equilibration, (18).
n index to label energy levels, (6).
N number of magnetic elements (spins), (1).
ν number of measurements done within the interval of 106 MCCs.
pn,k degeneracy of the k-th configuration within the n-th energy level for PBC, (10).

300



Entropy 2017, 19, 499

P periodic boundary conditions (PBC).
r random number.
R number of reversions in the nanomagnet during 50,000 measurements.
S Ising spin: +1 or −1, (1).
t time instant.
τ period of equilibration (106 MCSs).
TC Curie temperature, (4).
T∗ Sensitive temperature depending on the magnitude of the magnetization.
T∗∗ Sensitive temperature depending on the sign of the magnetization.
Z(T) Partition function at temperature T, (6).
ZF(T) Z(T) for free boundary conditions, (8).
ZP(T) Z(T) for periodic boundary conditions, (7).
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Abstract: We employ the spinor analysis method to evaluate exact expressions of spin-spin correlation
functions of the two-dimensional rectangular Ising model on a finite lattice, special process enables us to
actually carry out the calculation process. We first present some exact expressions of correlation functions
of the model with periodic-periodic boundary conditions on a finite lattice. The corresponding forms in
the thermodynamic limit are presented, which show the short-range order. Then, we present the exact
expression of the correlation function of the two farthest pair of spins in a column of the model with
periodic-free boundary conditions on a finite lattice. Again, the corresponding form in the thermodynamic
limit is discussed, from which the long-range order clearly emerges as the temperature decreases.

Keywords: two-dimensional Ising model; spin-spin correlation functions; exact solution; short-range
order; long-range order

1. Introduction

Since the exact solution of the partition function in the absence of a magnetic field of the
two-dimensional rectangular Ising model with periodic-periodic boundary conditions is obtained in the
thermodynamic limit [1] and in finite-size systems [2], many authors have contributed to the knowledge of
various aspects of this model, such as different boundary conditions, the arrangement modes of the spin
lattice, surfaces, or mathematical methods, etc. [3–7].

Besides the partition function of the model, the calculations of spin-spin correlation functions
are an important subject in the research of the two-dimensional Ising model. Some expressions of
correlation functions in the thermodynamic limit have been obtained [3–5,8,9], and the case in a finite
lattice has been studied [10–12].

The determination of exact expressions of the partition function and spin-spin correlation
functions of the model on a finite lattice is not only a theoretical subject; the results obtained can also
be used in the research of finite-size scaling, finite-size corrections, and boundary effects [7,13–16].

In this paper, we present some exact expressions of spin-spin correlation functions of the
two-dimensional rectangular Ising model on a finite lattice by employing the spinor analysis method [2].

In Section 2, for the model with L rows and N columns and periodic-periodic boundary conditions
(Onsager’s lattice), we calculate some exact expressions of the correlation function

〈
σ1 , 1σ1 , 1+Q

〉
and

compare the corresponding forms in the thermodynamic limit obtained here with known results presented
in Reference [9]. The investigation in Section 2 shows the main steps, key points, and problems of the
approach used in this paper. Since the whole process are complex, here we outline the approach.

(1) Although any spin-spin correlation functions
〈
σl , nσl′ , n′

〉
can be expressed by matrices,

and the matrices belong to spin representatives [8], here we only consider
〈
σl , 1σl , 1+Q

〉
, i.e., the

correlation functions of pairwise spins in one column, of which exact expressions can be obtained by
the spinor analysis method.
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Entropy 2018, 20, 277

(2) When we employ the spinor analysis method to evaluate
〈
σl , 1σl , 1+Q

〉
, it is very difficult to

find the exact eigenvalues of the corresponding rotation matrix; however, the operators of the first
derivative and limit in the expressions of

〈
σl , 1σl , 1+Q

〉
(see (8)) allow us to obtain exact expressions of〈

σ1 , 1σ1 , 1+Q
〉

by only finding approximate eigenvalues of the rotation matrix.
(3) We employ Rayleigh-Schrodinger Perturbation Theory (RSPT) in quantum mechanics and

change “finding eigenvalue up to Q-th order” to “finding eigenvalue through Q times first-order
approximation” (see the discussions in Section 2.5) to find approximate eigenvalues of the rotation
matrix. On the one hand, this approximate method enables us to actually carry out the calculation
process. On the other hand, since RSPT is irregular, the approximate method is in fact incapable
when Q is very larger. Hence, by this approach we can only obtain exact expressions of correlation
functions when Q is a small number, for example, that of 〈σ1 , 1σ1 , 2〉 , 〈σ1 , 1σ1 , 3〉 , 〈σ1 , 1σ1 , 4〉 , · · · ,
etc., which belong to the short-range order.

What is more interesting is the long-range order, as it is closely related to properties of the phase
transformation of the system. To obtain the correlation function that can reveal the long-range order of
the model on a finite lattice, we turn to the model with L rows and N columns and periodic boundary
condition in the horizontal direction and free boundary condition in the vertical direction. For this
model, because of the free boundary condition in a column, and σl , N is the farthest spin of σl , 1 in the
column, we forecast that the correlation functions

〈
σl , 1σl , N

〉
,
〈
σl , 1σl , N−1

〉
,
〈
σl , 1σl , N−2

〉
, · · · will

display the long-range order.
For the model with periodic-free boundary conditions, if we write

〈
σl , 1σl , 1+Q

〉
in matrix forms

and use the method presented in Section 2, then we still can only obtain exact expressions of 〈σ1 , 1σ1 , 2〉 ,
〈σ1 , 1σ1 , 3〉 , · · · but cannot obtain that of

〈
σl , 1σl , N

〉
,
〈
σl , 1σl , N−1

〉
, · · · . On the other hand, if we

write 〈σ1 , 1σ1 , N−n〉 in matrix forms directly (see Formulas (52) and (53) in this paper), then the method
presented in Section 2 is feasible to deal with the matrix forms of 〈σ1 , 1σ1 , N−n〉, and we therefore can
obtain some exact expressions of

〈
σl , 1σl , N

〉
,
〈
σl , 1σl , N−1

〉
,
〈
σl , 1σl , N−2

〉
, · · · .

However, to save space, in this paper we no longer discuss
〈
σl , 1σl , N−1

〉
,
〈
σl , 1σl , N−2

〉
, · · · but

only evaluate
〈
σl , 1σl , N

〉
, for which all of the matrix forms, the corresponding rotation matrices,

and the eigenvalue equations have been given by Reference [12]. Therefore, we only need to derive the
exact expression of

〈
σl , 1σl , N

〉
by employing the method presented in Section 2. (The reason why the

determination of the exact expression of
〈
σl , 1σl , N

〉
fails in Reference [12] is explained in Section 3.3).

After obtaining the exact expression of
〈
σl , 1σl , N

〉
, we discuss the properties of the expression of〈

σl , 1σl , N
〉

in the thermodynamic limit, from which the long-range order emerges as the temperature
decreases, as shown clearly.

2. Short-Range Order in Onsager’s Lattice

2.1. The Definition of the Spin-Spin Correlation Functions and Their Basic Properties

According to the definition of the spin-spin correlation functions,
〈
σl, nσl+P, n+Q

〉
of pairwise

spins σl , n and σl+P , n+Q of Onsager’s lattice read:

〈
σl, nσl+P, n+Q

〉
=

1
Z ∑
{σh , v=±1}

σl, nσl+P, n+Q exp
(

J′

kT

L
∑

l′=1

N
∑

n′=1
σl′ , n′σl′+1 , n′

)
exp
(

J
kT

L
∑

l′=1

N
∑

n′=1
σl′ , n′σl′ , n′+1

)
, (1)

where σL+1 , n = σ1 , n, σl, N+1 = σl , 1; J′(> 0), and J(> 0) are the interaction constants for the
horizontal and vertical directions, respectively;

Z = ∑
{σh , v=±1}

exp

(
J′

kT

L

∑
l=1

N

∑
n=1

σl , nσl+1 , n

)
exp

(
J

kT

L

∑
l=1

N

∑
n=1

σl , nσl , n+1

)
(2)

is the partition function in absence of a magnetic field of the model.
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According to the periodic-periodic boundary conditions of Onsager’s lattice, it is easy to prove〈
σl,nσl+P,n+Q

〉
=
〈
σ1,1σ1+P,1+Q

〉
; in this paper, we calculate

〈
σl,nσl,n+Q

〉
=
〈
σ1,1σ1,1+Q

〉
, i.e., we only

calculate correlation functions of pairwise spins in one column.
Further, because of periodic-periodic boundary conditions, both σ1 , 2 and σ1 , N are the closest

spins of σ1 , 1, and we therefore have 〈σ1, 1σ1, 2〉 = 〈σ1, 1σ1, N〉. Generally speaking, it is easy to prove〈
σ1, 1σ1, 1+Q

〉
=
〈
σ1, 1σ1, 1+N−Q

〉
in terms of periodic-periodic boundary conditions. Hence, σ1 , 1+[N/2]

is the farthest spin of σ1 , 1, where [x] denotes the greatest integer not exceeding x. Thus, we only need

to calculate
〈
σ1, 1σ1, 1+Q

〉
for Q = 1, 2, · · · ,

[
N
2

]
.

2.2. Some Results Concerning the Partition Function Z

From (1), we see that to obtain
〈
σ1, 1σ1, 1+Q

〉
, we need knowledge about the partition function Z

given by (2), from which we summarize some results presented in Reference [2] as follows.

Z =

(
2sinh

2J′

kT

) LN
2 Z̃, Z̃ = Tr

(
1 + Γ2N+1

2
U(↑) +

1− Γ2N+1

2
U(↓)

)
. (3)

Z̃ can thus be obtained by finding the trace of a matrix, where Γ2N+1 is the matrix U defined by (15.68)

in Reference [17], and the matrices
1 + Γ2N+1

2
U(↑) and

1− Γ2N+1

2
U(↓) can be diagonalized at the same

time.
On the other hand, both matrices U(↑) and U(↓) are spin representatives. Byω(↑) andω(↓) we

denote the corresponding rotation matrices of U(↑) and U(↓), respectively; bothω(↑) andω(↓) can be
diagonalized:

(ζ(↑↓))
+
ω(↑↓)ζ(↑↓) = λ(↑↓);

λ(↑↓) = diag
[
λ
(↑↓)
1 λ

(↑↓)
2 · · · λ

(↑↓)
N

]
, λ(↑↓)n = diag

[
eγ

(↑↓)
n e−γ

(↑↓)
n

]
(n = 1, 2, · · · , N) ,

(4)

where A+ indicates a complex conjugate to a matrix A,

cosh γn = cosh 2K′ cosh 2K− cos ϕnsinh2K′sinh2K , e−2K′ = tanh
J′

kT
, K =

J
kT

;

ϕ
(↑)
n =

(2n− 1)π
N

, ϕ
(↓)
n =

2nπ
N

(n = 1, 2, · · · , N = 2M) .
(5)

In the above formulas, γn and ϕn are as the abbreviations for γ
(↑↓)
n and ϕ

(↑↓)
n , respectively. To save

space, we use these abbreviation as far as possible in this paper.
Since properties of the partition function Z vary between even and odd numbers N, we must

calculate
〈
σ1, 1σ1, 1+Q

〉
separately in terms of whether N is an even or odd number. In this paper we

only consider the case that N = 2M as an even number (the case of N = 2M + 1 can be dealt with by
the same approach). From Reference [2], we have:

Z̃ =
1
2

⎛⎝( M
∏

m=1
2 cosh

Lγ
(↑)
m

2

)2

+

(
M
∏

m=1
2sinh

Lγ
(↑)
m

2

)2

+

(
2 cosh

Lγ
(↓)
2M

2

) (
2 cosh

Lγ
(↓)
M

2

) (
M−1
∏

m=1
2 cosh

Lγ
(↓)
m

2

)2

+

(
2sinh

Lγ
(↓)
2M

2

) (
2sinh

Lγ
(↓)
M

2

) (
M−1
∏

m=1
2sinh

Lγ
(↓)
m

2

)2
⎞⎠.

(6)

When N = 2M, γn and ϕn have properties:

306



Entropy 2018, 20, 277

γm = γm′ , ϕm = 2π− ϕm′ , m′ =

{
2M− (m− 1) , for (↑) ;
2M−m , for (↓) ,

m =

{
1, 2, · · · , M , for (↑) ;
1, 2, · · · , M− 1 , for (↓) ,

γ
(↓)
M = 2(K + K′) , γ

(↓)
2M = 2(K− K′) , ϕ

(↓)
M = π , ϕ

(↓)
2M = 2π ,

0 < γ
(↑)
1 < γ

(↑)
2 < · · · < γ

(↑)
M , 0 <

∣∣∣γ(↓)
2M

∣∣∣ < γ
(↓)
1 < γ

(↓)
2 < · · · < γ

(↓)
M−1 < γ

(↓)
M .

(7)

2.3. Writing
〈
σ1, 1σ1, 1+Q

〉
in Matrix Form

Since σ2
h , v = 1, we have σ1 , 1σ1 , 1+Q = σ1 , 1σ1 , 2 · σ1 , 2σ1 , 3 · · · · · σ1 , Q−1σ1 , Q · σ1 , Qσ1 , 1+Q,

and, further, considering σ1 , qσ1 , 1+q = lim
φq→0

∂eφqσ1 , qσ1 , 1+q

∂φq
, according to (1),

〈
σ1, 1σ1, 1+Q

〉
can be

written in the form:

〈
σ1 , 1σ1 , 1+Q

〉
=

1
Z

(
Q
∏

q=1
lim

φq→0

∂

∂φq

)
YQ ,

YQ = ∑
{σh , v=±1}

exp

(
Q
∑

q=1
φqσ1 , qσ1 , 1+q

)
exp
(

J′

kT

L
∑

l=1

N
∑

n=1
σl , nσl+1 , n

)
exp
(

J
kT

L
∑

l=1

N
∑

n=1
σl , nσl , n+1

)
,

(8)

Also, by a standard method [1,17] we can further write YQ in the form:

YQ =

(
2sinh

2J′

kT

) LN
2 ỸQ, ỸQ = Tr

(
1 + Γ2N+1

2
V(↑) +

1− Γ2N+1

2
V(↓)

)
. (9)

ỸQ can thus be obtained by finding the trace of a matrix. Here we are not going to write out the explicit
expressions of V(↑) and V(↓), but only point out that:

i. The matrices
1 + Γ2N+1

2
V(↑) and

1− Γ2N+1

2
V(↓) can be diagonalized at the same time.

ii. Both V(↑) and V(↓) are spin representatives, whose corresponding rotation matrices are

ζ(↑)H(↑)(ζ(↑))
+

and ζ(↓)H(↓)(ζ(↓))
+

, respectively, where ζ are introduced by (4),

H = H(0) +
Q

∑
q=1

sinh2φqH(q) + 2
Q

∑
q=1

sinh2φqH
′ (q)

, (10)

the forms of the matrices H(0), H(q), and H
′ (q)

can be expressed in terms of 2× 2 blocks H
(0)
lm , H

(q)
lm and

H
′ (q)
lm , 1 ≤ l, m ≤ N(= 2M), given by:

H
(0)
lm =

[
eLγl 0

0 e−Lγl

]
δlm , (11)

H
(q)
lm = e

−iq
(l −m)π

M Hlm , Hlm =
1
N

e
−i

θl − θm

2

⎡⎢⎢⎢⎢⎣
e

L(γl + γm)

2 cos
θl + θm

2
−ie

L(γl − γm)

2 sin
θl + θm

2

ie
−

L(γl − γm)

2 sin
θl + θm

2
−e
−

L(γl + γm)

2 cos
θl + θm

2

⎤⎥⎥⎥⎥⎦ , (12)

H
′ (q)
lm = e

−iq
(l −m)π

M H
′
lm , H

′
lm =

1
N

e
−i

θl − θm

2

⎡⎢⎢⎢⎢⎣
e

L(γl + γm)

2 cos
θl − θm

2
ie

L(γl − γm)

2 sin
θl − θm

2

ie
−

L(γl − γm)

2 sin
θl − θm

2
e
−

L(γl + γm)

2 cos
θl − θm

2

⎤⎥⎥⎥⎥⎦. (13)

In (12) and (13), the quantities θn are defined by:

sinhγn cos θn = cosh 2K′sinh2K− cos ϕnsinh2K′ cosh 2K ,
sinhγn sin θn = sin ϕnsinh2K′ (n = 1, 2, · · · , N = 2M) .

(14)
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When N = 2M, θn have properties:

θm = 2π− θm′ , θ
(↓)
M = θ

(↓)
2M = 0 . (15)

In (15), the values of m′ and m are exactly the same as those in (7).
We can first evaluate the eigenvalues of the rotation matrices ζHζ+, and then obtain ỸQ in terms

of the spinor analysis method. Finally, we obtain
〈
σ1, 1σ1, 1+Q

〉
according to (8) and (9).

From (10) to (13), we see that H is a Hermitian conjugate matrix. Hence, the eigenvalues of both
matrices ζHζ+ and H are the same, and we therefore can only evaluate the eigenvalues of the rotation
matrix H.

2.4. Basic Properties of the Eigenvalues and Eigenvectors of the Matrix H

Any rotation matrix A has the following property: If τ is an eigenvalue of A, then τ−1 is also an
eigenvalue of A [2]. Since ζHζ+ is a rotation matrix and the eigenvalues of ζHζ+ and H are the same,
H should have the same property. In this sub-section we prove this conclusion.

The eigen equation of H reads:
HΨ = τΨ. (16)

By Ψ =
[
ψ1 · · · ψn · · · ψN

]T
,ψn =

[
ψΔ

n
ψ∇n

]
, where AT means the transpose of a matrix

A, we denote the eigenvector of H, and, introducing CΔ
q , C∇q (q = 1, 2, · · · , Q) in terms of:

[
ψΔ

n
ψ∇n

]
= e

−i
θn

2

⎡⎢⎢⎣ e
−

Lγn

2 0

0 e
Lγn

2

⎤⎥⎥⎦
⎡⎢⎣ cos

θn

2
isin

θn

2

isin
θn

2
cos

θn

2

⎤⎥⎦

×

⎡⎢⎢⎣
τ cos h(Lγn)− 1 + τ cos θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1
i

τ sin θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1

−i
τ sin θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1
τ cos h(Lγn)− 1 + τ cos θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

Q
∑

q=1
e−iqϕn CΔ

q

Q
∑

q=1
e−iqϕn C∇q

⎤⎥⎥⎥⎦ ,

we can prove that the eigen Equation (16) is equivalent to:

cothφq

[
CΔ

q

C∇q

]
=

Q

∑
q′=1

[
A+(q− q′) −B(q− q′)
−B(q− q′) −A−(q− q′)

][
CΔ

q′

C∇q′

]
(q = 1, 2, · · · , Q) ; (17)

where

A±(k) =
1
N

N
∑

n=1
e

ik
2nπ
N τ2 ± 2τ cos θn sin h(Lγn)− 1

τ2 − 2τ cosh(Lγn) + 1

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
M

M
∑

m=1
cos

kmπ

M
τ2 ± 2τ cos θ

(↑)
m sin h(Lγ

(↑)
m )− 1

(eLγ
(↑)
m τ − 1) (e−Lγ

(↑)
m τ − 1)

, for (↑) ;

1
M

(
(−1)k

2
e∓Lγ

(↓)
M τ + 1

e∓Lγ
(↓)
M τ − 1

+
1
2

e∓Lγ
(↓)
2M τ + 1

e∓Lγ
(↓)
2M τ − 1

+
M−1
∑

m=1
cos

kmπ

M
τ2 ± 2τ cos θ

(↓)
m sin h(Lγ

(↓)
m )− 1

(eLγ
(↓)
m τ − 1) (e−Lγ

(↓)
m τ − 1)

) , for (↓),

B(k) = −i
1
N

N
∑

n=1
e

ik
2nπ
N 2τ sin θn sin h(Lγn)

τ2 − 2τ cosh(Lγn) + 1
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
M

M
∑

m=1
sin

kmπ

M
2τ sin θ

(↑)
m sin h(Lγ

(↑)
m )

τ2 − 2τ cosh(Lγ
(↑)
m ) + 1

, for (↑) ;

1
M

M−1
∑

m=1
sin

kmπ

M
2τ sin θ

(↓)
m sin h(Lγ

(↓)
m )

τ2 − 2τ cosh(Lγ
(↓)
m ) + 1

, for (↓),

where we have used (7) and (15). We see that all A±(k) and B(k) are real functions and satisfy:

A±(−k) = A±(k), B(−k) = −B(k).
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According to the above expressions and the properties of A±(k) and B(k), we can conclude that if
τ and CΔ

q (τ) , C∇q (τ) (q = 1, 2, · · · , Q) satisfy (17), then τ′ = τ−1 and

CΔ
q (τ

′) = C0(τ)C∇q (τ) , C∇q (τ′) = C0(τ)CΔ
q (τ)(q = 1, 2, · · · , Q) (18)

also satisfy (17), where C0(τ) is an arbitrary function. From this discussion we not only prove the
conclusion “If τ is an eigenvalue of the matrix H, then τ−1 is also an eigenvalue”, but also obtain
the relation (18) between

{
CΔ

q (τ), C∇q (τ)
}

and
{

CΔ
q (τ

−1) , C∇q (τ−1)
}

. The conclusion and the
relation (18) are useful to determine the forms of approximate eigenvalues and the expressions of the
normalized eigenvectors of H, as well as to calculate the determinant of the matrix consisting of the
eigenvectors in the actual calculation process.

2.5. Approximate Method for Solving the Eigen Equation (16)

It is very difficult to find the exact eigenvalues of H by solving the eigen Equation (16). On the

other hand, the operator
Q
∏

q=1
lim

φq→0

∂

∂φq
in (8) allows us to ignore all terms whose orders are higher than

φ1
q(= φq) (q = 1, 2, · · · , Q) in all eigenvalues of H. According to this key property, we can obtain the

exact expressions of
〈
σ1, 1σ1, 1+Q

〉
by only finding approximate eigenvalues of H.

Concretely, as the first step, the term 2
Q
∑

q=1
sinh2φqH

′ (q)
with the factors sinh2φq in (10) can be

ignored, since sinh2φq ≈ φ2
q have φ2

q order. Then, from (11) we see that H(0) in (10) is a diagonal matrix,
whose eigenvalues and eigenvectors are summarized in the following formulas:

H(0)Ψ
(0)
n, ± = e±Lγn Ψ

(0)
n, ±(n = 1, 2, · · · , N = 2M);

Ψ
(0)
n, ± =

[
ψ

(0)
n , 1 , ± · · · ψ

(0)
n , m , ± · · · ψ

(0)
n , N , ±

] T
, ψ(0)

n, m, ± =

[
0
0

]
(m �= n) ,

ψ
(0)
n, n, + =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1
0

]
, for the eigenvalue eLγn ;[

0
0

]
, for the eigenvalue e−Lγn ,

ψ
(0)
n, n, − =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
0
0

]
, for the eigenvalue eLγn ;[

0
1

]
, for the eigenvalue e−Lγn .

(19)

which are as the zeroth order approximation of the eigen Equation (16).

The term
Q
∑

q=1
sinh2φqH(q) with the factors sinh2φq ≈ 2φq (q = 1, 2, · · · , Q) in (10) can be regarded

as a perturbation term. Then, by using RSPT, we can obtain the approximate eigenvalues of H.
However, although what eigenvalues we need are only corrected to the φ1

q(= φq) order
(q = 1, 2, · · · , Q), we must calculate the perturbation terms up to the Q-th order, not only for the

first-order approximation, because all of the terms with the factor
Q
∏

q=1
sinh2φq appear in the Q-th order

eigenvalues and are needed, which only include the φ1
q order for every φq.

However, if we calculate the eigenvalues up to the Q-th order by using RSPT, then not only
the actual calculation process is very complex, but there are also many unwanted terms with factors

φk
q (k ≥ 2), for example, the term with the factor sinh32φ1

Q
∏

q=4
sinh2φq, in the Q-th order eigenvalues.

To take out those terms with factors φk
q (k ≥ 2), we change “finding the eigenvalue up to the Q-th

order” to “finding the eigenvalue through Q times first-order approximation”.

Concretely, since now H = H(0) +
Q
∑

q=1
sinh2φqH(q), we first consider the matrix H(0) + sinh2φ1H(1),

in which the eigenvalues and eigenvectors
{

τ(0), Ψ(0)
}

of H(0) are given by (19) and sinh2φ1H(1) is as
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perturbation term. By only calculating first-order approximation we obtain all eigenvalues and eigenvectors{
τ(1), Ψ(1)

}
of H(0) + sinh2φ1H(1); therefore, all terms in

{
τ(1), Ψ(1)

}
only correct to the φ1

1 order.

Then, we consider the matrix H(0) + sinh2φ1H(1) + sinh2φ2H(2). Since now all eigenvalues and
eigenvectors

{
τ(1), Ψ(1)

}
of H(0) + sinh2φ1H(1) are known, we regard sinh2φ2H(2) as a perturbation

term, and, by only calculating the first-order approximation, obtain all eigenvalues and eigenvectors{
τ(2), Ψ(2)

}
of H(0) + sinh2φ1H(1) + sinh2φ2H(2), in which all terms are only of the φ1

1 and φ1
2 orders.

In particular, all of the terms with the factor sinh2φ1sinh2φ2 ≈ φ1φ2 remain.
Then, we consider the matrix H(0) + sinh2φ1H(1) + sinh2φ2H(2) + sinh2φ3H(3). Since now all

eigenvalues and eigenvectors
{

τ(2), Ψ(2)
}

of H(0) + sinh2φ1H(1) + sinh2φ2H(2) are known, we regard

sinh2φ3H(3) as a perturbation term, and, by only calculating the first-order approximation, obtain all
eigenvalues and eigenvectors

{
τ(3), Ψ(3)

}
of H(0) + sinh2φ1H(1) + sinh2φ2H(2) + sinh2φ3H(3),

in which all terms are only of the φ1
1, φ1

2 and φ1
3 orders. In particular, all of the terms with the factor

sinh2φ1sinh2φ2sinh2φ3 ≈ φ1φ2φ3 remain, and, many unwanted terms with factors sinh22φ1sinh2φ2,
sinh2φ2sinh22φ3, etc., do not appear in the eigenvalues of τ(3).

We follow this approach up to sinh2φQH(Q) and every time we only calculate thr first-order

approximation, which leads to the eigenvalues and eigenvectors
{

τ(Q), Ψ(Q)
}

of all terms being only

of the φ1
q(= φq) order. All of the terms with

Q
∏

q=1
sinh2φq remain, and at the same time those unwanted

terms with φk
q (k ≥ 2) do not appear.

On the one hand, the above approximate method allows us to actually carry out the calculation
process to find the eigenvalues and eigenvectors of H. In particular, once we obtain

{
τ(1), Ψ(1)

}
,

we can obtain Ỹ1 by the spinor analysis method, as well as obtain 〈σ1, 1σ1, 2〉 in terms of (8) and (9).

Once we obtain
{

τ(2), Ψ(2)
}

, we can obtain Ỹ2 by the spinor analysis method, and, further, obtain

〈σ1, 1σ1, 3〉 in terms of (8) and (9),· · · . Generally speaking, once we obtain
{

τ(q), Ψ(q)
}

, we can obtain

Ỹq, and, further, obtain
〈
σ1, 1σ1, 1+q

〉
.

On the other hand, since RSPT is irregular, when Q is very large, e.g., Q ≈
[

N
2

]
, the above

approach no longer functions. Hence, by this approach we can only obtain the exact expressions of
correlation functions when Q is a small number, for example, 〈σ1, 1σ1, 2〉 , 〈σ1, 1σ1, 3〉 , 〈σ1, 1σ1, 4〉 , · · · ,
etc., which belong to the short-range order, but we cannot obtain the exact expressions of correlation
functions when Q is larger, for example,

〈
σ1, 1σ1, [N/2]+1

〉
,
〈

σ1, 1σ1, [N/2]

〉
,
〈

σ1, 1σ1, [N/2]−1

〉
, · · · , etc.,

which belong to the long-range order.

2.6. Recurrence Formulas of the Eigenvalues and Eigenvectors
{

τ(Q), Ψ(Q)
}

According to the discussions in the above sub-section, we first regard sinh2φ1H(1) as a
perturbation term, and, by using RSPT, evaluate eigenvalues and eigenvectors

{
τ(1), Ψ(1)

}
of

the matrix H(0) + sinh2φ1H(1) up to the first-order approximation. However, according to (7),

all eigenvalues e±Lγ
(↑)
n are doubly-degenerate; and, except e±Lγ

(↓)
2M and e±Lγ

(↓)
M , all the remaining

eigenvalues e±Lγ
(↓)
n are also doubly-degenerate. Hence, for doubly-degenerate eigenvalues of H(0),

we must use the degenerate perturbation theory; the results obtained up to φ1
1 order are as follows.

α
(1)
m , ↑↓ =

sinh2φ1

M
cos2 θ

(↑↓)
m
2

, β
(1)
m , ↑↓ =

sinh2φ1

M
sin2 θ

(↑↓)
m
2

, δ
(1)
M = δ

(1)
2M =

sinh2φ1

2M
, (20)
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ΔΨ
(0)
m, ±, ↑↓, I =

cos
θ
(↑↓)
m
2√

2

⎛⎜⎜⎜⎜⎜⎝
2M
∑

l = 1
l �= m , l �= m′

cos
θ
(↑↓)
l
2

sin h
L
(

γ
(↑↓)
l − γ

(↑↓)
m

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

i sin
θ
(↑↓)
l
2

sinh
L
(

γ
(↑↓)
l + γ

(↑↓)
m

)
2

Ψ
(0)
l, ∓

⎞⎟⎟⎟⎟⎟⎠ ,

ΔΨ
(0)
m, ±, ↑↓, II =

i sin
θ
(↑↓)
m
2√

2

⎛⎜⎜⎜⎜⎜⎝
2M
∑

l = 1
l �= m , l �= m′

i sin
θ
(↑↓)
l
2

sin h
L
(

γ
(↑↓)
l − γ

(↑↓)
m

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

cos
θ
(↑↓)
l
2

sinh
L
(

γ
(↑↓)
l + γ

(↑↓)
m

)
2

Ψ
(0)
l, ∓

⎞⎟⎟⎟⎟⎟⎠ ,

ΔΨ
(0)
M, ±, ↓ =

2M
∑

l = 1
l �= M

cos
θ
(↓)
l
2

sin h
L
(

γ
(↓)
l − γ

(↓)
M

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

i sin
θ
(↓)
l
2

sinh
L
(

γ
(↓)
l + γ

(↓)
M

)
2

Ψ
(0)
l, ∓ ,

ΔΨ
(0)
2M, ±, ↓ =

2M
∑

l = 1
l �= 2M

cos
θ
(↓)
l
2

sin h
L
(

γ
(↓)
l − γ

(↓)
2M

)
2

Ψ
(0)
l, ± −

2M
∑

l=1

i sin
θ
(↓)
l
2

sinh
L
(

γ
(↓)
l + γ

(↓)
M

)
2

Ψ
(0)
l, ∓.

(21)

In Table 1, (20) and (21), the values of m′ and m are exactly the same as those in (7).

Table 1. The eigenvalues and eigenvectors of H(0) + sinh2φ1H(1) corrected to the φ1
1(= φ1) order.

Eigenvalue
{

τ(1)
}

Eigenvector
{

Ψ(1)
}

e±(Lγ
(↑↓)
m +α

(1)
m,↑↓)

1√
2
(Ψ

(0)
m,± −Ψ

(0)
m′ ,±)−

sinh2φ1
2M

ΔΨ
(0)
m,±,↑↓,I

e±(Lγ
(↑↓)
m −β

(1)
m,↑↓)

1√
2
(Ψ

(0)
m,± + Ψ

(0)
m′ ,±)−

sinh2φ1
2M

ΔΨ
(0)
m,±,↑↓,II

e±(Lγ
(↓)
M +δ

(1)
M ) Ψ

(0)
M,± −

sinh2φ1
4M

ΔΨ
(0)
M,±,↓

e±(Lγ
(↓)
2M+δ

(1)
2M) Ψ

(0)
2M,± −

sinh2φ1
4M

ΔΨ
(0)
2M,±,↓

From Table 1, we see that all eigenvalues
{

τ(1)
}

of H(0) + sinh2φ1H(1) are nondegenerate.

Hence, all degenerate eigenvalues of H(0) are relieved by sinh2φ1H(1). Thus, when we calculate
the eigenvalues and eigenvectors

{
τ(2), Ψ(2)

}
of H(0) + sinh2φ1H(1) + sinh2φ2H(2), we only need

use nondegenerate perturbation theory; this is applicable up to sinh2φQH(Q). Further, since from{
τ(q), Ψ(q)

}
to
{

τ(q+1), Ψ(q+1)
}
(q = 1, 2, · · · , Q− 1), we need only to calculate the first-order

approximation in terms of sinh2φq+1 ≈ 2φq+1, and the corresponding recurrence formulas are:

τ
(q+1)
m = τ

(q)
m +

sinh2φq+1

2M
(Ψ

(q)
m )

+
H(q+1)Ψ

(q)
m ,

Ψ
(q+1)
m = Ψ

(q)
m −

sinh2φq+1

2M

4M
∑

l = 1
l �= m

(Ψ
(q)
l )

+
H(q+1)Ψ

(q)
m

τ
(q)
l − τ

(q)
m

Ψ
(q)
l

(m = 1, 2, · · · , 4M ; q = 1, 2, · · · , Q− 1) ,

, (22)

In the calculation, all terms including the φk
q(k ≥ 2) order are ignored.
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In principle, by following the above approach we obtain the eigenvalues
{

τ(Q)
}

. Furthermore,

considering that up to the first-order approximation for φq, we have 1 + Csinh2φq ≈ eCsinh2φq , the

eigenvalues
{

τ(Q)
}

of H can be denoted by the forms:

e±(Lγ
(↑↓)
m +α

(Q)
m , ↑↓), e±(Lγ

(↑↓)
m −β

(Q)
m , ↑↓) , e±(Lγ

(↓)
M +δ

(Q)
M ), e±(Lγ

(↓)
2M+δ

(Q)
2M ),

where the value of m is exactly the same as that in (7).
Based on the above forms of the eigenvalues

{
τ(Q)

}
and using the spinor analysis method,

we obtain:

ỸQ =

⎛⎝ M
∏
l=1

2 cosh
Lγ

(↑)
l + α

(Q)
l , ↑

2

⎞⎠⎛⎝ M
∏

m=1
2 cosh

Lγ
(↑)
m − β

(Q)
m , ↑

2

⎞⎠
+

⎛⎝ M
∏
l=1

2sinh
Lγ

(↑)
l + α

(Q)
l , ↑

2

⎞⎠⎛⎝ M
∏

m=1
2sinh

Lγ
(↑)
m − β

(Q)
m , ↑

2

⎞⎠
+

(
2 cosh

Lγ
(↓)
2M + δ

(Q)
2M

2

)(
2 cosh

Lγ
(↓)
M + δ

(Q)
M

2

)⎛⎝M−1
∏
l=1

2 cosh
Lγ

(↓)
l + α

(Q)
l , ↓

2

⎞⎠⎛⎝M−1
∏

m=1
2 cosh

Lγ
(↓)
m − β

(Q)
m , ↓

2

⎞⎠
+

(
2sinh

Lγ
(↓)
2M + δ

(Q)
2M

2

)(
2sinh

Lγ
(↓)
M + δ

(Q)
M

2

)⎛⎝M−1
∏
l=1

2sinh
Lγ

(↓)
l + α

(Q)
l , ↓

2

⎞⎠⎛⎝M−1
∏

m=1
2sinh

Lγ
(↓)
m − β

(Q)
m , ↓

2

⎞⎠.

(23)

Finally, according to (8) and (9), we obtain:

〈
σ1, 1σ1, 1+Q

〉
=

1
Z̃
(

Q

∏
q=1

lim
φq→0

∂

∂φq
)ỸQ, (24)

where Z̃ and ỸQ are given by (6) and (23), respectively.

2.7. The Exact Expressions of 〈σ1, 1σ1, 2〉 and 〈σ1, 1σ1, 3〉 on a Finite Lattice

Although in Section 2.5 we presented a simplified approximate method, the actual calculation
process of

〈
σ1, 1σ1, 1+Q

〉
is still complex; here, we only present the expressions of 〈σ1, 1σ1, 2〉 and

〈σ1, 1σ1, 3〉 directly.

When Q = 1, substituting α
(1)
m , ↑↓ , β

(1)
m , ↑↓ , δ

(1)
M , and δ

(1)
2M given by (20) into (23), we obtain Ỹ1, and,

further, we have:

lim
φ1→0

∂Ỹ1

∂φ1
=

(
M
∑

m=1

cos θ
(↑)
m

M
tanh

Lγ
(↑)
m

2

) (
M
∏
l=1

2 cosh
Lγ

(↑)
l

2

)2

+

(
M
∑

m=1

cos θ
(↑)
m

M
coth

Lγ
(↑)
m

2

) (
M
∏
l=1

2sinh
Lγ

(↑)
l

2

)2

+

(
1

2M
tanh

Lγ
(↓)
2M

2
+

1
2M

tanh
Lγ

(↓)
M

2
+

M−1
∑

m=1

cos θ
(↓)
m

M
tanh

Lγ
(↓)
m

2

)

×
(

2 cosh
Lγ

(↓)
2M

2

) (
2 cosh

Lγ
(↓)
M

2

) (
M−1
∏
l=1

2 cosh
Lγ

(↓)
l

2

)2

+

(
1

2M
coth

Lγ
(↓)
2M

2
+

1
2M

coth
Lγ

(↓)
M

2
+

M−1
∑

m=1

cos θ
(↓)
m

M
coth

Lγ
(↓)
m

2

)

×
(

2sinh
Lγ

(↓)
2M

2

) (
2sinh

Lγ
(↓)
M

2

) (
M−1
∏
l=1

2sinh
Lγ

(↓)
l

2

)2

.

(25)
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Substituting Z̃ given by (6) and the above expression into (24), we obtain the expressions of
〈σ1, 1σ1, 2〉 of the model on a finite lattice:

〈σ1, 1σ1, 2〉 =
1
Z̃

lim
φ1→0

∂Ỹ1

∂φ1
. (26)

Then, using
{

τ(1), Ψ(1)
}

presented in Table 1, (20) and (21), and according to (22), we obtain{
τ(2)
}

, which can be denoted by the forms:

e±(Lγ
(↑↓)
m +α

(2)
m , ↑↓), e±(Lγ

(↑↓)
m −β

(2)
m , ↑↓) , e±(Lγ

(↓)
M +δ

(2)
M ), e±(Lγ

(↓)
2M+δ

(2)
2M),

where

α
(2)
m, ↑↓ =

sinh2φ1 + sinh2φ2

M
cos2 θm

2
− sinh2φ2

M
sin2 ϕm

+
sinh2φ1sinh2φ2

4M2

2M
∑

k = 1
k �= m , k �= m′

4 cos2 θm

2
cos2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

eL(γm−γk) − 1

+
sinh2φ1sinh2φ2

4M2

2M
∑

k=1

4 cos2 θm

2
sin2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

eL(γm+γk) − 1
,

β
(2)
m, ↑↓ =

sinh2φ1 + sinh2φ2

M
sin2 θm

2
− sinh2φ2

M
sin2 ϕm

+
sinh2φ1sinh2φ2

4M2

2M
∑

k = 1
k �= m , k �= m′

− 4 sin2 θm

2
sin2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

1− e−L(γm−γk)

+
sinh2φ1sinh2φ2

4M2

2M
∑

k=1

−4 sin2 θm

2
cos2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

1− e−L(γm+γk)
,

δ
(2)
M =

sinh2φ1 + sinh2φ2

2M
− sinh2φ1sinh2φ2

2M2

2M
∑

k = 1
k �= M

1

eL(γ(↓)
M −γ

(↓)
k ) − 1

cos2 θ
(↓)
k
2

cos ϕ
(↓)
k

− sinh2φ1sinh2φ2

2M2

2M
∑

k=1

1

eL(γ(↓)
M +γ

(↓)
k ) − 1

sin2 θ
(↓)
k
2

cos ϕ
(↓)
k ,

δ
(2)
2M =

sinh2φ1 + sinh2φ2

2M
+

sinh2φ1sinh2φ2

2M2

2M−1
∑

k=1

1

eL(γ(↓)
2M−γ

(↓)
k ) − 1

cos2 θ
(↓)
k
2

cos ϕ
(↓)
k

+
sinh2φ1sinh2φ2

2M2

2M
∑

k=1

1

eL(γ(↓)
2M+γ

(↓)
k ) − 1

sin2 θ
(↓)
k
2

cos ϕ
(↓)
k .

In the above expressions, the values of m′ and m are exactly the same as those in (7). We see that
all terms with the factor sinh2φ1sinh2φ2 remain in the above expressions.

Substituting the above expressions of α
(2)
m , ↑↓, β

(2)
m , ↑↓, δ

(2)
M , and δ

(2)
2M into (23), we obtain Ỹ2, and,

further, we have:
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lim
φ2→0

∂

∂φ2
lim

φ1→0

∂Ỹ2

∂φ1

=

⎛⎜⎜⎝ M
∑

m=1

W(↑)
m

M
tanh

Lγ
(↑)
m

2
+

1
2M

M
∑

m=1

1
M

2 cos2 ϕ
(↑)
m − sin2 θ

(↑)
m

cosh2 Lγ
(+)
m
2

+

(
M
∑

m=1

1
M

cos θ
(↑)
m tanh

Lγ
(↑)
m

2

)2
⎞⎟⎟⎠

×
(

M
∏
l=1

2 cosh
Lγ

(↑)
l

2

)2

+

⎛⎜⎜⎝ M
∑

m=1

W(↑)
m

M
coth

Lγ
(↑)
m

2
− 1

2M

M
∑

m=1

1
M

2 cos2 ϕ
(↑)
m − sin2 θ

(↑)
m

sinh2 Lγ
(+)
m
2

+

(
M
∑

m=1

1
M

cos θ
(↑)
m coth

Lγ
(↑)
m

2

)2
⎞⎟⎟⎠

×
(

M
∏
l=1

2sinh
Lγ

(↑)
l

2

)2

+

((
W(↓)

2M
2M

tanh
Lγ

(↓)
2M

2
+

W(↓)
M

2M
tanh

Lγ
(↓)
M

2
+

M−1
∑

m=1

W(↓)
m

M
tanh

Lγ
(↓)
m

2

)

+
1

2M

⎛⎜⎜⎜⎝ 1
2M

1

cosh2 Lγ
(↓)
2M

2

+
1

2M
1

cosh2 Lγ
(↓)
M

2

+
M−1
∑

m=1

1
M

2 cos2 ϕ
(↓)
m − sin2 θ

(↓)
m

cosh2 Lγ
(↓)
m

2

⎞⎟⎟⎟⎠
+

(
1

2M
tanh

Lγ
(↓)
2M

2
+

1
2M

tanh
Lγ

(↓)
M

2
+

M−1
∑

m=1

1
M

cos θ
(↓)
m tanh

Lγ
(↓)
m

2

)2⎞⎠
×
(

2 cosh
Lγ

(↓)
2M

2

)(
2 cosh

Lγ
(↓)
M

2

)(
M−1
∏
l=1

2 cosh
Lγ

(↓)
l

2

)2

+

((
W(↓)

2M
2M

coth
Lγ

(↓)
2M

2
+

W(↓)
M

2M
coth

Lγ
(↓)
M

2
+

M−1
∑

m=1

W(↓)
m

M
coth

Lγ
(↓)
m

2

)

− 1
2M

⎛⎜⎜⎜⎝ 1
2M

1

sinh2 Lγ
(↓)
2M

2

+
1

2M
1

sinh2 Lγ
(↓)
M

2

+
M−1
∑

m=1

1
M

2 cos2 ϕ
(↓)
m − sin2 θ

(↓)
m

sinh2 Lγ
(−)
m
2

⎞⎟⎟⎟⎠
+

(
1

2M
coth

Lγ
(↓)
2M

2
+

1
2M

coth
Lγ

(↓)
M

2
+

M−1
∑

m=1

1
M

cos θ
(↓)
m coth

Lγ
(↓)
m

2

)2⎞⎠
×
(

2sinh
Lγ

(↓)
2M

2

)(
2sinh

Lγ
(↓)
M

2

)(
M−1
∏
l=1

2sinh
Lγ

(↓)
l

2

)2

,

(27)

where W(↑↓)
m is introduced by:

Wm =
1

2M

⎛⎜⎜⎜⎜⎜⎝
2M
∑

k = 1
k �= m , k �= m′

4 cos2 θm

2
cos2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

eL(γm−γk) − 1

+
2M
∑

k=1

4 cos2 θm

2
sin2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

eL(γm+γk) − 1

+
2M
∑

k = 1
k �= m , k �= m′

4 sin2 θm

2
sin2 θk

2
cos ϕm cos ϕk − sin θm sin θk sin ϕm sin ϕk

1− e−L(γm−γk)

+
2M
∑

k=1

4 sin2 θm

2
cos2 θk

2
cos ϕm cos ϕk + sin θm sin θk sin ϕm sin ϕk

1− e−L(γm+γk)

⎞⎟⎠ ,

(28)

where the value of m′ is exactly the same as that in (7).
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Substituting Z̃ given by (6) and (27) into (24), we obtain the expressions of 〈σ1, 1σ1, 3〉 of the model
on a finite lattice:

〈σ1, 1σ1, 3〉 =
1
Z̃

lim
φ2→0

∂

∂φ2
lim

φ1→0

∂Ỹ2

∂φ1
(29)

2.8. The Expressions of 〈σ1, 1σ1, 2〉 and 〈σ1, 1σ1, 3〉 in the Thermodynamic Limit

We now consider the thermodynamic limit. First, if L is very large, then according to (7) we have:

2 cosh
Lγ

(↑↓)
m
2
≈ 2sinh

Lγ
(↑↓)
m
2
≈ exp

Lγ
(↑↓)
m
2

,tanh
Lγ

(↑↓)
m
2
≈ coth

Lγ
(↑↓)
m
2
≈ 1(m = 1, 2 · · ·M);

However, when the system crosses its critical temperature, γ
(↓)
2M = 2(K − K′) changes sign,

following which we therefore have:

2 cosh
Lγ

(↓)
2M

2
≈ exp

L
∣∣∣γ(↓)

2M

∣∣∣
2

, 2sinh
Lγ

(↓)
2M

2
≈ γ

(↓)
2M∣∣∣γ(↓)
2M

∣∣∣ exp
L
∣∣∣γ(↓)

2M

∣∣∣
2

, tanh
Lγ

(↓)
2M

2
≈ coth

Lγ
(↓)
2M

2
≈ γ

(↓)
2M∣∣∣γ(−)
2M

∣∣∣ .
Hence, for Z̃ and lim

φ1→0

∂Ỹ1

∂φ1
given by (6) and (25), respectively, when L is very large, we obtain:

Z̃ ≈ 1
2

⎛⎝( M
∏

m=1
exp

Lγ
(↑)
m

2

)2

+

(
M
∏

m=1
exp

Lγ
(↑)
m

2

)2

+ exp
L
∣∣∣γ(↓)

2M

∣∣∣
2

exp
Lγ

(↓)
M

2

(
M−1
∏

m=1
exp

Lγ
(↓)
m

2

)2

+
γ
(↓)
2M∣∣∣γ(↓)
2M

∣∣∣ exp
L
∣∣∣γ(↓)

2M

∣∣∣
2

exp
Lγ

(↓)
M

2

(
M−1
∏

m=1
exp

Lγ
(↓)
m

2

)2
⎞⎠

≈
(

M
∏

m=1
exp

Lγ
(↑)
m

2

)2

×
{

1 , K < K′ ;
2 , K > K′ ,

(30)

lim
φ1→0

∂Ỹ1

∂φ1
≈
(

M
∑

n=1

cos θ
(↑)
n

M

) (
M
∏
l=1

exp
Lγ

(↑)
l

2

)2

+
1
2

⎛⎝ 1
2M

γ
(↓)
2M∣∣∣γ(−)
2M

∣∣∣ + 1
2M

+
M−1
∑

n=1

cos θ
(↓)
n

M

⎞⎠ ⎛⎝1 +
γ
(↓)
2M∣∣∣γ(−)
2M

∣∣∣
⎞⎠ ⎛⎝exp

L
∣∣∣γ(↓)

2M

∣∣∣
2

⎞⎠ (exp
Lγ

(↓)
M

2

) (
M−1
∏
l=1

exp
Lγ

(↓)
l

2

)2

≈
(

M
∑

n=1

cos θ
(↑)
n

M

) (
M
∏

m=1
exp

Lγ
(↑)
m

2

)2

×
{

1 , K < K′ ;
2 , K > K′ .

Substituting the above two expressions into (26), we obtain:

lim
L→ ∞
N → ∞

〈σ1 , 1σ1 , 2〉 = lim
M→∞

M
∑

m=1

cos θ
(↑)
m

M
= lim

M→∞

(
1
2

M
∑

m=1

cos θ
(↑)
m

M
+

1
2

2M
∑

m=M+1

cos θ
(↑)
m

M

)

= lim
N→∞

N
∑

n=1

cos θ
(↑)
n

N
=
∫ 1

0 dx cos θ(πx) ,

(31)

where the function θ(πx) in terms of (14) is defined by:

cos θ(πx) =
cosh 2K′sinh2K− cos(πx)sinh2K′ cosh 2K√

(cosh 2K′ cosh 2K− cos(πx)sinh2K′sinh2K)2 − 1
,

sin θ(πx) =
sin(πx)sinh2K′√

(cosh 2K′ cosh 2K− cos(πx)sinh2K′sinh2K)2 − 1
.

(32)
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The result (31) is in accordance with that in Reference [8].
According to the similar discussions, for 〈σ1, 1σ1, 3〉 we first have:

lim
L→ ∞
N → ∞

〈σ1, 1σ1, 3〉 ≈ lim
L→ ∞
M→ ∞

M

∑
m=1

W(↑)
m

M
+ ( lim

M→∞

M

∑
m=1

cos θ
(↑)
m

M
)

2

. (33)

We discuss the first term in (28) as an example to show how to calculate lim
L→∞

W(+)
m . First, using (7)

and (15), the first term in (28) can be written in the form:

1
2M

2M
∑

k = 1
k �= m , k �= m′

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

=
1
M

M
∑

k = 1
k �= m

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

=
1
M

m−1
∑

k=1

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

+
1
M

M
∑

k=m+1

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

.

According to (7), when k < m, γ
(↑)
k < γ

(↑)
m , lim

L→∞
eL(γ(↑)

m −γ
(↑)
k ) = ∞, and, thus, the first term in the

above expression vanishes; when k > m, γ
(↑)
k > γ

(↑)
m , lim

L→∞
eL(γ(↑)

m −γ
(↑)
k ) = 0, we therefore obtain:

lim
L→∞

1
2M

2M
∑

k = 1
k �= m , k �= m′

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

eL(γ(↑)
m −γ

(↑)
k ) − 1

=
1
M

M
∑

k=m+1

4 cos2 θ
(↑)
m
2

cos2 θ
(↑)
k
2

cos ϕ
(↑)
m cos ϕ

(↑)
k − sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k

−1
.

Using this method to deal with the remaining terms in W(↑)
m , we finally obtain:

lim
L→∞

W(↑)
m =

2
M

(
M
∑

k=m+1
sin θ

(↑)
m sin θ

(↑)
k sin ϕ

(↑)
m sin ϕ

(↑)
k −

M
∑

k=m+1
cos θ

(↑)
m cos θ

(↑)
k cos ϕ

(↑)
m cos ϕ

(↑)
k

+
m+1
∑

k=1
cos ϕ

(↑)
m cos ϕ

(↑)
k

)
+

2
M

⎛⎝2 sin2 θ
(↑)
m
2

2(
cos2 θ

(↑)
m
2
− cos2 ϕ

(↑)
m

)
− cos ϕ

(↑)
m cos ϕ

(↑)
m+1

⎞⎠.
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As M→ ∞ , the second term in the above expression vanishes, and, according to the definition of
the Riemann integral, we have:

lim
L→ ∞
M→ ∞

W(↑)
m = 2

∫ 1
x dy(sin θ(πx) sin θ(πy) sin(πx) sin(πy)− cos θ(πx) cos θ(πy) cos(πx) cos(πy))

+2
∫ x

0 dy cos(πx) cos(πy) ,

where the function θ(πx) is introduced by (32), x =
m + 1

M
. Further,

lim
L→ ∞
M→ ∞

M
∑

m=1

W(↑)
m

M
= 2
∫ 1

0 dx
∫ 1

x dy sin θ(πx) sin θ(πy) sin(πx) sin(πy)

−2
∫ 1

0 dx
∫ 1

x dy cos θ(πx) cos θ(πy) cos(πx) cos(πy) + 2
∫ 1

0 dx
∫ x

0 dy cos(πx) cos(πy) .

(34)

Generally speaking, for the function f (u, v) and the domain D of the integration shown in Figure 1,
we have: �

D

dudv f (u, v) =
∫ b

a
du
∫ u

a
dv f (u, v) =

∫ b

a
dv
∫ b

v
du f (u, v) . (35)

Figure 1. The domain of the integration in (35).

Using (35), for the first term in (34) we obtain:

2
∫ 1

0 dx
∫ 1

x dy sin θ(πx) sin θ(πy) sin(πx) sin(πy) = 2
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

x dy sin θ(πy) sin(πy)
=
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

x dy sin θ(πy) sin(πy) +
∫ 1

0 dy sin θ(πy) sin(πy)
∫ y

0 dx sin θ(πx) sin(πx)
=
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

0 dy sin θ(πy) sin(πy) .

Likewise, the second term in (34) becomes:

−2
∫ 1

0 dx
∫ 1

x dy cos θ(πx) cos θ(πy) cos(πx) cos(πy) = −
∫ 1

0 dx cos θ(πx) cos(πx)
∫ 1

0 dy cos θ(πy) cos(πy) .

Further, the third term in (34) vanishes due to:

∫ 1

0
dx
∫ x

0
dy cos(πx) cos(πy) =

1
π

∫ 1

0
dx cos(πx) sin(πx) = 0
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Therefore, (34) becomes:

lim
L→ ∞
M→ ∞

M
∑

m=1

W(↑)
m

M
=
∫ 1

0 dx sin θ(πx) sin(πx)
∫ 1

0 dy sin θ(πy) sin(πy)

−
∫ 1

0 dx cos θ(πx) cos(πx)
∫ 1

0 dy cos θ(πy) cos(πy)
= −

∫ 1
0 dx cos(θ(πx)− πx)

∫ 1
0 dy cos(θ(πy) + πy) .

(36)

Substituting (31) and (36) into (33), we obtain the form of 〈σ1, 1σ1, 3〉 in the thermodynamic limit:

lim
L→ ∞
N → ∞

〈σ1, 1σ1, 3〉 = −
∫ 1

0
dx cos(θ(πx)−πx)

∫ 1

0
dy cos(θ(πy)+πy)+

(∫ 1

0
dx cos θ(πx)

)2

. (37)

On the other hand, the expressions of
〈
σ1, 1σ1, 1+Q

〉
in the thermodynamic limit have been

obtained [3,5,9]. Thus, we here cite the formulas (B6) and (B7) in Reference [9] for comparison.
According to those two formulas:

lim
L→ ∞
N → ∞

〈σ1 , 1σ1 , 2〉 = a0, lim
L→ ∞
N → ∞

〈σ1 , 1σ1 , 3〉 =
∣∣∣∣ a0 a1

a−1 a0

∣∣∣∣ = a2
0 − a1a−1; ar =

1
π

∫ π
0 dω cos(θ(ω)− rω). (38)

where θ(ω) is the function δ ∗ (ω) in Reference [9]. We see that (31) and (37) obtained here are exactly
the same as (38).

3. Long Range-Order in the Model with Periodic-Free Boundary Conditions

For the model with L rows and N columns and periodic boundary condition in the horizontal
direction and free boundary condition in the vertical direction, we consider

〈
σl , nσl , n′

〉
, i.e., correlation

functions of pairwise spins in one column, periodic boundary condition in the horizontal direction
leads to:

〈
σl , nσl , n′

〉
=
〈
σ1 , nσ1 , n′

〉
=

1
Z0

∑
{σh , v=±1}

σ1 , 1σ1 , n′ exp
(

J′

kT

L
∑

l=1

N
∑

m=1
σl , mσl+1 , m

)
exp
(

J
kT

L
∑

l=1

N−1
∑

m=1
σl , mσl , m+1

)
, (39)

where

Z0 = ∑
{σh , v=±1}

exp

(
J′

kT

L

∑
l=1

N

∑
m=1

σl , mσl+1 , m

)
exp

(
J

kT

L

∑
l=1

N−1

∑
m=1

σl , mσl , m+1

)
(40)

is the partition function of the system in absence of a magnetic field, where σL+1 , m = σ1 , m, J′(> 0)
and J(> 0) are the interaction constants for the horizontal and vertical directions, respectively.

3.1. Some Results Concerning the Partition Function Z0

We summarize some results concerning Z0 given by (40), some of which are obtained in
Reference [12]. However, the approximate values of some quantities presented here show improvement
over those given by Reference [12].

By using the spinor analysis method, Z0 is obtained in Reference [12]:

Z0 =

(
2sinh

2J′

kT

) LN
2 N

∏
n=1

(
2 cosh

Lγn−1

2

)
, (41)
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where γn−1 (n = 1, 2, · · · , N) are determined by:

cosh γn−1 = cosh 2K′ cosh 2K− xn−1sinh2K′sinh2K,e−2K′ = tanh
J′

kT
, K =

J
kT

, (42)

where (n = 2, 3, · · · , N) (n = 1, 2, · · · , N) are N roots of the N-th order algebraic equation in x:

gN(x)− 2gN−1(x)coth2K′tanhK + gN−2(x)tanh2K = 0, (43)

where

gn(x) =
[n/2]

∑
k=0

(n + 1)!
(2k + 1)!(n− 2k)!

xn−2k(x2 − 1)
k

(44)

is an n-th degree polynomial in x. If by x ≡ d + d−1

2
we introduce the quantity d, then gn(x) can be

written in the form:

gn(x) =
dn+1 − d−(n+1)

d− d−1 . (45)

The expression in (45) is not only simple but also convenient for investigating the properties of

gn(x), especially if we assume x = cos ϕ, then gn(x) =
sin(n + 1)ϕ

sin ϕ
. Substituting these forms of gn(x)

into (43), for the N − 1 roots of the N-th order algebraic Equation (43) we obtain:

xn−1 = cos ϕn−1,ϕn−1 =
(n− 1)π+ θn−1

N
, 0 < θn−1 < π(n = 2, 3, · · · , N), (46)

Further, θn−1 can be determined by solving a transcendental equation about θ; if N is finite, then the
evaluation of θn−1 is complex because of the so-called “finite size effect”; for the limit case

〈
σl, 1σl, N

〉
, we can

assume θn−1 =
∞
∑

k=0

θ
(k)
n−1

Nk and obtain θn−1 by the iterative method. Further, we obtain γ1 , γ2 , · · · , γN−1

in terms of (42). Concretely, correcting to
1
N

order, we have:

xn−1 = cos
(n− 1)π+ θ

(0)
n−1

N
, γn−1 ≈ γ

(0)
n−1 + 2 sin

(n− 1)π+ θ
(0)
n−1

N
sin

θ
(0)
n−1
2N

sinh2K′sinh2K

sinhγ
(0)
n−1

,

(n = 2, 3, · · · , N)

(47)

where γ
(0)
n−1 and θ

(0)
n−1 (n = 2, 3, · · · , N) are introduced by:

cosh γ
(0)
n−1 = cosh 2K′ cosh 2K− cos

(n− 1)π
N

sinh2K′sinh2K , γ
(0)
n−1 > 0;

cosh 2K′sinh2K− cos
(n− 1)π

N
sinh2K′ cosh 2K = sinhγ

(0)
n−1 cos θ

(0)
n−1 ,

sin
(n− 1)π

N
sinh2K′ = sinhγ

(0)
n−1 sin θ

(0)
k , 0 < θ

(0)
n−1 < π .

(48)

More important are the values of x0 and γ0; to present x0 and γ0, we first introduce a temperature
Tc in terms of:

N =
sinh2K′c

sinh2(Kc − K′c)
, tanhK′c = e

−
2J′

kTc , Kc =
J

kTc
. (49)
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When T ≥ Tc, 0 < x0 ≤ 1; however, when T < Tc, K′ < K and 1 < x0 <
tanh2K
tanh2K′

. For the limit case
N → ∞ , we can obtain the approximate values of x0 and γ0, whose low-order approximations are:

x0 ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos

π

N
, T ≥ Tc, K′ > K ;

cos
π

2N
, T ≥ Tc, K′ = K ;

1
2

(
tanhK
tanhK′

+
tanhK′

tanhK

)
− 2
(

tanhK′

tanhK

)2N (cosh 2K− cosh 2K′)2

sin h2K′sinh32K
, T < Tc,

(50)

γ0 ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2(K′ − K) + 2 sin2 π

2N
sinh2K′sinh2K
sinh2(K′ − K)

, T ≥ Tc, K′ > K ;

2 sin
π

4N
sinh2K, T ≥ Tc, K′ = K ;

2
(

tanhK′

tanhK

)N cosh 2K− cosh 2K′

sinh2K
, T < Tc .

(51)

We can thus make a comparison between Onsager’s lattice and the model with periodic-free
boundary conditions. For Onsager’s lattice, when the system crosses its critical temperature,
γ
(−)
N = γ

(−)
2M = 2(K− K′) given by (7) changes sign; however, from (51) we see that, for the model with

periodic-free boundary conditions, when T ≥ Tc, γ0 ≈ 2(K′ − K). Once the system crosses its critical
temperature Tc, γ0 becomes exponentially smaller and then vanishes rapidly as N → ∞ . This property
of γ0 plays a key role for the correlation function 〈σ1, 1σ1, N〉.

3.2. The Matrix Forms of
〈
σ1, 1σ1, N−Q

〉
and Some Results Concerning 〈σ1, 1σ1, N〉 Obtained in Reference [12]

If we write (39) in forms similar to (8), then by employing the method presented in Section 2,
the exact expressions we can obtain are still 〈σ1, 1σ1, 2〉 , 〈σ1, 1σ1, 3〉 , · · · , which belong to the short-range
order. We still cannot obtain the exact expressions of

〈
σl, 1σl, N

〉
,
〈
σl, 1σl, N−1

〉
, · · · .

To obtain the exact expressions of
〈
σl, 1σl, N

〉
,
〈
σl, 1σl, N−1

〉
, · · · , we consider the forms:

〈σ1, 1σ1, N−n〉 =
1

Z0
∑

{σh , v=±1}
σ1, 1σ1, N−n exp

(
J′

kT

L
∑

l=1

N
∑

m=1
σl , mσl+1 , m

)
exp
(

J
kT

L
∑

l=1

N−1
∑

m=1
σl , mσl , m+1

)
. (52)

Taking advantage of σ2
l , m = 1 and σ1 , lσ1 , m = lim

α→0

∂eασ1 , lσ1 , m

∂α
, we have:

σ1, 1σ1, N−n = σ1, 1σ1, Nσ1, Nσ1, N−1 · · · σ1, N−(n−2)σ1, N−(n−1)σ1, N−(n−1)σ1, N−n

=

(
n
∏

k=1
lim

βk→0

∂

∂βk

)
lim

βN→0

∂

∂βN

(
eβN σ1 , 1σ1 , N

n−1
∏

k=0
eβk+1σ1 , N−kσ1 , N−(k+1)

)
,

Further, (52) can be written in the form:

〈σ1, 1σ1, N−n〉 =
1

Z0

(
2sinh

2J′

kT

) LN
2
(

n

∏
k=1

lim
βk→0

∂

∂βk

)
lim

βN→0

∂

∂βN
Tr(W), (53)

where the matrix W belongs to the spin representative, and, by employing the method presented in
Section 2, we can obtain the exact expressions of

〈
σl, 1σl, N

〉
,
〈
σl, 1σl, N−1

〉
,
〈
σl, 1σl, N−2

〉
, · · · .

However, to save space, here we no longer discuss
〈
σl, 1σl, N−1

〉
,
〈
σl, 1σl, N−2

〉
, · · · , but only

consider
〈
σl, 1σl, N

〉
, for which a closed formula was given by Reference [12]:

〈σ1, 1σ1, N〉 =
1

Z0

(
2sinh

2J′

kT

) LN
2 lim

φ→0

∂Y
∂φ

, (54)
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Y =
1
2

⎛⎝[(N+1)/2]
∏
l=1

2 cosh
χ
(+)
2(l−1)

2

⎞⎠⎛⎝[N/2]
∏

m=1
2 cosh

−χ
(+)
2m−1
2

⎞⎠+
1
2

⎛⎝[(N+1)/2]
∏
l=1

2sinh
χ
(+)
2(l−1)

2

⎞⎠⎛⎝[N/2]
∏

m=1
2sinh

−χ
(+)
2m−1
2

⎞⎠
+

1
2

⎛⎝[(N+1)/2]
∏
l=1

2 cosh
χ
(−)
2(l−1)

2

⎞⎠⎛⎝[N/2]
∏

m=1
2 cosh

−χ
(−)
2m−1
2

⎞⎠− 1
2

⎛⎝[(N+1)/2]
∏
l=1

2sinh
χ
(−)
2(l−1)

2

⎞⎠⎛⎝[N/2]
∏

m=1
2sinh

−χ
(−)
2m−1
2

⎞⎠ ,

(55)

where χ
(±)
2(l−1) and χ

(±)
2m−1 are determined by:

eχ
(±)
2(l−1) = τ

(±)
2(l−1)

(
l = 1, 2, · · · ,

[
N + 1

2

])
; eχ

(±)
2m−1 = τ

(±)
2m−1

(
m = 1, 2, · · · ,

[
N
2

])
, (56)

τ
(±)
n (n = 1, 2, · · · , N) are N roots of the N-th order algebraic equation F±(τ) = 0, where

F±(τ) =

(
[(N+1)/2]

∏
l=1

(
τ e−Lγ2(l−1) − 1

))([N/2]
∏

m=1

(
τ eLγ2m−1 − 1

))

∓tanhφ

(
[(N+1)/2]

∏
l=1

(
τ e−Lγ2(l−1) − 1

))([N/2]
∏

m=1

(
τ eLγ2m−1 − 1

))

∓4tanhφ
[(N+1)/2]

∑
n=1

⎛⎜⎜⎜⎜⎝Ω2
2(n−1)

⎛⎜⎜⎜⎜⎝
[(N+1)/2]

∏
l = 1
l �= n

(
τ e−Lγ2(l−1) − 1

)
⎞⎟⎟⎟⎟⎠
(

[N/2]
∏

m=1

(
τ eLγ2m−1 − 1

))
⎞⎟⎟⎟⎟⎠

∓4tanhφ
[N/2]

∑
n=1

⎛⎜⎜⎜⎜⎝Ω2
2n−1

(
[(N+1)/2]

∏
l=1

(
τ e−Lγ2(l−1) − 1

))
⎛⎜⎜⎜⎜⎝

[N/2]
∏

m = 1
m �= n

(
τ eLγ2m−1 − 1

)
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ,

(57)

where

Ωn−1 = sinh2K′ cosh K

√
1− x2

n−1

Nsinh2γn−1 + cosh γr−1 cosh 2K′ − cosh 2K
(n = 1, 2, · · · , N) (58)

are the normalization constants of the eigenvectors of a rotation matrix [12], as N → ∞ . Thus,
according to (47)~(51), we obtain:

lim
N→∞

Ωn−1 ≈
1√
N

sin
(n− 1)π

N
sinh2K′ cosh K

sinhγn−1
(n = 2, 3, · · · , N) ,

lim
N→∞

Ω2
0 ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
N

sin2 π

N
sinh22K′ cosh2 K
sinh22(K′ − K)

, T ≥ Tc , K′ > K ;

1
N

sinh22K′ cosh2 K
sinh22K

, T ≥ Tc , K′ = K ;

cosh 2K− cosh 2K′

4sinh2K
.T < Tc .

(59)

3.3. An Exact Expression of 〈σ1, 1σ1, N〉 on a Finite Lattice

In Reference [12], all roots of the equation F±(τ) = 0 are obtained by correcting to the e−LC0 order
of magnitude (C0 is a positive constant). These approximate roots can lead to the exact expression of〈

σl, 1σl, N
〉

in the thermodynamic limit, since lim
L→∞

e−LC0 = 0, but cannot lead to the exact expression of〈
σl, 1σl, N

〉
on a finite lattice. Hence, the expression of

〈
σl, 1σl, N

〉
presented in Reference [12] is only an

approximate result.

On the other hand, similar to the analysis in Section 2.5, the operator lim
φ→0

∂

∂φ
in (54) allows us to ignore

all terms whose order is higher than φ1(= φ) in all roots of the equation F±(τ) = 0. Hence, to obtain
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the exact expression of lim
φ→0

∂Y
∂φ

, we need only to find all roots of the equation F±(τ) = 0 corrected to the

φ1(= φ) order, The corresponding calculations are in fact simpler than those required of find the roots
corrected to the e−LC0 order of magnitude in Reference [12]; concretely, we obtain:

χ
(±)
2(l−1) ≈ Lγ2(l−1) ± 4Ω2

2(l−1)tanhφ, χ
(±)
2m−1 ≈ −Lγ2m−1 ± 4Ω2

2m−1tanhφ.

Substituting the above results into (55), we obtain Y correcting to tanhφ(≈ φ1) order:

Y ≈ 1
2

(
[(N+1)/2]

∏
l=1

2 cosh
Lγ2(l−1) + 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2 cosh
Lγ2m−1 − 4Ω2

2m−1tanhφ

2

)

+
1
2

(
[(N+1)/2]

∏
l=1

2sinh
Lγ2(l−1) + 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2sinh
Lγ2m−1 − 4Ω2

2m−1tanhφ

2

)

+
1
2

(
[(N+1)/2]

∏
l=1

2 cosh
Lγ2(l−1) − 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2 cosh
Lγ2m−1 + 4Ω2

2m−1tanhφ

2

)

−1
2

(
[(N+1)/2]

∏
l=1

2sinh
Lγ2(l−1) − 4Ω2

2(l−1)tanhφ

2

)(
[N/2]

∏
m=1

2sinh
Lγ2m−1 + 4Ω2

2m−1tanhφ

2

)
.

Substituting the above result and (41) into (54), we obtain the exact expression of 〈σ1, 1σ1, N〉 of
the model on a finite lattice:

〈σ1, 1σ1, N〉 = 2

(
[(N+1)/2]

∑
l=1

Ω2
2(l−1)coth

Lγ2(l−1)

2
−

[N/2]

∑
m=1

Ω2
2m−1coth

Lγ2m−1

2

)(
N

∏
n=1

tanh
Lγn−1

2

)
(60)

Although the whole calculation process is complex, the final result (60) is simple.

3.4. The Expression of 〈σ1, 1σ1, N〉 in the Thermodynamic Limit

To derive the expression of 〈σ1, 1σ1, N〉 in the thermodynamic limit, we first discuss some
properties of γn−1 (n = 1, 2, · · · , N).

For γn−1 (n = 2, 3, · · · , N) given by (47), we have:

lim
L→∞

Lγn−1 = ∞, lim
L→∞

tanh
Lγn−1

2
= lim

L→∞
coth

Lγn−1

2
= 1(n = 2, 3, · · · , N). (61)

As for γ0, when T ≥ Tc, from (51) we see that (61) still holds for γ0; however, when T < Tc,
from the last expression in (51) we see that maybe lim

L→∞
Lγ0 = ∞ does not hold. For example, if L = Na,

where a is a positive integer, then:

lim
L→∞

Lγ0 = lim
N→∞

Na · 2
(

tanhK′

tanhK

)N

csc h2K(cosh 2K− cosh 2K′) = 0,

since now 0 <
tanhK′

tanhK
< 1, for 0 < b < 1, lim

N→∞
NabN = 0. Hence, for γ0 we have:

lim
L→∞ , N→∞

Lγ0 =

{
∞ , T ≥ Tc ;
0 , T < Tc ,

lim
L→∞ , N→∞

tanh
Lγ0

2
=

{
1 , T ≥ Tc ;
0 , T < Tc ,

(L = Na) (62)
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According to the above discussions, to obtain the expression of 〈σ1, 1σ1, N〉 in the thermodynamic
limit, we first write (60) in the form:

〈σ1 , 1σ1 , N〉 = 2Ω2
0

(
N
∏

n=2
tanh

Lγn−1

2

)
+2tanh

Lγ0

2

(
[(N+1)/2]

∑
l=2

Ω2
2(l−1)coth

Lγ2(l−1)

2
−

[N/2]
∑

m=1
Ω2

2m−1coth
Lγ2m−1

2

)(
N
∏

n=2
tanh

Lγn−1

2

)
,

as L→ ∞ , according to (61), the above expression becomes:

lim
L→∞
〈σ1, 1σ1, N〉 ≈ 2Ω2

0 + 2tanh
Lγ0

2

(
[(N+1)/2]

∑
l=2

Ω2
2(l−1) −

[N/2]

∑
m=1

Ω2
2m−1

)
. (63)

When T ≥ Tc, according to (59) and (62), Equation (63) becomes:

lim
L→∞
〈σ1, 1σ1, N〉 ≈ 2

(
[(N+1)/2]

∑
l=1

Ω2
2(l−1) −

[N/2]

∑
m=1

Ω2
2m−1

)
,

Further, as N → ∞ ,

[(N+1)/2]

∑
l=1

Ω2
2(l−1) ≈

[N/2]

∑
m=1

Ω2
2m−1 ≈

1
2

N

∑
n=1

Ω2
n−1, (64)

hence, for this case lim
L→∞ , N→∞

〈σ1, 1σ1, N〉 = 0.

When T < Tc, according to (62) and (64), the second term in (63) vanishes, and (63) thus becomes
lim

L→∞
〈σ1, 1σ1, N〉 ≈ 2Ω2

0, where Ω2
0 is given by the last expression in (59) as N → ∞ .

Summarizing the above results, in the thermodynamic limit, if L = Na, then (60) becomes:

lim
L→∞ , N→∞

〈σ1, 1σ1, N〉 =

⎧⎨⎩ 0, T ≥ Tc ;
cosh 2K− cosh 2K′

2sinh2K
, T < Tc .

The above result was obtained in Reference [12] in terms of an approximate result of 〈σ1, 1σ1, N〉.
Some further discussions about the above result can be found in Reference [12].

From the above discussions, it is revealed how the changes of the values of γn−1 (n = 1, 2, · · · , N),
especially the change of the value of γ0, lead to the change of lim

L→∞ , N→∞
〈σ1, 1σ1, N〉when the system crosses

its critical temperature Tc, as well as how the long-range order emerges as the temperature decreases.
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