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Abstract

The behaviours of both the error snd the residusl in the solution of 8
tinear system sre studied, by sssuming representstion snd roundoff errors
to be random verisbles. Two quantities which measure the mean value of the
linear part of the error and the mean value of the linear part of the residual
are introduced, giving stability and good behaviour criteria.

These criteria are applied to various slgorithms (Gaussian elimination
with different types of pivoting, ortogonalization technigues). In addition the

influence of row-scaling is studied.

i. Introduction and preliminsries.

Let us consider 8 linear system

AX=0b, (.n

where A is & square nonsinguler reel metrix of order n. Let ,A be san
algorithm for solving (1.1). In this paper the behaviours of both the error and
the residual in the solution of linear systems are investigated. Using
probabilistic techniques, we introduce two quentities e(A) and w{A) which
measure the mean values of the linear part of the error and residual vectors
resulting from the application of A for solving (1.1).

we also Introduce a new condition number similar to that defined in
[Fletcher (1985)] and strictly related to the Skeel condition number [Skeel
(1979, 1981)]. This conditioning measure is invariant under row scaling and
can assume values much lower than the ones assumed by classical conditions
numbers.

Statistical Stability and Good-Behaviour of an algorithm A are
defined in section 2.

In order to study the algorithmic error in some classical methods we
assume that the only significant errors in the aigorithmic process are due to
the representstion of intermediate data. This is in good agreemenirwuh the
results of the studies of [Kulish-Miranker {1986)) on arithmetic operations,
and can be achieved, for example, by using multiple precision in intermediate
computations.

The results of the analysis explain conveniently the well Known
experimental behaviour of classical methods (Gaussian Elimination,
Orthogonalization method, scaling procedures).

Finally numerical experiments are given using special classes of




~matrices which have & high gap smong the new condition number and the
classical ones.

The notstion &' =27 = (zij) is used, moreover & denoles the three

wey srroy & = (tijk), L™ Zij B The symbol * denotes the Hsdsmeard
product (i.e. componentwise multiplication) between two srrays of the ssme
size. The symbol || . llp denotes the Holder p-norm of vectors snd the
corresponding induced norm for matrices and Il . Il ; denotes the Frobenius
norm of mstrices, snd three-wey errsys; |al denotes the srrsy of the

shsolute values of the entries of A; E(Y) denotes the expected vslue of the

rendom vorisble E.

Let us define the domsin B, (the unitary ball) snd its messure " 8s

B, ={xeRm| lixl,=1},
The mesn of o function f:R" = R, is defined as

Mesn f(x) ="V [ f(x)dx.
B=ly=1 B,

The clessicel condition number of @8 nonsingulsr metrix is
kp(A)=IIA"IlPIIAI(p. The guentities k(A=A YILIALL snd k(&) ere called the
Frobenius and speciral condition numbers of A, The two condition numbers

are connected by the relation n™' k(A ¢ ky(A) ¢ K(A).

n n n
The quantity Al =13 3, )g‘z,,iz 82 1'2 \s celled the temsarie

copdition number of A, 1L is essy to see that Il & Il < k.(A). Moreover I A Il

cen be erbitrarily smeller then Kk (A); eg. for disgonsl metrices the

tensariel conditioning is n'*2 snd the spectral and Frobenius conditioning can
be srbitrarily lsrger. On the other hend the if the columns of A have the

seme length the two condition numbers are equivalent.

Definition L.1. A meatrix A is said to be row-eguilitraled if o1l its rows

n .
heve the seme euclidesn norm, i.e. 2 asj2 =§2, i=1,2,..,n. O
. j=1

Proposition 1.1. If the metrix A is row-equilibrsted its Frobenius

condition number and the tensorisl one sre connected by the relstion:

H&l = n'2 Kk (a).

‘Prdbfj One has

n n n n n
i & “}:2 = 3( Z Zriz) (J=21 8',12) = ¥2 3 ‘z Zriz = §2 I A—l ”Fz- 0

=1 r=1 i=1 1

Another condition number was introduced by Skeel (1979), namely
= -1
Cay =1 Ja™'] |al 1,
this meessure is strictly relsted with the tensorial condition, in foct the
qusntities C_(A) end Il & Il ere the meximum end Frobenius norms of the
seme rectangulsr metrix. Let B - (b, ), b, =l25j| |8j,l, Teijren, k=i+(jf1)n,
one hes C_(A) =Bl end [I& L= lIBI.

It is remsrksbie thst 8l1 these conditioning messures ore only of

theoreticsl interest as their computation requires the inverse of A.

For test purposes, in order to evidentiste the dependence of
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slgorithmic errors on the verious copdition numbers, we will use lest _ VANDERMONDE COLUMN SCALED MATRIX
matrices for which tensorial and Skeel condition numbers sre much smaller 7]
=
then classical ones. o
A non-trivisl class of matrices with this property is the class of the B 1 CLASSICAL CONDITION
Vangermonde column sealed melrices which depend on 8 parsmeter A the . = .
| i © TENSORIAL CONDITION
generic motrix of the cless, sey A,=(e;)) is defined by e = AEDGB g
with d; chosen to minimize C_( A,). o
(=]
In Fig.1 you can see the classicsl condition km(.&},) and the tensorisl "’ -
condition Il &Il plotted versus the Skeel condition C_(A,) in e logerithmic o
o
scale, for some metrices of this class {with n=5). It is remarkable thet as -
tends to O the tensorisl condition tends to n”z, the Skeel condition tend to 1 o] .
(=]
and the classicel condition numbers tend to the infinity. E.g. the matrix A - - T T y , T ; T T T r T
, 0.00 2.00 4.00 6.00 8.00 10.00
with A = 0.02148 sand n=5, is the foilowing: , SKEEL CONDITION NUMBER
[ 0.263E-11 0.311E-05 0.528E-01 O.145E+02 O.S71E+02 ]
0.263E-11 O.E68E-07 0.244E-04 0. 144E-03 0. 122E-04
Ay = | 0.263E-11 O.144E-08 O0.113£-07 O0.143E-08 0.260E-11 |,
0.262E-11 0.309E~-10 0.521E-11 O.142E-13 0.555E-18
| 0.263E-11 0.683E-12 0.241E-14 0.141E-18 O.118E-24 J
its inverse is ) Fig. 1. Classical and tensorial condition numbers plotted versus
[ 0.153E-04 -0.390E+D2 0.395E+07 —0.854E+10. 0.380E+12 | ' the Skeel condition number for & 55 Yandermonde column scaled -
-1 -0.334E-04 0. ISYE+03 -0.160E+08 0.330E+11 -0.330E+11 ; '
Ay, = | 0.197E-03 -0.940E+03 0.927E+08 ~0.440E+10 O0.431E+10 |, matrix.
-0.155E-02 0.726E+04 ~0.160E+08 0.747E+09 —0.730E+09 ' R \
L 0.179E-01 -0. 184E+04 0.399E+07 -0.186E+08 0. 182E+09 : :

and k_(A) = 0.2270E+14, C_(A,) = 1681, WAl = 2427



2. Error Anslysis.

Let & and B be slightly perturbed values of A snd b, the metrix A can

be expressed ss A + {A¥E) whereE = (e'ij) is the mstrix of the relstive

error terms of the entries of A. We assume e'.u. = 0 when a‘j = Q.

Anslogously we write B =B+ b*e”  with e, =0 when b= 0. The
perturbed system willbe A % =B or, equivolently,
All+ a1 (A*ED1 X = b + b*e”.
In the following we sssume || &' (A*E") Il,<1 in order to ensure A to be
nonginguler. With this sssumption the linssrized part Ax of the error X - %
has the form

Ax =~ AV (A%E) R,

where E = (eij), &= &y e

&n slgorithm ,& to solve & linesr system by s direct method csn be
considered as s segquence of tirsnsformations which operste on the
coefficient metrix snd on the right hend sides [Broyden (1977), Stoer,
Burlisch {1980)], namely

Alp— A(l)‘b(l).__, L — A(t—ﬁlb&-t)___, Ijx, with 200 ¢ = g,

IT the accumulation of loce) errors et step K produces & perturbation
E® on 4% and b% , this perturbstion will influence the finsl error with a
linear term Ax % = - A% -1 (40 =g &y » and the totsl linesr part of the
error will be

Ax = 3 Ax® -- 3 AW-1(AWEW)x, 2.1)
k=1 K ,
1t readily follows that

t
meen E(lAax1L2) = I mesn E(l ax ®iL2).
Bxliy=1 ket fleflp=1

“Let eps be the relative computer precision. For t-digit g-base
flosting point srithmetic with rounding one hes gas = 57_1/2 (see [15, p. 6]);
when local errors sre due to the representstion of resl numbers in the
computer or en srithmetic operation, the guantity aps is releted with to the
mesn g end the yarisnce ¢ of the resulting errors. More in detsil, using 8
flgating point srithmetic with rounding it is commen to sssume thst locsl
representation sand roundoff relstive errors sre independent random
vorisbles, uniformely distributed between [- ans/2 snd aps/2 ), lLiu, Keneko
{1970), Oppenheim (1972). Then 4 = O oand o2 =gps2/12. As noted by
Oppenheim (1972), empiricel studies heve shown thet the distribution is not
quite uniform, so that o is proportional to aps? with s proportionslity
constant slightly less then 1/12.

In performing matrix' opersations the sccuracy of the result is limited
by the finite precision of the srithmetic. The choice of word length
influences both the smount of space required to store the rﬁatrices and the
time spent in computations. The triviel choice is to use the ssme word
length both to store the matrices and to perform the operations./ln this
cese, ususlly meny digits of the intermediste metrices involved in the
computetion snd of the result sre less of significance.

A clessicsl alternstive consists in using multiple precision
srithmetic to perform the most criticel 6perations {e.g. the sccumulation of
scsler products) [Brent (1976), Wilkinson (1963)]. Recently some euthors
proposed 8 technique which sllows computing srithmetic expressions to
least significant bit sccurscy et the expense of o little computationsl

overhead [Kulish, Miranker (1981, 1986), Rump, Bhoem (1983)]. Both these



technigques sllow s proper use of the computer storsge snd s betier conirol
of the errors by reducing the number of roundings in the computstionsl
processes, moreover on the modern computers, the resulting overhead is
not too high.

On the bssis of thase considerations we will assume in the following
thet elementery operstions on matrices sre performed in multiple precision
or with meximel eccurecy srithmetic so thet ell the digits in the
intermediste meatrices representstion sre accurste. Therefore, the error
matrices E¥ will be considered ss meatrices of independent rendom
variasbles with mean y = 0 and varisnce o= gns? /12.

The fallowing lemma, whose proof is in the appendix A, will be useful

to prove the statistical error bounds.

Lemms 2.1. Let A.C be nxn mstrices, let E=(eg;), e;=e};-e" withe', e

independent random veriables with mean Y =0 and varisnce 0-2, then

]
mesn E(|lC[A*El x1,2) = 2o2(z 3 Ci? 8;%)
I=l,=1 n r=1 ijl &;*0 O

The computed solution X can be compered with the exsct one either by

estimating the relstive error Iz - XL, Zlixll, = llax [L/lixll, or the relstive
residusl b - A§112 =il = & Ax ll2/'lel12 , these two quontities con behove
quite differently, as shown in the following exemple.

2 0 1
Exomple 2.1. Let A be the 2x2 metrix { }, let x= [ } .
0 2/5 0

Fig.2 shows the sets A ={x eR2?|lIxl,=¢}, B={xeR?|lAxl,=¢c. O

B 1 1+e

Fig.2. the sets A and B of exemple 2.1.

In the clessicsl theory, stability and good-behsviour of an slgorithm

A eare defined ss follows.

-~

Definition 2.1. [Jenkowski, Wozniskowski (1977)] Let Ax be the linear
part of the slgorithmic error sfter the spplicetion of sn algorithm A An
algorithm A is seid to be clessically numericsily sialtia if there exist 8

constant c, independent of A such thst

laxll, <c, ars k(A Ikl . o

Definition 2.2. [Jankowski, Wozniskowski (1977)] Let Ax be the linear




part of the slgorithmic error sfter the spplicstion of en slgorithm A An
slgorithm A is said to be olassically weall-tehaved if there edist 8 constent

c, independent of A such thot

Haaxll, < c, eas Al Izl . O

It essy to show thet clessicel good-behsviour implies numericel
stabilitly, but not vice verss. These definitions suggest to iniroduce two
qusntities, nemely the siat/sti/oal SIeO/IIlYy reciar end the sIalistics]

pgand-tighaviour rectar, respectively.

(stetisticel stebility fector),

e(s) = meen E(llaxIL,2),

iy = 1

wia) = mesn E([la Axll,?), (statisticsl good-behaviour factor).
Iy = 1

Proposition 2.2, Tsking into account daets perturbations only, one has

6a) = 2 o2 lAN2  end wia) = 2 o2 lAl2

Proof. The thesis follows from the relstions
Ax = - AT (A*E) %,  end
AAR = -4 ATT(A*E)® = - (A*E) %,

and from Lemms 2.1, with C= A1 snd C=L |

MNow it 1is possible to define the ststisticel stsbility and

good-behaviour of an slgorithm.

Definilion 2.3. lLet Ax be the linear part of the slgorithmic error after
the spplication of an slgorithm A Let ¢(A) the corresponding stability
factor. The slgorithm A is said to be sumericelly siabie if there exist e
constant ¢, not depending on A such thet e(A) ¢ ¢, ans? 1B 1|2 B
Definition 2.4. Let Ax be the linear part of the slgorithmic error sfter
the spplication - of sean slgorithm A. Let w(A) the corresponding

good—behsviour factor. The slgorithm 4 is said to be we//-deheves if there

- exist o constent ¢, not depending on & such that w(A) ¢ ¢, ams? | A2 o

Proposition 2.3. Teking into account slgorithmic errors, the stability

and good-behsviour fectors cen be computed by the following relations

1 n 2 2
eey=202 3 3 3 2, % 5,0
n k=1 r=1 i,jle;feﬂ

t n n 2 2
wa=202 3 I I (3 o,z;®) 0,0 .
n k=1 r=1 i,j[eij¢0 p=1

Proof. From relation 2.1, we get

t t -1
Ax =3 AxB =-3 alkd  (ak *£K) Y ,
k=1 k=1

1 4 -1
AAx= 3 AARK =-3 A AR (A0 =pk) )y x
k=1 k=1

The thesis follows from lemms 2.1 with C = AR -1 and € = AAKI-T, ]

Corollery 2.1. wla) < 1A l2 ea). a




3. Influence of disgonsl sceling on the error.

Sceling is one of the most commonly used preconditioning technigues
le.g. see Bauer (1963), Skeel (1979, 1981), ven der Sluls (1969)]. It consists In
multiplying rows snd/or columns of the matrix A by suitable factors before
solving the system with the slgorithm A. In the following, the influence of
row scaling on numericel stsbility snd good-behsviour of slgorithms is
studied. The following preconditioned slgorithm cen be derived.

Let U be the disgons) positive nxn metrix for which all the rows of the
the meatrix F = U A heve euclidesn length equal to 1, then F s
row-equilibrated. The system Ax=b cen be written UAx=Ub snd solved in two
steps:

Algorithm .4 row-scaled.
compute z=Ub ond F=UA4;

solve Fx =z with the algorithm A.

It easy to see that tensorisl condition is inverisnt under row-scsling,
then from proposition 1.1 ane has:
Nal = Il = n'2 (P, (3.0)
Some questions natursily srise sbout the numerical behaviour of the
scaling:
1) How the slgorithm used 1o solve the system chenges due to the scaling?
i) How much is the error an the solution aof the problem sensitive to the
_scaling itself? ‘

111) How numerics! stability snd well behaviour sre affected by the sceling.

' Answering to question (i) need the knowledge of the properties of the
algorithm A When the algorithm is influenced by the numericsal values of the
qusntities involved in the computstion the slgorithm itself changes with the
scaling. For exsmple in Gaussian elimination with column or totsl pivoting
the choice of the pivots is influenced by the sceling, conversely OR snd LQ
slgorithms without pivoting are not influenced by the sceling.

we want now to snswer guestion (ii). The use of sceling obviouslg does
not affect the inherent error, if the entries of the disgonal matrices sare
integers powers of the base erithmetic no roundaff ‘error is introduced,
moreover the scaling cen used to change the pivating strstegy without
affecting the entries invelved in the computstion [Stoer, Burlisch (1980}],
therefore in the following we sssume that scsling does not introduce
additionel roundoff errors.

Moreover the following sufficient conditions for the inverience of the

slgorithmic error under roy scaling cen be stated.

Given a disgonal scaling A - UA,‘ if the following

-

Proposition 3.1.
conditions are satisfied
8) the intermediste metrices (4%|b%%) sre transformed into (UAR|u p%;
b) the stetisticel distribution of e‘ij&) , e'ij&) does not chenge;
then the error Ax remsins unchanged.

The proof follows by elementery calculus. 0

A similer theorem hes been proved by Bouer (1963) for Geussien

gliminstion, this mesns that the only influence of sceling in Goussion



eliminotion is on the choice of pivots. It is essy to see thst proposition 3.1
holds for LO slgorithm but not for OR.

1t is possible 1o enswer guestion {111} by showing that row-scaling cen
improve the numerical stsbility of the slgorithms without affecting the

good-behaviour.

Proposition 3.2. Let Axr be the linesr pert of the slgorithmic error sfter
the spplicstion of sn slgorithm A Let e(A) the corresponding stability

fector. If there exist a constent ¢ not depending on A such that e{A) < ¢

ans? kF(A.)2 then the algorithm A row-sceled is numericeslly steble.

Proof. Disregsrding sny roundoff error introduced with the sceling the

totsl error on the solution is the seme of the spplicetion of A4 to the system

Fx=Ub. Then a(A) ¢ ¢g ars? k(F)? end using (3.1) one has

e(A) ¢ cg N2 gps? 18 Il . ; a

Proposition 3.3. Let Ax be the lineor pert of the slgorithmic error sfler
the spplicstion of en algorithm A Let w(A) the corresponding
good-behsviour fector. if the slgorithm A is well-behsved then the
algorithm A row-scoled is weH—bethed too.

Proof. It easy to see thet WIFI2 = n, snd U 'L, < NU 'l = ANl . Then, from

the relstion llaAxll, < IU'll, IFA%l, snd from the good-beheviour of A one
hss

wilA) « U TIL2 wiF) « IAll2 cf aps? IFIZ < nc, aps? llAIL2 o

4. Stamﬁtg and Good-behsviour in Geussian elimination.
We sssume thst the pivoting stretegy has been slresdy spplied, then
the Geussisn eliminstion slgorithm cen be considered ss & sequence of

elementsry trensformetions
AO = p AR =pRARD k=12, n-t with M= (m, &),
_ 0 if i<y, i>j=k,
.09 = 1. it i=j,
- 8% Ve, K0 if 1> j=k
Then AR =M M&D MDA end
-1 -1 -1 -1
AaR  =p0 M@ M = 16
the matrix L% = (1,90} hes the following structure:
0 if 1<j, i>j>k,

1; 8= 1 if =1,

Moreover, let E%= (e, %), thene,;®=0if ickor jek, ie. -

100 . 0 ; 00 .. O
L% = * % 0|, E® = gg..*"*g
* ¥ ¥ 0 00.***
1.k n 1 ktt.. n

-1 -1 -1 -1
From A% = A R®  we see thet the motrix A% differs from

A~'  in the first k columns. Hence



1 n n n 2 2 i n 0 n 2 2
eA)=2023 3 3 I 2 0,5 223 303 3 2, 8;%
n k=1 =1 i=k+1 j=k+ n k=1 r=1 =kt j=kt

and
1t n n n 2 2 - noon 4
wa) =262 I 3 3 1,0 8,8 = 252y 33 8% ¢
] k=1 r=1 Ek+1 j=k+1 n k=1 i=k+1 jek+1

w1
2 52 '3 aw lI2
n k=1

i~

These equations exsctly relste the guanties e(A) snd wi(A) to the

growth of the elements of the intermediste mstrices. Upper bounds for
e{A) end w(A) con be derived using the bounds for }oij 83| which in turn

derive from the used pivoting strategy. It is well known that with suiteble
pivoting technigues (e.g. column pivoting or totsl pivoting, [Wilkinson

{1961)] )’ there exists a function g{n) independent of A such thst

lo; @l < e gln), i=1,2,...8, j=1,2,...n, k=12,...n-1,

where o =max |a;|. Then we have
i.j

~ 1
o) « 2623 3 3 22K o2 gn? co2n2gln? o2 lla7 12,
n k=1 r=1 isk+1

1 n n 1
wiA) < 2523 3§ 3 o2 g(ny = 2 52 42 g(n2 3 (n-kP s o2 n?g(n2 &2
n k=1 i=k+1 j=k+1 n k=1

From < < [l All it resdily follows thet

e(Aa)

i~

o cmUANL2 1A 2, o (a1
wld) ¢ o c,(n Il A2, (4.2}

where c,{n) end c,{n) do notl depend on A. Therefore Gaussisn eliminstion

- 16 -

slgorithms with column or totel pivoting sre well behaved.
The following exemples show thst Gaussien eliminstion {even with
column pivoting) is not numericelly steble and Gaussisn.elimination without

pivating is not well behaved.

1
Exemple 4.1, Let A be the 2x2 metrix [ y B }, g>1, Gaussian eliminstion
B

with column pivoting reduces A in upper trisnguter form, i.e.

‘ 1
A = [ B } A1 = AU
0 -

Hence

2 2 2 2 14} 132
eld)= o2 3 3 I gz 12 aij( =
r=1 =l =1

=c2[1+0+p2+p2 +0+0+0+1] = 202 [1+52]

o .
On the other hsnd, A!= [ ; 5] ] . the tensorisl condition is
17 -
H&2= 0+1+0+0+1/p2+1/p2+1+0=2[1+1/p?],

and Geussian elimination with column piveting is not numericsally stsble. 3
B ) o
o ,B>1. Goussisn elimination

: i
Example 4.2, Let A be the 2x2 matrix [
A p

reduces A in upper trisngular form, i.e.

A [’ “}'
0 -p2

€= aaD-1 = [

AD-1 = [1 1;6}
o -1/p2

1 0
. Hence

g1

- I?-



2 2 i
= L 2 a 42 2 124 ¢ 2 02
wldl= o2 2 I Z ¢f aij(’) =02 [g;28,, P2+ ¢,28,,(02 +
r=1 =t =1

* 02 807 0y 28, (D24 2 8, (P2 + cpp? 8,02 ] =

=02 [1+0+p2+0 +p2+0 +ptepilac?2pte2p2ril
Then, since lAl[Z=1+2 g2, Gsussisn elimination without pivating is not

yrell-behsaved. O

In Gosussisn eliminstion the scsling csn be used to modify the
slgorithm by affecting the choice of pivots. Eg. the motrix can be row-
equilibrated before spplying the slgorithm or e weighted pivoling strategy
can be used et any step of the elimination process without actuslly effecting
the entries of the metrices [Stoer (1980)]. From proposition 3.2 end 3.3 and
relation {4.1) snd (4.2) it follows thet row-scaled Gaussisn elimination is

numerically stable snd well-behaved.

5. Sisbility snd Good-behsviour of UR slgorithm.

The solution of linear systems using Orthogonalizstion techniques
consists in reducing the system to trisngular form by multiplying the
matrix of coefficients by sppropriste orthogonsl matrices.

we have A® = 4 AR =p®AK-D =12  n-1 with P® unitery
and  A®™ Y = R upper trienguler. The matrices P% cen be elementsry
Householder mestirices or & product of plsne rotstions as in the Givens
method le.g. see Golub, Yan Loan (1983)1.

Let Q% be the product of the elementary matrices of QR slgorithm

after k steps. One has:

- -1 T - T
A0 = g®a A% =g, aa® - g®
Then

1 T n—1 T
Ax=-3 AR (QWAER) x  end A Ax=-3 QR (O AREM) x,
k=1 k=1
By applying Lemms 2.1. we get:
1 T .
eays 202 T IATAW [ZIO0AN2 < 202 A2 IANR,

1
w@ e 2oz 3 IaRAL2 ¢ 207 llAL2
k=1

Therefore, QR elgorithm is well-behoaved. Dn the other hand the following

exsmple shows that QR sldorithm is not numericslly stsble.

i 0
Example 5.1. Let A& be the 282 meatrix )i | ] g >1. QR reduction put A
p



c -c
in upper trienguler form with on unitery transformstion Q0= { ] ,
c c

with ¢2 = 1/2. Then

1/t cp

]} Al -1 =

A(’)=QA=[ [c ’ ]
0 ~(cpr?

0 -cp

2 2 2
Hence e(A)= 62 I 3 I 2,02 aij(‘)z =
r=1 =1 1

=g2[1+0+p2/2+p2/2+0+0+0 + 1] = ¢Z [2+p2]
1 0
On the other hand Al = { ] , the tensorisl condition is
-1/ 1/p
NANZ=1+0+0+0+1/p2+ 1/p%2+ 0+ 1=2+2/p%, ond the OR

slgorithm is not numericslly stable. (]

Propositions 3.1 snd 3.2 can be applied to show that UR row-scsled is

numericslly stable and well-behaved.

6. Stebility snd Good-behaviour of L slgorithm.

By epplying OR elgorithm to the trenspose of A, & similer
decomposition can be derived which reduces A to lower trisngulsr form.
This slgorithm is denoted as LQ sligorithm.

we have a@ = a4, AW = pA®-Dpld =12  n-1 with P® unitery
and A1 = L lower trisnguler. Let G* be the product of the elementary

metrices of LO sigorithm sfler k steps. One has:

A0 = A0, A= gl a4
Then

a1 T n-{ T
Ax=-3 00 AW AMOPER) x, AAx= -3 AQR A (AR ER) ¢ |
k=1 k=1

Since the transformation matrices do not change the lengths of both

the rows of A and the columns of A™', by spplying Lemms 2.1 we get:
e(a) ¢ 262 1A I2,
and the LQ slgorithm is numericsally stable.

On the other hend, for w(A) we csn getl only the trivisi bound of
corollery 2.1. The following example shows that LQ slgorithm is not

waeall-bshaved.

‘ 1
Example 6.1. Let A be the 2x2 matrix [ o 5' ].The LQ reduction put A

c -8
inlower triengulsr form with en unitery trensformstion Q= [ ] .
s C

§2+c2 = |, p =s/c. Then



(1452)1/‘2 0 ]

+R2)172
A(n_‘_[ {(1+p2) 0 }
8 c .

Al = aQ= [
..5(1.,52)—1/2 1/¢c
(1-2)(1+82y 12 g/c

. H
—p(1+p2)"1/2 1/c } enee

C=apl-1a [

L}

2 2 i
2 2 5. (0D2 =452[c, 28, (02 2q (12
o 3 3 I g8V =otley?ey(V2ecy2e, (02 4
=1 1 =1

+ C122 522(1)2 + 02‘2 5“(1)2 + 0222 32‘(1)2 + 0222 322(02 ] =

w(A)

o2 [(1-p2)% + (ps/c)2 + B2 + p2 + (s/C)% + 1] = 02 [2 p% + p2 + 2],

1

Then, since | All2=2+ g2 the LO slgorithm is not well-behaved.

7. Bumericol experiments.
The test mestrices introduced in section 1 were used to verify the
numerical stebility of seversl slgorithms. The mesn slgorithmic error wes

computed and compsered to the Skeel and classicsal condition numbers; m

linesr systems were solved with the solution vectors R; rendomly chosen in

the unitery ball with uniform distribution. In our experiments m=100.
In order to evsluste the mesn slgorithmic error, the following
qusntity wes computed snd plotted for sny slgorithm.
m . 172 mon 2 1z
MAA) = o™ (=1 2 @27 lIgll,2) = ges™ ' (m-13 2 @)
j=1 F1 =

where @ = (n@ ) is the vector of the errors of the solution of the j-th

system, snd é&as is the msachine precision relsted to the word length used to
represent the matirices.

In the following graphs the sbscissas represent the base 10 logsrithm

of the Skeel condition number C”(AA), and the ordinstes, in logerithmic scale

8s well, represent the clessicel condition number k_(A,) snd the quentity

r{A,A,) resulting from the epplicetion of the slgorithm A to A,. Dote points

are connected by straight lines to evidentiste the behsviour of the mstrices
in the seme clsss.

In Fig.3 the results concerning Gsaussisn Elimination and in Fig.4 those
concerning Orthogonelizetion techniques ere plotted, it is self evident how
this cless of test motrices sllows Lo investigste the numericel stability of

algorithms.
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Fig. 3. The classical condition number and the guantities F(A,AA)

for various Gaussian elimination techm’qu‘es plotted versus the
Skeel condition number for a 5x5 Yandermonde column scaled

matrix.

Fig. 4. The classical condition number and the quantities F(A,AA)

for various orthogonalization techniques plotted versus the Skeel

condition number for a 5x5 Vandermonde column écaled matrix.
|



8. Concluding remeorks.

Tables | summerizs the numericsl

properties proved in this work.

Algorithm
Gaussian eliminsation

Gaussian eliminstion with
column pivoting

Gaussisn eliminstion with
totsl pivoting

Row-scaled Gaussion elimination
with column or totsl pivoting

aRr
Row~sceled Q R

La

Table 1.

24 -

stebility snd good-behaviour

numericelly stable

no

no

yes

no

yes

yes

well-beheved

no

yes

yes

yes

yes

yes

no



Appendix A.
In this appendix the proof of lemms 2.1 is given. Two preliminsary

lemmas are needed.

Lemma A.1 The following equslities hold

r-1J xdx=0, h=1,2, ., n;
Bn
r-t [ =2 dx=1/n, h=1,2, ., n;
Bn
F=1 ] w % dr=8,/n, hk=1,2, .., n
Bn
The proof follows from elementary calculus. 0
Lemma A.2. Let E = (en), &y = e'ij - g7, with e‘]j, e”, independent random

verisbles with mesn y = 0 end verisnce o2, then

E(g; ) = o2 (8, 8,+5,).

Proof. We have

L)
f

E(e,; em)

5 E(e'; e\) + Ele7 e7) - Ele7; e7) - Ele, e7)

= I:‘(e'ij e'Pq) + E(e7 e'p) .
and the thesis follows from the relsations
E(e,ijz) - u2 + 62

if i=p end j=q;
E(e'y e ) = . ) »
E(e';) E(el)) = u

othervise;

E(e"?) = p? + 62 ifi=p;

E(e"e7,) = { ' .
E(e”) E(e") = y? otherwise.

Lemma 2.1. Let A,C be nxn metrices, lel E=(ey), g,=¢\,~e’ withe

independent rendom varisbles with mean y = 0 and verisnce <2, then

meen E(llCIA*El xl,2) = % o2 (3 3 Ci? 8;%)

Ixlly=1 r=1 i,jleij#O
Proof. We have
n 2
E(NCIa*ElxI2) = Z [ 2 o 8;e5%]
r=1  i,jl ej*0
n
=E(Z p: b3 Cri 8j5 €ij ¥j Crp Opq Bpq %q ) =

r=1 i,jl 0 pA ] epg®0

n
b P 2
r=1 i,j] &*0 pa ] epq*0

it

Cri 85 R Crp Bpq ¥q EEy5850) =

[

n
2 =
o4z 2 P Cri Bij ¥j Crp Bpq %q ( By 850+ 83)
=1 ijl ei*0 pA ] pq®0

)

n
2 2
o2 2 b Cri” B35 83g (1 + 8500 Ky %y
r=1 ijl &0 4 ] 8?0

Hence

mesn E(C [A*E] x1,2) = -1 [ E(lIC [A*E] x Il,2) dx =
Bxlly = 1 B,

P

n / i
=02 3 3 T a0 (1+8,) It Jijxq dx =

r=1 i,-j I eij*O q I eiq=0 n

n
=g2 3 3 3 c28.8 (1+8.)8. /n.
r=1 i,jleifo qleiq*o reouTe B xa

and the thesis follows by using the relstion (1 + qu) 85=28;

iq°

1y €
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