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METASTABILITY AND DYNAMICS OF DISCRETE

A T-CONVERGENCE APPROACH

R. ALICANDRO, L. DE LUCA, A. GARRONI, AND M. PONSIGLIONE

ABSTRACT. This paper aims at building a variational approach to the dy-
namics of discrete topological singularities in two dimensions, based on I'-
convergence.

We consider discrete systems, described by scalar functions defined on a
square lattice and governed by periodic interaction potentials. Our main mo-
tivation comes from XY spin systems, described by the phase parameter, and
screw dislocations, described by the displacement function. For these systems,
we introduce a discrete notion of vorticity. As the lattice spacing tends to
zero we derive the first order I'-limit of the free energy which is referred to as
renormalized energy and describes the interaction of vortices.

As a byproduct of this analysis, we show that such systems exhibit increas-
ingly many metastable configurations of singularities. Therefore, we propose
a variational approach to depinning and dynamics of discrete vortices, based
on minimizing movements. We show that, letting first the lattice spacing and
then the time step of the minimizing movements tend to zero, the vortices
move according with the gradient flow of the renormalized energy, as in the
continuous Ginzburg-Landau framework.
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1. INTRODUCTION

Phase transitions mediated by the formation of topological singularities char-
acterize many physical phenomena such as superconductivity, superfluidity and
plasticity. For its central role in Materials Science, this subject has attracted much
attention in the last decades (][9], [32], [33], see also [44]), and has brought new inter-
est on fascinating research fields in the mathematical community, as in the theory
of harmonic maps on manifolds ([4], [15], [10]). In particular, new variational meth-
ods have been developed to describe and predict the relevant phenomena, such as
the formation of topological singularities and the corresponding concentration of
energy. Two paradigmatic examples of the appearance of topological singularities
are given by screw dislocations in crystals and vortices in superconductors. We now
introduce two basic discrete models to describe these phenomena.

Given an open set Q1 C R?, consider the square lattice €Z? N Q, representing the
reference configuration of our physical system. In the case of screw dislocations we
consider the elastic energy defined on scalar functions u : €Z? N — R given by

(1.1) SD.(u) := % > dist®(u(i) — u(4), Z).
i,JEEZ2NQY , |i—j|=¢

Here € represents the lattice spacing of a cubic lattice casted in a cylindrical crystal,
€Z? N Q is a reference planar section of the crystal, and u represents the vertical
displacement (scaled by 1/¢). The periodicity of the energy is consistent with the
fact that plastic deformations, corresponding to integer jumps of u, do not store
elastic energy, according with Nabarro Peierls and Frenkel Kontorova theories [26].
Potentials as in (1.1) are commonly used in models for dislocations (see e.g. [18],
[28], [23], [37]; see also [8] for more general discrete lattice energies accounting for
defects).

A celebrated discrete model which allows to describe the formation of topological
singularities, as vortices in superconductors, is the so-called XY spin model. Here,
the order parameter is a vectorial spin field v : eZ?NQ — S! and the corresponding
energy is given by

XYz(v) o= = > [0(i) = v(5)[*.
1,jE€Z?NQ |i—j|=e

Notice that XY (v) can be written in terms of a representative of the phase of v,
defined as a scalar field u such that v = 2™, In this respect, both models can be
regarded as specific examples of scalar systems governed by periodic potentials f
acting on first neighbors, whose energy is of the type

Fe(u) = > f(u(@) = u(d))-

1,jE€EZ?NQY , |i—j|l=¢
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How do dislocations or vortices enter in this description? Loosely speaking, they
are defined through a discrete notion of topological degree of the field v = 2™,
they are point singularities, and can be identified by the discrete vorticity measure
p(w). This is a finite sum of Dirac masses centered in the squares of the lattice, and
with multiplicities equal to either +1 or —1. This notion in the case of dislocations
corresponds to the discrete circulation of the plastic strain, and u(u) represents the
Nye dislocation density.

This paper aims at studying the statics and the dynamics of such topological
singularities, by variational principles.

The first step is the asymptotic analysis by I'-convergence of the discrete energies
F., as ¢ — 0. This analysis relies on the powerful machinery developed in the
recent past for the analysis of Ginzburg-Landau functionals, which can be somehow
considered the continuous counterpart of the energies F.. We recall that, for a given
e > 0, the Ginzburg-Landau energy GL. : H'(2;R?) — R is defined by

1 1
(1.2) GL.(w) = 7/ Vwl? do + 7/(1 ~ w]?)? da.
2 Q 52 Q

Starting from the pioneering book [10], the variational analysis as e — 0 of GL.
has been the subject of a vast literature. The analysis in [10] shows that, as e
tends to zero, vortex-like singularities appear by energy minimization (induced
for instance by the boundary conditions), and each singularity carries a quantum
of energy of order |loge|. Removing this leading term from the energy, a finite
quantity remains, called renormalized energy, depending on the positions of the
singularities. This asymptotic analysis has been also developed through the solid
formalism of I'-convergence ([30], [31], [39], [41], [3]). It turns out that the relevant
object to deal with is the distributional Jacobian Jw, which, in the continuous
setting, plays the role of the discrete vorticity measure. A remarkable fact is that
these results also contain a compactness statement. Indeed, for sequences with
bounded energy the vorticity measure is not in general bounded in mass; this is
due to the fact that many dipoles are compatible with a logarithmic energy bound.
Therefore, the compactness of the vorticity measures fails in the usual sense of weak
star convergence. Nevertheless, compactness holds in the flat topology, i.e., in the
dual of Lipschitz continuous functions with compact support.

Recently, part of this I'-convergence analysis has been exported to two-dimensio-
nal discrete systems. In [36], [1], [2] it has been proved that the functionals mFE
I-converge to m|u(€2)|, where p is the limiting vorticity measure and is given by
a finite sum of Dirac masses. This I'-limit is not affected by the position of the
singularities and hence does not account for their interaction, which is an essential
ingredient in order to study the dynamics. In this paper, we make a further step
in this direction, deriving the renormalized energy for our discrete systems by I'-
convergence, using the notion of I'-convergence expansion introduced in [7] (see
also [14]). Precisely, in Theorem 4.2 we prove that, given M € N, the functionals
F.(u) — Mn|loge| I'-converge to W(u) + M-y, where p is a sum of M singularities
x; with degrees d; = +1. Here W is the renormalized energy as in the Ginzburg-
Landau setting, defined by

W(/J,) = _Wzdidj log |(E1 - CL']‘| - WZdiRo(l’i),
i#] i
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where Ry is a suitable harmonic function (see (4.1)), and ~ can be viewed as a core
energy, depending on the specific discrete interaction energy (see (4.6)).
An intermediate step to prove Theorem 4.2 is Theorem 3.1 (ii), which establishes
a localized lower bound of the energy around the limiting vortices. This result is
obtained using a tool introduced by Sandier [38] and Jerrard [30] for the functionals
GL., referred to as ball construction; it consists in providing suitable pairwise
disjoint annuli, where much of the energy is stored, and estimating from below the
energy on each of such annuli. In the continuous case, the lower bound on each
annulus is the straightforward estimate
1

7/ |Vw|? dz > «| deg(w, dBR)|log E, w € H(Bgr\ B,; SY).
2 /Br\B, r

In Proposition 3.2 we prove a similar lower bound for F;, with R/r replaced by
R/(r+Ce|logel), the error being due to the discrete structure of our energies. This
weaker estimate, inserted in the ball construction machinery, is refined enough to
prove the lower bound in Theorem 3.1 (ii).

The second part of the paper is devoted to the analysis of metastable configura-
tions for F. and to our variational approach to the dynamics of discrete topological
singularities.

We now draw a parallel between the continuous Ginzburg-Landau model and
our discrete systems, stressing out the peculiarities of our framework.

In [34], [29], [40], it has been proved that the parabolic flow of GL, can be de-
scribed, as € — 0, by the gradient flow of the renormalized energy W(u). Precisely
the limiting flow is a measure u(t) = vail di 003, (), where x(t) = (z1(t),..., 2 (1))
solves

#1) = VW (a(t))
2(0) = zg,

(1.3)

with W(z(t)) = W(u(t)). The advantage of this description is that the effective
dynamics is described by an ODE involving only the positions of the singularities.
This result has been derived through a purely variational approach in [40], based
on the idea that the gradient flow structure is consistent with I'-convergence, under
some assumptions which imply that the slope of the approximating functionals
converges to the slope of their I'-limit. The gradient flow approach to dynamics
used in the Ginzburg-Landau context fails for our discrete systems. In fact, the free
energy of discrete systems is often characterized by the presence of many energy
barriers, which affect the dynamics and are responsible for pinning effects (for
a variational description of pinning effects in discrete systems see [13] and the
references therein). As a consequence of our I'-convergence analysis, we show that
F; has many local minimizers. Precisely, in Theorem 5.5 and Theorem 5.6 we show
that, under suitable assumptions on the potential f, given any configuration of
singularities € QM there exists a stable configuration Z at a distance of order
¢ from x. Starting from these configurations, the gradient flow of F. is clearly
stuck. Moreover, these stable configurations are somehow attractive wells for the
dynamics. These results are proven for a general class of energies, including S D¢,
while the case of the XY, energy, to our knowledge, is still open. A similar analysis
of stable configurations in the triangular lattice has been recently carried on in
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[27], combining PDEs techniques with variational arguments, while our approach
is purely variational and based on I'-convergence.

On one hand, our analysis is consistent with the well-known pinning effects due
to energy barriers in discrete systems; on the other hand, it is also well under-
stood that dislocations are able to overcome the energetic barriers to minimize
their interaction energy (see [17], [23], [28], [37]). The mechanism governing these
phenomena is still matter of intense research. Certainly, thermal effects and sta-
tistical fluctuations play a fundamental role. Such analysis is beyond the purposes
of this paper. Instead, we raise the question whether there is a simple variational
mechanism allowing singularities to overcome the barriers, and then which would
be the effective dynamics. We face these questions, following the minimizing move-
ments approach a la De Giorgi ([5], [6], [12]). More precisely, we discretize time by
introducing a time scale 7 > 0, and at each time step we minimize a total energy,
which is given by the sum of the free energy plus a dissipation. For any fixed T,
we refer to this process as discrete gradient flow. This terminology is due to the
fact that, as 7 tends to zero, the discrete gradient flow is nothing but the Euler
implicit approximation of the continuous gradient flow of F.. Therefore, as 7 — 0
it inherits the degeneracy of F, and pinning effects are dominant. The scenario
changes completely if instead we keep 7 fixed, and send € — 0. In this case, it
turns out that, during the step by step energy minimization, the singularities are
able to overcome the energy barriers, that are of order . Finally, sending 7 — 0
the solutions of the discrete gradient flows converge to a solution of (1.3). In our
opinion, this purely variational approach based on minimizing movements, mimics
in a realistic way more complex mechanisms, providing an efficient and simple view
point on the dynamics of discrete topological singularities in two dimensions.

Summarizing, in order to observe an effective dynamics of the vortices we are
naturally led to let ¢ — 0 for a fixed time step 7, obtaining a discrete gradient flow
of the renormalized energy. A technical issue is that the renormalized energy is not
bounded from below, and therefore, in the step by step minimization we are led to
consider local rather than global minimizers. Precisely, we minimize the energy in
a 0 neighborhood of the minimizer at the previous step. Without this care, already
at the first step we would have the trivial solution pu = 0, corresponding to the fact
that dipoles annihilate and the remaining singularities reach the boundary of the
domain. Nevertheless, for 7 small the minimizers do not touch the constraint, so
that they are in fact true local minimizers.

We will adopt the above scheme dealing with two specific choices for the dissi-
pation. On one hand, the canonical choice corresponding to continuous parabolic
flows is clearly the L? dissipation (see Section 7). On the other hand, once ¢ is
sent to zero, we have a finite dimensional gradient flow of the renormalized en-
ergy, for which it is more natural to consider as dissipation the Euclidean distance
between the singularities. This, for € > 0, corresponds to the introduction of a
2-Wasserstein type dissipation, D, between the vorticity measures. For two Dirac
deltas Do is nothing but the square of the Euclidean distance of the masses (see
Definition (6.4)). We are then led to consider also the discrete gradient flow with
this dissipation (see Section 6). By its very definition Ds is continuous with respect
to the flat norm and this makes the analysis as € — 0 rather simple and somehow
instructive in order to face the more complex case of L? dissipation.
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In conclusion, we believe that this paper provides a better understanding of equi-
libria of discrete systems characterized by energy concentration, and contributes to
the debate in the mathematical community over the microscopic mechanisms gov-
erning the dynamics of discrete topological singularities, as vortices in XY spin
systems and dislocations in crystals. For the latter, richer models could be con-
sidered, with more realistic energy densities and dissipations, taking into account
the specific material properties and the kinematic constraints of the crystal lat-
tice. Our variational approach, rather than giving a complete analysis of a specific
model, aims to be simple and robust, with possible applications to a wide class of
discrete systems.

2. THE DISCRETE MODEL FOR TOPOLOGICAL SINGULARITIES

In this Section we introduce the discrete formalism used in the analysis of the
problem we deal with. We will follow the approach of [8]; specifically, we will use
the formalism and the notations in [2] (see also [36]).

Let © C R? be a bounded open set with Lipschitz boundary, representing the
domain of definition of the relevant fields in the models we deal with.

The discrete lattice. For every € > 0, we define Q). C 2 as follows

Q. = U (i +eQ),
i€el2: i+eQCQ
where Q@ = [0,1] is the unit square. Moreover we set Q0 := £Z2 N Q., and
QL={(i,j) e Q2 xQ%: |i—j|=¢,i<j} (where i < j means that i; < j; for
I € {1,2}). These objects represent the reference lattice and the class of nearest

neighbors, respectively. The cells contained in €2, are labeled by the set of indices
Q2={ieQl: i+eQ CQ.}. Finally, we define the discrete boundary of Q) as

(2.1) 0.0 = 00, NeZ?.

In the following, we will extend the use of these notations to any given open
subset A of R2.

2.1. Discrete functions and discrete topological singularities. Here we in-
troduce the classes of discrete functions on 2, and a notion of discrete topological
singularities. To this purpose, we first set

AF(Q) = {u: Q2 = R},

which represents the class of admissible scalar functions on QY.
Moreover, we introduce the class of admissible fields from QU to the set S! of
unit vectors in R?

(2.2) AXY-(Q) = {v: ¢ = 8"},

Notice that, to any function u € AF (), we can associate a function v €
AXY.(Q) setting
v = ’U(U) = eQﬂ'iu'
With a little abuse of notation for every v : Q0 — R? we denote
(2.3) ollFs = D €)1

jen?
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Now we can introduce a notion of discrete vorticity corresponding to both scalar
and S! valued functions. To this purpose, let P : R — Z be defined as follows
(2.4) P(t) = argmin {|t — s| : s € Z},

with the convention that, if the argmin is not unique, then we choose the smallest
among the two.
Let u € AF.(Q) be fixed. For every i € Q2 we introduce the vorticity
25) o (1) := P(u(i +ecey) — u(i)) + P(u(i + ceq + eea) —u(i + ceq))
’ —P(u(i+ cer +eez) — u(i +eez)) — P(u(i + eez) — u(i)).

One can easily see that the vorticity «,, takes valuesin {—1,0,1}. Finally, we define
the vorticity measure p(u) as follows

(2.6) () = 3 ()i (erten)-
1€Q2

This definition of vorticity extends to S! valued fields in the obvious way, by setting
w(v) = p(u) where w is any function in AF.(£2) such that v(u) = v.
Let M(2) be the space of Radon measures in {2 and set

N
X = {ueM(Q) : u:Zdiéwi,NeN,dieZ\{O}wieQ},
(2.7) =

XE =AM E X = Z a(i)5i+%(e1+eg) ) Oé(Z) € {_1707 1}
1€Q2

We will denote by pn, o  the flat convergence of i, to p, i.e., in the dual W11
of W, .

2.2. The discrete energy. Here we introduce a class of energy functionals defined
on AF (). We will consider periodic potentials f : R — R which satisfy the
following assumptions: For any a € R

(1) fla+2) = f(a) for any z € Z,
1 .
(2) f(a) > §|e2ma —1)* = 1 — cos 2ma,
(3) fla)=2m%*(a—2)*+ O(la — 2|3) for any z € Z.
For any u € AF.(Q), we define
(2.8) Fou):= Y f(u() —u(j)).
(i,5)€0}
As explained in the Introduction, the main motivation for our analysis comes
from the study discrete screw dislocations in crystals and XY spin systems. We

introduce the basic energies for these two models as in [2].
Regarding the screw dislocations, for any u : Q2 — R, we define

(2.9) SD.(u) ;:% > dist*(uli) - u(j), Z).
(i,5)€eql

It is easy to see that this potential fits (up to the prefactor 472) with our general
assumptions.
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As for the XY model, for any v : Q0 — St we define

1 . .
(2.10) XYe(v) =5 > o) — o)
(i,4) €L
Also this potential fits our framework, once we rewrite it in terms of the phase u
of v. Indeed, setting f(a) = 1 — cos(27a), we have

(2.11) XY.(0) = Y fluli) —u(j)) with v = e2™,

(i,5)€QL
We notice that assumption (2) on F; reads as
(2.12) F.(u) > XY, (e*™),
Let {Tf} be the family of the e-simplices of R? whose vertices are of the form
{i,i+ee1,i£ees}, with i € eZ% For any v: Q2 — S, we denote by ¥ : Q. — R?
the piecewise affine interpolation of v, according with the triangulation { Tf} It is

easy to see that, up to boundary terms, XY (v) corresponds to the Dirichlet energy
of ¥ in €).; more precisely

1 1 1
(2.13) 7/ |Vo|? da + 7/ Vo2 dz > XY (v) > 7/ (Vo2 da,
2 Jo. 2 /p. 2 Jo.

where B, := {z € Q. : dist(z,090.) < e}.

Remark 2.1. Let v : QY — S'. One can easily verify that if A is an open subset
of Q and if |#] > ¢ > 0 on 0A., then

(2.14) p(v)(Ac) = deg(v, 04, ),

where, given an open bounded set V' C R? with Lipschitz boundary, the degree of
a function w € Hz(V;R?) with |w| > ¢ > 0, is defined by

1
(2.15) deg(w,av):——/ (wlv““ wzv““)-rds.
oV

2 wl ~ fw] - fw] ]
In [16] it is proved that the quantities above are well defined and that the definition
in (2.15) is well posed. Note that u(v)(i +eQ) = 0 whenever || > 0 on i + Q.

3. LOCALIZED LOWER BOUNDS

In this section we will prove a lower bound for the energies F. localized on open
subsets A C Q. We will use the standard notation F.(-, A) (and as well XY, (-, A4))
to denote the functional F; defined in (2.8) with €2 replaced by A.

To this purpose, thanks to assumption (2) on the energy density f, it will be
enough to prove a lower bound for the XY, energy. As a consequence of this lower
bound, we obtain a sharp zero-order I'-convergence result for the functionals F..
As explained in the Introduction, the appropriate topology with respect to which
compactness results hold true is that induced by the flat norm.

3.1. The zero-order I'-convergence. We recall that the space of finite sums of
weighted Dirac masses has been denoted in (2.7) by X.

Theorem 3.1. Let F. be defined by (2.8) with f satisfying (1)-(3). The following
I'-convergence result holds.

(i) (Compactness) Let {u.} C AF(Q) be such that F.(u.) < Clloge| for some
positive C'. Then, up to a subsequence, u(uc) flag i, for some p € X.
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(i) (Localized T-liminf inequality) Let {u.} C AF.(2) be such that p(u.) a

n= Zf\il d;0y, with d; € Z\{0} and x; € Q. Then, there exists a constant
C € R such that, for any i = 1,..., M and for every o < %dist(mi,aQ U

Uji j), we have
(3.1) lim inf F. (ue, By (w:)) — ld;| logg > C.

E—

In particular
(3.2) lim inf F.(ue) — 7|u| () log < > C.
e—0 9
(i) (T-limsup inequality) For every u € X, there exists a sequence {u.} C
AF:(Q) such that p(ue) Aag w and
Fe(ue)

Tog<|

| pl(€2) > limsup
e—0

The above theorem has been proved in [36] for F. = SD, and in [2] for F. = XY,
with (ii) replaced by the standard global T-liminf inequality
Fe(uc)
| logel’

(3.3) 7|p () < liminf
e—0

which is clearly implied by (3.2). We underline that the estimate in (3.1) implies
the boundedness of the energy far from the limiting singularities and it will play a
central role in the first order I'-convergence analysis in Subsection 4.2.

By (2.12), the compactness property (i) follows directly from the zero-order T'-
convergence result for the XY, energies, while the proof of (ii) requires a specific
analysis. For the convenience of the reader we will give a self contained proof of
both (i) and (ii) of Theorem 3.1. We will omit the proof of the I'-lim sup inequality
(iii) which is standard and identical to the XY case.

Before giving the proof of Theorem 3.1, we need to revisit a construction referred
to as ball construction and introduced in the continuous framework in [38], [30].

3.2. Lower bound on annuli. Let w € H'(Bg \ B,;S!) with deg(w,dBg) = d.
By Jensen’s inequality, the following lower bound holds

1 I
7/ |Vw|? dz > 7/ / | (w x Vw) - 7|?ds dp
2 JBr\B, 2J. JoB,

(3.4)
R R

> [ Sald? dp = ald)log

r P r

The latter is a key estimate in the context of continuous Ginzburg-Landau. In the
following we will prove an analogous lower bound for the energy XY, (v,-) in an
annulus in which the piecewise affine interpolation v satisfies || > % In view of
(2.12) such a lower bound will hold also for the energy F..

Proposition 3.2. Fiz ¢ > 0 and let V2¢ < r < R — 2\/2¢. For any function
v:(Bgr\ B,)NeZ? — S with |8 > § in Bp_ 5.\ B, /3., it holds

R
r+e(alu(v)(B,)] +v?2)’

(85)  XY(v.Bg\ B,) = mlu(v)(B,)|log

where o > 0 is a universal constant.
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Proof. By (2.13), using Fubini’s theorem, we have that

R— fe
(3.6) XY.(v,Bgr\ B) / / |Vo|? ds dp.

r+v2e JOB,
Fix 7+ v2¢ < p < R —+/2¢ and let T be a simplex of the triangulation of the
e-lattice. Set yr(p) := 0B, NT, let 37 (p) be the segment joining the two extreme
points of yr(p) and let (p) = Uy Fr(p); then

1 N 1 s 1 N
61 [ WiPds = [ (ViR ds= 3 3V PR ()
2 B, 2 Uryr(p) 2 T

1 s _ 1 -
5 D IVaL PR (o) = 5 [ [V ds,
T 5(p)

%

where we have used that Vo is constant in each simplex T'. Set m(p) := miny,) [9];
using Jensen’s inequality and the fact that H'(5(p)) < H'(0B,) we get

1/ . 1 ) 7 7
- Vol ds > f/ m*(p) ’ (N X V~) T
2 S50 2 )50 CI—

2
ds

1 m2(p) G
= 2HG() ( o)
m?(p ) 25 (
(3.8) > = 7ldf* > 7|d|

where we have set d := deg(9,0B,) = u(v)(B,), Wthh does not depend on p since
o] > 1/2.

Now, let T'(p) be the simplex in which the minimum m(p) is attained and let
T1(p), Ta(p), T3(p) be the simplices sharing a side with T'(p). By (3.7)

1

- 1. _
5/03 |V'U‘2 dz 2 §|vv\T(p)|2H1(7T(p) Z |V'U‘T (p) ’YT (p)(p))

If 7(,)(p) does not lie on any of the sides of T'(p), using the explicit formula of the
affine interpolation ¥ on T(p), a simple but somehow lengthy computation shows
that

(3.9) VO, PH (10 (0) = 1

for some universal constant ay. If 7, (p) lies on the side shared by T'(p) and T}(p)

1 —m?(p)
e

for some 7, using that p > 1/2¢, a simple geometric argument yields

(3.10) H! (Gr() () + M (3,0 (p)) = 26,
where a > 0. By combining (3.9) and (3.10), we get

1 1 —m?
(3.11) 7/ Vo2 ds > g me)

2 9B, 3

where & is the smallest among oy and as.
In view of (3.7), (3.8) and (3 11) for any r 4+ v/2¢ < p < R — \/2¢ we have

1 —m? d|a
2 Jos, p € erm|d| + ap
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By this last estimate and (3.6) we get

Zu()(B) - V) + R
(2 () (B +V2) +r

Assuming, without loss of generality, & < 1, we immediately get (3.5) for o =

(3.12) XY:(v, Br \ By) = |u(v)(B;)|log

d

3

3.3. Ball Construction. Here we introduce a construction referred to as ball con-
struction, introduced in [38], [30]. Let B = {Bg,(x1),...,Bry(zn)} be a finite
family of pairwise disjoint balls in R? and let u = Zi\; d;6,, with d; € Z \ {0}.
Let F be a positive superadditive set function on the open subsets of R2, i.e., such
that F(AU B) > F(A) 4+ F(B), whenever A and B are open and disjoint. We will
assume that there exists ¢ > 0 such that

(313) F(dnn(@) 2 wlp(Be(2) log =,
for any annulus A, g(z) = Br(z) \ B,(z), with A, g(z) C Q\ U, Br, (z:)-

The purpose of this construction is to select a family of larger and larger annuli
in which the main part of the energy F' concentrates. Let ¢ be a parameter which
represents an artificial time. For any ¢ > 0 we want to construct a finite family of
balls B(t) which satisfies the following properties

(1) Uil Br, (i) € Upesq B

(2) the balls in B(t) are pairwise disjoint,

(3) F(B) > w|u(B)|log(1 +1t) for any B € B(t) with B C Q,

(4) Xopepe) B(B) < (1+t) 3, Ri+(1+t)eN(N?+N+1), where R(B) denotes
the radius of the ball B.

We construct the family B(t), closely following the strategy of the ball construc-
tion due to Sandier and Jerrard, that we need to slightly revise in order to include
our case: The only difference in our discrete setting is the appearance of the error
term ¢ > 0 in (3.13) and in (4), while in the continuous setting ¢ = 0.

The ball construction consists in letting the balls alternatively expand and merge
each other as follows. It starts with an expansion phase if dist(Bg, (), Br, (z;)) >
2¢ for all ¢ # j, and with a merging phase otherwise. Assume that the first phase
is an expansion. It consists in letting the balls expand, without changing theirs
centers, in such a way that, at each (artificial) time, the ratio 6(t) := ﬁg) is
independent of i. We will parametrize the time enforcing 6(¢) = 1 + ¢t. Note that
with this choice R;(0) = R; + ¢ so that the balls { Bg, (o) (i)} are pairwise disjoint.
The first expansion phase stops at the first time 77 when two balls bump into each
other. Then the merging phase begins It consists in identifying a suitable partition
{S}}j=1,...n, of the family {Bg,(r,)(z;)}, and, for each subclass S}, in finding a
ball B Rl( ) which contains all the balls in S; ! such that the followmg properties

hold:
i) for every j # k, dlSt(BRl( ) B (z1)) > 2¢;

ii) Rj—Nc isnot larger than the sum of all the radii of the balls B, (i) €
S;, i.e., contained in Bp1 (x}).
J

This construction consists in applying the usual merging procedure described in
[38] to the balls in the family {Bg, (1 )+c(2i)}. In such a way one obtains a family
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of pairwise disjoint balls { Bj:(x})} such that

N} < Z (Ri(Ty) + ¢).

i:BRi(Tl)(fEi)CBﬁ; (w})

The family {Bp: (z 1)} is obtained by setting R} = R} — c.
After the merging, another expansion phase begins, during which we let the balls
{B R (x})} expand in such a way that, for ¢ > Ty, for every j we have
Ri(t) 1+t

3.14 = .
(3.14) ctR 1+T

Again note that R} (T1) = Rj+c. We iterate this process obtaining a set of merging
times {T1,...,T,}, and a family B(t) = {BR?-(t)(zf)}j for t € [Tk, Tk+1), for all
k=1,...,n— 1. Notice that n < N. If the condition dist(Bg,(;), Br,(7;)) > 2¢c
for all ¢ # j, is not satisfied we clearly can start this process with a merging phase
(in this case 71 = 0).

By construction, we clearly have (1) and (2). We now prove (4). Set N(t) =
t{B e B(t)} and I(t) = {1,...,N(t)}. Moreover, for every merging time 7} and
1 S] < N(Tk)a set

I(Ty) = {z € I(Ty—1) : Bppr(a;7") C BR;(fE?)}-

By ii) and (3.14) it follows that for any 1 <k <n

N(Tx) N(Tk)
2 Ef=No < > Y RTHT)
=1 =1 len (1)
R ( LT pesy 147 C)
N = 1+ Ty 1+ Ty
N(Ty-1)
3.15 = R cN(Ty—
(3.15) 14Ty Z: 1+Tk1 D)
N(Tk-1)
1+Tk k—1
< - : 1+ T:)eN.
S 177, j; R+ (14 Ty)e

Let Ty, <t < T4 for some 1 < k < n; by (3.14) and iterating (3.15) we get
N(Tk N(Tk)
1+¢ 1+1¢
K k
= ’ N(T;
ZR Tk;RJ+1+TkC (i)

N
<A+8)) Ri+ (1+t)eN(N*+ N +1),

i=1

(3.16)

and this concludes the proof of (4).
It remains to prove (3). For ¢ = 0 it is trivially satisfied. We will show that it is
preserved during the merging and the expansion times. Let T be a merging time
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and assume that (3) holds for all t < T. Then for every j € I(T})

F(BR;?(I';‘C)) 2 Z F(BRf*I(Tk)(xfil))
lel;(Ty)

Y

J
mlog(1 + Tk) Z |M(BR;"*1(T,C)($;€71))|
=1

mlog(1 + o) (B () .

v

Finally, for a given ¢ € [Ty, Ti41) and for any ball Bge,(zF(t)) € B(t) we have

F(Bpeay(27)) > F(Brrp (a7) \ Bre(a7)) + F(Bge(a7))

1+t
> | (B (7)) log T 7| (Bps o) (7)) log(1 + T)
= 7|(Bpe (x}))[log(1 + 1),

RE(H) 1+t

where we have used that

c+RF T 14Ty

3.4. Proof of Theorem 3.1. First, we give an elementary lower bound of the
energy localized on a single square of the lattice.

Proposition 3.3. There exists a positive constant B such that for any ¢ > 0,
for any function v € AXY.(Q) and for any i € Q2 such that the piecewise affine

interpolation ¥ of v satisfies min; 4. |9| < %, it holds XY.(v,i+¢eQ) > B.

Proof. Using the very definition of the interpolation @, the condition min; g |7] <
1

5 immediately implies that there are a universal constant 8 > 0 and two nearest

neighbors 7, k in ¢ + €@ such that |v(j) — v(k)| > v/20. O
Proof of Theorem 3.1. By (2.12), it is enough to prove (i) and (ii) for F. = XY,
using as a variable v, = €27, The proof of (iii) is standard and left to the reader.
Proof of (i). For every e > 0, set I, := {i € Q2 : min; . |0.| < 3}. Notice that,
by definition (see (2.6)), u(ve) is supported in I, + 5(e1 + e2).

Starting from the family of balls B 5. (i + 5(e1 + €2))), and eventually passing

2

through a merging procedure (see Subsection 3.3) we can construct a family of
pairwise disjoint balls

B. .= {BRiYE(xi,E)}i=17..-,NE ’

with vajl R;. < efl.. Then, by Proposition 3.3 and by the energy bound, we
immediately have that #I. < C|loge| and hence
N,
(3.17) ZRLE < Celloge].
i=1
We define the sequence of measures
N,

e = 3 (0 (Br,, (2:.2))b,..
i=1
Since |pe(B)| < 1. for each ball B € B, by (3.5) we deduce that (3.13) holds with
F() = XY.(ve,+ \ Upep.B) and ¢ = e(afl. + 2v/2).
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We let the balls in the families B, grow and merge as described in Subsection 3.3,
and let Be(t) :== {Bg, .(1)(#::(t))} be the corresponding family of balls at time ¢.

Set moreover t. := % — 1, Nc(te) := #B:(t) and define

(3.18) Ve 1= > te(Br, (1) (@ie(te))) 0z, (20

i:17-~-7N5(t5)
BRiYE(tg)(a:i,s(ts))CQ

By (3) in Subsection 3.3, for any B € B.(t.), with B C Q, we have

XY (ve, B) 2 7|pe(B)|log(1 + t.) = m|ve(B)|5|logel;
by the energy bound, we have immediately that |v.|(2) < M and hence {v.} is
precompact in the weak* topology. By (4) in Subsection 3.3, it follows that

NE (ts)

> Rylte) < CVE (#)",

j=1
which, using the definition of the flat norm, implies that ||ve — pic|lgat — 0 (see [3]
for more details); similarly, using (3.17), one can show that ||z — p(ve) (g, — 0 as
e — 0. We conclude that also u(v.) is precompact in the flat topology.

Proof of (ii). Fix i € {1,...,M}. Without loss of generality, and possibly

extracting a subsequence, we can assume that

(319) liminf XY. (., By (w:)) - mldi|log
= lim XY (ve, By (2;)) — 7|d;||loge] < 4o00.
e—0

We consider the restriction v. € AXY.(Bs(x;)) of ve to B,(x;). Notice that
supp(u(ve) — p(ve) L By (21)) C Bo(x;) \ By—e(z;). On the other hand, by (3.19)
and Proposition 3.3 it follows that

(3.20) [1(ve)|(Bo (i) \ Bo—e(zi)) < Cllogel.
Then, using (3.20) one can easily get

(3.21) (V) = p(ve) L By ()| aas — 0,
and hence

(3:22) [|11(0e) — dida, [|fras — O.

We repeat the ball construction procedure used in the proof of (i) with € replaced
by Bo(z;), ve by v and I by

. i~ 1
I .= {] € (B, (4))? : ]ri}g(l\? [0:] < 2}.
We denote by B; . the corresponding family of balls and by B; .(¢) the family of
balls constructed at time t.
Fix 0 < v < 1 such that
(3.23) (L =(dil +1) > [di].

Let t., = &7~ —1 and let v, , be the measure defined as in (3.18) with (2 replaced
by By (z;) and t. replaced by t. . As in the previous step, since v > 0 we deduce
that ||V — dids, ||gat — 0; moreover, for any B € B; .(t. ) we have

(3.24) XY.(ve, B) 2 7lvey (B)(1 — )| logel.
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Now, if liminf._,o|ve o|(Bs(x;)) > |d;|, then, thanks to (3.23), (3.1) holds true.
Otherwise we can assume that |v. 4|(Bo(x;)) = |d;| for ¢ small enough. Then
Ve~ is a sum of Dirac masses concentrated on points which converge to x;, with
weights all having the same sign and summing to d;. Let C; > 0 be given and set

t. 1= W — 1. By (3.16), we have that any ball B € B; .(t.) satisfies
diam(B) < %o,

where Cy > 0 is a universal constant. We fix C1 > 2C3 so that diam(B) < §.
Recall that, for e small enough, supp(ve ) € Bgy/2(x;); hence if B € B; .(t.) with
supp(ve,) N B # 0, then B C B,(x;) and one can easily show that

ﬂ(@e)( U B):di.
BeBi,s(fs)
BCBU("L‘i)

We have immediately that

_ o

XYe(0e, Bo(w:) \ Upes, . B) 2 7 |u(ve)(B)|log(1 + ) > mlds| log RS
BGBi,a(ta) ’
BCBy(x)

On the other hand, by Proposition 3.3 there exists a positive constant 8 such that

XY:(0e,j+eQ) > B forany j€ I
therefore, XY, (7., UBeBi i B) > p4I, .. Finally, we get
X)/E(ﬁsa Ba(xl)) 2 X}/E(@Ea Ba(xi) \ UBEBZ’,EB) + X)/::‘(T)sv UBGBLEB)

> wldi|log = —log (C1(41:.2)*) + 418 > wld|log = + C

and (3.1) follows sending ¢ — 0. O

4. THE RENORMALIZED ENERGY AND THE FIRST ORDER I'-CONVERGENCE.

In this section we will prove the first order I'-convergence of F; to the renormal-
ized energy, introduced in the continuous framework of Ginzburg-Landau energies
in [10]. To this purpose we begin by recalling the many definitions and results of
[10] we need.

4.1. Revisiting the analysis of Bethuel-Brezis-Hélein. Fix y = Zf\il di0,
with d; € {—1,+1} and x; € Q. In order to define the renormalized energy, consider
the following problem
Ad =27y in
{ d=0 on 0,

and let Ro(z) = ®(z) — Zf\il d;log|x — x;|. Notice that Ry is harmonic in Q

and Ry(z) = —Zfil dilog |z — x;| for any x € 0f). The renormalized energy
corresponding to the configuration y is then defined by
(4.1) W(p) = -7 did;log|a; —a;| — 7Y d;Ro(xs).

i#j i
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Let o > 0 be such that the balls B, (z;) are pairwise disjoint and contained in {2
and set 27 := Q\ Uf‘il B, (z;). A straightforward computation shows that
1
(4.2) W(p) = lim = [ |V®]? dz — M7|logo].
o—0 2 Qo
In this respect the renormalized energy represents the finite energy induced by u
once the leading logarithmic term has been removed.

It is convenient to consider (as done in [10]) suitable cell problems and auxiliary
minimum problems. Set

1
mio) =i {5 [ (90l do s deg(un,08,) = di

. . 1 2 9, .
m(o, 1) ':weHrlr&)n”;Sl) {2 /QU [Vw|® dz :
&%)
w() =

E(. —z;)%on 0B, (z;), || = 1}.
For any x € R? \ {0}, we define §(x) as the polar coordinate arctanzs/xq, also

referred to as the lifting of the function Tal" Given € > 0 we introduce a discrete

(4.3)

minimization problem in the ball B,

(4.4) v(g,0) = uef}lﬁBg) {F.(u,By) : 2mu(-) = 0(-) on 9.B,},

where the discrete boundary 9, is defined in (2.1).
Theorem 4.1. It holds
(45)  lim m(o. ) ~ lel(@)| og o] = liy (o 1) ~ (D) log 7| = W)
Moreover, for any fized o > 0, the following limit exits finite
. €
(4.6) lim(v(e,0) —7|log —|) =: v € R.

The proof of (4.5) is contained in [10], whereas the statement in (4.6) is a discrete
version of Lemma III.1 in [10] and can be proved similarly. We give the details of
the proof of (4.6) for the convenience of the reader.

Proof of (4.6). First, by scaling, it is easy to see that y(e,0) = I(£) where I(t) is
defined by
I(t) := min {Fl(o, Bi)|2mu=6on 813%} .

We aim to prove that
t
(4.7) 0<ty <ty = I(ty) Sﬂlogt—2+l(t2)+0(tg).
1
Notice that by (4.7) it easily follows that lim; ,o+(I(¢) — 7|logt|) exists and is not
+00. Moreover, by Theorem 3.1, there exists a universal constant C' such that
I(t) > w|logt|+C  Vte(0,1].

We conclude that lim;_, g+ (I(t) — 7| logt|) is not —oc.
In order to complete the proof we have to show that (4.7) holds. To this end, let 6
be the lifting of the function . Since |VO(x)| < ¢/r for every x € A, p = Br\ By,
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by standard interpolation estimates (see for instance [20]) and using assumption
(3) on f, we have that, as r < R — o0,

(4.8) Fi(0/21, Avg) < mog§ +0(1/r).

Let up be a minimizer for I(t5) and for any i € Z? define

. ug (i) if i < &£
Ul(l) = 0(4) if L < |’L 1

27 ta

By (4.8) we have
I/R) < Y flwali) —wa(j) + S Fud) —w())

(1:3)€(Br)y (1.9 €(A,_ /3, p)1
1,j€(Br)1 i,j€(A,_ 3 )1

<I(1/r) +7rlog§ +0(1/r),

which yields (4.7) for r = L and R = L.

to t1

(]

4.2. The main I'-convergence result. We are now in a position to state the
first-order I'-convergence theorem for the functionals F;.
Theorem 4.2. The following I'-convergence result holds.

(i) (Compactness) Let M € N and let {u.} C AF () be a sequence satisfying

F.(ue) — Mr|loge| < C. Then, up to a subsequence, u(u.) Hap w for some
uw= Zil di0y, with d; € Z\ {0}, x; € Q and ), |d;| < M. Moreover, if
Yo ldil = M, then Y~ |d;| = N = M, namely |d;| =1 for any i.

(ii) (T-liminf inequality) Let {uc} C AF(QY) be such that p(ue) e , with
= Zf\il d;by, with |d;| =1 and z; € Q for every i. Then,

(4.9) limiglf F.(u.) — Mm|loge| > W(u) + M~.
e—

(iii) (T-limsup inequality) Given u = Zf\il d;by, with |d;| =1 and z; € Q for
every i, there exists {us} C AF(Q) with u(ue) fa w such that
F.(uc) — Mm|loge| = W(u) + M.

In our analysis it will be convenient to introduce the energy functionals F. in
term of the variable p, i.e., by minimizing F. with respect to all u € AF.(Q2) with
w(u) = p. Precisely, let F. : X — [0, 4+00] be defined by
(4.10) Fe(p) :=inf{F.(u) : ue AF(Q), u(u) = p}.

Theorem 4.2 can be rewritten in terms of F, as follows.

Theorem 4.3. The following I'-convergence result holds.

(i) (Compactness) Let M € N and let {uc} C X be a sequence satisfying
Fe(pe) — Mm|loge| < C. Then, up to a subsequence, L. flag = vazl di0s,
with d; € Z\{0}, x; € Q and ), |d;| < M. Moreover, if ), |d;| = M, then
Yo ldil = N =M, namely |d;| =1 for every i.
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(ii) (T-liminf inequality) Let {pe} C X be such that u. flas w= Zf\il diby, with
|d;] =1 and z; € Q for every i. Then,

(4.11) limi(r)lf]:g(ue) — Mm|loge| > W(u) + M.
E—r

(iii) (T-limsup inequality) Given p = vail d;by, with |d;| =1 and z; € Q for
every i, there exists {pe} C X with pi. flag W such that

(4.12) Fe(pe) — Mrlloge| — W(u) + M~.

4.3. The proof of Theorem 4.2. Recalling that F.(u) > XY.(e* ™), the proof
of the compactness property (i) will be done for F. = XY., and will be deduced
by Theorem 3.1. On the other hand, the constant v in the definition of the T'-
limit depends on the details of the discrete energy F., and its derivation requires a
specific proof.

Proof of (i): Compactness. The fact that, up to a subsequence, p(u.) fla
W= Zf\]:l d;dz, with vazl |d;| < M is a direct consequence of the zero order
I'-convergence result stated in Theorem 3.1 (i). Assume now Zfil |d;] = M and
let us prove that |d;| = 1. Let 0 < 01 < o2 be such that B,,(z;) are pairwise
disjoint and contained in €2 and let € be small enough so that B, (x;) are contained
in Q.. Forany 0 < 7 < R and z € R?, set A, r(z) := Bgr(z) \ B.(z). Since
Fu(uz) > XYa(e2rine),

N N
(4.13) Fo(ue) 2 ) XY, By (23)) + ) XYo(¥™, Agy g, (20)).-
i=1

=1

To ease notation we set v. = 2™ and we indicate with 7. the piecewise affine
interpolation of v.. Moreover let ¢ be a positive number and let € be small enough
so that ¢t > v/2¢. Then, by (3.1) and (2.13), we get

N N
1
(4.14) Fo(u) > :|di|log%+§§ / V4. |2 dz + C.
i=1 i=174

al+t,52—t($i)

Vo.|? dz < C and hence, up

to a subsequence, 0. — v; in H'(Ag, 4t0,—t(7;);R?) for some field v;. Moreover,
since

By the energy bound, we deduce that [, . (20)
o1 +t,o0—t(Ti

iz/ (1 5.]2)2 de < CXYa(v.) < Clog .,
€ JAs 110y —t(mi) €
(see Lemma 2 in [1] for more details ), we deduce that |v;] =1 a.e.

Furthermore, by standard Fubini’s arguments, for a.e. o1 +t < 0 < 09 — t,
up to a subsequence the trace of ¥, is bounded in H' (9B, (z;); R?), and hence it
converges uniformly to the trace of v;. By the very definition of degree it follows
that deg(v;, 0By (x;)) = d;.

Hence, by (3.4), for every i we have

O'Q—t

(4.15)

N | =

01 +t

/ |Vu|? do > |d;|*m log
Aoy +t,o9—t(Ti)
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By (4.14) and (4.15), we conclude that for e sufficiently small

N

o o9 — 1

Futu) 2w 3 (1dd1og 2 +1aPlog 21 ) + €
i=1

— Mallogel + 1> (A — d)og -+ 73 s P1og 7222 =1
i i ol i i o1 +1

i=1

+C.

The energy bound yields that the sum of the last two terms is bounded; letting
t — 0 and 07 — 0, we conclude |d;| = 1.

Proof of (ii): T-liminf inequality. Fix r > 0 so that the balls B,(x;) are pair-
wise disjoint and compactly contained in 2. Let moreover {Qh} be an increasing
sequence of open smooth sets compactly contained in © such that U,enQ® = Q.
Without loss of generality we can assume that Fg(u.) < Mn|loge| + C, which
together with Theorem 3.1 yields

M
i=1
We set v, := 2™ and we denote by 9. the piecewise affine interpolation of v..

For every r > 0, by (4.16) and by (2.12) we deduce XY (v. \ Ufil B.(z;)) < C.
Fix h € N and let € be small enough so that Q" C €.. Then,

1

2 /m\ufvl Bar(w:)

therefore, by a diagonalization argument, there exists a unitary field v with v €
HY(Q\ UM, B,(x;); S*) for any p > 0 and a subsequence {@.} such that &, — v in
L (@\ U, {z;}; R2).

Let o > 0 be such that B, (z;) are pairwise disjoint and contained in Q". Re-
calling the definition of A, g in the proof of (i), we set A, g := A, r(0). Let t < o,
and consider the minimization problem

1
min f/ |Vw|? dz : deg(w,0B:) =1 ;.
wEH(Ay2,4;81) 2 Ayjan 2

It is easy to see that the minimum is wlog2 and that the set of minimizers is
given by (the restriction at A5, of) the rotations of I%I Let K be the set of
such functions. To ease the notations in the rest of the proof, it is convenient to
introduce a complex notation for K: Identifying R? with C and setting g(z) := ‘z—l
(with z € C), we have that

Vi |? dz < C;

(4.17) K={ag(z): acClaf=1}.
Set
(4.18) di(w, K) := min{HVw — VvHLz(At/QYt;RQ) tvE IC} .

It is easy to see that for any given § > 0 there exists a positive w(d) (independent
of t) such that if d¢(0.(- 4+ 2;),K) > 6, then

1
(4.19) liminf - |V |? do > 7log 2 + w(d).
e—=0 2 A%{.ﬂs,tfﬁf(mi)
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By a scaling argument we can assume ¢ = 1. Then, arguing by contradiction, if
there exists a subsequence {0.} such that

1
lim = |V |? dz = 7log 2,

e—0 2
A%#»\/is,lf\/ie(mi)

then, by the lower semicontinuity of the L? norm, we get
(4.20)

1 1
mlog2 < 7/ |Vol? dz < lim — |V, |? dz = 7log 2.
2 Aiy2,1(wi) e=0 A%+\/§E,1_\/§E($i)

It follows that v(-+ ;) € K, and that 9. — v strongly in H'(A; /1 (2;); R?), which
yields the contradiction dist(v(- + z;), ) > 4.

Let L € N be such that Lw(d) > W(u) + M(y — wlogo — C) where C is the
constant in (3.1). Forl=1,...,L, set Cj(z;) := Bai-15(x;) \ By-15(x;).

We distinguish among two cases.

First case: for € small enough and for every fixed 1 < [ < L, there exists at
least one ¢ such that dgi—i, (0c(- +2;), ) > . Then, by (3.1), (4 19) and the lower
semicontinuity of the L? norm, we conclude

M L M
F.(ug, Q") >ZXY Ve, By-rg(x;) JrZZXYE ve, Cy(x4))

1=1 i=1
> M(w log + 7lloge| + C) + L(Mnlog2 + w(d)) + o(e)
> Mw|loge| + M~y + W(u) + o(e).

Second case: Up to a subsequence, there exmts 1 <1 < L such that for every
i we have ds (9:(- + 2;),K) < 6, where & := 2'~!o. Let a.; be the unitary vector
such that ||, — O[syiﬁHHl(C[(wi);R2) =ds(0:(- + =), K).

One can construct a function @, € AF.() such that

(i) ue = Ue ON aa(Rz \ By-i, (%5));

(ii) e?™ = a.e' on 0.Byi-1, (2;)

(ii) Fe(ue,Bs(x;)) > Fe(te, Bs(x;)) + r(e, 6) with lims_,olim._,¢ r(¢,d) = 0.
The proof of (i)-(iil) is quite technical, and consists in adapting standard cut-off
arguments to our discrete setting. For the reader convenience we skip the details
of the proof, and assuming (i)-(iii) we conclude the proof of the lower bound.

By Theorem (4.1), we have that

M M
Fs(us) > XYs(vsa Qh \ U Bﬁ(xi)) + ZFE(usv Bﬁ(xi))
i=1 i=1

M
1

> 7/ |V175|2 dz + ZFs(am B&(xi)) + T(E’ 5) + 0(8)
2 JamuM., B, (z))

i=1
1
= V6.2 dz + M(y — mlog =) + (e, 6) + o(e)
2 Qh\U]W B (QZL) g
1
> 7/ IVol2 dz + M(y — mlog =) + (¢, ) + o) + o(1/h)
2 JoUM, Bs () o

(1) +r(e,0) +o(e) +0(a) + o(1/h).
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The proof follows sending ¢ — 0, 6 — 0, 0 — 0 and h — oc.

Proof of (iii): T-limsup inequality. This proof is standard in the continuous case,
and we only sketch its discrete counterpart. Let w, be a function that agrees with
a minimizer of (4.3) in Q\ Uf\il By (z;) =: Q7. Then, w, = a;*=* on 0B, (z;) for
some |ay| = 1.

For every p > 0 we can always find a function w, , € C*(027;S8") such that
Wg,p = ;= on 0B, (x;), and

1
5/0 Vwe,,

Moreover, for every i let w; € AXY (Bs(x;)) be a function which agrees with

T—X4

Qi p=p On 0. B, (x;) and such that its phase minimizes problem (4.4). If necessary,
we extend w; to (By(z;) NeZ?) \ (By(z:))? to be equal to a; =% Finally, define

|lz—a;]
the function w. ,, € AXY.(2) which coincides w, , on Q° NeZ? and with w; on
By (z;)NeZ?. Then, in view of assumption (3) on f, a straightforward computation

shows that any phase u. s, of w. + , is a recovery sequence, i.e.,

1
de—f/ |Vw, |* dz < p.
2 Joo

gli% Fa(ua,o,p) - MT(‘ 10g€| =M~y + W(M) + 0(/07 0'),
with lim, 0 lim, 0 o(p, o) = 0.

4.4. I-convergence analysis in the L? topology. Here we prove a I'-convergen-
ce result for Fr(u.) — Mn|loge|, where M is fixed positive integer, with respect to
the flat convergence of u(u.) and the L2-convergence of 0., where 0. : . — R? is
the piecewise affine interpolation of e?7#¢.

To this purpose, for N € N let us first introduce the set

N
Dy :={ve L*(Q;8"): Jv= WZdi(Swi with |d;| =1, z; € Q,
i=1

v € Hyj . (Q\ supp(Jv); S}

(4.21)

Notice that, if v € Dy, then the function

1
7/ |Vo|? dz — M7|log ol
2 Q\Uf\i1B0($z)

is monotonically decreasing with respect to . Therefore, it is well defined the
functional W : L?(Q;S') — R given by

1

lim > |Vv|? dz — Mr|logo| if v € Dyy;
_) UM, Bo(x:)
(4.22) W(v) —00 ' if v € Dy for some N < M,
+o00 otherwise

Notice that, by (4.5) we have that, for every u = Ef\il d;é,, with |d;| =1

(4.23) W(n) = min W(v).
ﬂGHlloc(Q]\Supp(#);Sl)
Ju=p
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Remark 4.4. We can rewrite W(v) as follows

M +oco
1 1
szf/ Vol? dz + Mnlogp + 7/ Vol dz — wlog?2 |,
(v) =3 Q\Uin(ml | > D 5 C..' |

i=1 j=0 i,j

where C; ; denotes the annulus Ba-j,(7;) \ Ba-+1,(7;). In particular, for the
lower bound (3.4) we deduce that
1

(4.24) sup 5/ |Vo|? do < wlog2 + W(v) — M log p.

2 Ci.j
Theorem 4.5. Let M € N be fixred. The following I'-convergence result holds.
(i) (Compactness) Let {u.} C AF.(Q) be such that F.(u:) < Mnr|loge| + C.
Then, up to a subsequence, (ug) o H= Zfil di0y, with d; € Z\ {0}, z; € Q
and Zivzl |di| < M. Moreover, if Zfil |di| = M, then |d;]| =1 and up to a further
subsequence v.—v in HL _(Q\ supp(u); R?) for some v € Dy.

(i) (T-liminf inequality) Let v € Dys and let {u.} C AF(Q) be such that p(u,) o
Ju and 5. — v in L?(Q;R?). Then,

(4.25) lim i(I)lf F.(ue) — Mmlloge| > W(v) + M~.
e—

(#ii) (T-limsup inequality) Given v € Dy, there exists {u.} C AF(Q) such that
plue) B Ju, 5.—0 in HE (2 )\ supp(Jv); R?) and
(4.26) 1in(1) F.(us) — Mm|loge| = W(v) + M~.

e—

Proof. Proof of (i). The compactness properties concerning the sequence {u(u.)}
are given in Theorem 4.2 (i) while the weak convergence up to a subsequence of
{¥:} to a unitary field v such that v € Dj; has been shown in the first lines of the
proof of Theorem 4.2 (ii).

Proof of (ii). The proof of T-liminf inequality follows strictly the one of Theorem
4.2 (ii) and we leave it to the reader.

Proof of (iii). Let Jv = 73 M did,,, with z; € Q, |d;| = 1. Fix 0 > 0 and
Q7 = Q\ UM, B, (z;). Without loss of generality we can assume that W(v) < 400
and hence for some fixed constant C' > 0 and for every o

2

Now, fix o > 0, and let C; ; denote the annulus By-i,(z;) \ By-t+14(2i). By
Remark 4.4, it follows that for every i =1,..., M

1
f/ |Vo|? dz < M7|logal| + C.
QU

(4.27) lim 1 |Vo|? dz = mwlog 2.

j—oo 2 i,
z Recall that mlog2 is the minimal possible energy in each annulus, and that the
class of minimizers is given by the set K defined in (4.17). Using standard scaling
arguments and (4.27), one can show (see (4.20)) that for any j € N there exists a
unitary vector «; ; such that

(4.28) : /C

L4

2
Xr — ..
V(v—ai,j|xxi|)’ dz = r(i, ),

(2%
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with lim;_,o 7(4,7) = 0. Moreover, we can find a function w; € C>®(Q2777;8)
such that

1 1
(4.29) 7/ |Vw; — Vo> do < ~.
2 Jaz-ie J

Let ¢ € C'([3,1];[0,1]) be such that ¢(3) = 1 and ¢(1) = 0, and let define the
function v; ; in C; ;, with

T

i - — T -
vij(2) == p(Po "z - fvi|)ai,jm + (1= (2o o — z4]))w;(x).

Then define the function v; as follows

. —j
w; in 02 7°
Vs, 5 m Ciﬂ' .

(430) v; = {

Finally for every i we denote by @5, € AXY.(Ba-i-1,(x;)) a function which

4,J
agrees with O‘i,j% on 0:By-j-1,(x;) and such that its phase (up to an additive
constant) minimizes problem (4.4). If necessary, we extend ¥; j to (Ba-j-14(x;) N
eZ?) \ (Ba-i-145(2;))? to be equal to «; j£=%. Finally, consider the field the v, ;

|z—;]
which coincides with v; on the nodes of 27’ '¢ and with 5 ; on By—jq (i) NeZ?.
In view of assumption (3) on f, a straightforward computation shows that any
phase u. ; of v, ; satisfies

1 .
lim F,(ue ;) — Mm|loge| = M~y + 7/ (Vo2 dz — Mn|log(277 )| + o(4),
e—0 § 2 927‘7.0
with lim; ,0(j) = 0. A standard diagonal argument yields that there exists
Jj(€) = 0 such that u. ;) is a recovery sequence in the sense of (4.26). O

5. ANALYSIS OF LOCAL MINIMIZERS

In this section we will prove the existence of many local minimizers for a large
class of interaction potentials. We will assume some further hypotheses for the
energy density f in addition to (1), (2) and (3):

(4) J€C([=3:3DNC*(=3:3));
(5) There exists a neighborhood I of § such that for every z € I we have
Ci(3 — )2 < f(3) — f(z) for some C; > 0 and SUP;¢( ) f7(1) < 5C1;

1
2

Notice that these conditions are satisfied by the energy density of the screw
dislocations functionals, f(a) = dist?>(a,Z), while they are not satisfied by the
energy density of the XY model.

11
22

(6) f is increasing in [0, 5] and even.

5.1. Antipodal configurations and energy barriers. When a discrete singu-
larity of p(v) moves to a neighboring cell, then v has to pass through an antipo-
dal configuration v(i) = —v(j) (i.e., such that the corresponding phase u satisfies
dist(u(i) —u(j), Z) = 3). We will show that such configurations are energy barriers.

Lemma 5.1. There exist « > 0 and E > 0 such that the following holds: Let

u € AF(Q) such that dist(u(i) —u(j),Z) > 3 —a for some (i, j) € QL. Then there
exists a function w, with w = u in Q2 \ {i} such that F.(w) < F.(u) — E.
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Proof. As a consequence of assumption (5), it is easy to see that there exist v > 0
and a positive constant Cs such that

(5.1) FG) = () = f(3 =) >Cs.

o=

First, we prove the statement assuming f € C?(R). In this case, assumption (5)
implies that f/(1) =0 and |f"(3)| > Ci.

Without loss of generality we can assume that u(i) = 0. For sake of notation we
set

(5:2) E'(w)= Y flu(l).

[l—i|=¢

We will assume that i ¢ 0.2, so that i has exactly four nearest neighbors, denoted
by j, k1, ke and k3. The case i € 9. is fully analogous (some explicit computations
are indeed shorter), and left to the reader. By assumption

3

(5.3) E'(u) > f(3+a)+ ) flulk)).

=1

We will distinguish two cases.

Case 1: There exists at least a nearest neighbor, say k1, such that dist(u(k1),Z) >
1

5 — Q. In this case we have that

(5-4) E'(u) 2 2f(5 + a) + f(u(k2)) + f(u(ks)).

Now there are two possibilities. In fact we may have either that dist(u(kz),Z) Vv
dist(u(ks),Z) < 3, or that dist(u(ks),Z) V dist(u(ks),Z) > 3o
In the first case, set w(i) = v with  as in (5.1). Then, by continuity we have

E'(w) =2f(3 =) +2f(7) +o(1),

where o(1) — 0 as a — 0. From (5.4) we have E*(u) > 2f(3 + «), which together
with (5.1) yields

(5.5) E'(u) = B'(w) > 2(f(5 + @) = f(3)) + C2 +0(1) = C2 +o(1)

as & — 0. Suppose now that dist(u(ks),Z) V dist(u(ks),Z) > 3. Then we define

w(i) =  and we get

E'(w) <2f(a)+ f(3) + f(3 +3a).

Moreover, thanks to assumption (6) of f we have E’(u) > 2f(3 + &) + f(3a). We
conclude that

(5.6) Bi(u) ~ Ew) > La?(£(0) ~ "(3)) > 10’Ci.
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Case 2: For every i it holds dist(u(k;), Z) < 3 — a. Set w(i) = n with |n| = 3a
and 730, f'(u(k:)) > 0. Then

(5.7)
3

E'(u) = E'(w) > f(3 +a) = f(5 +a—|nl) + Y fluk)) = f(ulks) —n)

=1

3
= S )l —20) 413 £ k) — 502 3 7 () + olo)

=1 =1

v
DN =
il
/‘:
[
w
Q

™o
|
N ©
o}

o
WML\D
—_

il
/‘:
<
—
&
N~—
S—
+
—~
-
vV
N W

(C1 — 9512p (#)a? + o(a?).

The combination of Step 1 and Step 2 concludes the proof in the case of f €
C?(R), by choosing  small enough and E = (7C; A3(Cy —9sup, f(t)))a?/2. The
general case can be recovered by approximating f in a neighborhood of % with C?
functions still satisfying assumptions (4)-(6). O

Note that in the case of f(a) = dist?(a, Z) the proof of the above Lemma can be
obtained by a direct computation without the regularization.

Remark 5.2. Note that the function w constructed in Lemma 5.1 has a discrete
vorticity that can be different from the one of u only in the four e-squares sharing
i as a vertex, and hence [|u(u) — p(w)|far < 2e.

Definition 5.3. Let a > 0. We say that a function uw € AF-(Q) satisfies the
a-cone condition if

1
dist(u(i) —u(j),Z) < 5@ for every (i,7) € QL.

Remark 5.4. Note that if u € AF.(Q) satisfies the a-cone condition for some
o > 0, then for every w € AF-(Q) such that >, g0 [w(i) — u(i)]* < ‘f—; we have

w(w) = p(u). In other words, the vorticity measure p(u) is stable with respect to
small variations of u.

5.2. Metastable configurations and pinning. As a consequence of Lemma 5.1
we prove the existence of a minimizer for the energy F., under assumptions (1)-(6)
with singularities close to prescribed positions.

Theorem 5.5. Given py = Zf\il diby, with z; € Q and d; € {1,—-1} for i =

1,..., M, there exists a constant K € N such that, for € small enough, there exists
k. € {1,..., K} such that the following minimum problem is well-posed
(5.8) min{ Fo(u) ¢ [|n() = pollna: < kec}.

Moreover, let a be given by Lemma 5.1; any minimizer u. of the problem in (5.8)
satisfies the a-cone condition and it is a local minimizer for F..

Proof. For any k € NU {0}, we set
(5.9) IF = inf{F.(u) © () — prollae < (M + 2k)e).
By constructing explicit competitors one can show that

(5.10) I? < Mr|loge| + C.
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Then, we consider a minimizing sequence {uf"} for I*. Tt is not restrictive to

assume that 0 < u®nm(i) < 1 for any i € QU; therefore, up to a subsequence,

ub™ — uF as n — oo for some uf € AF (). Note that if u* satisfies the a-cone

condition, then it is a minimizer for I¥.

Set k := [%] + 1 and assume by contradiction that there exists a
subsequence, still labeled with e, such that for every k € {0,1,...,k}, there exists
abond (ic, jc) € L, with dist(u* (i) —u%(j.), Z) > § —a. Thus, for n large enough,
we have

. "y noe 1
dist(u" (i) - ub" (1), Z) > 5 — .

By Lemma 5.1, there exists a function w?" € AF.(Q) such that w®™ = uF" in
Q%\ {i} and F.(wb™) < F.(uf") — E for some E > 0. By construction (see Remark
5.2) we have that ||u(w®™) — p(ubm™)|gas < 2. Tt follows that

I < F(whm™) <IF - E.
By an easy induction argument on k and by (5.10), we have immediately that
(5.11) I¥ <1 — kE < Mnl|loge| + C — kE.
By the lower bound (4.9) in Theorem 4.2, (5.11), and the definition of k& we get
W(no) + M < liminf IF — Mr|loge| < C — kE < W(uo) + My — E,

and so the contradiction. Then the statement holds true for K = M + 2k.
O

Let € > 0 and let u? € AF.(). We say that u. = u.(t) is a solution of the
gradient flow of F. from u? if u. satisfies

Mossite = —VFo(uc) in (0,+00) x Q2
ue(0) = ug in Q0.
Clearly u.(t) € AF.(€), and we will write u.(t,%) in place of u.(t)(%).

Theorem 5.6. Let jg = Zf\il diby, withx; € Q andd; € {1,-1} fori=1,..., M.
Let {ul} C AF.(Q) be such that

(5.12) lin%) F.(u?) — Mr|loge| = W(uo) + M~.
e—

Let « be given by Lemma 5.1. Then, for € small enough, the following facts hold:

(i) u® satisfy the a-cone condition.
(ii) The solution uc(t) of the gradient flow of F. from ul satisfies pu(u.(t)) =
w(ul) for every t > 0.
(iii) There exists uQ such that @? € argmin{F.(u) : p(u) = p(ul)}. Moreover
u? satisfies the a-cone condition and it is a local minimizer for Fr.

Proof. Proof of (i). Assume, by contradiction, that there exists a sequence e — 0
such that ugk does not satisfy the a-cone condition, namely for every k € N there
exists a bond (iy, jx) € Qf, with

. . . 1
dist(u?, (i) — o, (i), Z) > 5 — o
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By Lemma 5.1, for any k there exists a function w,, € AF., (Q) such that w,, =u2
in Q2 \ {ir} and

(5.13) Fo(we,) S F.(u))—E<F., (u)-E.

Moreover, by construction (see Remark 5.2) we have that ||u(we, ) — p(ul, )||gas <

2¢ei, and so pu(we,) fa to. By the lower bound (4.9) in Theorem 4.2, we get
(5.14) W(po) + M~ < lim_i%f F,, (we, ) — Mm|logeg|
ex

< lim P, (ug,) = Mr|logex| = B = W(uo) + My = E,
and so the contradiction.

Proof of (ii). Assume, by contradiction, that there exists a sequence £, — 0 such
that the solutions u, (t) of the gradient flows of F, from u2_do not satisfy (ii). Let
tx be the first time (in fact, the infimum) for which p(ue, (tx)) # pu(u?, ); then, there
exists (ix,jr) € QL such that dist(uc, (tk, %) — ue, (tr, jx), Z) > & — . By Lemma
5.1 there exists we, (tx) € AF, (Q) such that we, (tx) = ue, (t) in Q2 \ {ix} and
F. (we, (tr)) < Fe, (ue, (tx)) — E, for some positive constant E independent of k.
Moreover, by (5.2), we have that

li(u, ) = plwe, (t0))llnae = li(ue, (tr)) = plwe, (t)llaa < 265,

Therefore, by the lower bound (4.9) in Theorem 4.2, arguing as in (5.14), we get a
contradiction.

Proof of (#i). Let {u2} be a minimizing sequence for the minimum problem
in (iii). We can always assume that 0 < u?(i) < 1 for any i € QY; therefore, up
to a subsequence, u? — 4Y as n — oo for some @0 € AF (). To prove that u?
(for £ small enough) is a minimizer, it is enough to show that u(a?) = p(u.); this
follows once we have proved that # satisfies the a-cone condition (see Remark
5.4). Assume by contradiction that there exists a sequence &, — 0 such that
dist (@@ (ix) — a2(jx),Z) > 4 — o for some bond (ix,ji) € Q2 . Then, for n large
enough, we have

. . . 1
(5.15) o (ul) < Fe (ul) + e, dist (ul (1) —ul (4),Z) > 5@
Let n be such that (5.15) holds. By Lemma 5.1, there exists a function we, €

AF.,(9) such that w,, =u? in Q2 \ {i} and
(5.16) F. (we,) < F(ul)—E<F. (u)—E +e¢.

By construction (see Remark 5.2), we have that ||u(we,) — p(ul, )|l gac = ||p(we, ) —
p(ul )llaar < 2¢x. Therefore, by the lower bound (4.9) in Theorem 4.2, arguing as
in (5.14), we get a contradiction.

Finally, by the a-cone condition and Remark 5.4, we have immediately that
F.(uQ) < F.(w) for any function w € AF.(Q) with ||w — u|z2 < %, and hence @?
is a local minimizer of F .

(I

Remark 5.7. By Theorem 5.6 it easily follows that there exists t,, — oo such that

ul® = limy, 00 te(t,) is a critical point of Fr.
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6. DISCRETE GRADIENT FLOW OF JF. WITH FLAT DISSIPATION

In Section 5 we have seen that the energy F. has many local minimizers. In
particular, Theorem 5.5 shows that the length-scale of metastable configurations
of singularities is of order . In this section we introduce and analyze an effective
dynamics of vortices, which overcome the pinning effect due to the presence of these
local minima. This is done considering a discrete in time gradient flow, following
the minimizing movements method. It turns out that, for ¢ smaller than the time
step 7, the vortices overcome the energetic barriers and the dynamics is described
(as e,7 — 0) by the gradient flow of the renormalized energy (see Definition 6.3).
This process requires the introduction of a suitable dissipation.

In this section we consider a dissipation which is continuous with respect to the
flat norm. To this purpose, we notice that, identifying each u = Zf\il d;d,, with a
0-current, it can be shown that

(6.1) |l gat = min{|S|, S 1-current, OSLQ = u}

(see [22, Section 4.1.12]). Moreover, it is an established result in the optimal trans-
port theory (see for instance [45, Theorem 5.30]) that the minimization in (6.1) can
be restricted to the family

L
S(u) = {52 Zmz[}?z,m] :LeN,m €Z,, p,q €supp(p) Uo,
=1

L
OSLO = mi(5y — 6,0 = u} ,
1=1
where m/[p, g] denotes the 1-rectifiable current supported on the oriented segment
of vertices p and ¢, and with multiplicity m (for a self-contained proof of this
fact we refer also to [35, Proposition 4.4]). Notice that, given S € S(u), |S| =
L
>z Imullg = pil-
We define our dissipation in two steps.
First assume that v, = YN, djdy1 and vy = Zj\gl d?5m§ with dj,d; € N for
everyi=1,...,Nyand j =1,..., Ny and set

L
Ds(v1,v2) == min {Z lgo = pif” : L €N, gt € supp(v1) UOQ, pr € supp(vz) UL,
=1

L L
D Gy LQ=11,) 6, L0= VQ}.
=1 =1

1
It is easy to see that DJ is a distance. Actually, |11 — va||aas and Do (v, v2) can
be rewritten as

11 — vallias = min[ Jz - yldA (1),
A Jaxa
Da(v1,v2) = min / & — y2dA(z,y)
A QOxQ

where the minimum is taken over all measures A which are sums of Dirac deltas in
Q x Q with integer coefficients, and have marginals restricted to 2 given by v, and
vo. This clarifies the connection of the flat distance and of our dissipation with the
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Wasserstein distances W and Wy, defined on pairs of probability measures in R?,
respectively (see for instance [45]).
From the very definition of D5 one can easily check that

(6.2) Do(vy + p1,v2 + pa) < Da(v1,v2) + Da(p1, pa)
for any p; and py sums of positive Dirac masses, and
(6.3) Dy (v1,15) < diam(Q)||lv1 — v2||gat -

For the general case of p1 = S d16,1 and py = Y02, d26,> with d},d? € Z
we set

(6.4) Dy, ) := Do + p3 s 13 + 1),

where uj and p; are the positive and the negative part of 11;. As a consequence
of (6.2) and (6.3) we have that Dy is continuous with respect to the flat norm.

We are now in a position to introduce the discrete gradient flow of F. with
respect to the dissipation Ds.

Definition 6.1. Fiz § > 0 and let ¢,7 > 0. Given p.o € X, we say that {ﬂg)k},
with k € NU {0}, is a solution of the flat discrete gradient flow of F. from .o if
Ko = Heo, and for any k € N, pl . satisfies

mDa (1, 17 4. 1)

(6.5)  pl, € argmin {.7:5(#) + o7

1€ X gl <6
Notice that the existence of a minimizer is obvious, since y lies in X, which is a
finite set.
We want to analyze the limit as ¢ — 0 of the flat discrete gradient flow. To this
purpose, let pg := Zf\il d;,00z, , With [d; o = 1, and let p. o € X, be such that

J—.'
He,0 ﬂj}t Ko, lim E(u&O)

= Q).
=0 |loge| 7|10l (52)

In Theorem 6.7 we will show that, as ¢ — 0, the sequence pl ; converges to some
ur, € X, whose singularities have the same degrees of those of the initial datum.
Therefore, it is convenient to regard the renormalized energy as a function only of
the positions of M singularities. To this end we introduce the following notation
M
W(z) :=W(u) where p = Zdi,o(;ri and = = (21,...,2p) € QM.
i=1
The right notion for the limit as ¢ — 0 of flat discrete gradient flows of F is given
by the following definition of discrete gradient flow of the renormalized energy.

Definition 6.2. Let § > 0, K € NU {0}, and 7 > 0. Fiz o € QM. We say that
{a].} with k =0,1,...,K, is a solution of the discrete gradient flow of W from z
if 2§ = xo and, forany k=1,..., K, 2], € OM satisfies

M
6.6 . . mlaf —af_y? ) oM T <5
(6.6) =z} € argmin W(z) + B v € ) Z |zi — 2] pq] < )

i=1

where | - | denotes the euclidean norm in R* for any k € N.
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In Theorem 6.6 we show that, as 7 — 0, this discrete in time evolution converges,
until a maximal time T}y, to the gradient flow of the renormalized energy given by
the following definition.

Definition 6.3. Let M € N and xo € QM. The gradient flow of the renormalized
energy from xq is given by

. 1
(6.7) i(t) = _;VW(CE(t))

z(0) = xo.

We denote by T™ the mazimal time of existence of the solution, and we notice that
until the time T the solution is unique, and that T is the minimal critical time
among the first collision time and the exit time from €.

As 8 — 0, Ty converges to the critical time T*. Notice that the renormalized
energy is not bounded from below and it blows up to —oo whenever one of these
critical events occur. This justifies the introduction of the parameter ¢, in order
to explore local minima. Nevertheless, the solutions of flat discrete gradient flows
defined above do not touch the constraint and hence, they satisfy the corresponding
unconstrained Euler-Lagrange equations.

6.1. Flat discrete gradient flow of W. Fix initial conditions
ro = (T1,0,...,%0,0) € oM, dio,...,dno € {—1,1},
and fix § > 0 such that
1
(68) min{idist#j (xiyo, :Ej,O)a diSt(‘fCiyo, 89)} — 20 =:¢5 > 0.

Definition 6.4. We say that a solution of the discrete gradient flow {z]} of W
from xq is mazimal if the minimum problem in (6.6) does not admit a solution for

k=K+1.

Let {z}} be a maximal solution of the flat discrete gradient flow of W from =y,
according with Definitions 6.2, 6.4; we set

(6.9) ki =kj({z}}) :=min{k e {1,...,K} :
min{%dist#j (2, 2] ), dist(z] 1, 0Q)} < 26 }.

We notice that, since |3, — 2%, | < and

: L. T T : T
mln{idmti#j(zz,k;—ufj,kg—ﬂ,dlSt(Ii,kg—u59)} > 26,
then
: 1 : T T . T
mm{idlst#j (xl-ykg, T5 kr ), dlst(x“Cg ,00)} > 0,
ie., kj < K. It follows that, for any £k =0,1,...,k], we have
(6.10) 932 € Ks,

where K is the compact set given by

(6.11) Ks := {:17 e QM . min{%dist#j(xi,xj),dist(o:i,ﬁﬁ)} > 5} .
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Notice that W is smooth on K. In particular, we can set
(6.12) Cs := max (W (xq) — W(x)).
zeKs

Proposition 6.5. For 7 small enough the following holds. For everyk =1,...,k},
we have that Zf\il |27 p — @7 1| <6 and

Tig = T .

(6.13) Op, W () +n—>—=0 fori=1,...,M.

T
In particular, for every k=1,... k]
(6.14) |2} — 2 _1| < max |VW (z)|r.

zeKs
Proof. Since the energy W is clearly decreasing in k, for every k = 1,...,k} we
have
‘x;; — I‘£71|2 1 T T T

(6.15) < —(Wiaf_y) = W(ap)) < W(xo) — W(zf) < Cs.

2T om
It follows that for 7 small enough Zf\il |z7), — 2] 51| < 6. Therefore, the
minimality of ], clearly implies (6.13), as well as (6.14). O

Let z(t) be the solution of the gradient flow of W with initial datum z( (see
(6.7)) and let T* be its maximal existence time. We set

(6.16) T :=inf {t €1[0,77] : min{%dist#j(xi(t),:Cj(t))7dist(xi(t),BQ)} < 26} .

Notice that by definition we have

1 lim T5 = T™.
(647 e

For 0 <t < k7, we denote by 27 (t) = (27 (¢),...,z},(t)) the piecewise affine in
time interpolation of {z}.

Theorem 6.6. Let {z].},>0 be a family of mazimal solutions of the flat discrete
gradient flow of W from xq. Then,

(6.18) Tk::lhnigfkngzik,
T—
where k3 is defined in (6.9) and Ts is defined in (6.16).

Moreover, for every 0 <T < Ts, ™ — x uniformly on [0,T]. Finally, Ts — T*
as 6 — 0.

Proof. By the very definition of £j, it is easy to prove that
|lzkr — xg| > cs,

where ¢; is defined in (6.8). Moreover, by (6.14), for 7 small enough we get

k3
|k — gl < ]; |z, — g1 < max VW (z)|k5,
and hence
K> —2 5
0= max [VW (z)] '

zeKs
From (6.14) it is easy to see that 27 are equibounded and equicontinuous in [0, 7k},
and hence by Ascoli Arzela Theorem, they uniformly converge, up to a subsequence,
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to a function x on [0, T], for every T < Tj. Let ¢ € (0,Ts) and let o > 0, by (6.13)
we get

L(t+h) /7)1 GRS
(Tl h)/T) =T (T = D af—ei=—— ) VW(z)).
k=[t/7] k=[t/7]

Taking the limit as 7 — 0, and then h — 0, we obtain that the limit x is the unique
solution of (6.7).

Moreover, it is easy to see that 7 (7k]) — x(T5) as 7 — 0 and hence by the very
definition of k¥, it is immediate to see that (6.18) holds true and Ts < T*. Since
Ts — T* (see (6.17)) we conclude that Ty — T* as § — 0.

(Il

6.2. Flat discrete gradient flow of F.. We are now in a position to state and
prove the convergence of the discrete gradient flows as € — 0.

Theorem 6.7. Let jg := Zi\il d;,000, , with |d;g| = 1. Let pe g € X. be such that

a . Fe(pe
He,0 ﬂ_;ﬁ Hos lim M

= 0).
e—0 |loge| |10l (S2)

Let 6 > 0 be fizred such that min{%dist#j(xi’o,xj’o), dist(mivo,ﬁﬂ)} > 26. Given
T >0, let p . be a solution of the flat discrete gradient flow of Fe from pic .

Then, up to a subsequence, for any k € N we have ul Hap [y, for some up € X
with ||(9) < M.

Moreover there exists a mazimal solution of the discrete gradient flow, xj, =
(T g ka), of W from xy = (z1,0,--.,%M0), according with Definition 6.2,
such that

M
up = Z di00z7, for every k =1,...,k},
i=1

where k% is defined in (6.9).
Proof. Since F.(ul ;) is not increasing in k, we have
Fe(ply) < Fe(peo) < Mr|loge| + of|logel).

By Theorem 4.3(i), we have that, up to a subsequence, ul Aag pp € X, with
() < M and ||uf — pf_|laac < 0. Let kI be defined by

M
kf -=sup{k e N: pu] = Zdi,05x;l7
(6.19) i=1 ’

1
min{ gdistiz; (27, 27,), dist(27;, 0Q)} > 26, 1=10,... k}.
Since \N%HKQ) < M and ||,U£ngl - M};g”ﬁat < 6, we deduce that iz =
Zi]\il di 00z . while
©Rs

6.20 min ldisti J , dist (27 oN)l <24.
2 #J

T T
(xi,icgﬂ’xj,l}gﬂ) i,k7+1
Moreover, since ||uf, — #f_qllaar < 6, it is easy to see that at each step k =

1,..., iég +1 and for every singularity z7, _; of pj,_;, there is exactly one singularity
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of uj at distance at most ¢ from x7, ;; we relabel it z7 . Therefore, by definition
of D5 , we have that for k = 1,...,1;:(?—1—1
(6.21) Do(u 1) = laf — x|

We now show that for £ = 0,1,..., I;;g + 1, 27, satisfies (6.6). For any measure
0= Zi\il d; 00y, with || — p]_1llaas < 0, by Theorem 4.3 (iii) there exists a
recovery sequence { .} such that F.(u.) — Mw|loge| = W(u) + M~ as e — 0. By
a standard density argument we can assume that [ze — pZ ;. |far < 6. Therefore

by (ii) of Theorem 4.3, using the fact that u  satisfies (6.5) and the continuity of
D, with respect to the flat norm, we get

7TD2(;“£7 /1’;;71)

W(ur, M
(pg) + My + s

7TD2(M;,1¢7 N;k—l)

< 11335&&(”;@ —7mM|loge| + o
ﬂ—D £ T -

< lim Fo(ne) - mM|loge| 1+ 2 Mokmt)

e—0 2T
Do (e, 47,
= W)+ My + %
i.e., uy, satisfies
r . WD?(MMU’T— ) l T
W € argmin {W(u) + B T — L = Zdi,O‘Smm Hu’“k—lnﬂat sdp.
i=1

By (6.21) we have that z7, is a solution of the discrete gradient flow of W from
xo = (21,0, --.,Zm,0) and by (6.20) that k] + 1 = kJ.
O

7. DISCRETE GRADIENT FLOW OF F. WITH L? DISSIPATION

In this section we introduce and analyze the discrete gradient flow of F. with L?
dissipation (for the L? norm, we will use the notation introduced in (2.3)).

Definition 7.1. Fiz 6 > 0 and let e,7 > 0. Given u. o € AF.(Q), we say that
{ul .}, with k € NU{0}, is a solution of the L2 discrete gradient flow of F. from
Ue0 if Ul = Ucyo, and for any k € N, ul ;. satisfies

He2ﬂ'iu _ e27riu;k_1 ”%2

ul ,, € argmin {Fg(u) + s u € AF(9Q),

(7.1) 27|log 7|

l1a(as) — p(u g llnae < 87

The constraint [[p(u) — p(ul ;_;)llfas < 6 is not closed in the L? topology. Nev-
ertheless, in Subsection 7.2 we prove an existence result for such a discrete gradient
flow.

In the parabolic flow of Ginzburg-Landau functionals it is well known that, as
€ — 0, the dynamics becomes slower and slower, and in order to capture a non
trivial dynamics it is needed to scale the time by | log | (see for instance [40]). In our
discrete in time evolution, with 7 > ¢, it turns out that the natural scaling involves
the time step 7 instead of the length scale €. Such a time-scaling is plugged into the
discrete dynamics through the 1/|log 7| pre-factor in front of the L? dissipation. A
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heuristic argument to justify this pre-factor is that it is the correct scaling for the

canonical vortex z/|z|. Indeed, given V € R? representing the vortex velocity, a

direct computation shows that
1

im ——
=0 7| log 7|

2
-1V
T r—T — V2.

[ |z —7VI],

As in Section 6, we want to consider the limit as € — 0 of such a discrete gradient
flow. To this purpose, we will exploit the I'-convergence analysis developed in
Section 4.4. The limit dynamics will be described by a discrete gradient flow (that
we shall define in the following) of the functional W (defined in (4.22)).

Let vo € Dy (see (4.21)) be an initial condition with W(vy) < 400, and let
Ue,0 be a recovery sequence for vy in the sense of (4.26). We will show that the
solutions u] ;. of the L? discrete gradient flow of F. from Ue,o converge (according
with the topblogy of our I'-convergence analysis in Subsection 4.4) to some limit v} .
Moreover, at each time step k, v} € D)y, the I'-limit W is finite, and the degrees of
the singularities coincide with the degrees d; ¢ of the initial datum. Finally, {v]} is
a solution of the L? discrete gradient flow according with the following definition.

Definition 7.2. Let §,7 > 0 and K € N. We say that {v]}, with k=0,1,... . K,
is a solution of the L* discrete gradient flow of W from vq if v] = v and, for any
k=1,...,K, v} satisfies

(7.2)

lv—vi_y 12

M
s Ju= d; 00y, ; Q
27_‘ 10g7'| v Z 1,00y 1 Yik S )

=1

vf € argmin{W(v) +
(7.3)

v € Hbo(@\ UYL, {yishs S, 10 = Jui_yllna < 6.

As in Section 6, we first do the asymptotic analysis as 7 — 0. This step is much
more delicate than in the case of flat dissipation. Indeed, it is at this stage that we
adopt the abstract method [40], and exploit it in the context of minimizing move-
ments instead of gradient flows. This method relies on the proof of two energetic
inequalities; the first relates the slope of the approximating functionals with the
slope of the renormalized energy; the second one relates the scaled L? norm under-
lying the parabolic flow of GL. with the Euclidean norm of the time derivative of
the limit singularities. In our discrete in time framework, we adapt the arguments
in [40] by replacing derivatives by finite differences. The explicit computation in
(7.2) has not an easy counterpart for general solutions vf, and (7.2) has to be re-
placed by more sophisticated estimates (see (7.18) and (7.57)). This point is indeed
quite technical, and makes use of a lot of analysis developed in [40], [41].

7.1. L? discrete gradient flow of W. Let vy € Dy with Jvg = Zi\il d;i 00z, 4,
and fix ¢ > 0 such that (6.8) holds true.

Definition 7.3. We say that a solution of the L? discrete gradient flow {v}} of W
from vy is mazimal if the minimum problem in (7.3) does not admit a solution for
k=K+1.

Let {v]} be a maximal solution of the L? discrete gradient flow of W from vy,
let Juf == S"17 ) di 00,7, , and let k§ be defined as in (6.9).

Remark 7.4. Since for any ¢ = 1,..., M, we have that |d; o] = 1 and thanks to
the constraint ||Jv] — Jvj_,|laas < J, we get that at each step k = 1,... k] and
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for each singularity x7, ; of Juy_,, there is exactly one singularity of Jvj whose
distance from z7, , is less than 6. We label this singularity z7,.

The above remark guarantees that the following definition is well posed.

Definition 7.5. We set x}, = (:Uik, e ,xRLk) where x] ;. are labeled according
with Remark 7.4. Moreover, we define 7 (t) := («7 (¢), . a?M(t)) as the piecewise
affine in time interpolation of {z]}.

As in Section 6 we have that ], € K, where Kj is defined in (6.11). Moreover,

the energy W is clearly decreasing in k. Since, for every k =1,...,k we have

||’U7; B U;Ic—fl”%,z < W(,UT ) _ W(,UT)
2r|logT| — k=1 ko

then
[of, —vf_1 122
< _ T
Z 2r|logT| ~ Wivo) = Wiviz)
< W(vo) — W(agr) < W(vo) — Wi(zo) + Cs
where Cj is defined in (6.12).

Proposition 7.6. For every k = 0,1,...,k} we have that ||Jv] — Jvj_|lgat <
Cy/7|log 7|, where C > 0 depends only on 6 (and on the initial condition v ).

Proof. Fix 1 <k <kj and 1 <i < M. Set p, := gdist(z],, 2], ). Note that
(7.5) deg(”k»aBp;k( zk)) #0= deg(vk,l,aBp;k( zk))
Moreover, since W(v) < W(vp), from (4.24) we have that

o (IVOEP + [Vof_y[?) do < 2W(up) + C.
Bap7 o7 ) \BoT  (@70)
As a consequence of (7.5) and (7.6), we have that
(7.7) (dist(xzk, x;k_l))z < C’/ lvp — v,z_1|2 dz .
B

20707 ) By, (@)

Indeed, if by contradiction (7.7) does not hold, by a scaling argument we could find
two sequences {w]} and {wh} of functions in H!(Bs \ By;S') such that

/ (YWl 2 + |[Vwl ) dz < 2W (o) + C, / o — w2 dz — 0,
Bg\Bl B2\Bl

and such that deg(wy,0B,) # deg(wy,dB,) for almost every p € [1,2]. This is
impossible in view of the stability of the degree with respect to uniform convergence
for continuous maps from S! to S*.

Now, from (7.4) we have that

/ lvp — v,z_1|2 dz < C7|log 7|,
Bapr  (ar \B,r  (

Tk 7 k)

which together with (7.7) yields

(7.8) lJvf — Jvl_qllgat < C/7|logT]|.



36 R. ALICANDRO, L. DE LUCA, A. GARRONI, AND M. PONSIGLIONE

For every k =0,1,...,k} we set
(7.9) D = W(v;) — W(xy,).
Moreover, set Ts = liminf,_ kj7, and define for any ¢ € [0, Tg), the energy excess

(7.10) D(t) = hI:l_S)})lp Diy/r) 2 0.

Since W(v]) < W(vp), by (6.10) we have
(7.11) k= W(vp) = W(zp) < W(w) = W(a) < D(0) + Cs,

where Cj is defined in (6.12). From now on we will say that an initial condition v
is well prepared if W (o) = W(vp), i.e., D(0) = 0.
We are in a position to state the main theorem of this section.

Theorem 7.7. Let vy be o well prepared initial condition. Let {v] }r>0 be a family
of mazimal solutions of the L? discrete gradient flow of W from vy. Then,

(7.12) Ts := liminf kJ7 > Ty,
7—0

where k3 is defined in (6.9) and Ts is defined in (6.16).

Moreover, for every 0 < T < Ts, ™ — x uniformly on [0,T], where x™ is defined
in Definition 7.5, and x is the solution of the gradient flow of W from xq according
with Definition 6.3. Finally, D(t) = 0 for every 0 <t < Ts and Ts — T* as § — 0.

Remark 7.8. As a consequence of the uniform convergence of 27 and the estimate
(7.8), one can prove that the l-current associated to the polygonal x™ (with the
natural orientation and multiplicity given by the integers d, o), converges to the
current associated to the limit « in the flat norm.

The proof of Theorem 7.7 is postponed at the end of the section, and will be
obtained as a consequence of Theorem 7.9 below, which can be regarded as the
discrete in time counterpart of Theorem 1.4 in [41].

Theorem 7.9. Let vy be a well prepared initial datum, i.e., with W (zg) = W(vo).
Let {v] }+~0 be solutions of the L? discrete gradient flow for W from vo, let T > 0
be such that k§ > |T /7| for every T, and assume that x™ — x uniformly in [0,T] for
some x(t) € H'([0,T];QM). Moreover, assume that (i) and (i) below are satisfied:

(i) (Lower bound) For any s € [0,T]

T __ T
Vg — Vg1
T

2 s
> TI'/ l&(¢)|% dt .
L2 0

L7]
.
lim inf
T o 2

(ii) (Construction) For any k =0,1,...,|T/7] =1, there exists a field w}_, €
Hi (Q\ UYL {27, — 28, W(a])};S') and a constant Ms > 0 such that

-
W(vg) = W(wiy,) = ;IVW(%)I2 — 7M;Dj; +o(7),

1 2

|log 7|

1
< —[VW (D) +o(1).

T T
Wyy1 — Vg
T

L2
Then, D(t) = 0 for every t € [0,T], and x(t) is a solution of the gradient flow
(6.7) of W from xo on [0,T).
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Proof. By (ii) and by the minimality of v, we have

W(p) = W(vis1) = W(vp) = W(wiy) + W(wie) = W(viia)

T T T w;v—-f—l - ’UZ; T v;-‘rl - U;C— T
> —|VW 2_ —7MsD
- 7r| (@)l 2| log 7| ‘ T L2+2|log7| T 2 7M; Di+o(7)
T T2
T T Vil — U
> —|VW(z}))? M1k 7MsD} .
> VWD + g | | gD +otr)
Now, let s € [0, T]. Summing over k =0,1,...,|s/7] — 1, we have

. . 1 T|s/T|—T .
WD) =Wl 250 [ Wl

ls/7]—-1

-
+2| log 7| Z

k=0

T T
Vg1 — Uk

2 Tls/T]—T
T 2 0

By the uniform convergence of 27 to z in [0, 7] and the fact that z € H!, we have
that also 27 , | — x uniformly in [0,7]. Hence, passing to the liminf as 7 — 0,
using (i) and (7.11), we get
1 /%1
lim inf (W(05) = W], 1)) > f/ VW (0)? + wli(0)]? di
0

7—0 -2

(7.13) .
— M / D(t) dt,
0

where D(t) is defined in (7.10).
Since W(vj) = W(vo) = W(xzo) = W(x(0)), we have immediately that

(T14)  lmifW() ~ Wl ) = W((0)) ~ W(a(s)) - D(s).
Combining this with (7.13) yields

(7.15) 2 .
—M; | D@)dt
0
Since
W(z(0)) — W(x(s)) =/ (=VW(x(t)), &(t)) dt
(7.16) o
<5 [ FITWEOPR 0P a
then,

D(s) < M; /OSD(t) dr.

Since D(0) = 0 by assumption, from Gronwall’s lemma we find that D(s) = 0 for
all s € [0,T].
Using that D(s) = 0, by (7.15) and (7.16) we obtain
1

/0 <= VW (alt) + VR GO dt <0,
— L1y

and hence &(t) = x(t)) a.e. in [0,T1. O
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The following propositions are devoted to show that the hypothesis of Theorem
7.9 are satisfied by the L? discrete gradient flow defined in Definition 7.2.

Proposition 7.10. Let {v] }.~0 be a family of maximal solutions of the L* discrete
gradient flow of W from vg, let ki be as in (6.9), and let 7 be defined as in
Definition 7.5. Then

2

- c
. = lim1i T > 0
(7.17) Ts hgn_)l(r)lf kit > 7r06,

where Cs and cs are defined in (6.12) and (6.8) respectively.
Moreover, there exists a map x € H*([0, Ts]; S}M) such that, up to a subsequence,
™ — x uniformly on [0,T] for every 0 < T < Ts and

2

T T
Vg — Vg1
T

T
> 77/ |l(¢)* dt.
0

- LZ]
7.1 lim inf
(7.18) I Thog] 2

Proof. The starting point of the proof consists in applying Theorem A.1 to piecewise
affine interpolations in time of suitable regularizations of v} . Clearly, the Ginzburg-
Landau energy of v{ is not bounded. By the very definition of WV, we have

1
f/ \Vv,z|2 dz — Mn|log 7| < W(vi) < W(uvp).
Q\U; B, (a7,,)

L2

2

Moreover, the Dirichlet energy stored in By (27 ;)\ B /2(7 ;) is bounded. Therefore,
by standard cut off arguments, we can easily construct fields 9 which coincide with
vp, in Q\ U; B7 (27 ,), are equal to zero in By j5(w7 ;) and satisfy

1
(7.19) 5/ |Vor|> de < M|log 7| + C.
Q

Then, we consider the piecewise affine in time interpolation 97 : [0, +00) x 2 — R?
of 0, defined by

t—kr, . t—kr . . .
0t @) = — )0k (@) + ——— (@) if kT <t < (k+ D)7 <K,
iz (@) if t > kJ7.

For every fixed t > 0, we denote by 7 (¢) the (space) Jacobian of ¢7.
We will prove the theorem in several steps.

Step 1. There exists a map x € C%2 ([0, +00); QM) such that up to a subsequence,
for every T > 0 we have

M
(7.20) A4’ (t) o p(t) = Z d;,002,(t) for every t € [0,T7].
i=1

Fix T > 0. By the convexity of the Dirichlet energy and by (7.19), it follows that
for any t € [0,T]

1
2
Moreover, by the definition of 97, it follows that for any k =0,...,k] — 1

(7.21) / V67 (¢, )| de < M| log 7| + C.
Q

20 < lefan = efll7. + 07

0741 — OF
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therefore, by (7.4), we get

k3 —1 2

/ 077 dt de = 37 7| IR < Cllog 7.
(0,T]x% k=0 T L2
It is easy to see that for every t € [k, (k4 1)7]
1
(7.22) ;/(1 — 07 (¢, 2)[?)? < C|logT|.
Q

In conclusion, for every t € [0,T] we have
1 1
7/ Vo™ + =(1 — |[97*)? dz < C|log 7|
2 Q T
/ 10,07 > dt dz < C|log 7|
[0,T]xQ

By Theorem A.1 applied with e = /7 and recalling that p(0) = po = Zi\il di 00z, 4,

we deduce that
M(2)

t)=m>_ dioby,), foralltel0,T]

for some z;(t) € C%=([0,T;); Q) with T; < T. Here T} represents the first time when
x;(t) reaches 9. Finally, by construction, z;(t) are defined on [0, T}, distinct, and
contained in 2. The conclusion follows by a standard diagonalization argument.

Step 2. Set
Ts := inf {t € [0,400) : min{%dist#j (xi(t), z;(t)), dist(z;(t),00Q)} < 25} .

Then, Ts > T(s > 0.
Since z € C%2 and z(0) = z satisfies

1
mm{idlstng (l'i’(], .’Ejﬁ()), diSt(iEi’(], 89)} > 257

we have Ts > 0. Fixed t > T, 5, by construction and Step 1 we have that

(7.23) 7 (t) = figz = Z 5,004, ()

Set u7(t) : Wwal di,00y7 1y for t < kj7, where z7 are defined in Defini-

tion 7.5. Let E < k < kf. Since supp(a7(k7)), supp(u” (k7)) C U;Br(2],) and
7 (k) (B (27,) = i (k) (B, (27,.), for any € CO1(Q) we have
M
(A7 (k) = 7 (k) 0) = 3 (7 (k) = 07 (k) 0 = 22)

< (A7 RDIQ) + " (B [Q) T Vel -,
where @; denotes the average of p on B (z],). Since, by Remark 4.4, we have

|a7 (kT)|() < CZ/ |Vor |2 da < C,
=1
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we deduce that

(7.24) max

k=0,1,...,k] |

This fact together with (7.23) yields

Mo M

flat
Zdi7oézz,kg - Zdivodwi(fa)'
=1 =1

Therefore, by the very definition of £}, we have that for every ¢ > Ts

|a" (k7)) — " (k7)||gat < COT.

min{%dist#j (xi(t), x;(t)), dist(z,(t), 0Q)} < 24.

By continuity, the previous inequality holds also for ¢ = Ts, so that we conclude
that Ts > Ts > 0.

Step 3. x™ — x uniformly on the compact subsets of [0,Ts).
Let us show that

(7.25) e ||a7 (k7) = p(kT) llaa =2 (|27 (R77) = p(k77) lgar — 0.
0T K

Up to a subsequence we can assume that k™7 converges to some to € [0, Tg]. The
fields

o7 if t < k7
(7.26) () e g L T SR
0T (kTr,x) ift>kTT

satisfy the assumptions of Theorem A.1, applied with ¢ = 1/7; therefore, denoting
by ii7(t) the (space) Jacobian of 97, we have that, up to a subsequence,

ILL(t) if t <t
/J,(t()) if t >t s

(7.27) AT () T At) = {

where the structure of fi is a consequence of the continuity guaranteed by Theo-
rem A.1. From (7.27) one can easily prove that 4" (k77) — u(ty) converges to zero
in the flat norm and hence we get (7.25). Combining (7.24) with (7.25) we also
deduce that

(7.28) o T (k) = k) las = 0.

Moreover, by the construction of x™ and (7.6), we have that
7.29 () —u (|t — 0.
(7.29) i 17 () = 7 (/7] 7) | gt

Using (7.29), (7.28) and that max;e(o xr) [|([t/7]7) — p(t)[|lga — O, by the trian-
gular inequality we conclude that
T(t) —xz(t)| = T(t) — w(t — 0.
L |27 (t) — (1) nax 7 (@) = () o

Step 4. The function x belongs to H'([0,T5]; QM), and, for any T € [0,Ts], (7.18)
holds true. In particular, Ts > ﬂcg/C’g.



METASTABILITY AND DYNAMICS OF DISCRETE TOPOLOGICAL SINGULARITIES 41

The proof of this step is obtained as a consequence of Proposition A.3 applied
to the fields ¢7, with e = 7 and T = Ts. By (7.4) and recalling (7.22), it easily
follows that

Ts
72/ / dxdt<CZ

and hence (A.5) holds with ¢ = 7 and w. = v7. This fact together with (7.20) and
(7.21) guarantees that the hypothesis of Proposition A.5 are satisfied. Therefore,
we deduce that (7.18) holds true with v}, replaced by 97. Since ||6] —vf |2 = O(7?),
we deduce (7.18).

Finally, by (7.4) and recalling (6.12), we have

~T ~T (12
Vk+1 — Yk
T

< Cllogl;
L2

2
vE, — U71

T
™ 2dt < hmlnf
(7.30) /0 o) | ogTI Z L2
< lim inf W (vg) — W(’U[ZJ)) < hml(r}f(W(a:o) - W(xT )) < Cs.
e T—

T—0 I.%J

By Hélder inequality, and recalling (6.8), we conclude

B Ts -
130 e < laly) a0 < [ 1 dt < Pillagopmenn Vs
By (7.30) and (7.31) we immediately get (7.17) O

Since we have proved assumption (i) in Theorem 7.10, it remains to prove only
assumption (ii). To this aim, at each time step kK = 0,1,...,k}, we construct,
a field wy,,; whose vortices are obtained translating z7, in the direction of the
renormalized energy VW (z]). The variation of the energy W associated to the
fields vg and wg,, is proportional to the distance among the vortices of the two

functions (i.e. |VW(z})|) up to an error given by the energy excess D] defined in
(7.11).

Proposition 7.11. For any k = 0,1,...,k}—1, there exists a field w, € H\ (Q\
inl { 3le($k)} :SY) such that

(7.32) W(f) — W(wi,,) > |VW(xk)| — MsTD} 4 o(7)
ng—&-l _”ka 1 2

: L\ Va4 1

(7.33) logr] S —IVW ()" +o(1),

where My is a positive constant depending only on 6.

Proof. Fix k € {0,1,..., k] — 1}; to ease notations we set
1
(7.34) Vi = (Vi1, Via) := —;8@W(x£), Vi=0W,...,Vu).

With a little abuse of notations, from now on we will set z; := x: e and y; = i +7V;
for every ¢« = 1,...,M. By (6.9), the balls Bs/y(x;) are pairwise disjoint and
contained in 2.

In order to construct the field wy, ;, we wish to “push” the vortices z; along the
direction V;. For every i = 1,..., M, we can find smooth, compactly supported
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vector fields in 2, X;; and X;5 such that

le(x) = (170) Xlg(.’L') = (O, 1) for x € Bg/g(.%‘i),
Xﬂ(ﬂj’) = Xlg(l’) = (0,0) for x € 35/2($J‘),j #Z
and such that ||V X;;| L~ < 2 for every i, j. Then, define Xy = vail > i=1.2Vii Xij-

Since W is smooth in K (see (6.11)), there exists a constant M; depending only
on § such that

1
(7.35) | det VXl < 5 M.

For any ¢t € [0,7], we define x:(x) := x + tXy(x) for every z € ; notice that
xt(x) = & +tV; for & € By o(x;). For any t € [0,7] let ®* be the solution of

AD =27 M d; 00,1, In Q
o' =0 on 00

and
M

(7.36) R'(z) = ®'(z) = Y djglogla — z; — tVi.
i=1

By definition R are smooth harmonic functions in €; we denote by R its harmonic
conjugates with zero average in Q. Moreover, we denote by 6! the polar coordinates
centered at z; + tV; and set ®f := Efvil d; 00! + R*. Notice that V&' is nothing
but the 7/2 rotation of V®'. We define

(7.37) W) =0 (xe() — ().

Notice that 9? is a smooth function in €2, the singularities at z; canceling out,
and that it is smooth in space-time. In particular, using (6.10) one can show that,
for 7 small enough, there exists a constant C' depending only on § such that

d
(7.38) Sup] <||V1/)t|L°c(Q) + ||dt¢t||Loo(Q)) <C.

telo,r
For any 0 < ¢ < 8, we define Qf := Q\ UM, B, (z; + tV;). By definition of ®*,
the renormalized energy associated to the configuration zj, + tV is given by

1 ~
(7.39) W (2T +1V) = lim 7/ VB2 — Mr|log .
o—0 2 Qt

Since v} € H'(Q2;S1), there exist a family {L;};—1__ a of cuts of the domain
Q (L; is a segment from x; to 9€) and a function ¢ € H*(QY \ UM, {L;};R) such
that v = e’

Recalling (7.37), we introduce the field wj_ , defined by the following identity
(notice that ., is invertible for 7 small enough)

(7.40) W41 (e (7)) = o ()™ @) = " @+vT (@),

By definition, wi,, € H'(Q};8') and Jwj_ | = Zf\il d; 00y,
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We notice that if ¢ = ®°, then by (7.39) we get

o—0

1 } 1 Bl
(7.41) W(vg) —W(wiy,) = lim - |Vl |? do — f/ |Vwk+1|2 dy
2 Jao 2 Jo,

1 - 1 .
= lim - [ |VO°] d:z:ff/ |VOT|? dy
2 Jao 2 Jor

o—0
(7.42) = Wiay) —W(z, +7V).
Recalling (6.10) and (6.11), by Taylor expansion we conclude

(7.43) W (af) = W(af = ZVW(af)) = Z[VW (D) + O().

s

We show now that wf,, satisfies (7.32) even when vJ is not optimal in energy.
To this purpose, we show that the difference W(vf) — W(wj,,) can be bounded
from below by the variation of the renormalized energy up to an error given by the
defect D}, defined in (7.9). More precisely, set

1 -
(1.4 feimy [ (VR =[98 da,
) 2 Qo

so that Df = lim,_o D7 ;. We want to prove that, for 0 <o < 7,

1 1 1 -
7/ |Vl |? dx — 7/ \Vwp,,? dy > 7/ Vo012 da
2 Jao 2 Jor 2 Ja.

1 ~
~ 3 | 1997 dy = MsrD -+ O(VoTlog o).

-
o

(7.45)

Notice that, taking the limit as o — 0 in (7.45), we get
W(vp,) = W(wis) =2 Wag) = W(zj, = VW (zf)) — MsTDE,

which, in view of (7.43), concludes the proof of (7.32).
We now prove (7.45). By the change of variable y = x-(x) and by definition of
wi, in (7.40), we get

1 B 1 .
ra6) 5 [ Vel dy=5 [ Va0 Pl de
2 Jor 2 Joo

1
:7/ |V® + VT 2| Tx-| da
2 Joo

We claim that the following two estimates hold:
1 02 1 5012 T
(7.47) 5 | Ve PlIxe| do < 5 | VO |Tx7| dw + (1 + MsT)Dg 4,
2 Jao 2 Jao '

(7.48) /Q (VY , V") I x,| dz =/Q (V™ , V) | Jx,| dz + O(y/a|loga]).

0
o o
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By (7.47) and (7.48), we conclude the proof of (7.45) as follows: Using (7.37) and
the change of variables y = x(x), by (7.46) we get

1
r40) 5 [ Vel ay

1 ~
<5 [ V84 VU Plax| do + (14 Msr)D i + O(/olog )
o1

1 -
_ 5/ V&2 dy + (1+ My7) D, + O(v/a] log o)
Q7

By (7.44) and straightforward algebraic manipulations we obtain (7.45).
Now, we will prove the claims (7.47) and (7.48). Claim (7.47) follows by

1 5 T
3 | (V&R = 9P| do < | xc = D
1
< (1 + §M57 + O(TQ)) ;,k < (1 —i—M(gT)D;k.

We pass to the proof of (7.48). We have
150) [ (VUr. VO] ds
Qg
= / (V™ , VOO)| x| da +/ (VY™ , V? — VOO | T, | da.
Q3 Q0

Using again that ||Jx- ||~ < 1+ Ms7 and Holder inequality, we get

(7.51) / (Y47, Ve — T8Oy | do
0

< (14 Mst) (/ V7|2 dx)
Qg

Moreover, since W(vf) < W(vp), we have

1 1
2 2

(/ V" — V0|2 dx)
g

/ |V¢07Vi)0\2 dz < 2/ (|V<,00\2+|V<i>0|2) dz < AW (vg)+4Mm|logo|+o,(1).
Qo Qo

By (7.37), since Xy has compact support in 2 we have

oYt 9Bt 9B
W—anyayT—O on@Q.

Therefore, in view of (7.38),

YT < 2
wﬂ?dz:/ 7 ds — / VyT|? ds < Co?.
/Qg | | o0  Ov ; B. (z1) | |

Combining the above estimates with (7.50) and (7.51) we get (7.48).
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To complete the proof it remains to show that (7.33) holds. By definition of
wj,(w) (see (7.40)), we have immediately

I —winlZ = [ o —eiehe 0| gy
(7.52) = [ b= etoc ) ay
(7.53) RO = oG e 0D dy
(7.54) 2 [ 0 =G0 — oL e )
In order to prove (7.33) it is enough to show that
(7.55) Jo |97 = oL [? dy < wr?|log | V[ + o(72|log 7])

2
OGO e 0| ay < o7

(7.56) Iy

indeed, once we got (7.55) and (7 56), by Holder inequality, we have immediately

that the integral in (7.54) is O(72/|log 7]).
First, we prove (7.56). By the change of variable y = x,(x) and the fact that

¥ = 0, in view of (7.38), we obtain

_ _ T —1
U;;(Xrl) _U;C—(XTl)ew x-)

2 12
dy:/ ‘1—e“ﬁ ‘ |Txr| dz
Q Q
d
<1+ M&T)Hal/}tll%oo(sz)#\@l <Cr’.

Finally, to complete the proof of the Theorem it remains to show that (7.55) holds.
By Holder inequality, we have

/ o = of (I dy
Q\U; Bs /2 (i)

<[ r [ 90 Pl e dy e
Q\UBB/2(ZJ7

<C(l1+ MgT)TQ(W(vg) + M~|log g|) <Cr?,

where C' depends only on § and we have used that W(vf) < W(vo).
In order to complete the proof of(7.55), it is enough to show that

(7.57) / [vp — v (67 DI? dy < 772 [log 7||Vi[* + o(72| log 7).
B6/2(y1)
Let N > 0 be given; then, for any i =1,..., M,
@) [ el a< R () —oF | dy+AN?72r
35/2(741) 35/2(y1)\BN‘r(yt)
Without loss of generality we can assume d; o = deg(v], 0Bs/2(7;)) = 1.

We first show the estimate (7.57) in the case v] = Tr—e in Bsa(x;). Let (r,0)
be the polar coordinates with respect to y;; denoting by o = «(r,0) the angle
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between the vectors ‘Z:
(7.59)

Yi T — Y=yitTVi
o1 and v (y) = =r574, we have

2 §/2 27 a
dy = / r dr/ 4sin® = d#.
Nt 0 2

Using elementary geometry identities and Taylor expansion, for N7 < r < §/2 we
get

Y-y y—yit+7Vi
ly—vil  |y—yi+7Vil

/Ba/z(yi)\BNr(yz‘)

V;|sin 6 1 V;|sin 6
sina = TV sin = rlVal sin (1+ O(1/N)),
r \/1 N 72|\§|2 _ o7lVilcosd r
so that sin> ¢ = ZWZs%0 4 (1/N). Therefore, by (7.59) we get

2
Y—Yi y—y +7V;

ly —vil |y —yi+71Vi]

(7.60) /
Bs/2(yi)\Bn+(yi)

6/2 1 27
:Tz\v;-r“/ fdr/ sin? 6 dd + O(1/N)
0

Nt T
)
= 7m72|log 7||Vi|* + 772 log ﬁﬂ/ﬂz + O(1/N)).

Then, (7.57) follows (in the case v] = £=2) by choosing N = |log 7|.

|z —w;]

Now, we prove (7.57) in the general case, i.e., without assuming v, = Ii:i?‘. Set

L := [log, %J and let 0; be the angle in polar coordinates with center in ;, i.e.,
the phase of the function é‘i%

77-'

Ci(yi) == Ba-15(yi) \ Bo-i-15(yi),  Cils) := Ba-1015(yi) \ Ba-1-25(ys)-
Set gZJ?,l = m fé‘z (1) ¢Y(z) dy and notice that the average of 6; is equal to 7.
We have

. Forevery Il =1,...,L, we set

L

IO - of? dy:Z/C L0 ~ei ay
1\Yi

/Ba/z(yi)\BNr(yz‘) =1

= Z/ |ei(sa°(xil)—¢?,l+7r) _ ei(¢0_¢g’l+ﬂ)|2 dy
c
L

= Z/ |eif 0 ) _ it
1=1 Y Ci(yq)

2d’y

+/ ( )|ei<w°<x;1)—¢2l+w) — i@ BLF) (i) )2 gy
Ci(yi

+2 /C ( )<ei91(XI1) it , ei(tpo(Xil)—¢?,z+w) _ei(cpo_q;?yl.t,_ﬂ) _ (eiei(X:l) _ei9i)> 4.
1\Yi

Estimating the last term of the right hand side of the above formula by Holder’s
inequality and recalling (7.60), in order to prove (7.57) it is enough to show the
following estimate

L 2

/ et (@70 ) =Bt ™) _ il =Bl m) _ (i) _ eifi)|T gy < Or2.
1=1 Y Ci(yi)
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By definition of x, for any y € C)(y;), X7 (y) = y — 7V; and then
GO W) =B +m) _ i )= ) / T e -tV s
0
GO W) L gitily) — / " et -tV Ly s
0
then, by Jensen and Cauchy inequalities,
/ (i ) =) _ il =Bl _ (g0 _ it gy
Ci(yi)
. 2
— / / (veiei(y—t%) _ Vei(v"(y—t‘/z)—@?,ﬂrﬂ)) Vi dt| dy
Ci(yi) 1V/0
< 7|Vif? dy / "Wt =tV _ gt ==t | gy
Ci(yi) 0
, . N 2
(7.61) < 7_2|Vi|2/~ ‘vezei _ Vez(upo_tp?,ri-‘rr) dy.
Ci(yi)
Furthermore
L
. . 0 ~0
(7.62) > / |Velli — veile" —%itm |2 qy
=1 Ci(yi)
<2} / Vel 2|1 — elle" = Phtr=00 2 qy 4 / V(6 — ) dy
1=1 Y Ci(yi) Ci(yi)
L
<2} / PHHGR|H ) — PR dy / V(0 — )2 dy,
=1 7 Ci(w) Ci(yi)
where the last inequality follows from the fact that |Ve®:(y)|? = m and that
271725 < |y — ;| <2716 for y € Cy(ay).
Finally, by Poincaré inequality, it follows that
/ |108") _ B2 gy
(7.63) 1w
<[ P <o [ e - )Py,
Ci(zi) Ci(yi)

where C' is a positive constant. By the minimality of 6;, we have

/ |V(¢°—9i>|2dy=/ |w°\2—/~ V6,2 dy
Ci(yi) Ci(yi) Ci(ys)
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By (7.62) and Remark 4.4, we obtain

i/ |Vei(“’0_¢;l+”) — Vel 2 dy
=1 7 Ci(y:)
L
<cy [ (v vel) ay
1=1 Y Ci(yi)

L
:CZ(/ ch0|2dac—67rlog2) <C.
=1

Ci(ys)

This together with (7.61) concludes the proof. O
We are now in a position to prove Theorem 7.7.

Proof of Theorem 7.7. By Theorems 7.10, 7.11, we can apply Theorem 7.9 for any
2
T< ﬂé—‘;, and in view of (7.17) we obtain that

1) a7 converges to the solution z of (6.7), uniformly on [0, T];

2) D(T) = 0.
Let T < liminf,_,o kj7 be the maximal time such that 1) and 2) hold true on
[0,T) for every T < T™*. Recalling (see (6.17)) that Ts — T™ as 6 — 0, it remains
only to prove that T > Ts. This follows by a standard continuation argument:
Assume by contradiction that 7™ < Ty, and let T' < T™%*. Then we have

min  min{Sdistis, (@i(t), @, (1)), dist(z:(t), 0Q)} — 25 = & > 0.
te[o,Tmax] 2
Consider now Tlpsr)s V), 88 the initial condition of a new L? discrete gradient
flow. Notice that, in view of 2), these initial conditions are well prepared; the
fact that the initial time is not zero is not relevant, since all the equations are
autonomous. Moreover, even if the initial conditions depend on 7, they converge
as 7 — 0. Therefore, Theorems 7.10, 7.11, and Theorem 7.9 still hold true with
the obvious modifications, and we easily deduce that 1) and 2) holds true as long
as 0 < t—T < (cs)?/Cs. This time interval in which we can extend the solution is
independent of T < T which contradicts the maximality of 77", O

7.2. L? discrete gradient flow of F.. We conclude this section by analyzing
the existence of the L? discrete gradient flow of F. and studying its asymptotic
behaviour as ¢ — 0. The existence will be obtained for £ small enough by making
use of the auxiliary problem studied in the previous section. To this aim it is
convenient to introduce a relaxed version of such discrete evolution.

Definition 7.12. Fiz 6 > 0 and let ,7 > 0. Given u. o € AF:(Q), we say that
{ﬂ;k : k € N}, is a solution of the relazed L* discrete gradient flow of F. from u. g
if Ul g = uc o and, for any k € N, there erists a sequence {ul ;. . }n such that

e,k,n
lim Hegﬂu;kv" _ ezmﬂ;kaLz _ O7
n—o00
(764 100 ) = (L)l <8 for everym € N,
2miul 2miu]

||€ e,k,n — e 5,1@—1”%2

-
— teko

nh_)rr;o Fe(uy, ) + 27| log 7|
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where

I7, = inf {Fa(u) +

UEAF(Q)

H€2ﬂ'iu _ 627”.71;’””*1 ”%2

2’7’|10g7" ||M(U) _M(a;,k—l)”ﬂat < (5} .
The existence of such relaxed discrete gradient flow is obvious. To show that it

is actually a strong L discrete gradient flow it is enough to show that [|u(a] ;) —

(2l 1) |laas < 9. A key argument is given by the following estimate that one can

easlyj check by contradiction

(7.65)

tim sup [(uZ ) — 17 ) e < C5{(0,5) € QL+ dist (@ (§) — T741). Z) =

n—-+00

}

Theorem 7.13. Let vg be such that W(vg) < +o00 and let Jvg = Zﬁl d; 00z, , =
to with |d; 0| = 1. Let ue g € AF-(Q2) such that

N[

ﬂ.
wluco) =5 w0, Fe(ueo) < mlpol(Q) loge + C.
Let § > 0 be fized such that min{%dist#j(mi’o,xj,o), dz’st(xiyo,@ﬂ)} > 24. Given

7 >0, let u ;. be a solution of the relazed L? discrete gradient flow of F. from ucg.

Then, up to a subsequence, for any k € N we have u(ﬂ;k) e Wi, for some
pr € X with |u7|(Q) < M and there exists a mazimal solution of the L* discrete
gradient flow, vi, of W from vy, according with Definition 7.2, such that

M
(7.66) ur = Juj, = Zdi7o5,¢;k , foreveryk=1,... k],
i=1
with k} as defined in (6.9).
Moreover denoting by v7 , the piecewise affine interpolation of e

(7.67) U — v in HE(Q\ Uf\il{xzk};]l@) , foreveryk=1,... k] .

-
Imitc e we have

Finally for 7 and ¢ small enough such ul is indeed a minimizer of problem
(7.1) and hence it is a solution of the (strong) L? discrete gradient flow.

Proof. The proof of this result uses the first order I'-convergence result (Theorem
4.5) and follows closely the proof of the analogous statement in Section 6 (see
Theorem 6.7). Indeed, by the definition of the relaxed L? discrete gradient flow we
have that for any k € N

2
He%ia;k _ e2miul

Fo(ul ) + L* < Fo(ul p_q)-

277 |log 7|
By induction on k, one can show that
Fo(uZ ) < Fe(ueo,Q) < Mr|loge| + C'.

This estimate together with (7.65) implies that [[u(al ;) — p(al ;) |lae < 0 +
Ce|loge|. Then using the Compactness result stated in Theorem 4.2(i), and arguing
as in the proof of Theorem 6.7 we deduce (7.66) and (7.67).

In order to show that, for & small enough, %7, is a solution of the L? discrete
gradient flow according with Definition 7.1, it is enough to recall that thanks to
Proposition 7.6 we have that ||u}, — p_;|laat < Cy/7|log7|. Then the conclusion
follows by the convergence in the flat norm of u(al ) to uf. O
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8. CONCLUSIONS

We have obtained an asymptotic expansion by I'-convergence for a large class
of discrete energies accounting for defects (including the elastic energy in crystals
with screw dislocations and the energy of XY spin systems with vortices). Based
on this analysis, we have been able to show existence of metastable configurations,
and we have introduced a discrete in time variational dynamics, which allows to
overcome the energy barriers and mimics the effect of more complex mechanisms,
as thermal effects. We have described the dynamics up to the first collision time;
it would be interesting to model the collision of discrete vortices, and study the
dynamics after the critical time as in the Ginzburg-Landau setting (see [11], [42],
[43]). In all the paper we have focused on Neumann boundary conditions, but our
analysis could be extended to the case of Dirichlet boundary conditions.

In the proof of our results we have made use of a new variational principle that
allows to deduce the presence of local minimizers for I'-converging sequences, also
in the absence of local minimizers in their limit. This has been possible for a large
class of interaction potentials, which includes the case of screw dislocations but not
the XY model, for which this fact is still unclear.

In the discrete dynamics we have analyzed two different dissipations. This is
motivated also by applications. Indeed, the L? dissipation is a standard choice
for parabolic flows and measures the variations in the spin variable. While, the
dissipation Ds is a natural choice in the study of screw dislocation dynamics, and
can be viewed as a measure of the number of energy barriers to be overcome in
order to move a dislocation. We note that, in the case of dislocations, one could also
consider suitable variants of the Dy dissipation accounting for the glide directions
of the crystal. This would lead to a different effective dynamics. We also believe
that our approach could be generalized to anisotropic energies and to more general
lattice structures. It is still open the case of edge dislocations, for which a complete
I'-expansion of the energy is not yet available ([21], [19]).

Having proved a pinning phenomenon, it remains open to characterize a critical
e-T regime for the motion of dislocations, and an effective depinning threshold in
this regime. This is a relevant issue and it might be worth facing it by using our
variational approach.

The effective dynamics of our discrete systems agrees with the asymptotic par-
abolic flow of the Ginzburg-Landau functionals. In the latter, the time scaling
needed to get a non-trivial effective dynamics depends on the space parameter €.
It is worth noticing that, in our discrete in time gradient flow with L? dissipation,
the time scaling is expressed only in terms of the time step 7. In this respect, an
analysis of critical e-7 regimes would make an interesting bridge between these two
approaches.

APPENDIX A. PRODUCT-ESTIMATE

In this section we collect some results in [39] that are used in the proofs of
Section 7.

We first introduce some notation. Let A be an open bounded subset of R3.
Given w = (wy,wy) € H'(A;R?), its Jacobian Jw can be regarded as a 2-form in
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R3 given by
(A].) Jw = dw1 A\ d’LUQ = Z(ijlakwg — 8jw28kw1) dlL’j A\ d.’Ek.
j<k
Thus Jw acts on vector fields X,Y € C(A;R3) with the standard rule that

1
2

The Jacobian Jw can be also identified with a 1-dimensional current *Jw which
acts on 1 forms w = wy dx1 + wy dag + w3 dxs as

(xJw, w) :/ JwAw.
A

In particular, for any X,Y € C(A;R3)

d.’l?j/\d.’L'k(X,Y): (Xij—XkY}).

(xJw, X NY) :/ Jw(X,Y) dz,
A

where, with a little abuse of notation, we identify 1-forms with vector fields.
Let © be an open bounded subset of R? and T > 0. For a given w € H*([0,T] x
Q;R?), we denote by u, V1, V2 the L' functions such that

(A.2) Jw = pdzy Adzy +VEdry Adt+ V2 dag Adt.

The theorem below collects the results of Theorem 1 and Theorem 3 in [39]. We
remind that the definition of the functionals GL. is given in (1.2).

Theorem A.1. Let w. € H*([0,T] x Q;R?) be such that

T T
(A.3) / GL:(w(t,-)) dt Jr/ / |0;w.(t, x)|? dz dt < C|loge].
0 0o Ja

Then, there exists a rectifiable integer 1-current J such that, up to a subsequence,

xJue —J in (C27([0,T] x Q;R?)Y, ¥y € (0,1].

m
Moreover, for any X,Y € C2([0,T] x Q;R3)

1

1 2
liminf ——— / |X-Vw€\2dxdt/ IV - Vw2 dzdt | >|(J, X AY)|.
=0 7|loge| \ Jjo,1x0 0,7]xQ

If in addition we assume that

(A.4) sup GL.(we(t,-)) < Clloge|,
t€[0,T)
then, J can be written as in (A.2) with p € C%2([0,T]; (CO7(Q))) for every v €
(0,1] and V1, V2 € L2([0,T]; M(Q2)).
Finally, up to a subsequence,

e (t) Aap wu(t) for allt €10,T7.

We now state a variant of Corollary 4 in [39] which is a direct consequence of
Theorem A.1.
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Corollary A.2. Let 0 < t; < ty and let we € H'([t1,t2] X ;R?) be such that
(A.3) holds true with [0,T] replaced by [t1,t2], and such that for all t € [t1, ts]

1
5/ \Vwe (t,z)|> de < Mr|loge| + C
Q

for some M € N and C € R. Assume moreover that

M
fl
pe(t) =5 pt) =7 didy, ),
=1

with |d;| =1 and x;(t) € C([t1,t2];Q) for every i with x;(t) # x;(t) for i # j.
Then, for any X,Y € C%(Q;R3)

1 tr M
lim inf (X -Vw,,Y - Vuw.) de dt = 7r/ D (X (1), Y (x(t))) dt.

=0 ‘ 10g€| [tl,tz]XQ t1 i=1

Here we state a result analogous to Corollary 7 in [39].

Proposition A.3. Let T > 0 and let w, € HY([0,T] x Q;R?) be such that (A.3)
holds true, and such that for all t € [0,T]

1
5/9 |Vw,(t,z)|* de < Mn|loge| + C

for some M € N and C' € R. Assume moreover that
4 M
at
pe(t) = u(t) =7 dida, ),
i=1
with |d;| = 1 and ;(t) € C([0,T}; Q) for any i with x;(t) # x;(t) for i # j. Then

M T

1

(A.5) liminf —— |Opwe|? do dt >« E / |52 dt.
=0 |loge| Jio 1xa = Jo

Proof. The proof of this result coincides with the one of Corollary 7 in [39], the
only difference being that [39] assumes that for every t € [0, T

1

- (1 — |we(z,t)[*)? dz < C|loge|.
€ Ja

Here this assumption is replaced by (A.3), which is enough to apply Corollary A.2.
Once the statement of Corollary A.2 holds true, the rest of the proof follows exactly
as in in [39]. O
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