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Abstract. This paper aims at building a variational approach to the dy-
namics of discrete topological singularities in two dimensions, based on Γ-

convergence.

We consider discrete systems, described by scalar functions defined on a
square lattice and governed by periodic interaction potentials. Our main mo-

tivation comes from XY spin systems, described by the phase parameter, and

screw dislocations, described by the displacement function. For these systems,
we introduce a discrete notion of vorticity. As the lattice spacing tends to

zero we derive the first order Γ-limit of the free energy which is referred to as

renormalized energy and describes the interaction of vortices.
As a byproduct of this analysis, we show that such systems exhibit increas-

ingly many metastable configurations of singularities. Therefore, we propose
a variational approach to depinning and dynamics of discrete vortices, based

on minimizing movements. We show that, letting first the lattice spacing and

then the time step of the minimizing movements tend to zero, the vortices
move according with the gradient flow of the renormalized energy, as in the

continuous Ginzburg-Landau framework.
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4.2. The main Γ-convergence result 17
4.3. The proof of Theorem 4.2 18
4.4. Γ-convergence analysis in the L2 topology 21
5. Analysis of local minimizers 23
5.1. Antipodal configurations and energy barriers 23
5.2. Metastable configurations and pinning 25
6. Discrete gradient flow of Fε with flat dissipation 28
6.1. Flat discrete gradient flow of W 30
6.2. Flat discrete gradient flow of Fε 32

1



2 R. ALICANDRO, L. DE LUCA, A. GARRONI, AND M. PONSIGLIONE

7. Discrete gradient flow of Fε with L2 dissipation 33
7.1. L2 discrete gradient flow of W 34
7.2. L2 discrete gradient flow of Fε. 48
8. Conclusions 50
Appendix A. Product-Estimate 50
References 52

1. Introduction

Phase transitions mediated by the formation of topological singularities char-
acterize many physical phenomena such as superconductivity, superfluidity and
plasticity. For its central role in Materials Science, this subject has attracted much
attention in the last decades ([9], [32], [33], see also [44]), and has brought new inter-
est on fascinating research fields in the mathematical community, as in the theory
of harmonic maps on manifolds ([4], [15], [10]). In particular, new variational meth-
ods have been developed to describe and predict the relevant phenomena, such as
the formation of topological singularities and the corresponding concentration of
energy. Two paradigmatic examples of the appearance of topological singularities
are given by screw dislocations in crystals and vortices in superconductors. We now
introduce two basic discrete models to describe these phenomena.

Given an open set Ω ⊂ R2, consider the square lattice εZ2 ∩Ω, representing the
reference configuration of our physical system. In the case of screw dislocations we
consider the elastic energy defined on scalar functions u : εZ2 ∩ Ω→ R given by

(1.1) SDε(u) :=
1

2

∑
i,j∈εZ2∩Ω , |i−j|=ε

dist2(u(i)− u(j),Z).

Here ε represents the lattice spacing of a cubic lattice casted in a cylindrical crystal,
εZ2 ∩ Ω is a reference planar section of the crystal, and u represents the vertical
displacement (scaled by 1/ε). The periodicity of the energy is consistent with the
fact that plastic deformations, corresponding to integer jumps of u, do not store
elastic energy, according with Nabarro Peierls and Frenkel Kontorova theories [26].
Potentials as in (1.1) are commonly used in models for dislocations (see e.g. [18],
[28], [23], [37]; see also [8] for more general discrete lattice energies accounting for
defects).

A celebrated discrete model which allows to describe the formation of topological
singularities, as vortices in superconductors, is the so-called XY spin model. Here,
the order parameter is a vectorial spin field v : εZ2∩Ω→ S1 and the corresponding
energy is given by

XYε(v) :=
1

2

∑
i,j∈εZ2∩Ω |i−j|=ε

|v(i)− v(j)|2.

Notice that XYε(v) can be written in terms of a representative of the phase of v,
defined as a scalar field u such that v = e2πiu. In this respect, both models can be
regarded as specific examples of scalar systems governed by periodic potentials f
acting on first neighbors, whose energy is of the type

Fε(u) :=
∑

i,j∈εZ2∩Ω , |i−j|=ε

f(u(i)− u(j)).



METASTABILITY AND DYNAMICS OF DISCRETE TOPOLOGICAL SINGULARITIES 3

How do dislocations or vortices enter in this description? Loosely speaking, they
are defined through a discrete notion of topological degree of the field v = e2πiu;
they are point singularities, and can be identified by the discrete vorticity measure
µ(u). This is a finite sum of Dirac masses centered in the squares of the lattice, and
with multiplicities equal to either +1 or −1. This notion in the case of dislocations
corresponds to the discrete circulation of the plastic strain, and µ(u) represents the
Nye dislocation density.

This paper aims at studying the statics and the dynamics of such topological
singularities, by variational principles.

The first step is the asymptotic analysis by Γ-convergence of the discrete energies
Fε, as ε → 0. This analysis relies on the powerful machinery developed in the
recent past for the analysis of Ginzburg-Landau functionals, which can be somehow
considered the continuous counterpart of the energies Fε. We recall that, for a given
ε > 0, the Ginzburg-Landau energy GLε : H1(Ω;R2)→ R is defined by

(1.2) GLε(w) =
1

2

∫
Ω

|∇w|2 dx+
1

ε2

∫
Ω

(1− |w|2)2 dx.

Starting from the pioneering book [10], the variational analysis as ε → 0 of GLε
has been the subject of a vast literature. The analysis in [10] shows that, as ε
tends to zero, vortex-like singularities appear by energy minimization (induced
for instance by the boundary conditions), and each singularity carries a quantum
of energy of order | log ε|. Removing this leading term from the energy, a finite
quantity remains, called renormalized energy, depending on the positions of the
singularities. This asymptotic analysis has been also developed through the solid
formalism of Γ-convergence ([30], [31], [39], [41], [3]). It turns out that the relevant
object to deal with is the distributional Jacobian Jw, which, in the continuous
setting, plays the role of the discrete vorticity measure. A remarkable fact is that
these results also contain a compactness statement. Indeed, for sequences with
bounded energy the vorticity measure is not in general bounded in mass; this is
due to the fact that many dipoles are compatible with a logarithmic energy bound.
Therefore, the compactness of the vorticity measures fails in the usual sense of weak
star convergence. Nevertheless, compactness holds in the flat topology, i.e., in the
dual of Lipschitz continuous functions with compact support.

Recently, part of this Γ-convergence analysis has been exported to two-dimensio-
nal discrete systems. In [36], [1], [2] it has been proved that the functionals 1

| log ε|Fε
Γ-converge to π|µ(Ω)|, where µ is the limiting vorticity measure and is given by
a finite sum of Dirac masses. This Γ-limit is not affected by the position of the
singularities and hence does not account for their interaction, which is an essential
ingredient in order to study the dynamics. In this paper, we make a further step
in this direction, deriving the renormalized energy for our discrete systems by Γ-
convergence, using the notion of Γ-convergence expansion introduced in [7] (see
also [14]). Precisely, in Theorem 4.2 we prove that, given M ∈ N, the functionals
Fε(u)−Mπ| log ε| Γ-converge to W(µ) +Mγ, where µ is a sum of M singularities
xi with degrees di = ±1. Here W is the renormalized energy as in the Ginzburg-
Landau setting, defined by

W(µ) := −π
∑
i 6=j

didj log |xi − xj | − π
∑
i

diR0(xi),
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where R0 is a suitable harmonic function (see (4.1)), and γ can be viewed as a core
energy, depending on the specific discrete interaction energy (see (4.6)).

An intermediate step to prove Theorem 4.2 is Theorem 3.1 (ii), which establishes
a localized lower bound of the energy around the limiting vortices. This result is
obtained using a tool introduced by Sandier [38] and Jerrard [30] for the functionals
GLε, referred to as ball construction; it consists in providing suitable pairwise
disjoint annuli, where much of the energy is stored, and estimating from below the
energy on each of such annuli. In the continuous case, the lower bound on each
annulus is the straightforward estimate

1

2

∫
BR\Br

|∇w|2 dx ≥ π|deg(w, ∂BR)| log
R

r
, w ∈ H1(BR \Br;S1).

In Proposition 3.2 we prove a similar lower bound for Fε, with R/r replaced by
R/(r+Cε| log ε|), the error being due to the discrete structure of our energies. This
weaker estimate, inserted in the ball construction machinery, is refined enough to
prove the lower bound in Theorem 3.1 (ii).

The second part of the paper is devoted to the analysis of metastable configura-
tions for Fε and to our variational approach to the dynamics of discrete topological
singularities.

We now draw a parallel between the continuous Ginzburg-Landau model and
our discrete systems, stressing out the peculiarities of our framework.

In [34], [29], [40], it has been proved that the parabolic flow of GLε can be de-
scribed, as ε→ 0, by the gradient flow of the renormalized energy W(µ). Precisely

the limiting flow is a measure µ(t) =
∑M
i=1 di,0δxi(t), where x(t) = (x1(t), . . . , xM (t))

solves

(1.3)

ẋ(t) = − 1

π
∇W (x(t))

x(0) = x0 ,

with W (x(t)) = W(µ(t)). The advantage of this description is that the effective
dynamics is described by an ODE involving only the positions of the singularities.
This result has been derived through a purely variational approach in [40], based
on the idea that the gradient flow structure is consistent with Γ-convergence, under
some assumptions which imply that the slope of the approximating functionals
converges to the slope of their Γ-limit. The gradient flow approach to dynamics
used in the Ginzburg-Landau context fails for our discrete systems. In fact, the free
energy of discrete systems is often characterized by the presence of many energy
barriers, which affect the dynamics and are responsible for pinning effects (for
a variational description of pinning effects in discrete systems see [13] and the
references therein). As a consequence of our Γ-convergence analysis, we show that
Fε has many local minimizers. Precisely, in Theorem 5.5 and Theorem 5.6 we show
that, under suitable assumptions on the potential f , given any configuration of
singularities x ∈ ΩM , there exists a stable configuration x̃ at a distance of order
ε from x. Starting from these configurations, the gradient flow of Fε is clearly
stuck. Moreover, these stable configurations are somehow attractive wells for the
dynamics. These results are proven for a general class of energies, including SDε,
while the case of the XYε energy, to our knowledge, is still open. A similar analysis
of stable configurations in the triangular lattice has been recently carried on in
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[27], combining PDEs techniques with variational arguments, while our approach
is purely variational and based on Γ-convergence.

On one hand, our analysis is consistent with the well-known pinning effects due
to energy barriers in discrete systems; on the other hand, it is also well under-
stood that dislocations are able to overcome the energetic barriers to minimize
their interaction energy (see [17], [23], [28], [37]). The mechanism governing these
phenomena is still matter of intense research. Certainly, thermal effects and sta-
tistical fluctuations play a fundamental role. Such analysis is beyond the purposes
of this paper. Instead, we raise the question whether there is a simple variational
mechanism allowing singularities to overcome the barriers, and then which would
be the effective dynamics. We face these questions, following the minimizing move-
ments approach à la De Giorgi ([5], [6], [12]). More precisely, we discretize time by
introducing a time scale τ > 0, and at each time step we minimize a total energy,
which is given by the sum of the free energy plus a dissipation. For any fixed τ ,
we refer to this process as discrete gradient flow. This terminology is due to the
fact that, as τ tends to zero, the discrete gradient flow is nothing but the Euler
implicit approximation of the continuous gradient flow of Fε. Therefore, as τ → 0
it inherits the degeneracy of Fε, and pinning effects are dominant. The scenario
changes completely if instead we keep τ fixed, and send ε → 0. In this case, it
turns out that, during the step by step energy minimization, the singularities are
able to overcome the energy barriers, that are of order ε. Finally, sending τ → 0
the solutions of the discrete gradient flows converge to a solution of (1.3). In our
opinion, this purely variational approach based on minimizing movements, mimics
in a realistic way more complex mechanisms, providing an efficient and simple view
point on the dynamics of discrete topological singularities in two dimensions.

Summarizing, in order to observe an effective dynamics of the vortices we are
naturally led to let ε→ 0 for a fixed time step τ , obtaining a discrete gradient flow
of the renormalized energy. A technical issue is that the renormalized energy is not
bounded from below, and therefore, in the step by step minimization we are led to
consider local rather than global minimizers. Precisely, we minimize the energy in
a δ neighborhood of the minimizer at the previous step. Without this care, already
at the first step we would have the trivial solution µ = 0, corresponding to the fact
that dipoles annihilate and the remaining singularities reach the boundary of the
domain. Nevertheless, for τ small the minimizers do not touch the constraint, so
that they are in fact true local minimizers.

We will adopt the above scheme dealing with two specific choices for the dissi-
pation. On one hand, the canonical choice corresponding to continuous parabolic
flows is clearly the L2 dissipation (see Section 7). On the other hand, once ε is
sent to zero, we have a finite dimensional gradient flow of the renormalized en-
ergy, for which it is more natural to consider as dissipation the Euclidean distance
between the singularities. This, for ε > 0, corresponds to the introduction of a
2-Wasserstein type dissipation, D2, between the vorticity measures. For two Dirac
deltas D2 is nothing but the square of the Euclidean distance of the masses (see
Definition (6.4)). We are then led to consider also the discrete gradient flow with
this dissipation (see Section 6). By its very definition D2 is continuous with respect
to the flat norm and this makes the analysis as ε→ 0 rather simple and somehow
instructive in order to face the more complex case of L2 dissipation.
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In conclusion, we believe that this paper provides a better understanding of equi-
libria of discrete systems characterized by energy concentration, and contributes to
the debate in the mathematical community over the microscopic mechanisms gov-
erning the dynamics of discrete topological singularities, as vortices in XY spin
systems and dislocations in crystals. For the latter, richer models could be con-
sidered, with more realistic energy densities and dissipations, taking into account
the specific material properties and the kinematic constraints of the crystal lat-
tice. Our variational approach, rather than giving a complete analysis of a specific
model, aims to be simple and robust, with possible applications to a wide class of
discrete systems.

2. The discrete model for topological singularities

In this Section we introduce the discrete formalism used in the analysis of the
problem we deal with. We will follow the approach of [8]; specifically, we will use
the formalism and the notations in [2] (see also [36]).

Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary, representing the
domain of definition of the relevant fields in the models we deal with.

The discrete lattice. For every ε > 0, we define Ωε ⊂ Ω as follows

Ωε :=
⋃

i∈εZ2: i+εQ⊂Ω

(i+ εQ),

where Q = [0, 1]
2

is the unit square. Moreover we set Ω0
ε := εZ2 ∩ Ωε, and

Ω1
ε :=

{
(i, j) ∈ Ω0

ε × Ω0
ε : |i− j| = ε, i ≤ j

}
(where i ≤ j means that il ≤ jl for

l ∈ {1, 2}). These objects represent the reference lattice and the class of nearest
neighbors, respectively. The cells contained in Ωε are labeled by the set of indices
Ω2
ε =

{
i ∈ Ω0

ε : i+ εQ ⊂ Ωε
}

. Finally, we define the discrete boundary of Ω as

(2.1) ∂εΩ := ∂Ωε ∩ εZ2.

In the following, we will extend the use of these notations to any given open
subset A of R2.

2.1. Discrete functions and discrete topological singularities. Here we in-
troduce the classes of discrete functions on Ω0

ε, and a notion of discrete topological
singularities. To this purpose, we first set

AFε(Ω) :=
{
u : Ω0

ε → R
}
,

which represents the class of admissible scalar functions on Ω0
ε.

Moreover, we introduce the class of admissible fields from Ω0
ε to the set S1 of

unit vectors in R2

(2.2) AXYε(Ω) :=
{
v : Ω0

ε → S1
}
,

Notice that, to any function u ∈ AFε(Ω), we can associate a function v ∈
AXYε(Ω) setting

v = v(u) := e2πiu.

With a little abuse of notation for every v : Ω0
ε → R2 we denote

(2.3) ‖v‖2L2 =
∑
j∈Ω0

ε

ε2|v(j)|2 .
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Now we can introduce a notion of discrete vorticity corresponding to both scalar
and S1 valued functions. To this purpose, let P : R→ Z be defined as follows

(2.4) P (t) = argmin {|t− s| : s ∈ Z} ,

with the convention that, if the argmin is not unique, then we choose the smallest
among the two.

Let u ∈ AFε(Ω) be fixed. For every i ∈ Ω2
ε we introduce the vorticity

αu(i) := P (u(i+ εe1)− u(i)) + P (u(i+ εe1 + εe2)− u(i+ εe1))

−P (u(i+ εe1 + εe2)− u(i+ εe2))− P (u(i+ εe2)− u(i)).
(2.5)

One can easily see that the vorticity αu takes values in {−1, 0, 1}. Finally, we define
the vorticity measure µ(u) as follows

(2.6) µ(u) :=
∑
i∈Ω2

ε

αu(i)δi+ ε
2 (e1+e2).

This definition of vorticity extends to S1 valued fields in the obvious way, by setting
µ(v) = µ(u) where u is any function in AFε(Ω) such that v(u) = v.

Let M(Ω) be the space of Radon measures in Ω and set

X :=

{
µ ∈M(Ω) : µ =

N∑
i=1

diδxi , N ∈ N, di ∈ Z \ {0} , xi ∈ Ω

}
,

Xε :=

µ ∈ X : µ =
∑
i∈Ω2

ε

α(i)δi+ ε
2 (e1+e2) , α(i) ∈ {−1, 0, 1}

 .

(2.7)

We will denote by µn
flat→ µ the flat convergence of µn to µ, i.e., in the dual W−1,1

of W 1,∞
0 .

2.2. The discrete energy. Here we introduce a class of energy functionals defined
on AFε(Ω). We will consider periodic potentials f : R → R which satisfy the
following assumptions: For any a ∈ R

(1) f(a+ z) = f(a) for any z ∈ Z,

(2) f(a) ≥ 1

2
|e2πia − 1|2 = 1− cos 2πa,

(3) f(a) = 2π2(a− z)2 + O(|a− z|3) for any z ∈ Z.

For any u ∈ AFε(Ω), we define

(2.8) Fε(u) :=
∑

(i,j)∈Ω1
ε

f(u(i)− u(j)).

As explained in the Introduction, the main motivation for our analysis comes
from the study discrete screw dislocations in crystals and XY spin systems. We
introduce the basic energies for these two models as in [2].

Regarding the screw dislocations, for any u : Ω0
ε → R, we define

(2.9) SDε(u) :=
1

2

∑
(i,j)∈Ω1

ε

dist2(u(i)− u(j),Z).

It is easy to see that this potential fits (up to the prefactor 4π2) with our general
assumptions.
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As for the XY model, for any v : Ω0
ε → S1, we define

(2.10) XYε(v) :=
1

2

∑
(i,j)∈Ω1

ε

|v(i)− v(j)|2.

Also this potential fits our framework, once we rewrite it in terms of the phase u
of v. Indeed, setting f(a) = 1− cos(2πa), we have

(2.11) XYε(v) =
∑

(i,j)∈Ω1
ε

f(u(i)− u(j)) with v = e2πiu.

We notice that assumption (2) on Fε reads as

(2.12) Fε(u) ≥ XYε(e2πiu).

Let
{
T±i
}

be the family of the ε-simplices of R2 whose vertices are of the form

{i, i± εe1, i± εe2}, with i ∈ εZ2. For any v : Ω0
ε → S1, we denote by ṽ : Ωε → R2

the piecewise affine interpolation of v, according with the triangulation
{
T±i
}

. It is
easy to see that, up to boundary terms, XYε(v) corresponds to the Dirichlet energy
of ṽ in Ωε; more precisely

(2.13)
1

2

∫
Ωε

|∇ṽ|2 dx+
1

2

∫
Bε

|∇ṽ|2 dx ≥ XYε(v) ≥ 1

2

∫
Ωε

|∇ṽ|2 dx,

where Bε := {x ∈ Ωε : dist(x, ∂Ωε) ≤ ε}.

Remark 2.1. Let v : Ω0
ε → S1. One can easily verify that if A is an open subset

of Ω and if |ṽ| > c > 0 on ∂Aε, then

(2.14) µ(v)(Aε) = deg(ṽ, ∂Aε),

where, given an open bounded set V ⊂ R2 with Lipschitz boundary, the degree of
a function w ∈ H 1

2 (∂V ;R2) with |w| ≥ c > 0, is defined by

(2.15) deg(w, ∂V ) :=
1

2π

∫
∂V

(
w1

|w|
∇w2

|w|
− w2

|w|
∇w1

|w|

)
· τ ds .

In [16] it is proved that the quantities above are well defined and that the definition
in (2.15) is well posed. Note that µ(v)(i+ εQ) = 0 whenever |ṽ| > 0 on i+ εQ.

3. Localized lower bounds

In this section we will prove a lower bound for the energies Fε localized on open
subsets A ⊂ Ω. We will use the standard notation Fε(·, A) (and as well XYε(·, A))
to denote the functional Fε defined in (2.8) with Ω replaced by A.

To this purpose, thanks to assumption (2) on the energy density f , it will be
enough to prove a lower bound for the XYε energy. As a consequence of this lower
bound, we obtain a sharp zero-order Γ-convergence result for the functionals Fε.
As explained in the Introduction, the appropriate topology with respect to which
compactness results hold true is that induced by the flat norm.

3.1. The zero-order Γ-convergence. We recall that the space of finite sums of
weighted Dirac masses has been denoted in (2.7) by X.

Theorem 3.1. Let Fε be defined by (2.8) with f satisfying (1)–(3). The following
Γ-convergence result holds.

(i) (Compactness) Let {uε} ⊂ AFε(Ω) be such that Fε(uε) ≤ C| log ε| for some

positive C. Then, up to a subsequence, µ(uε)
flat→ µ, for some µ ∈ X.
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(ii) (Localized Γ-liminf inequality) Let {uε} ⊂ AFε(Ω) be such that µ(uε)
flat→

µ =
∑M
i=1 diδxi with di ∈ Z \ {0} and xi ∈ Ω. Then, there exists a constant

C ∈ R such that, for any i = 1, . . . ,M and for every σ < 1
2dist(xi, ∂Ω ∪⋃

j 6=i xj), we have

(3.1) lim inf
ε→0

Fε(uε, Bσ(xi))− π|di| log
σ

ε
≥ C.

In particular

(3.2) lim inf
ε→0

Fε(uε)− π|µ|(Ω) log
σ

ε
≥ C.

(iii) (Γ-limsup inequality) For every µ ∈ X, there exists a sequence {uε} ⊂
AFε(Ω) such that µ(uε)

flat→ µ and

π|µ|(Ω) ≥ lim sup
ε→0

Fε(uε)

| log ε|
.

The above theorem has been proved in [36] for Fε = SDε and in [2] for Fε = XYε,
with (ii) replaced by the standard global Γ-liminf inequality

(3.3) π|µ|(Ω) ≤ lim inf
ε→0

Fε(uε)

| log ε|
,

which is clearly implied by (3.2). We underline that the estimate in (3.1) implies
the boundedness of the energy far from the limiting singularities and it will play a
central role in the first order Γ-convergence analysis in Subsection 4.2.

By (2.12), the compactness property (i) follows directly from the zero-order Γ-
convergence result for the XYε energies, while the proof of (ii) requires a specific
analysis. For the convenience of the reader we will give a self contained proof of
both (i) and (ii) of Theorem 3.1. We will omit the proof of the Γ-lim sup inequality
(iii) which is standard and identical to the XYε case.

Before giving the proof of Theorem 3.1, we need to revisit a construction referred
to as ball construction and introduced in the continuous framework in [38], [30].

3.2. Lower bound on annuli. Let w ∈ H1(BR \ Br;S1) with deg(w, ∂BR) = d.
By Jensen’s inequality, the following lower bound holds

1

2

∫
BR\Br

|∇w|2 dx ≥ 1

2

∫ R

r

∫
∂Bρ

| (w ×∇w) · τ |2ds dρ

≥
∫ R

r

1

ρ
π|d|2 dρ ≥ π|d| log

R

r
.

(3.4)

The latter is a key estimate in the context of continuous Ginzburg-Landau. In the
following we will prove an analogous lower bound for the energy XYε(v, ·) in an
annulus in which the piecewise affine interpolation ṽ satisfies |ṽ| ≥ 1

2 . In view of
(2.12) such a lower bound will hold also for the energy Fε.

Proposition 3.2. Fix ε > 0 and let
√

2ε < r < R − 2
√

2ε. For any function
v : (BR \Br) ∩ εZ2 → S1 with |ṽ| ≥ 1

2 in BR−
√

2ε \Br+√2ε, it holds

(3.5) XYε(v,BR \Br) ≥ π|µ(v)(Br)| log
R

r + ε
(
α|µ(v)(Br)|+

√
2
) ,

where α > 0 is a universal constant.
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Proof. By (2.13), using Fubini’s theorem, we have that

XYε(v,BR \Br) ≥
1

2

∫ R−
√

2ε

r+
√

2ε

∫
∂Bρ

|∇ṽ|2 ds dρ.(3.6)

Fix r +
√

2ε < ρ < R −
√

2ε and let T be a simplex of the triangulation of the
ε-lattice. Set γT (ρ) := ∂Bρ ∩ T , let γ̄T (ρ) be the segment joining the two extreme
points of γT (ρ) and let γ̄(ρ) =

⋃
T γ̄T (ρ); then

1

2

∫
∂Bρ

|∇ṽ|2 ds =
1

2

∫
∪T γT (ρ)

|∇ṽ|2 ds =
1

2

∑
T

|∇ṽ|T |
2H1(γT (ρ))(3.7)

≥ 1

2

∑
T

|∇ṽ|T |
2H1(γ̄T (ρ)) =

1

2

∫
γ̄(ρ)

|∇ṽ|2 ds,

where we have used that ∇ṽ is constant in each simplex T . Set m(ρ) := minγ̄(ρ) |ṽ|;
using Jensen’s inequality and the fact that H1(γ̄(ρ)) ≤ H1(∂Bρ) we get

1

2

∫
γ̄(ρ)

|∇ṽ|2 ds ≥ 1

2

∫
γ̄(ρ)

m2(ρ)

∣∣∣∣( ṽ

|ṽ|
× ∇ ṽ

|ṽ|

)
· τ
∣∣∣∣2 ds

≥ 1

2

m2(ρ)

H1(γ̄(ρ))

∣∣∣∣∣
∫
γ̄(ρ)

(
ṽ

|ṽ|
× ∇ ṽ

|ṽ|

)
· τ ds

∣∣∣∣∣
2

≥ m2(ρ)

ρ
π|d|2 ≥ m2(ρ)

ρ
π|d|(3.8)

where we have set d := deg(ṽ, ∂Bρ) = µ(v)(Br), which does not depend on ρ since
|ṽ| ≥ 1/2.

Now, let T (ρ) be the simplex in which the minimum m(ρ) is attained and let
T1(ρ), T2(ρ), T3(ρ) be the simplices sharing a side with T (ρ). By (3.7)

1

2

∫
∂Bρ

|∇ṽ|2 dx ≥ 1

2
|∇ṽ|T (ρ)

|2H1(γ̄T (ρ)(ρ)) +
1

2

3∑
j=1

|∇ṽ|Tj(ρ)
|2H1(γ̄Tj(ρ)(ρ)).

If γ̄T (ρ)(ρ) does not lie on any of the sides of T (ρ), using the explicit formula of the
affine interpolation ṽ on T (ρ), a simple but somehow lengthy computation shows
that

(3.9) |∇ṽ|T (ρ)
|2H1(γ̄T (ρ)(ρ)) ≥ α1

1−m2(ρ)

ε

for some universal constant α1. If γ̄T (ρ)(ρ) lies on the side shared by T (ρ) and Tj(ρ)

for some j, using that ρ >
√

2ε, a simple geometric argument yields

(3.10) H1(γ̄T (ρ)(ρ)) +H1(γ̄Tj(ρ)(ρ)) ≥ α2ε,

where α2 > 0. By combining (3.9) and (3.10), we get

(3.11)
1

2

∫
∂Bρ

|∇ṽ|2 ds ≥ α̃1−m2(ρ)

ε
,

where α̃ is the smallest among α1 and α2.
In view of (3.7), (3.8) and (3.11), for any r +

√
2ε < ρ < R−

√
2ε we have

1

2

∫
∂Bρ

|∇ṽ|2 ds ≥ m2(ρ)

ρ
π|d| ∨ α̃1−m2(ρ)

ε
≥ π|d|α̃
επ|d|+ α̃ρ

.
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By this last estimate and (3.6) we get

(3.12) XYε(v,BR \Br) ≥ π|µ(v)(Br)| log
ε(πα̃ |µ(v)(Br)| −

√
2) +R

ε(πα̃ |µ(v)(Br)|+
√

2) + r
.

Assuming, without loss of generality, α̃ < 1, we immediately get (3.5) for α = π
α̃ . �

3.3. Ball Construction. Here we introduce a construction referred to as ball con-
struction, introduced in [38], [30]. Let B = {BR1(x1), . . . , BRN (xN )} be a finite

family of pairwise disjoint balls in R2 and let µ =
∑N
i=1 diδxi with di ∈ Z \ {0}.

Let F be a positive superadditive set function on the open subsets of R2, i.e., such
that F (A ∪B) ≥ F (A) + F (B), whenever A and B are open and disjoint. We will
assume that there exists c > 0 such that

(3.13) F (Ar,R(x)) ≥ π|µ(Br(x))| log
R

c+ r
,

for any annulus Ar,R(x) = BR(x) \ B̄r(x), with Ar,R(x) ⊂ Ω \
⋃
iBRi(xi).

The purpose of this construction is to select a family of larger and larger annuli
in which the main part of the energy F concentrates. Let t be a parameter which
represents an artificial time. For any t > 0 we want to construct a finite family of
balls B(t) which satisfies the following properties

(1)
⋃N
i=1BRi(xi) ⊂

⋃
B∈B(t)B,

(2) the balls in B(t) are pairwise disjoint,
(3) F (B) ≥ π|µ(B)| log(1 + t) for any B ∈ B(t) with B ⊆ Ω,
(4)

∑
B∈B(t)R(B) ≤ (1+t)

∑
iRi+(1+t)cN(N2 +N+1), where R(B) denotes

the radius of the ball B.

We construct the family B(t), closely following the strategy of the ball construc-
tion due to Sandier and Jerrard, that we need to slightly revise in order to include
our case: The only difference in our discrete setting is the appearance of the error
term c > 0 in (3.13) and in (4), while in the continuous setting c = 0.

The ball construction consists in letting the balls alternatively expand and merge
each other as follows. It starts with an expansion phase if dist(BRi(xi), BRj (xj)) >
2c for all i 6= j, and with a merging phase otherwise. Assume that the first phase
is an expansion. It consists in letting the balls expand, without changing theirs

centers, in such a way that, at each (artificial) time, the ratio θ(t) := Ri(t)
c+Ri

is

independent of i. We will parametrize the time enforcing θ(t) = 1 + t. Note that
with this choice Ri(0) = Ri + c so that the balls {BRi(0)(xi)} are pairwise disjoint.
The first expansion phase stops at the first time T1 when two balls bump into each
other. Then the merging phase begins. It consists in identifying a suitable partition
{S1

j }j=1,...,Nn of the family
{
BRi(T1)(xi)

}
, and, for each subclass S1

j , in finding a

ball BR1
j
(x1
j ) which contains all the balls in S1

j such that the following properties

hold:

i) for every j 6= k, dist(BR1
j
(x1
j ), BR1

k
(x1
k)) > 2c;

ii) R1
j−Nc is not larger than the sum of all the radii of the balls BRi(T1)(xi) ∈

S1
j , i.e., contained in BR1

j
(x1
j ).

This construction consists in applying the usual merging procedure described in
[38] to the balls in the family {BRi(T1)+c(xi)}. In such a way one obtains a family
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of pairwise disjoint balls {BR̃1
j
(x1
j )} such that

R̃1
j ≤

∑
i:BRi(T1)(xi)⊂BR̃1

j
(x1
j )

(Ri(T1) + c).

The family {BR1
j
(x1
j )} is obtained by setting R1

j = R̃1
j − c.

After the merging, another expansion phase begins, during which we let the balls{
BR1

j
(x1
j )
}

expand in such a way that, for t ≥ T1, for every j we have

(3.14)
R1
j (t)

c+R1
j

=
1 + t

1 + T1
.

Again note that R1
j (T1) = R1

j +c. We iterate this process obtaining a set of merging

times {T1, . . . , Tn}, and a family B(t) = {BRkj (t)(x
k
j )}j for t ∈ [Tk, Tk+1), for all

k = 1, . . . , n− 1. Notice that n ≤ N . If the condition dist(BRi(xi), BRj (xj)) > 2c
for all i 6= j, is not satisfied we clearly can start this process with a merging phase
(in this case T1 = 0).

By construction, we clearly have (1) and (2). We now prove (4). Set N(t) =
] {B ∈ B(t)} and I(t) = {1, . . . , N(t)}. Moreover, for every merging time Tk and
1 ≤ j ≤ N(Tk), set

Ij(Tk) :=
{
i ∈ I(Tk−1) : BRk−1

i
(xk−1
i ) ⊂ BRkj (xkj )

}
.

By ii) and (3.14) it follows that for any 1 ≤ k ≤ n
N(Tk)∑
j=1

(Rkj −Nc) ≤
N(Tk)∑
j=1

∑
l∈Ij(Tk)

Rk−1
l (Tk)

=

N(Tk−1)∑
j=1

(
1 + Tk

1 + Tk−1
Rk−1
j +

1 + Tk
1 + Tk−1

c

)

=
1 + Tk

1 + Tk−1

N(Tk−1)∑
j=1

Rk−1
j +

1 + Tk
1 + Tk−1

cN(Tk−1)(3.15)

≤ 1 + Tk
1 + Tk−1

N(Tk−1)∑
j=1

Rk−1
j + (1 + Tk)cN.

Let Tk ≤ t < Tk+1 for some 1 ≤ k ≤ n; by (3.14) and iterating (3.15) we get

N(Tk)∑
j=1

Rkj (t) =
1 + t

1 + Tk

N(Tk)∑
j=1

Rkj +
1 + t

1 + Tk
cN(Tk)

≤ (1 + t)

N∑
i=1

Ri + (1 + t)cN(N2 +N + 1),

(3.16)

and this concludes the proof of (4).
It remains to prove (3). For t = 0 it is trivially satisfied. We will show that it is

preserved during the merging and the expansion times. Let Tk be a merging time
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and assume that (3) holds for all t < Tk. Then for every j ∈ I(Tk)

F (BRkj (xkj )) ≥
∑

l∈Ij(Tk)

F (BRk−1
l (Tk)(x

k−1
l ))

≥ π log(1 + Tk)

j∑
l=1

|µ(BRk−1
l (Tk)(x

k−1
l ))|

≥ π log(1 + Tk)|µ(BRkj (xkj ))|.

Finally, for a given t ∈ [Tk, Tk+1) and for any ball BRki (t)(x
k
i (t)) ∈ B(t) we have

F (BRki (t)(x
k
i )) ≥ F (BRki (t)(x

k
i ) \ B̄Rki (xki )) + F (BRki (xki ))

≥ π|µ(BRki (t)(x
k
i ))| log

1 + t

1 + Tk
+ π|µ(BRki (t)(x

k
i ))| log(1 + Tk)

= π|µ(BRki (t)(x
k
i ))| log(1 + t),

where we have used that
Rki (t)

c+Rki
= 1+t

1+Tk
.

3.4. Proof of Theorem 3.1. First, we give an elementary lower bound of the
energy localized on a single square of the lattice.

Proposition 3.3. There exists a positive constant β such that for any ε > 0,
for any function v ∈ AXYε(Ω) and for any i ∈ Ω2

ε such that the piecewise affine
interpolation ṽ of v satisfies mini+εQ |ṽ| < 1

2 , it holds XYε(v, i+ εQ) ≥ β.

Proof. Using the very definition of the interpolation ṽ, the condition mini+εQ |ṽ| <
1
2 immediately implies that there are a universal constant β > 0 and two nearest

neighbors j, k in i+ εQ such that |v(j)− v(k)| ≥
√

2β. �

Proof of Theorem 3.1. By (2.12), it is enough to prove (i) and (ii) for Fε = XYε,
using as a variable vε = e2πiuε . The proof of (iii) is standard and left to the reader.
Proof of (i). For every ε > 0, set Iε :=

{
i ∈ Ω2

ε : mini+εQ |ṽε| ≤ 1
2

}
. Notice that,

by definition (see (2.6)), µ(vε) is supported in Iε + ε
2 (e1 + e2).

Starting from the family of balls B√2ε
2

(i + ε
2 (e1 + e2))), and eventually passing

through a merging procedure (see Subsection 3.3) we can construct a family of
pairwise disjoint balls

Bε :=
{
BRi,ε(xi,ε)

}
i=1,...,Nε

,

with
∑Nε
i=1Ri,ε ≤ ε]Iε. Then, by Proposition 3.3 and by the energy bound, we

immediately have that ]Iε ≤ C| log ε| and hence

(3.17)

Nε∑
i=1

Ri,ε ≤ Cε| log ε|.

We define the sequence of measures

µε :=

Nε∑
i=1

µ(vε)(BRi,ε(xi,ε))δxi,ε .

Since |µε(B)| ≤ ]Iε for each ball B ∈ Bε, by (3.5) we deduce that (3.13) holds with

F (·) = XYε(vε, · \ ∪B∈BεB) and c = ε(α]Iε + 2
√

2).



14 R. ALICANDRO, L. DE LUCA, A. GARRONI, AND M. PONSIGLIONE

We let the balls in the families Bε grow and merge as described in Subsection 3.3,
and let Bε(t) :=

{
BRi,ε(t)(xi,ε(t))

}
be the corresponding family of balls at time t.

Set moreover tε := 1√
ε
− 1, Nε(tε) := ]Bε(tε) and define

(3.18) νε :=
∑

i=1,...,Nε(tε)
BRi,ε(tε)(xi,ε(tε))⊂Ω

µε(BRi,ε(tε)(xi,ε(tε)))δxi,ε(tε).

By (3) in Subsection 3.3, for any B ∈ Bε(tε), with B ⊆ Ω, we have

XYε(vε, B) ≥ π|µε(B)| log(1 + tε) = π|νε(B)| 12 | log ε|;
by the energy bound, we have immediately that |νε|(Ω) ≤ M and hence {νε} is
precompact in the weak∗ topology. By (4) in Subsection 3.3, it follows that

Nε(tε)∑
j=1

Rj(tε) ≤ C
√
ε (]Iε)

4,

which, using the definition of the flat norm, implies that ‖νε − µε‖flat → 0 (see [3]
for more details); similarly, using (3.17), one can show that ‖µε − µ(vε)‖flat → 0 as
ε→ 0. We conclude that also µ(vε) is precompact in the flat topology.

Proof of (ii). Fix i ∈ {1, . . . ,M}. Without loss of generality, and possibly
extracting a subsequence, we can assume that

(3.19) lim inf
ε→0

XYε(vε, Bσ(xi))− π|di|| log ε|

= lim
ε→0

XYε(vε, Bσ(xi))− π|di|| log ε| < +∞.

We consider the restriction v̄ε ∈ AXYε(Bσ(xi)) of vε to Bσ(xi). Notice that
supp(µ(v̄ε) − µ(vε) Bσ(xi)) ⊆ Bσ(xi) \ Bσ−ε(xi). On the other hand, by (3.19)
and Proposition 3.3 it follows that

(3.20) |µ(vε)|(Bσ(xi) \Bσ−ε(xi)) ≤ C| log ε|.
Then, using (3.20) one can easily get

(3.21) ‖µ(v̄ε)− µ(vε) Bσ(xi)‖flat → 0,

and hence

(3.22) ‖µ(v̄ε)− diδxi‖flat → 0.

We repeat the ball construction procedure used in the proof of (i) with Ω replaced
by Bσ(xi), vε by v̄ε and Iε by

Ii,ε :=

{
j ∈ (Bσ(xi))

2
ε : min

j+εQ
|ṽε| ≤

1

2

}
.

We denote by Bi,ε the corresponding family of balls and by Bi,ε(t) the family of
balls constructed at time t.

Fix 0 < γ < 1 such that

(3.23) (1− γ)(|di|+ 1) > |di| .
Let tε,γ = εγ−1−1 and let νε,γ be the measure defined as in (3.18) with Ω replaced
by Bσ(xi) and tε replaced by tε,γ . As in the previous step, since γ > 0 we deduce
that ‖νε,γ − diδxi‖flat → 0; moreover, for any B ∈ Bi,ε(tε,γ) we have

(3.24) XYε(vε, B) ≥ π|νε,γ(B)|(1− γ)| log ε|.
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Now, if lim infε→0 |νε,γ |(Bσ(xi)) > |di|, then, thanks to (3.23), (3.1) holds true.
Otherwise we can assume that |νε,γ |(Bσ(xi)) = |di| for ε small enough. Then
νε,γ is a sum of Dirac masses concentrated on points which converge to xi, with
weights all having the same sign and summing to di. Let C1 > 0 be given and set
t̄ε := σ

C1(]Ii,ε)4ε − 1. By (3.16), we have that any ball B ∈ Bi,ε(t̄ε) satisfies

diam(B) ≤ C2

C1
σ,

where C2 > 0 is a universal constant. We fix C1 > 2C2 so that diam(B) < σ
2 .

Recall that, for ε small enough, supp(νε,γ) ⊆ Bσ/2(xi); hence if B ∈ Bi,ε(t̄ε) with
supp(νε,γ) ∩B 6= ∅, then B ⊆ Bσ(xi) and one can easily show that

µ(v̄ε)
( ⋃
B∈Bi,ε(t̄ε)
B⊂Bσ(xi)

B
)

= di.

We have immediately that

XYε(v̄ε, Bσ(xi) \ ∪B∈Bi,εB) ≥ π
∑

B∈Bi,ε(t̄ε)
B⊂Bσ(xi)

|µ(v̄ε)(B)| log(1 + t̄ε) ≥ π|di| log
σ

C1(]Ii,ε)4ε
.

On the other hand, by Proposition 3.3 there exists a positive constant β such that

XYε(v̄ε, j + εQ) ≥ β for any j ∈ Ii,ε;

therefore, XYε(v̄ε,
⋃
B∈Bi,ε B) ≥ β]Ii,ε. Finally, we get

XYε(v̄ε, Bσ(xi)) ≥ XYε(v̄ε, Bσ(xi) \ ∪B∈Bi,εB) +XYε(v̄ε,∪B∈Bi,εB)

≥ π|di| log
σ

ε
− log

(
C1(]Ii,ε)

4
)

+ ]Ii,εβ ≥ π|di| log
σ

ε
+ C

and (3.1) follows sending ε→ 0. �

4. The renormalized energy and the first order Γ-convergence.

In this section we will prove the first order Γ-convergence of Fε to the renormal-
ized energy, introduced in the continuous framework of Ginzburg-Landau energies
in [10]. To this purpose we begin by recalling the many definitions and results of
[10] we need.

4.1. Revisiting the analysis of Bethuel-Brezis-Hélein. Fix µ =
∑M
i=1 diδxi

with di ∈ {−1,+1} and xi ∈ Ω. In order to define the renormalized energy, consider
the following problem {

∆Φ = 2πµ in Ω
Φ = 0 on ∂Ω,

and let R0(x) = Φ(x) −
∑M
i=1 di log |x − xi|. Notice that R0 is harmonic in Ω

and R0(x) = −
∑M
i=1 di log |x − xi| for any x ∈ ∂Ω. The renormalized energy

corresponding to the configuration µ is then defined by

(4.1) W(µ) := −π
∑
i 6=j

didj log |xi − xj | − π
∑
i

diR0(xi).
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Let σ > 0 be such that the balls Bσ(xi) are pairwise disjoint and contained in Ω

and set Ωσ := Ω \
⋃M
i=1Bσ(xi). A straightforward computation shows that

(4.2) W(µ) = lim
σ→0

1

2

∫
Ωσ
|∇Φ|2 dx−Mπ| log σ| .

In this respect the renormalized energy represents the finite energy induced by µ
once the leading logarithmic term has been removed.

It is convenient to consider (as done in [10]) suitable cell problems and auxiliary
minimum problems. Set

m(σ, µ) := min
w∈H1(Ωσ;S1)

{
1

2

∫
Ωσ
|∇w|2 dx : deg(w, ∂Bσ(xi)) = di

}
,

m̃(σ, µ) := min
w∈H1(Ωσ;S1)

{
1

2

∫
Ωσ
|∇w|2 dx :

w(·) =
αi
σdi

(· − xi)dion ∂Bσ(xi), |αi| = 1

}
.

(4.3)

For any x ∈ R2 \ {0}, we define θ(x) as the polar coordinate arctanx2/x1, also
referred to as the lifting of the function x

|x| . Given ε > 0 we introduce a discrete

minimization problem in the ball Bσ

(4.4) γ(ε, σ) := min
u∈AFε(Bσ)

{Fε(u,Bσ) : 2πu(·) = θ(·) on ∂εBσ} ,

where the discrete boundary ∂ε is defined in (2.1).

Theorem 4.1. It holds

(4.5) lim
σ→0

m(σ, µ)− π|µ|(Ω)| log σ| = lim
σ→0

m̃(σ, µ)− π|µ|(Ω)| log σ| = W(µ).

Moreover, for any fixed σ > 0, the following limit exits finite

(4.6) lim
ε→0

(γ(ε, σ)− π| log
ε

σ
|) =: γ ∈ R.

The proof of (4.5) is contained in [10], whereas the statement in (4.6) is a discrete
version of Lemma III.1 in [10] and can be proved similarly. We give the details of
the proof of (4.6) for the convenience of the reader.

Proof of (4.6). First, by scaling, it is easy to see that γ(ε, σ) = I( εσ ) where I(t) is
defined by

I(t) := min
{
F1(θ,B 1

t
) | 2πu = θ on ∂1B 1

t

}
.

We aim to prove that

(4.7) 0 < t1 ≤ t2 ⇒ I(t1) ≤ π log
t2
t1

+ I(t2) +O(t2).

Notice that by (4.7) it easily follows that limt→0+(I(t)− π| log t|) exists and is not
+∞. Moreover, by Theorem 3.1, there exists a universal constant C such that

I(t) ≥ π| log t|+ C ∀t ∈ (0, 1].

We conclude that limt→0+(I(t)− π| log t|) is not −∞.
In order to complete the proof we have to show that (4.7) holds. To this end, let θ

be the lifting of the function x
|x| . Since |∇θ(x)| ≤ c/r for every x ∈ Ar,R = BR \Br,
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by standard interpolation estimates (see for instance [20]) and using assumption
(3) on f , we have that, as r < R→∞,

(4.8) F1(θ/2π,Ar,R) ≤ π log
R

r
+O(1/r).

Let u2 be a minimizer for I(t2) and for any i ∈ Z2 define

u1(i) :=

{
u2(i) if |i| ≤ 1

t2
θ(i)
2π if 1

t2
≤ |i| ≤ 1

t1
,

By (4.8) we have

I(1/R) ≤
∑

(i,j)∈(Br)1
1

i,j∈(Br)1

f(u1(i)− u1(j)) +
∑

(i,j)∈(Ar−
√

2,R)1
1

i,j∈(Ar−
√

2,R)1

f(u1(i)− u1(j))

≤ I(1/r) + π log
R

r
+O(1/r),

which yields (4.7) for r = 1
t2

and R = 1
t1

.
�

4.2. The main Γ-convergence result. We are now in a position to state the
first-order Γ-convergence theorem for the functionals Fε.

Theorem 4.2. The following Γ-convergence result holds.

(i) (Compactness) Let M ∈ N and let {uε} ⊂ AFε(Ω) be a sequence satisfying

Fε(uε)−Mπ| log ε| ≤ C. Then, up to a subsequence, µ(uε)
flat→ µ for some

µ =
∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and

∑
i |di| ≤ M . Moreover, if∑

i |di| = M , then
∑
i |di| = N = M , namely |di| = 1 for any i.

(ii) (Γ-lim inf inequality) Let {uε} ⊂ AFε(Ω) be such that µ(uε)
flat→ µ, with

µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ Ω for every i. Then,

(4.9) lim inf
ε→0

Fε(uε)−Mπ| log ε| ≥W(µ) +Mγ.

(iii) (Γ-lim sup inequality) Given µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ Ω for

every i, there exists {uε} ⊂ AFε(Ω) with µ(uε)
flat→ µ such that

Fε(uε)−Mπ| log ε| →W(µ) +Mγ.

In our analysis it will be convenient to introduce the energy functionals Fε in
term of the variable µ, i.e., by minimizing Fε with respect to all u ∈ AFε(Ω) with
µ(u) = µ. Precisely, let Fε : X → [0,+∞] be defined by

(4.10) Fε(µ) := inf {Fε(u) : u ∈ AFε(Ω), µ(u) = µ} .

Theorem 4.2 can be rewritten in terms of Fε as follows.

Theorem 4.3. The following Γ-convergence result holds.

(i) (Compactness) Let M ∈ N and let {µε} ⊂ X be a sequence satisfying

Fε(µε)−Mπ| log ε| ≤ C. Then, up to a subsequence, µε
flat→ µ =

∑N
i=1 diδxi

with di ∈ Z\{0}, xi ∈ Ω and
∑
i |di| ≤M . Moreover, if

∑
i |di| = M , then∑

i |di| = N = M , namely |di| = 1 for every i.
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(ii) (Γ-lim inf inequality) Let {µε} ⊂ X be such that µε
flat→ µ =

∑M
i=1 diδxi with

|di| = 1 and xi ∈ Ω for every i. Then,

(4.11) lim inf
ε→0

Fε(µε)−Mπ| log ε| ≥W(µ) +Mγ.

(iii) (Γ-lim sup inequality) Given µ =
∑M
i=1 diδxi with |di| = 1 and xi ∈ Ω for

every i, there exists {µε} ⊂ X with µε
flat→ µ such that

(4.12) Fε(µε)−Mπ| log ε| →W(µ) +Mγ.

4.3. The proof of Theorem 4.2. Recalling that Fε(u) ≥ XYε(e
2πiu), the proof

of the compactness property (i) will be done for Fε = XYε, and will be deduced
by Theorem 3.1. On the other hand, the constant γ in the definition of the Γ-
limit depends on the details of the discrete energy Fε, and its derivation requires a
specific proof.

Proof of (i): Compactness. The fact that, up to a subsequence, µ(uε)
flat→

µ =
∑N
i=1 diδxi with

∑N
i=1 |di| ≤ M is a direct consequence of the zero order

Γ-convergence result stated in Theorem 3.1 (i). Assume now
∑N
i=1 |di| = M and

let us prove that |di| = 1. Let 0 < σ1 < σ2 be such that Bσ2
(xi) are pairwise

disjoint and contained in Ω and let ε be small enough so that Bσ2
(xi) are contained

in Ωε. For any 0 < r < R and x ∈ R2, set Ar,R(x) := BR(x) \ Br(x). Since
Fε(uε) ≥ XYε(e2πiuε),

(4.13) Fε(uε) ≥
N∑
i=1

XYε(e
2πiuε , Bσ1

(xi)) +

N∑
i=1

XYε(e
2πiuε , Aσ1,σ2

(xi)).

To ease notation we set vε = e2πiuε and we indicate with ṽε the piecewise affine
interpolation of vε. Moreover let t be a positive number and let ε be small enough
so that t >

√
2ε. Then, by (3.1) and (2.13), we get

Fε(uε) ≥ π
N∑
i=1

|di| log
σ1

ε
+

1

2

N∑
i=1

∫
Aσ1+t,σ2−t(xi)

|∇ṽε|2 dx+ C.(4.14)

By the energy bound, we deduce that
∫
Aσ1+t,σ2−t(xi)

|∇ṽε|2 dx ≤ C and hence, up

to a subsequence, ṽε ⇀ vi in H1(Aσ1+t,σ2−t(xi);R2) for some field vi. Moreover,
since

1

ε2

∫
Aσ1+t,σ2−t(xi)

(1− |ṽε|2)2 dx ≤ CXYε(vε) ≤ C log
1

ε
,

(see Lemma 2 in [1] for more details ), we deduce that |vi| = 1 a.e.
Furthermore, by standard Fubini’s arguments, for a.e. σ1 + t < σ < σ2 − t,

up to a subsequence the trace of ṽε is bounded in H1(∂Bσ(xi);R2), and hence it
converges uniformly to the trace of vi. By the very definition of degree it follows
that deg(vi, ∂Bσ(xi)) = di.

Hence, by (3.4), for every i we have

(4.15)
1

2

∫
Aσ1+t,σ2−t(xi)

|∇vi|2 dx ≥ |di|2π log
σ2 − t
σ1 + t

.
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By (4.14) and (4.15), we conclude that for ε sufficiently small

Fε(uε) ≥ π
N∑
i=1

(
|di| log

σ1

ε
+ |di|2 log

σ2 − t
σ1 + t

)
+ C

= Mπ| log ε|+ π

N∑
i=1

(|di|2 − |di|) log
1

σ1
+ π

N∑
i=1

|di|2 log
σ1(σ2 − t)
σ1 + t

+ C.

The energy bound yields that the sum of the last two terms is bounded; letting
t→ 0 and σ1 → 0, we conclude |di| = 1.

Proof of (ii): Γ-liminf inequality. Fix r > 0 so that the balls Br(xi) are pair-
wise disjoint and compactly contained in Ω. Let moreover

{
Ωh
}

be an increasing

sequence of open smooth sets compactly contained in Ω such that ∪h∈NΩh = Ω.
Without loss of generality we can assume that Fε(uε) ≤ Mπ| log ε| + C, which
together with Theorem 3.1 yields

(4.16) Fε(uε,Ω \
M⋃
i=1

Br(xi)) ≤ C.

We set vε := e2πiuε and we denote by ṽε the piecewise affine interpolation of vε.

For every r > 0, by (4.16) and by (2.12) we deduce XYε(vε \
⋃N
i=1Br(xi)) ≤ C.

Fix h ∈ N and let ε be small enough so that Ωh ⊂ Ωε. Then,

1

2

∫
Ωh\

⋃N
i=1 B2r(xi)

|∇ṽε|2 dx ≤ C;

therefore, by a diagonalization argument, there exists a unitary field v with v ∈
H1(Ω \ ∪Mi=1Bρ(xi);S1) for any ρ > 0 and a subsequence {ṽε} such that ṽε ⇀ v in
H1

loc(Ω \ ∪Mi=1{xi};R2).
Let σ > 0 be such that Bσ(xi) are pairwise disjoint and contained in Ωh. Re-

calling the definition of Ar,R in the proof of (i), we set Ar,R := Ar,R(0). Let t ≤ σ,
and consider the minimization problem

min
w∈H1(At/2,t;S1)

{
1

2

∫
At/2,t

|∇w|2 dx : deg(w, ∂B t
2
) = 1

}
.

It is easy to see that the minimum is π log 2 and that the set of minimizers is
given by (the restriction at At/2,t of) the rotations of x

|x| . Let K be the set of

such functions. To ease the notations in the rest of the proof, it is convenient to
introduce a complex notation for K: Identifying R2 with C and setting g(z) := z

|z|
(with z ∈ C), we have that

(4.17) K = {α g(z) : α ∈ C, |α| = 1} .

Set

(4.18) dt(w,K) := min
{
‖∇w −∇v‖L2(At/2,t;R2) : v ∈ K

}
.

It is easy to see that for any given δ > 0 there exists a positive ω(δ) (independent
of t) such that if dt(ṽε(·+ xi),K) ≥ δ, then

(4.19) lim inf
ε→0

1

2

∫
A t

2
+
√

2ε,t−
√

2ε
(xi)

|∇ṽε|2 dx ≥ π log 2 + ω(δ).
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By a scaling argument we can assume t = 1. Then, arguing by contradiction, if
there exists a subsequence {ṽε} such that

lim
ε→0

1

2

∫
A 1

2
+
√

2ε,1−
√

2ε
(xi)

|∇ṽε|2 dx = π log 2,

then, by the lower semicontinuity of the L2 norm, we get
(4.20)

π log 2 ≤ 1

2

∫
A1/2,1(xi)

|∇v|2 dx ≤ lim
ε→0

1

2

∫
A 1

2
+
√

2ε,1−
√

2ε
(xi)

|∇ṽε|2 dx = π log 2.

It follows that v(·+xi) ∈ K, and that ṽε → v strongly in H1(A1/2,1(xi);R2), which
yields the contradiction dist(v(·+ xi),K) ≥ δ.

Let L ∈ N be such that Lω(δ) ≥ W(µ) + M(γ − π log σ − C) where C is the
constant in (3.1). For l = 1, . . . , L, set Cl(xi) := B21−lσ(xi) \B2−lσ(xi).

We distinguish among two cases.
First case: for ε small enough and for every fixed 1 ≤ l ≤ L, there exists at

least one i such that d21−lσ(ṽε(·+ xi),K) ≥ δ. Then, by (3.1), (4.19) and the lower
semicontinuity of the L2 norm, we conclude

Fε(uε,Ω
h) ≥

M∑
i=1

XYε(vε, B2−Lσ(xi)) +

L∑
l=1

M∑
i=1

XYε(vε, Cl(xi))

≥M(π log
σ

2L
+ π| log ε|+ C) + L(Mπ log 2 + ω(δ)) + o(ε)

≥Mπ| log ε|+Mγ + W(µ) + o(ε).

Second case: Up to a subsequence, there exists 1 ≤ l̄ ≤ L such that for every
i we have dσ̄(ṽε(· + xi),K) ≤ δ, where σ̄ := 21−l̄σ. Let αε,i be the unitary vector
such that ‖ṽε − αε,i x−xi|x−xi|‖H1(Cl̄(xi);R2) = dσ̄(ṽε(·+ xi),K).

One can construct a function ūε ∈ AFε(Ω) such that

(i) ūε = uε on ∂ε(R2 \B2−l̄σ(xi));
(ii) e2πiūε = αεe

iθ on ∂εB21−l̄σ(xi)
(iii) Fε(uε, Bσ̄(xi)) ≥ Fε(ūε, Bσ̄(xi)) + r(ε, δ) with limδ→0 limε→0 r(ε, δ) = 0.

The proof of (i)-(iii) is quite technical, and consists in adapting standard cut-off
arguments to our discrete setting. For the reader convenience we skip the details
of the proof, and assuming (i)-(iii) we conclude the proof of the lower bound.

By Theorem (4.1), we have that

Fε(uε) ≥ XYε(vε,Ωh \
M⋃
i=1

Bσ̄(xi)) +

M∑
i=1

Fε(uε, Bσ̄(xi))

≥ 1

2

∫
Ωh\

⋃M
i=1 Bσ̄(xi)

|∇ṽε|2 dx+

M∑
i=1

Fε(ūε, Bσ̄(xi)) + r(ε, δ) + o(ε)

≥ 1

2

∫
Ωh\

⋃M
i=1 Bσ̄(xi)

|∇ṽε|2 dx+M(γ − π log
ε

σ̄
) + r(ε, δ) + o(ε)

≥ 1

2

∫
Ω\

⋃M
i=1 Bσ̄(xi)

|∇v|2 dx+M(γ − π log
ε

σ̄
) + r(ε, δ) + o(ε) + o(1/h)

≥Mπ| log ε|+Mγ + W(µ) + r(ε, δ) + o(ε) + o(σ̄) + o(1/h).
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The proof follows sending ε→ 0, δ → 0, σ → 0 and h→∞.
Proof of (iii): Γ-limsup inequality. This proof is standard in the continuous case,

and we only sketch its discrete counterpart. Let wσ be a function that agrees with

a minimizer of (4.3) in Ω \
⋃M
i=1Bσ(xi) =: Ωσ. Then, wσ = αi

x−xi
σ on ∂Bσ(xi) for

some |αi| = 1.
For every ρ > 0 we can always find a function wσ,ρ ∈ C∞(Ωσ;S1) such that

wσ,ρ = αi
x−xi
σ on ∂Bσ(xi), and

1

2

∫
Ωσ
|∇wσ,ρ|2 dx− 1

2

∫
Ωσ
|∇wσ|2 dx ≤ ρ.

Moreover, for every i let wi ∈ AXYε(Bσ(xi)) be a function which agrees with
αi

x−xi
|x−xi| on ∂εBσ(xi) and such that its phase minimizes problem (4.4). If necessary,

we extend wi to (Bσ(xi) ∩ εZ2) \ (Bσ(xi))
0
ε to be equal to αi

x−xi
|x−xi| . Finally, define

the function wε,σ,ρ ∈ AXYε(Ω) which coincides wσ,ρ on Ωσ ∩ εZ2 and with wi on

Bσ(xi)∩εZ2. Then, in view of assumption (3) on f , a straightforward computation
shows that any phase uε,σ,ρ of wε,σ,ρ is a recovery sequence, i.e.,

lim
ε→0

Fε(uε,σ,ρ)−Mπ| log ε| = Mγ + W(µ) + o(ρ, σ),

with limσ→0 limρ→0 o(ρ, σ) = 0.

4.4. Γ-convergence analysis in the L2 topology. Here we prove a Γ-convergen-
ce result for Fε(uε)−Mπ| log ε|, where M is fixed positive integer, with respect to
the flat convergence of µ(uε) and the L2-convergence of ṽε, where ṽε : Ωε → R2 is
the piecewise affine interpolation of e2πiuε .

To this purpose, for N ∈ N let us first introduce the set

DN := {v ∈ L2(Ω;S1) : Jv = π

N∑
i=1

diδxi with |di| = 1, xi ∈ Ω,

v ∈ H1
loc(Ω \ supp(Jv);S1)}.

(4.21)

Notice that, if v ∈ DM , then the function

1

2

∫
Ω\

⋃M
i=1 Bσ(xi)

|∇v|2 dx−Mπ| log σ|,

is monotonically decreasing with respect to σ. Therefore, it is well defined the
functional W : L2(Ω;S1)→ R̄ given by

(4.22) W(v) =


lim
σ→0

1

2

∫
Ω\

⋃M
i=1 Bσ(xi)

|∇v|2 dx−Mπ| log σ| if v ∈ DM ;

−∞ if v ∈ DN for some N < M ;
+∞ otherwise

Notice that, by (4.5) we have that, for every µ =
∑M
i=1 diδxi with |di| = 1

(4.23) W(µ) = min
v∈H1

loc(Ω\supp(µ);S1)
Jv=µ

W(v).
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Remark 4.4. We can rewrite W(v) as follows

W(v) =
1

2

∫
Ω\∪iBρ(xi)

|∇v|2 dx+Mπ log ρ+

M∑
i=1

+∞∑
j=0

(
1

2

∫
Ci,j

|∇v|2 dx− π log 2

)
,

where Ci,j denotes the annulus B2−jρ(xi) \ B2−(j+1)ρ(xi). In particular, for the
lower bound (3.4) we deduce that

(4.24) sup
i,j

1

2

∫
Ci,j

|∇v|2 dx ≤ π log 2 +W(v)−Mπ log ρ.

Theorem 4.5. Let M ∈ N be fixed. The following Γ-convergence result holds.

(i) (Compactness) Let {uε} ⊂ AFε(Ω) be such that Fε(uε) ≤ Mπ| log ε| + C.

Then, up to a subsequence, µ(uε)
flat→ µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω

and
∑N
i=1 |di| ≤M . Moreover, if

∑N
i=1 |di| = M , then |di| = 1 and up to a further

subsequence ṽε⇀v in H1
loc(Ω \ supp(µ);R2) for some v ∈ DM .

(ii) (Γ-liminf inequality) Let v ∈ DM and let {uε} ⊂ AFε(Ω) be such that µ(uε)
flat→

Jv and ṽε → v in L2(Ω;R2). Then,

(4.25) lim inf
ε→0

Fε(uε)−Mπ| log ε| ≥ W(v) +Mγ.

(iii) (Γ-limsup inequality) Given v ∈ DM , there exists {uε} ⊂ AFε(Ω) such that

µ(uε)
flat→ Jv, ṽε⇀v in H1

loc(Ω \ supp(Jv);R2) and

(4.26) lim
ε→0

Fε(uε)−Mπ| log ε| =W(v) +Mγ.

Proof. Proof of (i). The compactness properties concerning the sequence {µ(uε)}
are given in Theorem 4.2 (i) while the weak convergence up to a subsequence of
{ṽε} to a unitary field v such that v ∈ DM has been shown in the first lines of the
proof of Theorem 4.2 (ii).
Proof of (ii). The proof of Γ-liminf inequality follows strictly the one of Theorem
4.2 (ii) and we leave it to the reader.

Proof of (iii). Let Jv = π
∑M
i=1 diδxi , with xi ∈ Ω, |di| = 1. Fix σ > 0 and

Ωσ := Ω \∪Mi=1Bσ(xi). Without loss of generality we can assume that W(v) < +∞
and hence for some fixed constant C > 0 and for every σ

1

2

∫
Ωσ
|∇v|2 dx ≤Mπ| log σ|+ C.

Now, fix σ > 0, and let Ci,j denote the annulus B2−jσ(xi) \ B2−(j+1)σ(xi). By
Remark 4.4, it follows that for every i = 1, . . . ,M

(4.27) lim
j→∞

1

2

∫
Ci,j

|∇v|2 dx = π log 2.

z Recall that π log 2 is the minimal possible energy in each annulus, and that the
class of minimizers is given by the set K defined in (4.17). Using standard scaling
arguments and (4.27), one can show (see (4.20)) that for any j ∈ N there exists a
unitary vector αi,j such that

(4.28)
1

2

∫
Ci,j

∣∣∣∣∇(v − αi,j x− xi|x− xi|

)∣∣∣∣2 dx = r(i, j),
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with limj→∞ r(i, j) = 0. Moreover, we can find a function wj ∈ C∞(Ω2−jσ;S1)
such that

(4.29)
1

2

∫
Ω2−jσ

|∇wj −∇v|2 dx ≤ 1

j
.

Let ϕ ∈ C1([ 1
2 , 1]; [0, 1]) be such that ϕ( 1

2 ) = 1 and ϕ(1) = 0, and let define the
function vi,j in Ci,j , with

vi,j(x) := ϕ(2jσ−1|x− xi|)αi,j
x− xi
|x− xi|

+ (1− ϕ(2jσ−1|x− xi|))wj(x).

Then define the function vj as follows

(4.30) vj =

{
wj in Ω2−jσ

vi,j in Ci,j .

Finally for every i we denote by v̄εi,j ∈ AXYε(B2−j−1σ(xi)) a function which

agrees with αi,j
x−xi
|x−xi| on ∂εB2−j−1σ(xi) and such that its phase (up to an additive

constant) minimizes problem (4.4). If necessary, we extend v̄i,j to (B2−j−1σ(xi) ∩
εZ2) \ (B2−j−1σ(xi))

0
ε to be equal to αi,j

x−xi
|x−xi| . Finally, consider the field the vε,j

which coincides with vj on the nodes of Ω2−j−1σ and with v̄εi,j on B2−jσ(xi) ∩ εZ2.
In view of assumption (3) on f , a straightforward computation shows that any
phase uε,j of vε,j satisfies

lim
ε→0

Fε(uε,j)−Mπ| log ε| = Mγ +
1

2

∫
Ω2−jσ

|∇v|2 dx−Mπ| log(2−jσ)|+ o(j),

with limj→∞ o(j) = 0. A standard diagonal argument yields that there exists
j(ε)→ 0 such that uε,j(ε) is a recovery sequence in the sense of (4.26). �

5. Analysis of local minimizers

In this section we will prove the existence of many local minimizers for a large
class of interaction potentials. We will assume some further hypotheses for the
energy density f in addition to (1), (2) and (3):

(4) f ∈ C0([− 1
2 ,

1
2 ]) ∩ C2((− 1

2 ,
1
2 ));

(5) There exists a neighborhood I of 1
2 such that for every x ∈ I we have

C1( 1
2 − x)2 < f( 1

2 )− f(x) for some C1 > 0 and supt∈(− 1
2 ,

1
2 ) f
′′(t) < 1

9C1;

(6) f is increasing in [0, 1
2 ] and even.

Notice that these conditions are satisfied by the energy density of the screw
dislocations functionals, f(a) = dist2(a,Z), while they are not satisfied by the
energy density of the XY model.

5.1. Antipodal configurations and energy barriers. When a discrete singu-
larity of µ(v) moves to a neighboring cell, then v has to pass through an antipo-
dal configuration v(i) = −v(j) (i.e., such that the corresponding phase u satisfies
dist(u(i)−u(j),Z) = 1

2 ). We will show that such configurations are energy barriers.

Lemma 5.1. There exist α > 0 and E > 0 such that the following holds: Let
u ∈ AFε(Ω) such that dist(u(i)−u(j),Z) > 1

2 −α for some (i, j) ∈ Ω1
ε. Then there

exists a function w, with w = u in Ω0
ε \ {i} such that Fε(w) ≤ Fε(u)− E.
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Proof. As a consequence of assumption (5), it is easy to see that there exist γ > 0
and a positive constant C2 such that

(5.1) f( 1
2 )− f(γ)− f( 1

2 − γ) > C2 .

First, we prove the statement assuming f ∈ C2(R). In this case, assumption (5)
implies that f ′( 1

2 ) = 0 and |f ′′( 1
2 )| > C1.

Without loss of generality we can assume that u(i) = 0. For sake of notation we
set

(5.2) Ei(u) =
∑
|l−i|=ε

f(u(l)) .

We will assume that i /∈ ∂εΩ, so that i has exactly four nearest neighbors, denoted
by j, k1, k2 and k3. The case i ∈ ∂εΩ is fully analogous (some explicit computations
are indeed shorter), and left to the reader. By assumption

(5.3) Ei(u) ≥ f( 1
2 + α) +

3∑
l=1

f(u(kl)) .

We will distinguish two cases.

Case 1: There exists at least a nearest neighbor, say k1, such that dist(u(k1),Z) ≥
1
2 − α. In this case we have that

(5.4) Ei(u) ≥ 2f( 1
2 + α) + f(u(k2)) + f(u(k3)).

Now there are two possibilities. In fact we may have either that dist(u(k2),Z)∨
dist(u(k3),Z) < 3α, or that dist(u(k2),Z) ∨ dist(u(k3),Z) ≥ 3α.

In the first case, set w(i) = γ with γ as in (5.1). Then, by continuity we have

Ei(w) = 2f( 1
2 − γ) + 2f(γ) + o(1),

where o(1)→ 0 as α→ 0. From (5.4) we have Ei(u) ≥ 2f( 1
2 + α), which together

with (5.1) yields

(5.5) Ei(u)− Ei(w) ≥ 2(f( 1
2 + α)− f( 1

2 )) + C2 + o(1) = C2 + o(1)

as α → 0. Suppose now that dist(u(k2),Z) ∨ dist(u(k3),Z) ≥ 3α. Then we define
w(i) = 1

2 and we get

Ei(w) ≤ 2f(α) + f( 1
2 ) + f( 1

2 + 3α) .

Moreover, thanks to assumption (6) of f we have Ei(u) ≥ 2f( 1
2 + α) + f(3α). We

conclude that

Ei(u)− Ei(w) ≥ 7

2
α2(f ′′(0)− f ′′( 1

2 )) ≥ 7

2
α2C1 .(5.6)
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Case 2: For every i it holds dist(u(ki),Z) < 1
2 − α. Set w(i) = η with |η| = 3α

and η
∑3
l=1 f

′(u(kl)) ≥ 0. Then

Ei(u)− Ei(w) ≥ f( 1
2 + α)− f( 1

2 + α− |η|) +

3∑
l=1

f(u(kl))− f(u(kl)− η)

=
1

2
|f ′′( 1

2 )||η|(|η| − 2α) + η

3∑
l=1

f ′(u(kl))−
1

2
η2

3∑
l=1

f ′′(u(kl)) + o(η2)

≥ 1

2
|f ′′( 1

2 )|3α2 − 9

2
α2

3∑
l=1

f ′′(u(kl)) + o(α2) ≥ 3

2
(C1 − 9 sup

t
f ′′(t))α2 + o(α2).

(5.7)

The combination of Step 1 and Step 2 concludes the proof in the case of f ∈
C2(R), by choosing α small enough and E = (7C1∧3(C1−9 supt f

′′(t)))α2/2. The
general case can be recovered by approximating f in a neighborhood of 1

2 with C2

functions still satisfying assumptions (4)-(6). �

Note that in the case of f(a) = dist2(a,Z) the proof of the above Lemma can be
obtained by a direct computation without the regularization.

Remark 5.2. Note that the function w constructed in Lemma 5.1 has a discrete
vorticity that can be different from the one of u only in the four ε-squares sharing
i as a vertex, and hence ‖µ(u)− µ(w)‖flat ≤ 2ε.

Definition 5.3. Let α > 0. We say that a function u ∈ AFε(Ω) satisfies the
α-cone condition if

dist(u(i)− u(j),Z) ≤ 1

2
− α for every (i, j) ∈ Ω1

ε .

Remark 5.4. Note that if u ∈ AFε(Ω) satisfies the α-cone condition for some

α > 0, then for every w ∈ AFε(Ω) such that
∑
i∈Ω0

ε
|w(i) − u(i)|2 < α2

16 we have

µ(w) = µ(u). In other words, the vorticity measure µ(u) is stable with respect to
small variations of u.

5.2. Metastable configurations and pinning. As a consequence of Lemma 5.1
we prove the existence of a minimizer for the energy Fε, under assumptions (1)-(6)
with singularities close to prescribed positions.

Theorem 5.5. Given µ0 =
∑M
i=1 diδxi with xi ∈ Ω and di ∈ {1,−1} for i =

1, . . . ,M , there exists a constant K ∈ N such that, for ε small enough, there exists
kε ∈ {1, . . . ,K} such that the following minimum problem is well-posed

(5.8) min{Fε(u) : ‖µ(u)− µ0‖flat ≤ kεε}.
Moreover, let α be given by Lemma 5.1; any minimizer uε of the problem in (5.8)

satisfies the α-cone condition and it is a local minimizer for Fε.

Proof. For any k ∈ N ∪ {0}, we set

(5.9) Ikε := inf{Fε(u) : ‖µ(u)− µ0‖flat ≤ (M + 2k)ε} .
By constructing explicit competitors one can show that

(5.10) I0
ε ≤Mπ| log ε|+ C.
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Then, we consider a minimizing sequence {uk,nε } for Ikε . It is not restrictive to
assume that 0 ≤ uk,nε (i) ≤ 1 for any i ∈ Ω0

ε; therefore, up to a subsequence,
uk,nε → ukε as n → ∞ for some ukε ∈ AFε(Ω). Note that if ukε satisfies the α-cone
condition, then it is a minimizer for Ikε .

Set k̄ := dC−W(µ0)−Mγ
E e + 1 and assume by contradiction that there exists a

subsequence, still labeled with ε, such that for every k ∈ {0, 1, . . . , k̄}, there exists
a bond (iε, jε) ∈ Ω1

ε, with dist(ukε(iε)−ukε(jε),Z) > 1
2−α. Thus, for n large enough,

we have

dist(uk,nε (iε)− uk,nε (jε),Z) >
1

2
− α.

By Lemma 5.1, there exists a function wk,nε ∈ AFε(Ω) such that wk,nε ≡ uk,nε in
Ω0
ε \{i} and Fε(w

k,n
ε ) ≤ Fε(uk,nε )−E for some E > 0. By construction (see Remark

5.2) we have that ‖µ(wk,nε )− µ(uk,nε )‖flat ≤ 2ε. It follows that

Ik+1
ε ≤ Fε(wk,nε ) ≤ Ikε − E.

By an easy induction argument on k and by (5.10), we have immediately that

(5.11) Ikε ≤ I0
ε − kE ≤Mπ| log ε|+ C − kE.

By the lower bound (4.9) in Theorem 4.2, (5.11), and the definition of k̄ we get

W(µ0) +Mγ ≤ lim inf
ε→0

I k̄ε −Mπ| log ε| ≤ C − k̄E ≤W(µ0) +Mγ − E,

and so the contradiction. Then the statement holds true for K = M + 2k̄.
�

Let ε > 0 and let u0
ε ∈ AFε(Ω). We say that uε = uε(t) is a solution of the

gradient flow of Fε from u0
ε if uε satisfies{ 1

| log ε| u̇ε = −∇Fε(uε) in (0,+∞)× Ω0
ε

uε(0) = u0
ε in Ω0

ε.

Clearly uε(t) ∈ AFε(Ω), and we will write uε(t, i) in place of uε(t)(i).

Theorem 5.6. Let µ0 =
∑M
i=1 diδxi with xi ∈ Ω and di ∈ {1,−1} for i = 1, . . . ,M .

Let {u0
ε} ⊂ AFε(Ω) be such that

(5.12) lim
ε→0

Fε(u
0
ε)−Mπ| log ε| = W(µ0) +Mγ.

Let α be given by Lemma 5.1. Then, for ε small enough, the following facts hold:

(i) u0
ε satisfy the α-cone condition.

(ii) The solution uε(t) of the gradient flow of Fε from u0
ε satisfies µ(uε(t)) =

µ(u0
ε) for every t > 0.

(iii) There exists ū0
ε such that ū0

ε ∈ argmin{Fε(u) : µ(u) = µ(u0
ε)}. Moreover

ū0
ε satisfies the α-cone condition and it is a local minimizer for Fε.

Proof. Proof of (i). Assume, by contradiction, that there exists a sequence εk → 0
such that u0

εk
does not satisfy the α-cone condition, namely for every k ∈ N there

exists a bond (ik, jk) ∈ Ω1
εk

with

dist(u0
εk

(ik)− u0
εk

(jk),Z) >
1

2
− α.
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By Lemma 5.1, for any k there exists a function wεk ∈ AFεk(Ω) such that wεk ≡ u0
εk

in Ω0
εk
\ {ik} and

(5.13) Fεk(wεk) ≤ Fε(u0
εk

)− E ≤ Fεk(u0
εk

)− E.

Moreover, by construction (see Remark 5.2) we have that ‖µ(wεk) − µ(u0
εk

)‖flat ≤
2εk and so µ(wεk)

flat→ µ0. By the lower bound (4.9) in Theorem 4.2, we get

W(µ0) +Mγ ≤ lim inf
εk→0

Fεk(wεk)−Mπ| log εk|(5.14)

≤ lim
εk→0

Fεk(u0
εk

)−Mπ| log εk| − E = W(µ0) +Mγ − E,

and so the contradiction.
Proof of (ii). Assume, by contradiction, that there exists a sequence εk → 0 such

that the solutions uεk(t) of the gradient flows of Fεk from u0
εk

do not satisfy (ii). Let

tk be the first time (in fact, the infimum) for which µ(uεk(tk)) 6= µ(u0
εk

); then, there

exists (ik, jk) ∈ Ω1
εk

such that dist(uεk(tk, ik)− uεk(tk, jk),Z) > 1
2 − α. By Lemma

5.1 there exists wεk(tk) ∈ AFεk(Ω) such that wεk(tk) ≡ uεk(tk) in Ω0
εk
\ {ik} and

Fεk(wεk(tk)) ≤ Fεk(uεk(tk)) − E, for some positive constant E independent of k.
Moreover, by (5.2), we have that

‖µ(u0
εk

)− µ(wεk(tk))‖flat = ‖µ(uεk(tk))− µ(wεk(tk))‖flat ≤ 2εk .

Therefore, by the lower bound (4.9) in Theorem 4.2, arguing as in (5.14), we get a
contradiction.

Proof of (iii). Let {unε } be a minimizing sequence for the minimum problem
in (iii). We can always assume that 0 ≤ unε (i) ≤ 1 for any i ∈ Ω0

ε; therefore, up
to a subsequence, unε → ū0

ε as n → ∞ for some ū0
ε ∈ AFε(Ω). To prove that ū0

ε

(for ε small enough) is a minimizer, it is enough to show that µ(ū0
ε) = µ(uε); this

follows once we have proved that ū0
ε satisfies the α-cone condition (see Remark

5.4). Assume by contradiction that there exists a sequence εk → 0 such that
dist(ū0

ε(ik) − ū0
ε(jk),Z) > 1

2 − α for some bond (ik, jk) ∈ Ω1
εk

. Then, for n large
enough, we have

(5.15) Fεk(unεk) ≤ Fεk(u0
εk

) + εk, dist(unεk(i)− unεk(j),Z) >
1

2
− α .

Let n̄ be such that (5.15) holds. By Lemma 5.1, there exists a function wεk ∈
AFεk(Ω) such that wεk ≡ un̄εk in Ω0

εk
\ {i} and

(5.16) Fεk(wεk) ≤ Fε(un̄εk)− E ≤ Fεk(u0
εk

)− E + εk.

By construction (see Remark 5.2), we have that ‖µ(wεk)−µ(u0
εk

)‖flat = ‖µ(wεk)−
µ(un̄εk)‖flat ≤ 2εk. Therefore, by the lower bound (4.9) in Theorem 4.2, arguing as
in (5.14), we get a contradiction.

Finally, by the α-cone condition and Remark 5.4, we have immediately that
Fε(ū

0
ε) ≤ Fε(w) for any function w ∈ AFε(Ω) with ‖w − u‖L2 ≤ α

4 , and hence ū0
ε

is a local minimizer of Fε .
�

Remark 5.7. By Theorem 5.6 it easily follows that there exists tn →∞ such that
u∞ε := limtn→∞ uε(tn) is a critical point of Fε.
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6. Discrete gradient flow of Fε with flat dissipation

In Section 5 we have seen that the energy Fε has many local minimizers. In
particular, Theorem 5.5 shows that the length-scale of metastable configurations
of singularities is of order ε. In this section we introduce and analyze an effective
dynamics of vortices, which overcome the pinning effect due to the presence of these
local minima. This is done considering a discrete in time gradient flow, following
the minimizing movements method. It turns out that, for ε smaller than the time
step τ , the vortices overcome the energetic barriers and the dynamics is described
(as ε, τ → 0) by the gradient flow of the renormalized energy (see Definition 6.3).
This process requires the introduction of a suitable dissipation.

In this section we consider a dissipation which is continuous with respect to the

flat norm. To this purpose, we notice that, identifying each µ =
∑N
i=1 diδxi with a

0-current, it can be shown that

(6.1) ‖µ‖flat = min{|S| , S 1-current, ∂S Ω = µ}
(see [22, Section 4.1.12]). Moreover, it is an established result in the optimal trans-
port theory (see for instance [45, Theorem 5.30]) that the minimization in (6.1) can
be restricted to the family

S(µ) :=

{
S =

L∑
l=1

ml[pl, ql] : L ∈ N,ml ∈ Z, , pl , ql ∈ supp(µ) ∪ ∂Ω ,

∂S Ω =

L∑
l=1

ml(δql − δpl) Ω = µ

}
,

where m[p, q] denotes the 1-rectifiable current supported on the oriented segment
of vertices p and q, and with multiplicity m (for a self-contained proof of this
fact we refer also to [35, Proposition 4.4]). Notice that, given S ∈ S(µ), |S| =∑L
l=1 |ml||ql − pl|.
We define our dissipation in two steps.

First assume that ν1 =
∑N1

i=1 d
1
i δx1

i
and ν2 =

∑N2

j=1 d
2
jδx2

j
with d1

i , d
2
j ∈ N for

every i = 1, . . . , N1 and j = 1, . . . , N2 and set

D̃2(ν1, ν2) := min

{
L∑
l=1

|ql − pl|2 : L ∈ N, ql ∈ supp(ν1) ∪ ∂Ω, pl ∈ supp(ν2) ∪ ∂Ω,

L∑
l=1

δql Ω = ν1,

L∑
l=1

δpl Ω = ν2

}
.

It is easy to see that D̃
1
2
2 is a distance. Actually, ‖ν1 − ν2‖flat and D2(ν1, ν2) can

be rewritten as

‖ν1 − ν2‖flat = min
λ

∫
Ω̄×Ω̄

|x− y|dλ(x, y) ,

D̃2(ν1, ν2) = min
λ

∫
Ω̄×Ω̄

|x− y|2dλ(x, y) ,

where the minimum is taken over all measures λ which are sums of Dirac deltas in
Ω̄× Ω̄ with integer coefficients, and have marginals restricted to Ω given by ν1 and
ν2. This clarifies the connection of the flat distance and of our dissipation with the
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Wasserstein distances W1 and W2, defined on pairs of probability measures in R2,
respectively (see for instance [45]).

From the very definition of D̃2 one can easily check that

(6.2) D̃2(ν1 + ρ1, ν2 + ρ2) ≤ D̃2(ν1, ν2) + D̃2(ρ1, ρ2)

for any ρ1 and ρ2 sums of positive Dirac masses, and

(6.3) D̃2(ν1, ν2) ≤ diam(Ω)‖ν1 − ν2‖flat .

For the general case of µ1 =
∑N1

i=1 d
1
i δx1

i
and µ2 =

∑N2

i=1 d
2
i δx2

i
with d1

i , d
2
i ∈ Z

we set

(6.4) D2(µ1, µ2) := D̃2(µ+
1 + µ−2 , µ

+
2 + µ−1 ),

where µ+
j and µ−j are the positive and the negative part of µj . As a consequence

of (6.2) and (6.3) we have that D2 is continuous with respect to the flat norm.
We are now in a position to introduce the discrete gradient flow of Fε with

respect to the dissipation D2.

Definition 6.1. Fix δ > 0 and let ε, τ > 0. Given µε,0 ∈ Xε, we say that {µτε,k},
with k ∈ N ∪ {0}, is a solution of the flat discrete gradient flow of Fε from µε,0 if
µτε,0 = µε,0, and for any k ∈ N, µτε,k satisfies

µτε,k ∈ argmin

{
Fε(µ) +

πD2(µ, µτε,k−1)

2τ
: µ ∈ Xε, ‖µ− µτε,k−1‖flat ≤ δ

}
.(6.5)

Notice that the existence of a minimizer is obvious, since µ lies in Xε which is a
finite set.

We want to analyze the limit as ε→ 0 of the flat discrete gradient flow. To this

purpose, let µ0 :=
∑M
i=1 di,0δxi,0 with |di,0| = 1, and let µε,0 ∈ Xε be such that

µε,0
flat→ µ0, lim

ε→0

Fε(µε,0)

| log ε|
= π|µ0|(Ω).

In Theorem 6.7 we will show that, as ε → 0, the sequence µτε,k converges to some
µτk ∈ X, whose singularities have the same degrees of those of the initial datum.
Therefore, it is convenient to regard the renormalized energy as a function only of
the positions of M singularities. To this end we introduce the following notation

W (x) := W(µ) where µ =

M∑
i=1

di,0δxi and x = (x1, . . . , xM ) ∈ ΩM .

The right notion for the limit as ε→ 0 of flat discrete gradient flows of Fε is given
by the following definition of discrete gradient flow of the renormalized energy.

Definition 6.2. Let δ > 0, K ∈ N ∪ {0}, and τ > 0. Fix x0 ∈ ΩM . We say that
{xτk} with k = 0, 1, . . . ,K, is a solution of the discrete gradient flow of W from x0

if xτ0 = x0 and, for any k = 1, . . . ,K, xτk ∈ ΩM satisfies

xτk ∈ argmin

{
W (x) +

π|xτk − xτk−1|2

2τ
: x ∈ ΩM ,

M∑
i=1

|xi − xτi,k−1| ≤ δ

}
,(6.6)

where | · | denotes the euclidean norm in Rk for any k ∈ N.
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In Theorem 6.6 we show that, as τ → 0, this discrete in time evolution converges,
until a maximal time T̃δ, to the gradient flow of the renormalized energy given by
the following definition.

Definition 6.3. Let M ∈ N and x0 ∈ ΩM . The gradient flow of the renormalized
energy from x0 is given by

(6.7)

{
ẋ(t) = − 1

π
∇W (x(t))

x(0) = x0.

We denote by T ∗ the maximal time of existence of the solution, and we notice that
until the time T ∗ the solution is unique, and that T ∗ is the minimal critical time
among the first collision time and the exit time from Ω.

As δ → 0, T̃δ converges to the critical time T ∗. Notice that the renormalized
energy is not bounded from below and it blows up to −∞ whenever one of these
critical events occur. This justifies the introduction of the parameter δ, in order
to explore local minima. Nevertheless, the solutions of flat discrete gradient flows
defined above do not touch the constraint and hence, they satisfy the corresponding
unconstrained Euler-Lagrange equations.

6.1. Flat discrete gradient flow of W . Fix initial conditions

x0 = (x1,0, . . . , xM,0) ∈ ΩM , d1,0, . . . , dM,0 ∈ {−1, 1},

and fix δ > 0 such that

(6.8) min{1

2
disti 6=j(xi,0, xj,0),dist(xi,0, ∂Ω)} − 2δ =: cδ > 0.

Definition 6.4. We say that a solution of the discrete gradient flow {xτk} of W
from x0 is maximal if the minimum problem in (6.6) does not admit a solution for
k = K + 1.

Let {xτk} be a maximal solution of the flat discrete gradient flow of W from x0,
according with Definitions 6.2, 6.4; we set

(6.9) kτδ = kτδ ({xτk}) := min{k ∈ {1, . . . ,K} :

min{1

2
disti 6=j(x

τ
i,k, x

τ
j,k),dist(xτi,k, ∂Ω)} ≤ 2δ }.

We notice that, since |xτkτδ − x
τ
kτδ−1| ≤ δ and

min{1

2
disti6=j(x

τ
i,kτδ−1, x

τ
j,kτδ−1),dist(xτi,kτδ−1, ∂Ω)} > 2δ,

then

min{1

2
disti 6=j(x

τ
i,kτδ

, xτj,kτδ ),dist(xτi,kτδ , ∂Ω)} > δ,

i.e., kτδ < K. It follows that, for any k = 0, 1, . . . , kτδ , we have

(6.10) xτk ∈ Kδ,

where Kδ is the compact set given by

(6.11) Kδ :=

{
x ∈ ΩM : min{1

2
disti 6=j(xi, xj),dist(xi, ∂Ω)} ≥ δ

}
.



METASTABILITY AND DYNAMICS OF DISCRETE TOPOLOGICAL SINGULARITIES 31

Notice that W is smooth on Kδ. In particular, we can set

(6.12) Cδ := max
x∈Kδ

(W (x0)−W (x)).

Proposition 6.5. For τ small enough the following holds. For every k = 1, . . . , kτδ ,

we have that
∑M
i=1 |xτi,k − xτi,k−1| < δ and

(6.13) ∂xiW (xτk) + π
xτi,k − xτi,k−1

τ
= 0 for i = 1, . . . ,M.

In particular, for every k = 1, . . . , kτδ

(6.14) |xτk − xτk−1| ≤ max
x∈Kδ

|∇W (x)|τ.

Proof. Since the energy W is clearly decreasing in k, for every k = 1, . . . , kτδ we
have

(6.15)
|xτk − xτk−1|2

2τ
≤ 1

π
(W (xτk−1)−W (xτk)) ≤W (x0)−W (xτk) ≤ Cδ.

It follows that for τ small enough
∑M
i=1 |xτi,k − xτi,k−1| < δ. Therefore, the

minimality of xτk clearly implies (6.13), as well as (6.14). �

Let x(t) be the solution of the gradient flow of W with initial datum x0 (see
(6.7)) and let T ∗ be its maximal existence time. We set

(6.16) Tδ := inf

{
t ∈ [0, T ∗] : min{1

2
disti 6=j(xi(t), xj(t)),dist(xi(t), ∂Ω)} ≤ 2δ

}
.

Notice that by definition we have

(6.17) lim
δ→0

Tδ = T ∗.

For 0 ≤ t ≤ kτδ τ , we denote by xτ (t) = (xτ1(t), . . . , xτM (t)) the piecewise affine in
time interpolation of {xτk}.

Theorem 6.6. Let {xτk}τ>0 be a family of maximal solutions of the flat discrete
gradient flow of W from x0. Then,

(6.18) T̃δ := lim inf
τ→0

kτδ τ ≥ Tδ,

where kτδ is defined in (6.9) and Tδ is defined in (6.16).

Moreover, for every 0 < T < T̃δ, x
τ → x uniformly on [0, T ]. Finally, T̃δ → T ∗

as δ → 0.

Proof. By the very definition of kτδ , it is easy to prove that

|xτkτδ − x
τ
0 | > cδ ,

where cδ is defined in (6.8). Moreover, by (6.14), for τ small enough we get

|xτkτδ − x
τ
0 | ≤

kτδ∑
k=1

|xτk − xτk−1| ≤ max
x∈Kδ

|∇W (x)|kτδ τ,

and hence
kτδ τ ≥

cδ
max
x∈Kδ

|∇W (x)|
> 0.

From (6.14) it is easy to see that xτ are equibounded and equicontinuous in [0, τkτδ ],
and hence by Ascoli Arzelà Theorem, they uniformly converge, up to a subsequence,
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to a function x on [0, T ], for every T < T̃δ. Let t ∈ (0, T̃δ) and let h > 0, by (6.13)
we get

xτ (τb(t+ h)/τc)− xτ (τbt/τc) =

b(t+h)/τc−1∑
k=bt/τc

xτk+1 − xτk = − τ
π

b(t+h)/τc−1∑
k=bt/τc

∇W (xτk).

Taking the limit as τ → 0, and then h→ 0, we obtain that the limit x is the unique
solution of (6.7).

Moreover, it is easy to see that xτ (τkτδ )→ x(T̃δ) as τ → 0 and hence by the very

definition of kτδ , it is immediate to see that (6.18) holds true and T̃δ < T ∗. Since

Tδ → T ∗ (see (6.17)) we conclude that T̃δ → T ∗ as δ → 0.
�

6.2. Flat discrete gradient flow of Fε. We are now in a position to state and
prove the convergence of the discrete gradient flows as ε→ 0.

Theorem 6.7. Let µ0 :=
∑M
i=1 di,0δxi,0 with |di,0| = 1. Let µε,0 ∈ Xε be such that

µε,0
flat→ µ0, lim

ε→0

Fε(µε,0)

| log ε|
= π|µ0|(Ω).

Let δ > 0 be fixed such that min
{

1
2disti6=j(xi,0, xj,0), dist(xi,0, ∂Ω)

}
> 2δ. Given

τ > 0, let µτε,k be a solution of the flat discrete gradient flow of Fε from µε,0.

Then, up to a subsequence, for any k ∈ N we have µτε,k
flat→ µτk, for some µτk ∈ X

with |µτk|(Ω) ≤M .
Moreover there exists a maximal solution of the discrete gradient flow, xτk =

(xτ1,k, . . . , x
τ
M,k), of W from x0 = (x1,0, . . . , xM,0), according with Definition 6.2,

such that

µτk =

M∑
i=1

di,0δxτi,k for every k = 1, . . . , kτδ ,

where kτδ is defined in (6.9).

Proof. Since Fε(µτε,k) is not increasing in k, we have

Fε(µτε,k) ≤ Fε(µε,0) ≤Mπ| log ε|+ o(| log ε|).

By Theorem 4.3(i), we have that, up to a subsequence, µτε,k
flat→ µτk ∈ X, with

|µτk|(Ω) ≤M and ‖µτk − µτk−1‖flat ≤ δ. Let k̃τδ be defined by

k̃τδ := sup{k ∈ N : µτl =

M∑
i=1

di,0δxτi,l ,

min{1

2
disti6=j(x

τ
i,l, x

τ
j,l),dist(xτi,l, ∂Ω)} > 2δ, l = 0, . . . , k}.

(6.19)

Since |µτ
k̃τδ+1
|(Ω) ≤ M and ‖µτ

k̃τδ+1
− µτ

k̃τδ
‖flat ≤ δ, we deduce that µk̃τδ+1 =∑M

i=1 di,0δxτi,k̃τ
δ

+1
, while

(6.20) min{1

2
disti6=j(x

τ
i,k̃τδ+1

, xτ
j,k̃τδ+1

),dist(xτ
i,k̃τδ+1

, ∂Ω)} ≤ 2δ .

Moreover, since ‖µτk − µτk−1‖flat ≤ δ, it is easy to see that at each step k =

1, . . . , k̃τδ +1 and for every singularity xτi,k−1 of µτk−1, there is exactly one singularity
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of µτk at distance at most δ from xτi,k−1; we relabel it xτi,k. Therefore, by definition

of D2 , we have that for k = 1, . . . , k̃τδ + 1

(6.21) D2(µτk, µ
τ
k−1) = |xτk − xτk−1|2.

We now show that for k = 0, 1, . . . , k̃τδ + 1, xτk satisfies (6.6). For any measure

µ =
∑M
i=1 di,0δyi with ‖µ − µτk−1‖flat ≤ δ, by Theorem 4.3 (iii) there exists a

recovery sequence {µε} such that Fε(µε)−Mπ| log ε| →W(µ) +Mγ as ε→ 0. By
a standard density argument we can assume that ‖µε − µτε,k−1‖flat ≤ δ. Therefore

by (ii) of Theorem 4.3, using the fact that µτε,k satisfies (6.5) and the continuity of
D2 with respect to the flat norm, we get

W(µτk) +Mγ +
πD2(µτk, µ

τ
k−1)

2τ

≤ lim inf
ε→0

Fε(µτε,k)− πM | log ε|+
πD2(µτε,k, µ

τ
ε,k−1)

2τ

≤ lim
ε→0
Fε(µε)− πM | log ε|+

πD2(µε, µ
τ
ε,k−1)

2τ

= W(µ) +Mγ +
πD2(µ, µτk−1)

2τ
,

i.e., µτk satisfies

µτk ∈ argmin

{
W(µ) +

πD2(µ, µτk−1)

2τ
: µ =

M∑
i=1

di,0δxi ,
∥∥µ, µτk−1

∥∥
flat
≤ δ

}
.

By (6.21) we have that xτk is a solution of the discrete gradient flow of W from

x0 = (x1,0, . . . , xM,0) and by (6.20) that k̃τδ + 1 = kτδ .
�

7. Discrete gradient flow of Fε with L2 dissipation

In this section we introduce and analyze the discrete gradient flow of Fε with L2

dissipation (for the L2 norm, we will use the notation introduced in (2.3)).

Definition 7.1. Fix δ > 0 and let ε, τ > 0. Given uε,0 ∈ AFε(Ω), we say that
{uτε,k}, with k ∈ N ∪ {0}, is a solution of the L2 discrete gradient flow of Fε from
uε,0 if uτε,0 = uε,0, and for any k ∈ N, uτε,k satisfies

uτε,k ∈ argmin

{
Fε(u) +

‖e2πiu − e2πiuτε,k−1‖2L2

2τ | log τ |
: u ∈ AFε(Ω),

‖µ(u)− µ(uτε,k−1)‖flat ≤ δ
}
.

(7.1)

The constraint ‖µ(u)− µ(uτε,k−1)‖flat ≤ δ is not closed in the L2 topology. Nev-
ertheless, in Subsection 7.2 we prove an existence result for such a discrete gradient
flow.

In the parabolic flow of Ginzburg-Landau functionals it is well known that, as
ε → 0, the dynamics becomes slower and slower, and in order to capture a non
trivial dynamics it is needed to scale the time by | log ε| (see for instance [40]). In our
discrete in time evolution, with τ � ε, it turns out that the natural scaling involves
the time step τ instead of the length scale ε. Such a time-scaling is plugged into the
discrete dynamics through the 1/| log τ | pre-factor in front of the L2 dissipation. A
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heuristic argument to justify this pre-factor is that it is the correct scaling for the
canonical vortex x/|x|. Indeed, given V ∈ R2 representing the vortex velocity, a
direct computation shows that

(7.2) lim
τ→0

1

τ | log τ |

∥∥∥∥ x|x| − x− τV
|x− τV |

∥∥∥∥2

2

= π|V |2 .

As in Section 6, we want to consider the limit as ε→ 0 of such a discrete gradient
flow. To this purpose, we will exploit the Γ-convergence analysis developed in
Section 4.4. The limit dynamics will be described by a discrete gradient flow (that
we shall define in the following) of the functional W (defined in (4.22)).

Let v0 ∈ DM (see (4.21)) be an initial condition with W(v0) < +∞, and let
uε,0 be a recovery sequence for v0 in the sense of (4.26). We will show that the
solutions uτε,k of the L2 discrete gradient flow of Fε from uε,0 converge (according

with the topology of our Γ-convergence analysis in Subsection 4.4) to some limit vτk .
Moreover, at each time step k, vτk ∈ DM , the Γ-limit W is finite, and the degrees of
the singularities coincide with the degrees di,0 of the initial datum. Finally, {vτk} is
a solution of the L2 discrete gradient flow according with the following definition.

Definition 7.2. Let δ, τ > 0 and K ∈ N. We say that {vτk}, with k = 0, 1, . . . ,K,
is a solution of the L2 discrete gradient flow of W from v0 if vτ0 = v0 and, for any
k = 1, . . . ,K, vτk satisfies

vτk ∈ argmin
{
W(v) +

‖v − vτk−1‖2L2

2τ | log τ |
: Jv =

M∑
i=1

di,0δyi,k , yi,k ∈ Ω,

v ∈ H1
loc(Ω \ ∪Mi=1{yi,k};S1), ‖Jv − Jvτk−1‖flat ≤ δ

}
.

(7.3)

As in Section 6, we first do the asymptotic analysis as τ → 0. This step is much
more delicate than in the case of flat dissipation. Indeed, it is at this stage that we
adopt the abstract method [40], and exploit it in the context of minimizing move-
ments instead of gradient flows. This method relies on the proof of two energetic
inequalities; the first relates the slope of the approximating functionals with the
slope of the renormalized energy; the second one relates the scaled L2 norm under-
lying the parabolic flow of GLε with the Euclidean norm of the time derivative of
the limit singularities. In our discrete in time framework, we adapt the arguments
in [40] by replacing derivatives by finite differences. The explicit computation in
(7.2) has not an easy counterpart for general solutions vτk , and (7.2) has to be re-
placed by more sophisticated estimates (see (7.18) and (7.57)). This point is indeed
quite technical, and makes use of a lot of analysis developed in [40], [41].

7.1. L2 discrete gradient flow of W. Let v0 ∈ DM with Jv0 =
∑M
i=1 di,0δxi,0 ,

and fix δ > 0 such that (6.8) holds true.

Definition 7.3. We say that a solution of the L2 discrete gradient flow {vτk} of W
from v0 is maximal if the minimum problem in (7.3) does not admit a solution for
k = K + 1.

Let {vτk} be a maximal solution of the L2 discrete gradient flow of W from v0,

let Jvτk :=
∑M
i=1 di,0δxτi,k , and let kτδ be defined as in (6.9).

Remark 7.4. Since for any i = 1, . . . ,M , we have that |di,0| = 1 and thanks to
the constraint ‖Jvτk − Jvτk−1‖flat ≤ δ, we get that at each step k = 1, . . . , kτδ and
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for each singularity xτi,k−1 of Jvτk−1, there is exactly one singularity of Jvτk whose
distance from xτi,k−1 is less than δ. We label this singularity xτi,k.

The above remark guarantees that the following definition is well posed.

Definition 7.5. We set xτk := (xτ1,k, . . . , x
τ
M,k), where xτi,k are labeled according

with Remark 7.4. Moreover, we define xτ (t) := (xτ1(t), . . . , xτM (t)) as the piecewise
affine in time interpolation of {xτk}.

As in Section 6 we have that xτk ∈ Kδ , where Kδ is defined in (6.11). Moreover,
the energy W is clearly decreasing in k. Since, for every k = 1, . . . , kτδ we have

‖vτk − vτk−1‖2L2

2τ | log τ |
≤ W(vτk−1)−W(vτk),

then

(7.4)

kτδ∑
k=1

‖vτk − vτk−1‖2L2

2τ | log τ |
≤ W(v0)−W(vτkτδ )

≤ W(v0)−W (xτkτδ ) ≤ W(v0)−W (x0) + Cδ ,

where Cδ is defined in (6.12).

Proposition 7.6. For every k = 0, 1, . . . , kτδ we have that ‖Jvτk − Jvτk−1‖flat <

C
√
τ | log τ |, where C > 0 depends only on δ (and on the initial condition v0).

Proof. Fix 1 ≤ k ≤ kτδ and 1 ≤ i ≤M . Set ρτi,k := 1
4dist(xτi,k, x

τ
i,k−1). Note that

(7.5) deg(vτk , ∂Bρτi,k(xτi,k)) 6= 0 = deg(vτk−1, ∂Bρτi,k(xτi,k)) .

Moreover, since W(vτk) ≤ W(v0), from (4.24) we have that

(7.6)

∫
B2ρτ

i,k
(xτ
i,k

)\Bρτ
i,k

(xτi,k)

(|∇vτk |2 + |∇vτk−1|2) dx ≤ 2W(v0) + C .

As a consequence of (7.5) and (7.6), we have that

(7.7) (dist(xτi,k, x
τ
i,k−1))2 ≤ C

∫
B2ρτ

i,k
(xτ
i,k

)\Bρτ
i,k

(xτi,k)

|vτk − vτk−1|2 dx .

Indeed, if by contradiction (7.7) does not hold, by a scaling argument we could find
two sequences {wn1 } and {wn2 } of functions in H1(B2 \B1;S1) such that∫

B2\B1

(|∇wn1 |2 + |∇wn2 |2) dx ≤ 2W(v0) + C,

∫
B2\B1

|wn1 − wn2 |2 dx→ 0 ,

and such that deg(wn1 , ∂Bρ) 6= deg(wn2 , ∂Bρ) for almost every ρ ∈ [1, 2]. This is
impossible in view of the stability of the degree with respect to uniform convergence
for continuous maps from S1 to S1.

Now, from (7.4) we have that∫
B2ρτ

i,k
(xτ
i,k

)\Bρτ
i,k

(xτi,k)

|vτk − vτk−1|2 dx ≤ Cτ | log τ |,

which together with (7.7) yields

(7.8) ‖Jvτk − Jvτk−1‖flat ≤ C
√
τ | log τ | .

�



36 R. ALICANDRO, L. DE LUCA, A. GARRONI, AND M. PONSIGLIONE

For every k = 0, 1, . . . , kτδ we set

(7.9) Dτ
k :=W(vτk)−W (xτk).

Moreover, set T̃δ := lim infτ→0 k
τ
δ τ , and define for any t ∈ [0, T̃δ), the energy excess

(7.10) D(t) = lim sup
τ→0

Dτ
bt/τc ≥ 0.

Since W(vτk) ≤ W(v0), by (6.10) we have

(7.11) Dτ
k =W(vτk)−W (xτk) ≤ W(v0)−W (xτk) ≤ D(0) + Cδ ,

where Cδ is defined in (6.12). From now on we will say that an initial condition v0

is well prepared if W (x0) =W(v0), i.e., D(0) = 0.
We are in a position to state the main theorem of this section.

Theorem 7.7. Let v0 be a well prepared initial condition. Let {vτk}τ>0 be a family
of maximal solutions of the L2 discrete gradient flow of W from v0. Then,

(7.12) T̃δ := lim inf
τ→0

kτδ τ ≥ Tδ,

where kτδ is defined in (6.9) and Tδ is defined in (6.16).

Moreover, for every 0 < T < T̃δ, x
τ → x uniformly on [0, T ], where xτ is defined

in Definition 7.5, and x is the solution of the gradient flow of W from x0 according
with Definition 6.3. Finally, D(t) = 0 for every 0 ≤ t < T̃δ and T̃δ → T ∗ as δ → 0.

Remark 7.8. As a consequence of the uniform convergence of xτ and the estimate
(7.8), one can prove that the 1-current associated to the polygonal xτ (with the
natural orientation and multiplicity given by the integers di,0), converges to the
current associated to the limit x in the flat norm.

The proof of Theorem 7.7 is postponed at the end of the section, and will be
obtained as a consequence of Theorem 7.9 below, which can be regarded as the
discrete in time counterpart of Theorem 1.4 in [41].

Theorem 7.9. Let v0 be a well prepared initial datum, i.e., with W (x0) =W(v0).
Let {vτk}τ>0 be solutions of the L2 discrete gradient flow for W from v0, let T > 0
be such that kτδ ≥ bT/τc for every τ , and assume that xτ → x uniformly in [0, T ] for
some x(t) ∈ H1([0, T ]; ΩM ). Moreover, assume that (i) and (ii) below are satisfied:

(i) ( Lower bound) For any s ∈ [0, T ]

lim inf
τ→0

τ

| log τ |

b sτ c∑
k=1

∥∥∥∥vτk − vτk−1

τ

∥∥∥∥2

L2

≥ π
∫ s

0

|ẋ(t)|2 dt .

(ii) ( Construction) For any k = 0, 1, . . . , bT/τc− 1, there exists a field wτk+1 ∈
H1

loc(Ω \ ∪Mi=1{xτi,k − τ
π∂xiW (xτk)};S1) and a constant Mδ > 0 such that

W(vτk)−W(wτk+1) ≥ τ

π
|∇W (xτk)|2 − τMδD

τ
k + o(τ),

1

| log τ |

∥∥∥∥wτk+1 − vτk
τ

∥∥∥∥2

L2

≤ 1

π
|∇W (xτk)|2 + o(1).

Then, D(t) = 0 for every t ∈ [0, T ], and x(t) is a solution of the gradient flow
(6.7) of W from x0 on [0, T ].
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Proof. By (ii) and by the minimality of vτk+1, we have

W(vτk)−W(vτk+1) =W(vτk)−W(wτk+1) +W(wτk+1)−W(vτk+1)

≥ τ

π
|∇W (xτk)|2− τ

2| log τ |

∥∥∥∥wτk+1 − vτk
τ

∥∥∥∥2

L2

+
τ

2| log τ |

∥∥∥∥vτk+1 − vτk
τ

∥∥∥∥2

L2

−τMδD
τ
k+o(τ)

≥ τ

2π
|∇W (xτk)|2 +

τ

2| log τ |

∥∥∥∥vτk+1 − vτk
τ

∥∥∥∥2

L2

− τMδD
τ
k + o(τ).

Now, let s ∈ [0, T ]. Summing over k = 0, 1, . . . , bs/τc − 1, we have

W(vτ0 )−W(vτbs/τc) ≥
1

2π

∫ τbs/τc−τ

0

|∇W (xτbt/τc)|
2 dt

+
τ

2| log τ |

bs/τc−1∑
k=0

∥∥∥∥vτk+1 − vτk
τ

∥∥∥∥2

L2

−Mδ

∫ τbs/τc−τ

0

Dτ
bt/τc dt+ o(1).

By the uniform convergence of xτ to x in [0, T ] and the fact that x ∈ H1, we have
that also xτb·/τc → x uniformly in [0, T ]. Hence, passing to the lim inf as τ → 0,

using (i) and (7.11), we get

lim inf
τ→0

(W(vτ0 )−W(vτbs/τc)) ≥
1

2

∫ s

0

1

π
|∇W (x(t))|2 + π|ẋ(t)|2 dt

−Mδ

∫ s

0

D(t) dt,

(7.13)

where D(t) is defined in (7.10).
Since W(vτ0 ) =W(v0) = W (x0) = W (x(0)), we have immediately that

(7.14) lim inf
τ→0

(W(vτ0 )−W(vτbs/τc)) = W (x(0))−W (x(s))−D(s).

Combining this with (7.13) yields

W (x(0))−W (x(s))−D(s) ≥1

2

∫ s

0

1

π
|∇W (x(t))|2 + π|ẋ(t)|2 dt

−Mδ

∫ s

0

D(t) dt.

(7.15)

Since

W (x(0))−W (x(s)) =

∫ s

0

〈−∇W (x(t)), ẋ(t)〉 dt

≤ 1

2

∫ s

0

1

π
|∇W (x(t))|2 + π|ẋ(t)|2 dt,

(7.16)

then,

D(s) ≤Mδ

∫ s

0

D(t) dt.

Since D(0) = 0 by assumption, from Gronwall’s lemma we find that D(s) = 0 for
all s ∈ [0, T ].

Using that D(s) = 0, by (7.15) and (7.16) we obtain∫ s

0

| 1√
π
∇W (x(t)) +

√
π ẋ(t)|2 dt ≤ 0,

and hence ẋ(t) = − 1
π∇W (x(t)) a.e. in [0, T ]. �
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The following propositions are devoted to show that the hypothesis of Theorem
7.9 are satisfied by the L2 discrete gradient flow defined in Definition 7.2.

Proposition 7.10. Let {vτk}τ>0 be a family of maximal solutions of the L2 discrete
gradient flow of W from v0, let kτδ be as in (6.9), and let xτ be defined as in
Definition 7.5. Then

(7.17) T̃δ = lim inf
τ→0

kτδ τ ≥ π
c2δ
Cδ
,

where Cδ and cδ are defined in (6.12) and (6.8) respectively.

Moreover, there exists a map x ∈ H1([0, T̃δ]; ΩM ) such that, up to a subsequence,

xτ → x uniformly on [0, T ] for every 0 < T < T̃δ and

(7.18) lim inf
τ→0

τ

| log τ |

bTτ c∑
k=1

∥∥∥∥vτk − vτk−1

τ

∥∥∥∥2

L2

≥ π
∫ T

0

|ẋ(t)|2 dt.

Proof. The starting point of the proof consists in applying Theorem A.1 to piecewise
affine interpolations in time of suitable regularizations of vτk . Clearly, the Ginzburg-
Landau energy of vτk is not bounded. By the very definition of W, we have

1

2

∫
Ω\∪iBτ (xτi,k)

|∇vτk |2 dx−Mπ| log τ | ≤ W(vτk) ≤ W(v0).

Moreover, the Dirichlet energy stored in Bτ (xτi,k)\Bτ/2(xτi,k) is bounded. Therefore,
by standard cut off arguments, we can easily construct fields v̂τk which coincide with
vτk in Ω \ ∪iBτ (xτi,k), are equal to zero in Bτ/2(xτi,k) and satisfy

(7.19)
1

2

∫
Ω

|∇v̂τk |2 dx ≤Mπ| log τ |+ C.

Then, we consider the piecewise affine in time interpolation v̂τ : [0,+∞)×Ω→ R2

of v̂τk defined by

v̂τ (t, x) :=

 (1− t− kτ
τ

)v̂τk(x) +
t− kτ
τ

v̂τk+1(x) if kτ ≤ t ≤ (k + 1)τ ≤ kτδ τ ,
v̂τkτδ (x) if t > kτδ τ .

For every fixed t > 0, we denote by µ̂τ (t) the (space) Jacobian of v̂τ .
We will prove the theorem in several steps.

Step 1. There exists a map x ∈ C0, 12 ([0,+∞); ΩM ) such that up to a subsequence,
for every T > 0 we have

(7.20) µ̂τ (t)
flat→ µ(t) := π

M∑
i=1

di,0δxi(t) for every t ∈ [0, T ] .

Fix T > 0. By the convexity of the Dirichlet energy and by (7.19), it follows that
for any t ∈ [0, T ]

(7.21)
1

2

∫
Ω

|∇v̂τ (t, x)|2 dx ≤Mπ| log τ |+ C.

Moreover, by the definition of v̂τk , it follows that for any k = 0, . . . , kτδ − 1∥∥v̂τk+1 − v̂τk
∥∥2

L2 ≤
∥∥vτk+1 − vτk

∥∥2

L2 + Cτ2;
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therefore, by (7.4), we get∫
[0,T ]×Ω

|∂tv̂τ |2 dt dx =

kτδ−1∑
k=0

τ

∥∥∥∥ v̂τk+1 − v̂τk
τ

∥∥∥∥2

L2

≤ C| log τ | .

It is easy to see that for every t ∈ [kτ, (k + 1)τ ]

(7.22)
1

τ

∫
Ω

(1− |v̂τ (t, x)|2)2 dx ≤ C

τ

∥∥v̂τk+1 − v̂τk
∥∥2

L2 ≤ C| log τ |.

In conclusion, for every t ∈ [0, T ] we have

1

2

∫
Ω

|∇v̂τ |2 +
1

τ
(1− |v̂τ |2)2 dx ≤ C| log τ |∫

[0,T ]×Ω

|∂tv̂τ |2 dt dx ≤ C| log τ |.

By Theorem A.1 applied with ε =
√
τ and recalling that µ(0) = µ0 =

∑M
i=1 di,0δxi,0 ,

we deduce that

µ(t) = π

M(t)∑
i=1

di,0δxi(t), for all t ∈ [0, T ]

for some xi(t) ∈ C0, 12 ([0, Ti); Ω) with Ti ≤ T . Here Ti represents the first time when
xi(t) reaches ∂Ω. Finally, by construction, xi(t) are defined on [0, T ], distinct, and
contained in Ω. The conclusion follows by a standard diagonalization argument.

Step 2. Set

T̂δ := inf

{
t ∈ [0,+∞) : min{1

2
disti6=j(xi(t), xj(t)), dist(xi(t), ∂Ω)} ≤ 2δ

}
.

Then, T̃δ ≥ T̂δ > 0.
Since x ∈ C0, 12 and x(0) = x0 satisfies

min{1

2
disti6=j(xi,0, xj,0),dist(xi,0, ∂Ω)} > 2δ,

we have T̂δ > 0. Fixed t > T̃δ, by construction and Step 1 we have that

(7.23) µ̂τ (t) = µ̂τkτδ τ
flat→ π

M∑
i=1

di,0δxi(T̃δ).

Set µτ (t) := π
∑M
i=1 di,0δxτi (t) for t ≤ kτδ τ , where xτi are defined in Defini-

tion 7.5. Let 0 ≤ k ≤ kτδ . Since supp(µ̂τ (kτ)), supp(µτ (kτ)) ⊆ ∪iBτ (xτi,k) and

µ̂τ (kτ)(Bτ (xτi,k)) = µτ (kτ)(Bτ (xτi,k)), for any ϕ ∈ C0,1
c (Ω) we have

〈µ̂τ (kτ)− µτ (kτ), ϕ〉 =

M∑
i=1

〈µ̂τ (kτ)− µτ (kτ), ϕ− ϕ̄i〉

≤ (|µ̂τ (kτ)|(Ω) + |µτ (kτ)|(Ω)) τ‖∇ϕ‖L∞ ,

where ϕ̄i denotes the average of ϕ on Bτ (xτi,k). Since, by Remark 4.4, we have

|µ̂τ (kτ)|(Ω) ≤ C
M∑
i=1

∫
Bτ (xτi,k)\B τ

2
(xτi,k)

|∇v̂τk |2 dx ≤ C ,
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we deduce that

(7.24) max
k=0,1,...,kτδ

‖µ̂τ (kτ)− µτ (kτ)‖flat ≤ Cτ .

This fact together with (7.23) yields

M0∑
i=1

di,0δxτ
i,kτ
δ

flat→
M∑
i=1

di,0δxi(T̃δ).

Therefore, by the very definition of kτδ , we have that for every t > T̃δ

min{1

2
disti6=j(xi(t), xj(t)),dist(xi(t), ∂Ω)} ≤ 2δ.

By continuity, the previous inequality holds also for t = T̃δ, so that we conclude
that T̃δ ≥ T̂δ > 0.

Step 3. xτ → x uniformly on the compact subsets of [0, T̃δ).
Let us show that

(7.25) max
k=0,1,...,kτδ

‖µ̂τ (kτ)− µ(kτ)‖flat =: ‖µ̂τ (k̄ττ)− µ(k̄ττ)‖flat → 0 .

Up to a subsequence we can assume that k̄ττ converges to some t0 ∈ [0, T̃δ]. The
fields

(7.26) ṽτ (t, x) :=

{
v̂τ (t, x) if t ≤ k̄ττ
v̂τ (k̄ττ, x) if t > k̄ττ

satisfy the assumptions of Theorem A.1, applied with ε =
√
τ ; therefore, denoting

by µ̃τ (t) the (space) Jacobian of ṽτ , we have that, up to a subsequence,

(7.27) µ̃τ (t)
flat→ µ̃(t) :=

{
µ(t) if t ≤ t0
µ(t0) if t > t0 ,

where the structure of µ̃ is a consequence of the continuity guaranteed by Theo-
rem A.1. From (7.27) one can easily prove that µ̂τ (k̄ττ)− µ(t0) converges to zero
in the flat norm and hence we get (7.25). Combining (7.24) with (7.25) we also
deduce that

(7.28) max
k=0,1,...,kτδ

‖µτ (kτ)− µ(kτ)‖flat → 0.

Moreover, by the construction of µτ and (7.6), we have that

(7.29) max
t∈[0,kτδ τ ]

‖µτ (t)− µτ (bt/τcτ)‖flat → 0.

Using (7.29), (7.28) and that maxt∈[0,kτδ τ ] ‖µ(bt/τcτ)− µ(t)‖flat → 0, by the trian-
gular inequality we conclude that

max
t∈[0,kτδ τ ]

|xτ (t)− x(t)| = max
t∈[0,kτδ τ ]

‖µτ (t)− µ(t)‖flat → 0.

Step 4. The function x belongs to H1([0, T̃δ]; ΩM ), and, for any T ∈ [0, T̃δ], (7.18)

holds true. In particular, T̃δ ≥ πc2δ/Cδ.
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The proof of this step is obtained as a consequence of Proposition A.3 applied
to the fields v̂τ , with ε = τ and T̃ = T̃δ. By (7.4) and recalling (7.22), it easily
follows that

1

τ2

∫ T̃δ

0

∫
Ω

(1− |v̂τ |2)2 dx dt ≤ C
kτδ∑
k=1

τ

∥∥∥∥ v̂τk+1 − v̂τk
τ

∥∥∥∥2

L2

≤ C| log τ |;

and hence (A.5) holds with ε = τ and wε = vτ . This fact together with (7.20) and
(7.21) guarantees that the hypothesis of Proposition A.5 are satisfied. Therefore,
we deduce that (7.18) holds true with vτk replaced by v̂τk . Since ‖v̂τk−vτk‖L2 = O(τ2),
we deduce (7.18).

Finally, by (7.4) and recalling (6.12), we have

π

∫ T

0

|ẋ(t)|2 dt ≤ lim inf
τ→0

τ

| log τ |

bTτ c∑
k=1

∥∥∥∥vτk − vτk−1

τ

∥∥∥∥2

L2

≤ lim inf
τ→0

(W(v0)−W(vτbTτ c
)) ≤ lim inf

τ→0
(W (x0)−W (xτbTτ c

)) ≤ Cδ.
(7.30)

By Hölder inequality, and recalling (6.8), we conclude

(7.31) cδ ≤ |x(T̃δ)− x(0)| ≤
∫ T̃δ

0

|ẋ| dt ≤ ‖ẋ‖L2([0,T̃δ];R2M )

√
T̃δ.

By (7.30) and (7.31) we immediately get (7.17) �

Since we have proved assumption (i) in Theorem 7.10, it remains to prove only
assumption (ii). To this aim, at each time step k = 0, 1, . . . , kτδ , we construct,
a field wτk+1 whose vortices are obtained translating xτi,k in the direction of the

renormalized energy ∇W (xτk). The variation of the energy W associated to the
fields vτk and wτk+1 is proportional to the distance among the vortices of the two
functions (i.e. |∇W (xτk)|) up to an error given by the energy excess Dτ

k defined in
(7.11).

Proposition 7.11. For any k = 0, 1, . . . , kτδ−1, there exists a field wτk+1 ∈ H1
loc(Ω\⋃M

i=1

{
xτi,k − τ

π∂xiW (xτk)
}

;S1) such that

W(vτk)−W(wτk+1) ≥ τ

π
|∇W (xτk)|2 −MδτD

τ
k + o(τ)(7.32) ∥∥wτk+1 − vτk

∥∥2

L2

τ2| log τ |
≤ 1

π
|∇W (xτk)|2 + o(1),(7.33)

where Mδ is a positive constant depending only on δ.

Proof. Fix k ∈ {0, 1, . . . , kτδ − 1}; to ease notations we set

(7.34) Vi = (Vi1, Vi2) := − 1

π
∂xiW (xτk), V := (V1, . . . , VM ).

With a little abuse of notations, from now on we will set xi := xτi,k and yi = xi+τVi
for every i = 1, . . . ,M . By (6.9), the balls Bδ/2(xi) are pairwise disjoint and
contained in Ω.

In order to construct the field wτk+1, we wish to “push” the vortices xi along the
direction Vi. For every i = 1, . . . ,M , we can find smooth, compactly supported
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vector fields in Ω, Xi1 and Xi2 such that

Xi1(x) = (1, 0) Xi2(x) = (0, 1) for x ∈ Bδ/2(xi),

Xi1(x) = Xi2(x) = (0, 0) for x ∈ Bδ/2(xj), j 6= i

and such that ‖∇Xij‖L∞ ≤ 2
δ for every i, j. Then, define XV =

∑M
i=1

∑
j=1,2VijXij .

Since W is smooth in Kδ (see (6.11)), there exists a constant Mδ depending only
on δ such that

(7.35) ‖ det∇XV ‖L∞ ≤
1

2
Mδ .

For any t ∈ [0, τ ], we define χt(x) := x + tXV (x) for every x ∈ Ω; notice that
χt(x) = x+ tVi for x ∈ Bδ/2(xi). For any t ∈ [0, τ ] let Φt be the solution of{

∆Φt = 2π
∑M
i=1 di,0δxi+tVi in Ω

Φt = 0 on ∂Ω

and

(7.36) Rt(x) := Φt(x)−
M∑
i=1

di,0 log |x− xi − tVi|.

By definition Rt are smooth harmonic functions in Ω; we denote by R̃t its harmonic
conjugates with zero average in Ω. Moreover, we denote by θti the polar coordinates

centered at xi + tVi and set Φ̃t :=
∑M
i=1 di,0θ

t
i + R̃t. Notice that ∇Φ̃t is nothing

but the π/2 rotation of ∇Φt. We define

(7.37) ψt(·) = Φ̃t(χt(·))− Φ̃0(·).

Notice that ψt is a smooth function in Ω, the singularities at xi canceling out,
and that it is smooth in space-time. In particular, using (6.10) one can show that,
for τ small enough, there exists a constant C depending only on δ such that

(7.38) sup
t∈[0,τ ]

(
‖∇ψt‖L∞(Ω) + ‖ d

dt
ψt‖L∞(Ω)

)
≤ C .

For any 0 < σ < δ, we define Ωtσ := Ω \ ∪Mi=1Bσ(xi + tVi). By definition of Φ̃t,
the renormalized energy associated to the configuration xτk + tV is given by

(7.39) W (xτk + tV ) = lim
σ→0

1

2

∫
Ωtσ

|∇Φ̃t|2 −Mπ| log σ|.

Since vτk ∈ H1(Ω0
σ;S1), there exist a family {Li}i=1,...,M of cuts of the domain

Ω (Li is a segment from xi to ∂Ω) and a function ϕ0 ∈ H1(Ω0
σ \∪Mi=1 {Li} ;R) such

that vτk = eiϕ
0

.
Recalling (7.37), we introduce the field wτk+1 defined by the following identity

(notice that χτ is invertible for τ small enough)

(7.40) wτk+1(χτ (x)) := vτk(x)eiψ
τ (x) = ei(ϕ

0(x)+ψτ (x)).

By definition, wτk+1 ∈ H1(Ωτσ;S1) and Jwτk+1 =
∑M
i=1 di,0δyi .
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We notice that if ϕ0 = Φ̃0, then by (7.39) we get

W(vτk)−W(wτk+1) = lim
σ→0

1

2

∫
Ω0
σ

|∇vτk |2 dx− 1

2

∫
Ωτσ

|∇wτk+1|2 dy(7.41)

= lim
σ→0

1

2

∫
Ω0
σ

|∇Φ̃0|2 dx− 1

2

∫
Ωτσ

|∇Φ̃τ |2 dy

= W (xτk)−W (xτk + τV ).(7.42)

Recalling (6.10) and (6.11), by Taylor expansion we conclude

(7.43) W (xτk)−W (xτk −
τ

π
∇W (xτk)) =

τ

π
|∇W (xτk)|2 + O(τ2).

We show now that wτk+1 satisfies (7.32) even when vτk is not optimal in energy.
To this purpose, we show that the difference W(vτk) −W(wτk+1) can be bounded
from below by the variation of the renormalized energy up to an error given by the
defect Dτ

k defined in (7.9). More precisely, set

(7.44) Dτ
σ,k :=

1

2

∫
Ω0
σ

(|∇ϕ0|2 − |∇Φ̃0|2) dx,

so that Dτ
k = limσ→0D

τ
σ,k. We want to prove that, for 0 < σ � τ ,

1

2

∫
Ω0
σ

|∇vτk |2 dx− 1

2

∫
Ωτσ

|∇wτk+1|2 dy ≥ 1

2

∫
Ωσ

|∇Φ̃0|2 dx

− 1

2

∫
Ωτσ

|∇Φ̃τ |2 dy −MδτD
τ
σ,k + O(

√
σ| log σ|).

(7.45)

Notice that, taking the limit as σ → 0 in (7.45), we get

W(vτk)−W(wτk+1) ≥W (xτk)−W (xτk − τ∇W (xτk))−MδτD
τ
k ,

which, in view of (7.43), concludes the proof of (7.32).
We now prove (7.45). By the change of variable y = χτ (x) and by definition of

wτk+1 in (7.40), we get

(7.46)
1

2

∫
Ωτσ

|∇wτk+1|2 dy =
1

2

∫
Ω0
σ

|∇wτk+1(χτ )|2|Jχτ | dx

=
1

2

∫
Ω0
σ

|∇ϕ0 +∇ψτ |2|Jχτ | dx

We claim that the following two estimates hold:

(7.47)
1

2

∫
Ω0
σ

|∇ϕ0|2|Jχτ | dx ≤
1

2

∫
Ω0
σ

|∇Φ̃0|2|Jχτ | dx+ (1 +Mδτ)Dτ
σ,k,

(7.48)

∫
Ω0
σ

〈∇ψτ ,∇ϕ0〉|Jχτ | dx =

∫
Ω0
σ

〈∇ψτ ,∇Φ̃0〉|Jχτ | dx+ O(
√
σ| log σ|).
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By (7.47) and (7.48), we conclude the proof of (7.45) as follows: Using (7.37) and
the change of variables y = χτ (x), by (7.46) we get

(7.49)
1

2

∫
Ωτσ

|∇wτk+1|2 dy

≤ 1

2

∫
Ω0
σ

|∇Φ̃0 +∇ψτ |2|Jχτ | dx+ (1 +Mδτ)Dτ
σ,k + O(

√
σ| log σ|)

=
1

2

∫
Ωτσ

|∇Φ̃τ |2 dy + (1 +Mδτ)Dτ
σ,k + O(

√
σ| log σ|) .

By (7.44) and straightforward algebraic manipulations we obtain (7.45).
Now, we will prove the claims (7.47) and (7.48). Claim (7.47) follows by

1

2

∫
Ω0
σ

(|∇ϕ0|2 − |∇Φ̃0|2)|Jχτ | dx ≤ ‖Jχτ‖L∞Dτ
σ,k

≤ (1 +
1

2
Mδτ +O(τ2))Dτ

σ,k ≤ (1 +Mδτ)Dτ
σ,k.

We pass to the proof of (7.48). We have

(7.50)

∫
Ω0
σ

〈∇ψτ ,∇ϕ0〉|Jχτ | dx

=

∫
Ω0
σ

〈∇ψτ ,∇Φ̃0〉|Jχτ | dx+

∫
Ω0
σ

〈∇ψτ ,∇ϕ0 −∇Φ̃0〉|Jχτ | dx.

Using again that ‖Jχτ‖L∞ ≤ 1 +Mδτ and Hölder inequality, we get

(7.51)

∫
Ω0
σ

〈∇ψτ ,∇ϕ0 −∇Φ̃0〉|Jχτ | dx

≤ (1 +Mδτ)

(∫
Ω0
σ

|∇ψτ |2 dx

) 1
2
(∫

Ω0
σ

|∇ϕ0 −∇Φ̃0|2 dx

) 1
2

.

Moreover, since W(vτk) ≤ W(v0), we have∫
Ω0
σ

|∇ϕ0−∇Φ̃0|2 dx ≤ 2

∫
Ω0
σ

(|∇ϕ0|2 + |∇Φ̃0|2) dx ≤ 4W(v0)+4Mπ| log σ|+oσ(1).

By (7.37), since XV has compact support in Ω we have

∂ψt

∂ν
=
∂Φt

∂ν⊥
− ∂Φ

∂ν⊥
= 0 on ∂Ω .

Therefore, in view of (7.38),∫
Ω0
σ

|∇ψτ |2 dx =

∫
∂Ω

ψτ
∂ψτ

∂ν
ds−

M∑
i=1

∫
Bσ(xi)

|∇ψτ |2 ds ≤ Cσ2.

Combining the above estimates with (7.50) and (7.51) we get (7.48).
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To complete the proof it remains to show that (7.33) holds. By definition of
wτk+1(x) (see (7.40)), we have immediately∥∥vτk − wτk+1

∥∥2

L2 =

∫
Ω

∣∣∣vτk − vτk(χ−1
τ )eiψ

τ (χ−1
τ )
∣∣∣2 dy

=

∫
Ω

∣∣vτk − vτk(χ−1
τ )
∣∣2 dy(7.52)

+

∫
Ω

∣∣∣vτk(χ−1
τ )− vτk(χ−1

τ )eiψ
τ (χ−1

τ )
∣∣∣2 dy(7.53)

+ 2

∫
Ω

〈vτk − vτk(χ−1
τ ), vτk(χ−1

τ )− vτk(χ−1
τ )eiψ

τ (χ−1
τ )〉 dy.(7.54)

In order to prove (7.33) it is enough to show that∫
Ω

∣∣vτk − vτk(χ−1
τ )
∣∣2 dy ≤ πτ2| log τ | |V |2 + o(τ2| log τ |) ,(7.55) ∫

Ω

∣∣∣vτk(χ−1
τ )− vτk(χ−1

τ )eiψ
τ (χ−1

τ )
∣∣∣2 dy ≤ Cτ2;(7.56)

indeed, once we got (7.55) and (7.56), by Hölder inequality, we have immediately

that the integral in (7.54) is O(τ2
√
| log τ |).

First, we prove (7.56). By the change of variable y = χτ (x) and the fact that
ψ0 = 0, in view of (7.38), we obtain∫

Ω

∣∣∣vτk(χ−1
τ )− vτk(χ−1

τ )eiψ
τ (χ−1

τ )
∣∣∣2 dy =

∫
Ω

∣∣∣1− eiψτ ∣∣∣2 |Jχτ | dx
≤ (1 +Mδτ)‖ d

dt
ψt‖2L∞(Ω)τ

2|Ω| ≤ Cτ2 .

Finally, to complete the proof of the Theorem it remains to show that (7.55) holds.
By Hölder inequality, we have∫

Ω\∪iBδ/2(yi)

|vτk − vτk(χ−1
τ )|2 dy

≤
∫

Ω\∪iBδ/2(yi)

τ

∫ τ

0

|∇vτk(χ−1
t )|2‖ d

dt
χ−1
t ‖2L∞ dy dt

≤ C(1 +Mδτ)τ2(W(vτk) +Mπ| log
δ

2
|) ≤ Cτ2 ,

where C depends only on δ and we have used that W(vτk) ≤ W(v0).
In order to complete the proof of(7.55), it is enough to show that

(7.57)

∫
Bδ/2(yi)

|vτk − vτk(χ−1
τ )|2 dy ≤ πτ2| log τ ||Vi|2 + o(τ2| log τ |).

Let N > 0 be given; then, for any i = 1, . . . ,M ,

(7.58)

∫
Bδ/2(yi)

|vτk(χ−1
τ )−vτk |2 dy ≤

∫
Bδ/2(yi)\BNτ (yi)

|vτk(χ−1
τ )−vτk |2 dy+4N2τ2π.

Without loss of generality we can assume di,0 = deg(vτk , ∂Bδ/2(xi)) = 1.

We first show the estimate (7.57) in the case vτk = x−xi
|x−xi| in Bδ/2(xi). Let (r, θ)

be the polar coordinates with respect to yi; denoting by α = α(r, θ) the angle
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between the vectors y−yi
|y−yi| and vτk(y) = y−yi+τVi

|y−yi+τVi| , we have

(7.59)∫
Bδ/2(yi)\BNτ (yi)

∣∣∣∣ y − yi|y − yi|
− y − yi + τVi
|y − yi + τVi|

∣∣∣∣2 dy =

∫ δ/2

Nτ

r dr

∫ 2π

0

4 sin2 α

2
dθ.

Using elementary geometry identities and Taylor expansion, for Nτ ≤ r ≤ δ/2 we
get

sinα =
τ |Vi| sin θ

r

1√
1 + τ2|Vi|2

r2 − 2 τ |Vi| cos θ
r

=
τ |Vi| sin θ

r
(1 + O(1/N)),

so that sin2 α
2 = τ2|Vi|2 sin2 θ

4r2 + O(1/N). Therefore, by (7.59) we get

(7.60)

∫
Bδ/2(yi)\BNτ (yi)

∣∣∣∣ y − yi|y − yi|
− y − yi + τVi
|y − yi + τVi|

∣∣∣∣2 dy

= τ2|Vi|2
∫ δ/2

Nτ

1

r
dr

∫ 2π

0

sin2 θ dθ + O(1/N)

= πτ2| log τ ||Vi|2 + πτ2 log
δ

2N
|Vi|2 + O(1/N)).

Then, (7.57) follows (in the case vτk = x−xi
|x−xi| ) by choosing N = | log τ |.

Now, we prove (7.57) in the general case, i.e., without assuming vτk = x−xi
|x−xi| . Set

L := blog2
δ

2Nτ c and let θi be the angle in polar coordinates with center in yi, i.e.,

the phase of the function y−yi
|y−yi| . For every l = 1, . . . , L, we set

Cl(yi) := B2−lδ(yi) \B2−l−1δ(yi), C̃l(yi) := B2−l+1δ(yi) \B2−l−2δ(yi).

Set ϕ̃0
i,l = 1

|C̃l(yi)|

∫
C̃l(yi)

ϕ0(x) dy and notice that the average of θi is equal to π.

We have∫
Bδ/2(yi)\BNτ (yi)

|vτk(χ−1
τ )− vτk |2 dy =

L∑
l=1

∫
Cl(yi)

|vτk(χ−1
τ )− vτk |2 dy

=

L∑
l=1

∫
Cl(yi)

|ei(ϕ
0(χ−1

τ )−ϕ̃0
i,l+π) − ei(ϕ

0−ϕ̃0
i,l+π)|2 dy

=

L∑
l=1

∫
Cl(yi)

|eiθi(χ
−1
τ ) − eiθi |2 dy

+

∫
Cl(yi)

|ei(ϕ
0(χ−1

τ )−ϕ̃0
i,l+π) − ei(ϕ

0−ϕ̃0
i,l+π) − (eiθi(χ

−1
τ ) − eiθi)|2 dy

+2

∫
Cl(yi)

〈eiθi(χ
−1
τ )−eiθi , ei(ϕ

0(χ−1
τ )−ϕ̃0

i,l+π)−ei(ϕ
0−ϕ̃0

i,l+π)−(eiθi(χ
−1
τ )−eiθi)〉 dy .

Estimating the last term of the right hand side of the above formula by Hölder’s
inequality and recalling (7.60), in order to prove (7.57) it is enough to show the
following estimate

L∑
l=1

∫
Cl(yi)

∣∣∣ei(ϕ0(χ−1
τ )−ϕ̃0

i,l+π) − ei(ϕ
0−ϕ̃0

i,l+π) − (eiθi(χ
−1
τ ) − eiθi)

∣∣∣2 dy ≤ Cτ2 .
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By definition of χτ , for any y ∈ Cl(yi), χ−1
τ (y) = y − τVi and then

ei(ϕ
0(χ−1

τ (y))−ϕ̃0
i,l+π) − ei(ϕ

0(y)−ϕ̃0
i,l+π) = −

∫ τ

0

∇ei(ϕ
0(y−tVi)−ϕ̃0

i,l+π) · Vi dt ,

eiθi(χ
−1
τ (y)) − eiθi(y) = −

∫ τ

0

∇eiθi(y−tVi) · Vi dt ;

then, by Jensen and Cauchy inequalities,

∫
Cl(yi)

∣∣∣ei(ϕ0(χ−1
τ )−ϕ̃0

i,l+π) − ei(ϕ
τ
k−ϕ̃

0
i,l+π) − (eiθi(χ

−1
τ ) − eiθi)

∣∣∣2 dy

=

∫
Cl(yi)

∣∣∣∣∫ τ

0

(∇eiθi(y−tVi) −∇ei(ϕ
0(y−tVi)−ϕ̃0

i,l+π)) · Vi dt

∣∣∣∣2 dy

≤ τ |Vi|2
∫
Cl(yi)

dy

∫ τ

0

∣∣∣∇eiθi(y−tVi) −∇ei(ϕ0(y−tVi)−ϕ̃0
i,l+π)

∣∣∣2 dt

≤ τ2|Vi|2
∫
C̃l(yi)

∣∣∣∇eiθi −∇ei(ϕ0−ϕ̃0
i,l+π)

∣∣∣2 dy.(7.61)

Furthermore

(7.62)

L∑
l=1

∫
C̃l(yi)

|∇eiθi −∇ei(ϕ
0−ϕ̃0

i,l+π)|2 dy

≤ 2

L∑
l=1

∫
C̃l(yi)

|∇eiθi |2|1− ei(ϕ
0−ϕ̃0

i,l+π−θi)|2 dy +

∫
C̃l(yi)

|∇(θi − ϕ0)|2 dy

≤ 2

L∑
l=1

∫
C̃l(yi)

22l+4δ−2|ei(θi−ϕ
0) − ei(−ϕ̃

0
i,l+π)|2 dy +

∫
C̄l(yi)

|∇(θi − ϕ0)|2 dy,

where the last inequality follows from the fact that |∇eiθi(y)|2 = 1
|y−yi|2 and that

2−l−2δ ≤ |y − yi| ≤ 2−l+1δ for y ∈ C̃l(xi).
Finally, by Poincaré inequality, it follows that

∫
C̃l(yi)

|ei(θi−ϕ
0) − ei(−ϕ̃

0
i,l+π)|2 dx

≤
∫
C̃l(xi)

|θi − ϕ0 − (π − ϕ̃0
i,l)|2 dx ≤ C2−2lδ2

∫
C̃l(yi)

|∇(θi − ϕ0)|2 dy ,

(7.63)

where C is a positive constant. By the minimality of θi, we have

∫
C̃l(yi)

|∇(ϕ0 − θi)|2 dy =

∫
C̃l(yi)

|∇ϕ0|2 −
∫
C̃l(yi)

|∇θi|2 dy .
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By (7.62) and Remark 4.4, we obtain

L∑
l=1

∫
C̃l(yi)

|∇ei(ϕ
0−ϕ̃τi,l+π) −∇eiθi |2 dy

≤ C
L∑
l=1

∫
C̃l(yi)

(|∇ϕ0|2 − |∇θi|2) dy

= C

L∑
l=1

(∫
C̃l(yi)

|∇ϕ0|2 dx− 6π log 2

)
≤ C .

This together with (7.61) concludes the proof. �

We are now in a position to prove Theorem 7.7.

Proof of Theorem 7.7. By Theorems 7.10, 7.11, we can apply Theorem 7.9 for any

T < π
c2δ
Cδ

, and in view of (7.17) we obtain that

1) xτ converges to the solution x of (6.7), uniformly on [0, T ];
2) D(T ) = 0.

Let Tmax ≤ lim infτ→0 k
τ
δ τ be the maximal time such that 1) and 2) hold true on

[0, T ) for every T < Tmax. Recalling (see (6.17)) that Tδ → T ∗ as δ → 0, it remains
only to prove that Tmax ≥ Tδ. This follows by a standard continuation argument:
Assume by contradiction that Tmax < Tδ, and let T < Tmax. Then we have

min
t∈[0,Tmax]

min{1

2
disti 6=j(xi(t), xj(t)),dist(xi(t), ∂Ω)} − 2δ = c′δ > 0.

Consider now xτbT/τc, v
τ
bT/τc as the initial condition of a new L2 discrete gradient

flow. Notice that, in view of 2), these initial conditions are well prepared; the
fact that the initial time is not zero is not relevant, since all the equations are
autonomous. Moreover, even if the initial conditions depend on τ , they converge
as τ → 0. Therefore, Theorems 7.10, 7.11, and Theorem 7.9 still hold true with
the obvious modifications, and we easily deduce that 1) and 2) holds true as long
as 0 ≤ t− T ≤ (c′δ)

2/Cδ. This time interval in which we can extend the solution is
independent of T < Tmax, which contradicts the maximality of Tmax. �

7.2. L2 discrete gradient flow of Fε. We conclude this section by analyzing
the existence of the L2 discrete gradient flow of Fε and studying its asymptotic
behaviour as ε→ 0. The existence will be obtained for ε small enough by making
use of the auxiliary problem studied in the previous section. To this aim it is
convenient to introduce a relaxed version of such discrete evolution.

Definition 7.12. Fix δ > 0 and let ε, τ > 0. Given uε,0 ∈ AFε(Ω), we say that
{ūτε,k : k ∈ N}, is a solution of the relaxed L2 discrete gradient flow of Fε from uε,0
if ūτε,0 = uε,0 and, for any k ∈ N, there exists a sequence {uτε,k,n}n such that

lim
n→∞

‖e2πiuτε,k,n − e2πiūτε,k‖L2 = 0,

‖µ(uτε,k,n)− µ(ūτε,k−1)‖flat ≤ δ for every n ∈ N,

lim
n→∞

Fε(u
τ
ε,k,n) +

‖e2πiuτε,k,n − e2πiūτε,k−1‖2L2

2τ | log τ |
= Iτε,k ,

(7.64)
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where

Iτε,k = inf
u∈AFε(Ω)

{
Fε(u) +

‖e2πiu − e2πiūτε,k−1‖2L2

2τ | log τ |
: ‖µ(u)− µ(ūτε,k−1)‖flat ≤ δ

}
.

The existence of such relaxed discrete gradient flow is obvious. To show that it
is actually a strong L2 discrete gradient flow it is enough to show that ‖µ(ūτε,k) −
µ(ūτε,k−1)‖flat ≤ δ. A key argument is given by the following estimate that one can
easly check by contradiction
(7.65)
lim sup
n→+∞

‖µ(uτε,k,n)− µ(ūτε,k)‖flat ≤ Cε]{(i, j) ∈ Ω1
ε : dist(ūτε,k(i)− ūτε,k(j),Z) = 1

2}

Theorem 7.13. Let v0 be such that W(v0) < +∞ and let Jv0 =
∑M
i=1 di,0δxi,0 =:

µ0 with |di,0| = 1. Let uε,0 ∈ AFε(Ω) such that

µ(uε,0)
flat→ µ0, Fε(uε,0) ≤ π|µ0|(Ω) log ε+ C.

Let δ > 0 be fixed such that min
{

1
2disti6=j(xi,0, xj,0), dist(xi,0, ∂Ω)

}
> 2δ. Given

τ > 0, let ūτε,k be a solution of the relaxed L2 discrete gradient flow of Fε from uε,0.

Then, up to a subsequence, for any k ∈ N we have µ(ūτε,k)
flat→ µτk, for some

µτk ∈ X with |µτk|(Ω) ≤ M and there exists a maximal solution of the L2 discrete
gradient flow, vτk , of W from v0, according with Definition 7.2, such that

(7.66) µτk = Jvτk =

M∑
i=1

di,0δxτi,k , for every k = 1, . . . , kτδ ,

with kτδ as defined in (6.9).

Moreover denoting by ṽτε,k the piecewise affine interpolation of e2πiūτε,k , we have

(7.67) ṽτε,k ⇀ vτk in H1
loc(Ω \ ∪Mi=1{xτi,k};R2) , for every k = 1, . . . , kτδ .

Finally for τ and ε small enough such ūτε,k is indeed a minimizer of problem

(7.1) and hence it is a solution of the (strong) L2 discrete gradient flow.

Proof. The proof of this result uses the first order Γ-convergence result (Theorem
4.5) and follows closely the proof of the analogous statement in Section 6 (see
Theorem 6.7). Indeed, by the definition of the relaxed L2 discrete gradient flow we
have that for any k ∈ N

Fε(ū
τ
ε,k) +

∥∥∥e2πiūτε,k − e2πiūτε,k−1

∥∥∥2

L2

2πτ | log τ |
≤ Fε(ūτε,k−1).

By induction on k, one can show that

Fε(ū
τ
ε,k) ≤ Fε(uε,0,Ω) ≤Mπ| log ε|+ C .

This estimate together with (7.65) implies that ‖µ(ūτε,k) − µ(ūτε,k−1)‖flat ≤ δ +

Cε| log ε|. Then using the Compactness result stated in Theorem 4.2(i), and arguing
as in the proof of Theorem 6.7 we deduce (7.66) and (7.67).

In order to show that, for ε small enough, ūτε,k is a solution of the L2 discrete
gradient flow according with Definition 7.1, it is enough to recall that thanks to
Proposition 7.6 we have that ‖µτk − µτk−1‖flat ≤ C

√
τ | log τ |. Then the conclusion

follows by the convergence in the flat norm of µ(ūτε,k) to µτk. �
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8. Conclusions

We have obtained an asymptotic expansion by Γ-convergence for a large class
of discrete energies accounting for defects (including the elastic energy in crystals
with screw dislocations and the energy of XY spin systems with vortices). Based
on this analysis, we have been able to show existence of metastable configurations,
and we have introduced a discrete in time variational dynamics, which allows to
overcome the energy barriers and mimics the effect of more complex mechanisms,
as thermal effects. We have described the dynamics up to the first collision time;
it would be interesting to model the collision of discrete vortices, and study the
dynamics after the critical time as in the Ginzburg-Landau setting (see [11], [42],
[43]). In all the paper we have focused on Neumann boundary conditions, but our
analysis could be extended to the case of Dirichlet boundary conditions.

In the proof of our results we have made use of a new variational principle that
allows to deduce the presence of local minimizers for Γ-converging sequences, also
in the absence of local minimizers in their limit. This has been possible for a large
class of interaction potentials, which includes the case of screw dislocations but not
the XY model, for which this fact is still unclear.

In the discrete dynamics we have analyzed two different dissipations. This is
motivated also by applications. Indeed, the L2 dissipation is a standard choice
for parabolic flows and measures the variations in the spin variable. While, the
dissipation D2 is a natural choice in the study of screw dislocation dynamics, and
can be viewed as a measure of the number of energy barriers to be overcome in
order to move a dislocation. We note that, in the case of dislocations, one could also
consider suitable variants of the D2 dissipation accounting for the glide directions
of the crystal. This would lead to a different effective dynamics. We also believe
that our approach could be generalized to anisotropic energies and to more general
lattice structures. It is still open the case of edge dislocations, for which a complete
Γ-expansion of the energy is not yet available ([21], [19]).

Having proved a pinning phenomenon, it remains open to characterize a critical
ε-τ regime for the motion of dislocations, and an effective depinning threshold in
this regime. This is a relevant issue and it might be worth facing it by using our
variational approach.

The effective dynamics of our discrete systems agrees with the asymptotic par-
abolic flow of the Ginzburg-Landau functionals. In the latter, the time scaling
needed to get a non-trivial effective dynamics depends on the space parameter ε.
It is worth noticing that, in our discrete in time gradient flow with L2 dissipation,
the time scaling is expressed only in terms of the time step τ . In this respect, an
analysis of critical ε-τ regimes would make an interesting bridge between these two
approaches.

Appendix A. Product-Estimate

In this section we collect some results in [39] that are used in the proofs of
Section 7.

We first introduce some notation. Let A be an open bounded subset of R3.
Given w = (w1, w2) ∈ H1(A;R2), its Jacobian Jw can be regarded as a 2-form in
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R3 given by

(A.1) Jw = dw1 ∧ dw2 =
∑
j<k

(∂jw1∂kw2 − ∂jw2∂kw1) dxj ∧ dxk.

Thus Jw acts on vector fields X,Y ∈ C(A;R3) with the standard rule that

dxj ∧ dxk(X,Y ) =
1

2
(XjYk −XkYj) .

The Jacobian Jw can be also identified with a 1-dimensional current ?Jw which
acts on 1 forms ω = ω1 dx1 + ω2 dx2 + ω3 dx3 as

〈?Jw, ω〉 =

∫
A

Jw ∧ ω .

In particular, for any X,Y ∈ C(A;R3)

〈?Jw,X ∧ Y 〉 =

∫
A

Jw(X,Y ) dx,

where, with a little abuse of notation, we identify 1-forms with vector fields.
Let Ω be an open bounded subset of R2 and T > 0. For a given w ∈ H1([0, T ]×

Ω;R2), we denote by µ, V 1, V 2 the L1 functions such that

(A.2) Jw = µdx1 ∧ dx2 + V 1 dx1 ∧ dt+ V 2 dx2 ∧ dt .

The theorem below collects the results of Theorem 1 and Theorem 3 in [39]. We
remind that the definition of the functionals GLε is given in (1.2).

Theorem A.1. Let wε ∈ H1([0, T ]× Ω;R2) be such that

(A.3)

∫ T

0

GLε(wε(t, ·)) dt+

∫ T

0

∫
Ω

|∂twε(t, x)|2 dx dt ≤ C| log ε| .

Then, there exists a rectifiable integer 1-current J such that, up to a subsequence,

?Juε
π
→ J in (C0,γ

c ([0, T ]× Ω;R3))′, ∀γ ∈ (0, 1].

Moreover, for any X,Y ∈ C0
c ([0, T ]× Ω;R3)

lim inf
ε→0

1

π| log ε|

(∫
[0,T ]×Ω

|X · ∇wε|2 dx dt

∫
[0,T ]×Ω

|Y · ∇wε|2 dx dt

) 1
2

≥|〈J,X ∧ Y 〉| .

If in addition we assume that

(A.4) sup
t∈[0,T ]

GLε(wε(t, ·)) ≤ C| log ε|,

then, J can be written as in (A.2) with µ ∈ C0, 12 ([0, T ]; (C0,γ
c (Ω))′) for every γ ∈

(0, 1] and V 1, V 2 ∈ L2([0, T ];M(Ω)).
Finally, up to a subsequence,

µε(t)
flat→ µ(t) for all t ∈ [0, T ].

We now state a variant of Corollary 4 in [39] which is a direct consequence of
Theorem A.1.
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Corollary A.2. Let 0 ≤ t1 < t2 and let wε ∈ H1([t1, t2] × Ω;R2) be such that
(A.3) holds true with [0, T ] replaced by [t1, t2], and such that for all t ∈ [t1, t2]

1

2

∫
Ω

|∇wε(t, x)|2 dx ≤Mπ| log ε|+ C

for some M ∈ N and C ∈ R. Assume moreover that

µε(t)
flat→ µ(t) := π

M∑
i=1

diδxi(t),

with |di| = 1 and xi(t) ∈ C([t1, t2]; Ω) for every i with xi(t) 6= xj(t) for i 6= j.
Then, for any X,Y ∈ C0

c (Ω;R3)

lim inf
ε→0

1

| log ε|

∫
[t1,t2]×Ω

〈X · ∇wε, Y · ∇wε〉 dx dt = π

∫ t2

t1

M∑
i=1

〈X(xi(t)), Y (xi(t))〉 dt.

Here we state a result analogous to Corollary 7 in [39].

Proposition A.3. Let T̃ > 0 and let wε ∈ H1([0, T̃ ] × Ω;R2) be such that (A.3)

holds true, and such that for all t ∈ [0, T̃ ]

1

2

∫
Ω

|∇wε(t, x)|2 dx ≤Mπ| log ε|+ C

for some M ∈ N and C ∈ R. Assume moreover that

µε(t)
flat→ µ(t) := π

M∑
i=1

diδxi(t),

with |di| = 1 and xi(t) ∈ C([0, T̃ ]; Ω) for any i with xi(t) 6= xj(t) for i 6= j. Then

lim inf
ε→0

1

| log ε|

∫
[0,T̃ ]×Ω

|∂twε|2 dx dt ≥ π
M∑
i=1

∫ T̃

0

|ẋi|2 dt.(A.5)

Proof. The proof of this result coincides with the one of Corollary 7 in [39], the

only difference being that [39] assumes that for every t ∈ [0, T̂ ]

1

ε2

∫
Ω

(1− |wε(x, t)|2)2 dx ≤ C| log ε|.

Here this assumption is replaced by (A.3), which is enough to apply Corollary A.2.
Once the statement of Corollary A.2 holds true, the rest of the proof follows exactly
as in in [39]. �
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