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Embeddings are fundamental resources often reused for building intelligent systems in the 
biomedical context. As a result, evaluating the quality of previously trained embeddings and 
ensuring they cover the desired information is critical for the success of applications. This 
paper proposes a new evaluation methodology to test the coverage of embeddings against a 
targetted domain of interest. It defines measures to assess the terminology, similarity, and analogy 
coverage, which are core aspects of the embeddings. Then, it discusses the experimentation 
carried out on existing biomedical embeddings in the specific context of pulmonary diseases. 
The proposed methodology and measures are general and may be applied to any application 
domain.

1. Introduction

Since the Mikolov’s seminal work [25], embeddings have showed huge potential in several applications of natural language 
processing (NLP) tasks and have become part of the NLP toolkits. Moreover, pre-trained embeddings can be reused to build ap-
plications and inject knowledge in applications and intelligent systems. In the biomedical domain, embeddings are widely used in 
clinical tasks: clinical abbreviation expansion, text classification, named-entity recognition, information retrieval, clinical predictions, 
relation classification, de-identification of electronic health records, patient similarity.

The paper focuses on static embeddings. This can be seen as a limitation, considering the advent of contextual embeddings, which 
have proved to be more powerful in NLP applications. As a matter of fact, static embeddings continue to have worth and advantages, 
as discussed by Noh and Kavuluru [28]. First of all, better static word embeddings can also aid in the initialisation of embeddings 
to facilitate the process of language-modelling-based training of contextualised models. Moreover, simpler models that use static 
embeddings can be built with 1-2 orders of magnitude fewer parameters and can run on smaller CPUs even in low resource settings. 
Secondly, static embeddings can be of inherent utility for linguists to improve knowledge representation tools, for example, studying 
lexical semantics of biomedical language by looking at word embeddings and how they may be indicative of lexical relations (e.g., 
hypernymy and meronymy). Finally, contextualised embeddings are usually only useful in languages with extensive digital corpus. 
The language modelling aim on which such embeddings rely can result in considerable overfitting compared to static techniques, for 
less known languages with smaller repositories.
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Moreover, word and concept embeddings play a fundamental role in representing the domain of interest from corpora, extracting 
the main concepts and serving relatedness among them. The main idea behind is the distributional semantic hypothesis [16]: terms such 
as words and concepts that are used and occur in the same contexts tend to exhibit related meanings. According to this principle, an 
embedding is a model representing terms into a space: each term of an 𝑛-dimensional vocabulary learned by the model is represented 
by a vector of 𝑚 dimension; semantically similar terms have close distance in the space. In this perspective, static embeddings may 
offer an interesting basis for representing conceptual spaces [18], mediating and providing a complementary geometric representation 
to the symbolic or connectionist approaches largely adopted in cognitive systems. Accordingly, their interpretation as an alternative 
knowledge representation tool is still valuable and is the one we considered in this paper.

Kalyan and Sangeetha [20] reviewed a big amount of works, presenting and comparing popular embeddings for experimental 
usage and even for benchmarking. However, they neither evaluate how the reviewed embeddings cover the targetted domain of 
interest nor consider the geometry of domain-specific terms in the space. Geometrical features of the space influence the ability 
to support qualitative reasoning such as similarity, relatedness or analogy, which are important tools for practitioners. An ideal 
embedding should preserve domain-specific qualitative reasoning. Indeed, evaluating the available embeddings and choosing the best 
representing a certain domain of knowledge and not only a specific downstream applicationis an open research question [1][12]. 
Quality metrics and methodological frameworks to inspect existing embeddings are pivotal for promoting awareness and ad-hoc 
testing when reusing third parties embeddings, and impact on the trustability and robustness of the system that reuses the embeddings 
[14].

This paper provides a methodology to evaluate task-independent quality of biomedical embeddings. Quality is usually a multi-
faceted concept that consists of different aspects, traditionally known as quality dimensions. This paper aims to address in particular 
the “coverage” dimension of embedding. The proposed method focuses on intrinsic quality of embeddings rather than extrinsic (i.e., 
downstream task-dependent) one. Although they are not always absolutely and immediately correlated, the intrinsic quality is an 
equally important component of the quality evaluation: firstly, when choosing third-party embeddings, there is not always a precise 
targetting application; secondly, even if there were, the targetting application is not necessarily the same taken into account in the 
downstream evaluation offered by others. In these scenarios, using both intrinsic quality measures may be more reliable.

We started from the assumption that the more an embedding returns elements coming from a specific domain, the better it 
covers that domain. The assumption is not restrictive and, in the end, gives a clear picture of how the embedding is able to reflect a 
determined knowledge. The main idea is targetting not only the terminological coverage, that is how many concepts of the domain of 
interest the embedding includes, but also how well the embedding supports similarities and relatedness within the domain. Moreover, 
the analogy and the analogical reasoning [25] [24] are addressed as well, encompassing the complete spectrum of the analysis. To 
the best of our knowledge, we are the first to deal with this definition of coverage for a specific domain.

As well as quality, the identification of the domain of interest lies in the eye of the beholder. For this reason, the methodology 
does not provide a fixed and rigid definition of what constitutes a domain, since it depends on the specific evaluation goal. Rather, 
the methodology operationalises the exploration of the domain of interest, relying on existing conceptualisations. In this way, it 
enables evaluators to tailor the coverage evaluation to their current needs.

We demonstrate our approach in the frame of pulmonary diseases, in particular, we focus on the Chronic Obstructive Pulmonary 
Disease (COPD). We re-purpose some state-of-the-art measures deriving from the information retrieval field to detect the presence 
of specific knowledge in the form of concepts and relations; we instantiate our approach to evaluate the coverage of the COPD 
domain among several medical word and concept embeddings. The embeddings were selected based on their availability, and 
considering a variety of corpora: they span from unstructured to structured knowledge, from informal to technical sources, from 
textual embeddings to the ones defined on Concept Unique Identifiers (CUIs) (see Section 3). Overall, the experimentation proved 
that the state-of-the-art embeddings only partially cover the concepts, similarities and analogies expected in the context of chronic 
obstructive pulmonary disease. The paper contribution is, thus, multifaceted. First, it emphasises evaluation and quality when reusing 
third-party embeddings; second, it promotes an evaluation methodology; and third, it assesses the coverage of current embeddings 
in the context of pulmonary diseases by carrying out a deep experimentation.

The provided methodology is general and may be applied to any specific domain, even not biomedical. The main prerequisite is 
the existence of a Knowledge Organisation System (KOS) to encode the domain of knowledge and the underpinning ground truth. In 
this paper we rely on UMLS, since it is a well-known and consolidated framework. Depending on the domain of interest, others may 
be considered: more and more knowledge graphs have been emerging, for example, KG Linking Open Drug Data [33], COVID-19 
Knowledge Graphs [40] and Bio2RDF [7]. Whenever no domain-specific KOS is available, even general-purpose Knowledge Graphs, 
e.g. DBpedia [22] and Wikidata [38] may serve the purpose.

The article is structured as follows. Section 2 is devoted to the analysis of the state of the art related to the quality of the 
embeddings, while Section 3 describes thoroughly the proposed methodology and measures. Section 4 examines the results obtained 
in the experimentation runs, and Section 5 concludes the paper and discusses future directions.

2. Related work

Different works have considered the quality of embeddings from a domain-neutral perspective (e.g., [35,39,15]). Others have 
focused specifically on embeddings in the context of the biomedical domain [20,10,42,9]. The literature distinguishes between 
intrinsic evaluations and extrinsic evaluations. This paper contributes to intrinsic quality evaluation, which usually, “looks at how 
2

well the induced embeddings are able to encode syntactic and semantic information” [20]. The present work complements intrinsic 
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evaluation with metrics to assess if concepts, similarities and analogies relevant to a specific domain of interest are represented in 
embeddings.

We introduced the coverage of embeddings for a specific domain of interest as an explicit quality dimension. Some previous 
works relate to coverage to a certain extent. For example, facetE [17] proposes a methodology to build a benchmark against which it 
is possible to measure how sensitive embeddings are to eight general domains named “facets” (i.e., Technology, Geographic, Music, 
Movies and Game, Literature, and Economy). However, the specificity of the considered domains is different: FacetE inspects the 
sensitiveness to a set of very broad and generic facets, not related to specific medical domains. Moreover, the two approaches rely on 
different ground truths: while facetE derives the ground truth from the analysis of web available tables related to the various topics, 
this paper relies on the ground truth derived from a specialised metathesaurus, i.e. UMLS [4].

Other works propose quality metrics based on different kinds of knowledge organisation systems, such as ontologies and knowl-
edge graphs. Alshargi et al. [1] extends the state of the art by providing several intrinsic metrics for evaluating the quality of 
embeddings learned from RDF Knowledge Graphs. It evaluates embeddings for their capability to represent structural aspects of 
the ontology underpinning the knowledge graph: categorisation, hierarchy, and relations. These measures are built upon different 
assumptions: (i) they do not deal explicitly with the coverage dimension; (ii) contrary to many embeddings considered in this paper, 
the adopted measures assume that the embeddings are trained on a knowledge graph, explicitly structured with an ontology.

The following part revises the related work and discuss the contribution of this paper in relation to the typical examples of 
intrinsic evaluation: Word Similarity and Relatedness tasks, Nearest Neighbour Search (NNS) and Word Analogy.

Word similarity and relatedness evaluations [23,42] check the proximity between the cosine similarity in the embedding space 
and reference similarity-relatedness scores. The reference scores either are in form of datasets of word (or concept) pairs along with 
their similarity (or relatedness) assigned by medical experts (e.g., UMNSRS Similarity and UMNSRS Relatedness [29], MayoSRS 
[30]) or are derived by existing Knowledge Organisation Systems like metathesauri, ontologies, knowledge bases (e.g. UMLS [4]). 
This paper does not assess embeddings against any reference similarity/relatedness scores, since building human-annotated scores 
for specific domain of interest like COPD is costly [10], and knowledge organisation systems are often not specific enough to define 
reliable similarity scores in these contexts. Nevertheless, it proposes a methodology to characterise the domain of interest in terms of 
seed concepts and seed relations derived by UMLS. Also, the aim is not to verify the perfect similarity among terms, but rather check 
if embeddings relate the terms relevant for a specific domain of interest: the more the embedding-induced similarity search involves 
elements coming from a specific domain, the better the embedding covers that domain.

Nearest Neighbour Search (NNS) evaluates the similarity by looking at the K-Nearest Neighbours of each concept in a particular 
embedding space to see if they belong to the same concept group (also known as class of success) as referenced in ontologies 
or lexicons [10]. Exploiting the NNS, Choi et al. [11] introduced evaluation metrics for validating the conceptual similarity and 
relatedness and the Medical Conceptual Similarity measure using UMLS semantic types as the class of success. The similarity coverage 
presented in this paper is inspired by the metric introduced by Choi et al. [11]. In particular, the measure relies on the Discounted 
Cumulative Gain (DCG) to measure the number of domain-specific terms returned by the embeddings. Differently from [11], the 
measure considers the whole set of terms related to the domain of interest (i.e., COPD) as the class of success for the DCG.

Word analogy verifies whether analogy reasoning on specific relations holds in the embedding or not. Mikolov et al. showed the 
ability of Word2Vec to support analogies such as “man is to woman as king to queen”. The underpinning idea is that the analogy 
holds in an embedding if the vectors “man - king” and “woman - queen” share similar direction for an analogy relation (e.g., “is a”). 
Distinct formalisations have been provided, which differ in the way the optimisation problem is posed (e.g., 3CosAdd, PairDirection, 
3CosMul [24]). However, if knowing three terms of the analogy, it is possible to check the fourth term by exploiting the vector 
arithmetic and cosine similarity.

The analogy coverage proposed in this paper measures the number of analogies relevant for the domain of interest that are 
supported by an embedding. The relevant analogies are extracted by UMLS considering the analogy that involves domain-specific 
concepts. The measure is built on top of 3CosAdd [24], and returns the percentage of domain-specific analogies supported by the 
embeddings.

3. Methodology

In the proposed methodology different components can be distinguished. A domain representation, such as a thesaurus, a metathe-
saurus, or an ontology that serves as encoding of the domain of knowledge and the underpinning ground truth in the domain. The 
domain of interest is the portion of domain for which we ideally test the appropriateness of the embeddings (e.g., COPD). Then, we 
introduce seeds, which are the collections of representatives of the domain of interest. Seeds are extracted from the domain repre-
sentation and expected to be included in the embeddings. They express the concepts, relatedness among the concepts, and analogies 
to be tested, which are typically a subset of those available in the domain representation. Finally, the metrics score the presence of 
the seeds in the embeddings. In this paper, the UMLS metathesaurus is favoured for the domain representation, and different types 
of seeds and measures are defined, each of which is designed to answer a specific question about coverage:

Vocabulary coverage: Are the concepts from the domain of interest included in the embedding?
Similarity coverage: Are the concepts of the domain of interest represented as close in the space of the embedding?
Analogy coverage: Does the embedding support the analogical reasoning in the domain of interest? In other words, how well are 
3

the UMLS relationships related to the specific domain supported inside the embedding?
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We considered most of the embeddings mentioned in [20]: the ones publicly available, based on either text or CUIs. They are all 
classical static models, which are not explicitly trained on sentences or paragraphs, then the vocabularies are usually built either on 
short multi-words composed terms or on one-word terms. Some static word embeddings (e.g., FastText [5] and staticised contextual 
embeddings [6]) have a direct strategy for solving the problem of concepts expressed by multiple words, but not all architectures 
provide a solution for it. Some embeddings build upon CUIs provided by UMLS instead of words (e.g., [11,3,13]): we included them 
as CUI embeddings in our analysis.

Section 3.1 introduces the reasons that have brought to the selection of UMLS as domain representation. Section 3.2 describes 
how the seeds for the different types of metrics are extracted from the domain representation. Section 3.3 defines the metrics for 
each kind of coverage.

3.1. Domain representation and ground truth

We choose UMLS as a reference for the domain representation, ground truth and as a source for characterising the domain of 
interest. Indeed, the usage of a biomedical knowledge base assures robustness and preciseness, otherwise reachable via experts’ 
human assessment. Other sources, such as open-source datasets constituted by pairs of similar concepts, are often used as ground 
truth to evaluate proportions among concepts [31][30] or may be suitable for other biomedical NLP tasks [37][43]. However, they 
poorly cover the COPD domain and are unusable as specific biomedical domain representations. For example, the reference standard 
dataset proposed by Pedersen et al. [31] shows only one pair of words related to “Chronic obstructive pulmonary disease” on a 
dataset of 30 pairs. In the dataset used by Pakhomov et al. [30], only one pair involves explicitly “Chronic obstructive pulmonary 
disease”, two pairs “Pneumonia”, and no one “Asthma”, on a total of 101 pairs. Adopting UMLS as domain representation and 
source from which to build the domain of interest provides two main advantages: it provides a standard set of terms, synonyms and 
identifiers to use when querying the embeddings in the biomedical domain; it provides a domain specific ground truth, preventing 
from relying on an extended annotation performed by experts, which has to be built on purpose and on a very limited domain of 
interest, supplying the scarcity of ground truths on such a domain. Moreover, UMLS is a consolidated framework: a wide range of 
tools for the normalisation of concepts or even for CUIs to words -and vice versa- conversion are maintained [2][34].

3.1.1. Unified medical language system

According to the system documentation available online, UMLS “is a comprehensive collection of multilingual controlled vo-
cabularies in the biomedical sciences, including the International Classification of Diseases and Related Health Problems (ICD-10), 
Medical Subject Headings (MeSH). It is built from lists of controlled terms used in patient care, health services billing, and biomedi-
cal literature and structured in concepts” [4]. Each concept has a unique and permanent concept identifier (CUI) and a set of terms 
or strings providing the lexical representations for the concept. Among the lexical representations, one of them is selected as the 
preferred label, the other terms provide lexical variation and synonyms used in documents or other sources in view of the preferred 
label. Apart from the lexical variations for concepts, UMLS provides non-synonymous relationships between concepts from the same 
source vocabulary and between concepts in different vocabularies. All relationships carry a general label (REL), describing their basic 
nature, such as Broader, Narrower, Child of, Qualifier of. Some of them also carry an additional label (RELA) that explains the nature 
of the relationship more precisely. We focused on RELA labels for our evaluation of relationships, as shown in the next sections. 
Moreover, all concepts are assigned at least one semantic type.

3.2. Seeds

Seeds represent the entities that an embedding should distinguish according to the UMLS characterisation. The methodology 
defines two different types of seeds: seeds for concepts, which consist of a set of representative concepts of the domain of interest, 
and seeds for analogies, which consist of concept pairs linked by relationships in the domain of interest.

3.2.1. Seeds for concepts

The seeds for concepts are built using two different strategies. In the first, UMLS is queried to obtain a list of concepts at a 
one-hop distance by the COPD concept, uniquely identified by a CUI code (e.g., ‘C0024117’): with one-hop we mean a distance of 
one relationship away. The total number of seeds are in this case 256: in other words, this number represents all the possible unique 
concepts directly related to COPD inside UMLS. We call this set seeds by UMLS relations. A second strategy consists of extracting a set 
of concepts from a plain text, fed to the MetaMap [2] conversion tool, which maps concepts from text to UMLS CUIs. The chosen text 
is [8], given the wide variety of COPD-related aspects faced and the high number of citations. This strategy returns several hundreds 
of concepts, since qualitative concepts and typical terminology of natural language are included: the less significant concepts were 
discarded, according to the MetaMap ranking system, choosing the first 399 concepts. We call this second strategy seeds by MetaMap. 
In both cases, seeds are represented as a set of CUIs: the final seeds for concepts is the union of the two sets.

3.2.2. Seeds for analogies

Analogical reasoning requires concept pairs, connected by specific relationships: similarly to ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑄𝑢𝑒𝑒𝑛 − ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐾𝑖𝑛𝑔 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊 𝑜𝑚𝑎𝑛 − ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑀𝑎𝑛

[25] with the dualism role/genre and a simple “is a” relation, in a biomedical case we could have ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑦𝑐𝑙𝑜𝑠𝑒𝑟𝑖𝑛𝑒 − ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝑐𝑒𝑡𝑦𝑙𝑐𝑦𝑠𝑡𝑒𝑖𝑛𝑒 =
4

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑇 𝑢𝑏𝑒𝑟𝑐𝑢𝑙𝑜𝑠𝑖𝑠− ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠, with a dualism drug/disease and a medical relation “treats”.
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Table 1

List of the considered UMLS relationships.

associated_finding_of has_associated_finding
associated_morphology_of has_associated_morphology
associated_with_malfunction_of_gene_product gene_product_malfunction_associated_with_disease
clinical_course_of has_clinical_course
contraindicated_with_disease has_contraindicated_drug
course_of has_course
disease_has_associated_anatomic_site is_associated_anatomic_site_of
disease_has_associated_gene gene_associated_with_disease
finding_site_of has_finding_site
manifestation_of has_manifestation
may_treat may_be_treated_by

For the analogical case, we defined the set as in eq. (1):

𝑅𝑈𝑀𝐿𝑆 = {𝑅𝑖 ∶ (𝐶𝑂𝑃𝐷 𝑅𝑖 𝑥) ∨ (𝑥 𝑅𝑖 𝐶𝑂𝑃𝐷), 𝑥 ∈𝑈𝑀𝐿𝑆} (1)

where 𝑅𝑖 are a subset of the relationships in UMLS. Only medical relationships are kept: identity relations, relations about UMLS 
system versioning, the empty relation and more general relations (e.g., inverse_isa, isa) have been discarded. We considered most 
relationships used by [9]; a few were discarded because of the different case studies (e.g., has_ingredient). [9] includes 6 drug-related 
relationships, only in one direction; contrarily, we consider more relationships and also the correspondent inverse one for each of 
them. UMLS provides a set of 54 relationships in which the COPD concept is involved. After polishing, we selected 22: 11 relations 
and their inverse ones. The table (1) shows the considered relations.

We define the seeds for analogies for the relation 𝑅𝑖 ∈𝑅𝑈𝑀𝐿𝑆 as the set in eq. (2):

𝑊𝑖 = {(𝑥, 𝑦) ∶ (𝑥 𝑅𝑖 𝑦) ∧ ((𝑥 ∈ 𝑠𝑒𝑒𝑑) ∨ (𝑦 ∈ 𝑠𝑒𝑒𝑑)) | 𝑅𝑖 ∈𝑅𝑈𝑀𝐿𝑆} (2)

where 𝑠𝑒𝑒𝑑 is seed by UMLS relations. We opted for seeds by UMLS relations instead of seeds by MetaMap since the second may give 
more general concepts and we preferred to avoid pairs which are too distant from the COPD domain. Moreover, being bigger, the 
second is computationally expensive.

3.3. Measures

The metrics score the presence of the seeds in the embedding. We considered both word embeddings and CUI embeddings. 
Consequently, metrics should act on both. We used UMLS to convert the seeds according to the type of embedding.

The seeds for concepts is represented by a set of CUIs, and it is used for vocabulary coverage and similarity coverage. In case 
of CUI embeddings [11][13][3], no specific mapping between the seeds and the embedded vocabulary is needed. In the case of 
word embeddings, instead, the embedded vocabulary includes lexical representations, such as words, and needs to be mapped into 
the seeds to work out the metrics. We exploited the mapping between lexical representations and CUIs provided by UMLS. UMLS 
associates a list of textual labels to each CUI, either built ex-novo or emerging from a rich corpus of scientific literature. It identifies 
a preferred label for each concept, but the preferred label is rarely represented inside embeddings. As a remedy, the UMLS best-
ranked lexical variations found inside the embedding vocabulary are preferred, maximising the presence of seeds inside a particular 
embedding.

This mapping strategy is a prerequisite for the application of the measures related to the In-Vocabulary 𝐼𝑉 sets (eq. (4) and 
eq. (10)) and Out-Of-Vocabulary 𝑂𝑂𝑉 sets (eq. (3) and eq. (11)) and consequently %𝐶𝐺 (eq. (6)) and 𝑝𝑜𝑠𝐷𝐶𝐺 (eq. (8)).

The seeds for analogies (eq. (2)) are used in analogy coverage and are composed by a set of couples, where at least one of the two 
concepts in the couple belongs to the seeds by UMLS relations. The analogical reasoning requires two couples for closing the analogy: 
the quadruples are built as a partial permutation of couples from the seeds for analogies. The same conversion strategy adopted for 
the seeds for concepts has been applied to the seeds for analogies. In the case of seeds by UMLS relations, a concept can be inside 
or out of vocabulary of an embedding; for the seeds for analogies we consider as out of vocabulary those quadruples where at least 
one of the 4 elements is out of vocabulary. This allows us to define the In-Vocabulary 𝐼𝑉 𝑎𝑟

𝑖
(eq. (10)) and Out-Of-Vocabulary 𝑂𝑂𝑉 𝑎𝑟

𝑖

(eq. (11)) sets for analogy coverage, which are prerequisites for the application of the analogical reasoning metric 𝐴𝑅𝑖 (eq. (12)) and 
its normalised version 𝑀𝑎𝑟

𝑖
(eq. (16)).

3.3.1. Vocabulary and similarity coverage

Vocabulary coverage regards the presence of the domain inside the embedding or, better, how much the embedding covers the 
domain. As previously indicated, seeds represent the interest domain, so it is natural to measure the vocabulary coverage in terms of 
the cardinality of seed set present in the embeddings. We distinguish different metrics for measuring the vocabulary coverage: the 
Out-of-Vocabulary (OOV), the In-Vocabulary (IV), and the percentage In-Vocabulary (%IV). The ∣𝑂𝑂𝑉 ∣ counts the number of seeds 
not included in the embedding (eq. (3)):
5

∣𝑂𝑂𝑉 ∣=∣ 𝑠𝑒𝑒𝑑 ⧵ 𝑉𝑒𝑚𝑏 ∣ (3)
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where 𝑉𝑒𝑚𝑏 is the embedded vocabulary set.
Complementarily, the ∣ 𝐼𝑉 ∣ counts the number of seeds included in the embedding vocabularies (eq. (4)):

∣ 𝐼𝑉 ∣=∣ 𝑠𝑒𝑒𝑑 ⧵𝑂𝑂𝑉 ∣ (4)

Hence, how much the embedding covers the domain of interest could be defined as the percentage value with respect to the seed 
set cardinality (eq. (5)):

%𝐼𝑉 = ∣ 𝐼𝑉 ∣
∣ 𝑠𝑒𝑒𝑑 ∣

(5)

Analogously, we can define %OOV as the percentage value of eq. (3).
Similarity coverage focuses on the neighbourhood of a queried concept, and regards how well the immediate similarity-adjacent 

concepts reflect the domain of interest. For each concept in the seed, the more the embedding reflects terms of the domain in the 
concept k-Nearest Neighbours, the more the embedding is considered interesting for the domain. The k-NN algorithm allows to 
detect the k-most-similar elements according to the geometric space of concepts learned by the analysed embedding: indeed, the 
most similar elements are selected according to the cosine similarity among the elements and the chosen seed.

If the embedding is properly trained and covers adequately the analysed domain, a big number of elements among the chosen 𝑘s 
would be inside the seed, which ideally corresponds to the fact the embeddings learned meaningful proportions among embedded 
concepts. If a word or CUI embedding was trained on domain-related documents (scientific papers in the pulmonary field or even 
COPD patients’ clinical records) an optimal vocabulary geometrical disposition would be obtained, according to COPD/pulmonary 
domain: in other words, for each seed concept, the closest 𝑘 elements would be inside the seed. Oppositely, an embedding could be 
well trained with a large vocabulary size, but, if the training dataset is not domain centred, the risk would be not having the seed 
elements in the k-NN. The %𝐶𝐺 is formalised as in eq. (6):

%𝐶𝐺𝑘 =
1

𝑘 ∣ 𝑠𝑒𝑒𝑑 ∣

∣𝑠𝑒𝑒𝑑∣∑
𝑖=0

𝑘∑
𝑗=1
1𝑖𝑗
𝑠𝑒𝑒𝑑

(6)

where 1𝑖𝑗
𝑠𝑒𝑒𝑑

represents the relevance score, and is defined as in eq. (7):

1𝑖𝑗
𝑠𝑒𝑒𝑑

=

{
1 𝑗 ∈ 𝑠𝑒𝑒𝑑
0 𝑗 ∉ 𝑠𝑒𝑒𝑑

(7)

where 𝑗 is the 𝑗th element of the list of the 𝑘 most-similar elements to 𝑖 in the embedding.
Using the normalisation described above, the metric returns the percentage of seeds contained in the set of 𝑘 most similar elements. 
Further information of relatedness is provided by equations derived by the class of Discounted Cumulative Gain (DCG) [19] [41]. 
The DCGs are widely employed as a ranking measure, in several applications: the most powerful and immediate example is probably 
provided by search engines. The DCGs provide information even about the position of the 𝑘-most-similar elements, not only on 
the occurrence in the neighbourhood. We can use the DCGs to rank when a desired element or undesired element is found in the 
𝑘-most-similar neighbourhood, naming the DCGs as Positive or negative Discounted Cumulative Gain, respectively. We formalise the 
positive Discounted Cumulative Gain (posDCG) as in eq. (8):

𝑝𝑜𝑠𝐷𝐶𝐺𝑘 =
1

ℎ ∣ 𝑠𝑒𝑒𝑑 ∣

∣𝑠𝑒𝑒𝑑∣∑
𝑖=0

𝑘∑
𝑗=1

1𝑖𝑗
𝑠𝑒𝑒𝑑

log2 (𝑗 + 1)
(8)

where ℎ is the normalisation factor as in eq. (9):

ℎ =𝑚𝑎𝑥𝐷𝐶𝐺 =
𝑘∑
𝑗=1

1
𝑙𝑜𝑔2 (𝑗 + 1)

(9)

which corresponds to the max value obtainable by the DCG computation, otherwise known as ideal DCG: in this way, eq. (8) returns 
a value between 0 and 1.

3.3.2. Analogy coverage

Analogy coverage conveys information about how well the investigated embedding expresses specific relationships supporting the 
analogy reasoning. Our analogy coverage grounds on the previous formalised sets 𝑊𝑖 (eq. (2)), which represent the couples bound 
by a chosen relation 𝑅𝑖 in UMLS. We introduce two metrics in analogy with the In-Vocabulary and Out-of-Vocabulary defined for 
similarity coverage: the In-Vocabulary and the Out-Of-Vocabulary for analogical reasoning.|𝐼𝑉 𝑎𝑟

𝑖
| counts how many seed couples are actually included in the embedding, being the presence of the UMLS-derived couples a 

prerequisite for supporting the relation in the embedding (eq. (10)):

|𝐼𝑉 𝑎𝑟𝑖 | = |||𝑉 2
𝑒𝑚𝑏

∩𝑊𝑖
|||∀𝑖 (10)
6

where 𝑉𝑒𝑚𝑏 is the embedded vocabulary set.
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A version of eq. (3) for the analogy coverage can be defined as in eq. (11):

|𝑂𝑂𝑉 𝑎𝑟𝑖 | = ||𝑊𝑖 ⧵ 𝐼𝑉 𝑎𝑟𝑖 || = ||𝑊𝑖
||− |𝐼𝑉 𝑎𝑟𝑖 |∀𝑖 (11)

The actual check that an analogy between two couples holds is scored computing algebraic operations among concepts (i.e., vectors) 
inside the embedding. The adopted approach is inspired by the metric initially appeared in [25] and mathematically formalised in 
[24] as 3𝐶𝑜𝑠𝐴𝑑𝑑: doing simple operations like addition or difference between vectors in an embedding space, we are able to obtain 
the hypothetical expected concept which closes the analogical reasoning. In the case of the analogy ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑦𝑐𝑙𝑜𝑠𝑒𝑟𝑖𝑛𝑒 − ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝑐𝑒𝑡𝑦𝑙𝑐𝑦𝑠𝑡𝑒𝑖𝑛𝑒 =
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑇 𝑢𝑏𝑒𝑟𝑐𝑢𝑙𝑜𝑠𝑖𝑠 − ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠, the expression ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑦𝑐𝑙𝑜𝑠𝑒𝑟𝑖𝑛𝑒 − ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝑐𝑒𝑡𝑦𝑙𝑐𝑦𝑠𝑡𝑒𝑖𝑛𝑒 + ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑟𝑜𝑛𝑐ℎ𝑖𝑡𝑖𝑠 is supposed to correspond to ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑇 𝑢𝑏𝑒𝑟𝑐𝑢𝑙𝑜𝑠𝑖𝑠. We 
ground our metric on the expected outcome: if a certain relationship is properly represented inside the embedding, the distance 
between the two concepts of each semantic couple related by that relationship will have same value, ergo the outcome would be the 
expected one. The Analogy Reasoning Coverage formalises this as in eq. (12):

𝐴𝑅𝑖 =
|𝐼𝑉 𝑎𝑟

𝑖
|∑

ℎ=0

|𝐼𝑉 𝑎𝑟
𝑖

|∑
𝑗=0
𝑗≠ℎ

1ℎ𝑗𝑎𝑟∀𝑖 (12)

With 1ℎ𝑗𝑎𝑟 defined as in eq. (13):

1ℎ𝑗𝑎𝑟 =

{
1 𝑥𝑗 ∈ k-NN(𝑥ℎ − 𝑦ℎ + 𝑦𝑗 )
0 otherwise

(13)

1ℎ𝑗𝑎𝑟 returns 1 when the expected value 𝑥𝑗 is among the 𝑘 vectors determined by the k-NN algorithm, 0 otherwise. The cosine 
similarity is used as distance metric for k-NN computation: every time the element which is expected to close the analogical expression 
is among the first 𝑘s, we consider contemplated the analogy for the two couples, with the indices ℎ and 𝑗. The result of the analogical 
measure (eq. (12)) is a count of the analogical expressions contemplated for a specific relationship in a certain embedding. A 
normalisation factor could be applied to eq. (12) introducing the 𝑚𝑎𝑟

𝑖
defined in eq. (15), which provides a relative percentage.

First, we compute all the partial permutation of couples in 𝐼𝑉 𝑎𝑟
𝑖

set equal to (eq. (14)):

|𝐼𝑉 𝑎𝑟
𝑖
|!

(|𝐼𝑉 𝑎𝑟
𝑖
|− 2)!

= |𝐼𝑉 𝑎𝑟𝑖 | (|𝐼𝑉 𝑎𝑟𝑖 |− 1
)

(14)

Since 𝐼𝑉 𝑎𝑟
𝑖

depends on the embedding vocabulary 𝑉 𝑒𝑚𝑏, the chosen relationship 𝑅𝑖 and on the 𝑠𝑒𝑒𝑑, an adjusting multiplicative 
factor has to be applied and we define 𝑚𝑎𝑟

𝑖
as in eq. (15):

𝑚𝑎𝑟𝑖 =
|𝐼𝑉 𝑎𝑟

𝑖
| (|𝐼𝑉 𝑎𝑟

𝑖
|− 1

)
|𝑊𝑖| (|𝑊𝑖|− 1

) ∀𝑖 (15)

The usage of |𝑊𝑖| -the number of all couples of UMLS for the relation 𝑖- is needed to compare measures among embeddings, being 
not dependent on any of the considered embeddings. Finally, we define the Percentage Analogy Coverage as in eq. (16):

𝑀𝑎𝑟
𝑖 =

𝑚𝑎𝑟
𝑖|𝐼𝑉 𝑎𝑟

𝑖
| (|𝐼𝑉 𝑎𝑟

𝑖
|− 1

)𝐴𝑅𝑖 = 𝐴𝑅𝑖|𝑊𝑖| (|𝑊𝑖|− 1
)∀𝑖 (16)

4. Experimentation

The carried out experiments evaluate most of the embeddings cited in [20] according to the proposed measures. The experiments 
considered the embeddings that explicitly encode words or concepts -CUIs-, discarding those not available or encoding different enti-
ties such as syllables, sentences, patients. Table 2 lists such embeddings with the cardinality of their vocabulary and the corresponding 
reference. The upper part of the table includes CUI embeddings with augmented information from UMLS knowledge base. The bottom 
part shows word embeddings. The application they were used for is also mentioned. The metrics code and the experimentation results 
are available at the github repository.

The experiments have been run to assess similarity coverage for different values of 𝑘. In the next, the results for only 𝑘 = 10 will 
be shown, since it is convenient in many applications such as query expansion and similarity search. The seed considered in the 
experimentation is the union of seeds of UMLS relations and seeds by MetaMap.

Table 3 shows the results for the analysed embeddings. The comparison between the vocabulary dimension (𝑉𝑒𝑚𝑏 in Table 2) and 
the vocabulary coverage metrics in Table 3 suggests that the cardinality of the embedded vocabulary is not a very indicative metric 
for the coverage per se. For example, embeddings having quite different vocabulary cardinalities such as Pubmed, Pubmed&PCM, 
wiki&Pubmed&PCM result in equal percentage In-Vocabulary coverage |%𝐼𝑉 | in Table 3. The above embeddings include the same 
percentage of seeds despite the differences in their vocabulary magnitude.

Considering the vocabulary coverage measured by %𝐼𝑉 , the word embeddings score higher than CUI embeddings. The PubMed 
and PMC models show best and comparable results (between 71.90% and 72.21%); whereas cui2vec has the best performance 
among the CUI embeddings (48.51%). Only Healthvec and tweetsvec show lower vocabulary coverage than CUI embeddings. The 
7

PMC model is trained with a smaller corpus than the others, which partially share the training corpus: PubMed corpus is common to 

https://github.com/SaGiancani/medical-concepts-embeddings
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Table 2

The embeddings targetted in the experimentation. The first three rows refer to CUI embeddings, while the 
others are word embeddings.

Embedding Source #𝑉𝑒𝑚𝑏 Application URL

claims_cuis [11] 14852
Cohort selection and
patient summarization

git

DeVine [13] 52102 Medical information retrieval see [11]
cui2vec [3] 109053 Medical information retrieval git

PMC

[26]

2515686
Text classification,
named entity recognition
and query expansion

website
PubMed 2351706
PubMed&PMC 4087446
wiki&PubMed&PMC 5443656

Healthvec [36] 73644
Drug assumption behaviour analysis
via Social-Media text processing

git

GoogleNews [25] 3000000 Text classification website
tweetsvec [27] 26278 Pharmacovigilance from social media website

Table 3

Measures obtained for vocabulary and similarity coverage considering as set of seed the union of seeds of UMLS 
relations and seeds by Metamap. In the upper rows the CUI embeddings, word embeddings below.

Embedding ∣𝑂𝑂𝑉 ∣ %𝑂𝑂𝑉 ∣ 𝐼𝑉 ∣ %𝐼𝑉 %𝐶𝐺10 𝑝𝑜𝑠𝐷𝐶𝐺10

claims_cuis 584 91.68% 53 8.32% 0.005 0.007
DeVine 356 55.89% 281 44.11% 0.035 0.042
cui2vec 328 51.49% 309 48.51% 0.045 0.049

PMC 179 28.10% 458 71.90% 0.042 0.051
PubMed 177 27.79% 460 72.21% 0.041 0.053

PubMed&PMC 177 27.79% 460 72.21% 0.043 0.052
wiki&PubMed&PMC 177 27.79% 460 72.21% 0.039 0.047
Healthvec 381 59.81% 256 40.19% 0.019 0.019
GoogleNews 203 31.87% 434 68.13% 0.023 0.029
tweetsvec 416 65.31% 221 34.69% 0.020 0.022

PubMed, PubMed&PMC, wiki&PubMed&PMC models, and this is likely the reason why these models share large part of the inside-
the-vocabulary domain concepts. Although GoogleNews is trained with general information, it outperforms the CUI embeddings, 
while showing a performance significantly lower than PubMed and PMC resources. To give an indication, Table 4 shows examples 
of COPD-related concepts and whether or not they are found in the embeddings.

Contrarily to vocabulary metrics, similarity coverage does not show a clear cut in performances between CUI and word embed-
dings: the maximums %𝐶𝐺10 and 𝑝𝑜𝑠𝐷𝐶𝐺10 for CUI embeddings (cui2vec) are comparable to the maximum values for word embed-
dings (PubMed and PubMed&PCM). Moreover, the similarity coverage returned by the embedding is generally low: 0.005 ÷ 0.045 for 
%𝐶𝐺10 and 0.007 ÷ 0.053 for 𝑝𝑜𝑠𝐷𝐶𝐺10, despite both metrics range between 0 and 1. The maximum value for %CG =0.045 means 
that only 4.5% of the terms returned by a similarity search are in the domain of interest. The ranking of embedding appears different 
when considers %𝐶𝐺10 and 𝑝𝑜𝑠𝐷𝐶𝐺10. For example, among the word embeddings, PubMed&PMC shows the best score for 𝑝𝑜𝑠𝐷𝐶𝐺10
whereas PubMed is the best for %𝐶𝐺10. This implies that PubMed returns in average more relevant terms via a similarity search than 
PubMed&PMC, but PubMed&PMC ranks the relevant terms higher in the returned list of results.

The similarity coverage metrics are more discriminating than the vocabulary coverage: Fig. 1 reveals slight differences among the 
three best 𝑝𝑜𝑠𝐷𝐶𝐺10 ranked embedding, PMC, PubMed, PubMed&PMC, while such differences are not noticeable for %𝐼𝑉 .

For the sake of completeness, Fig. 2 shows how 𝑝𝑜𝑠𝐷𝐶𝐺 changes, varying 𝑘: the performance of 𝑝𝑜𝑠𝐷𝐶𝐺 decreases weakly when 
𝑘 increases, as it may be expected from the normalisation factor in eq. (8). The set of experiments related to the vocabulary and 
similarity coverage are available at the git repo. The order among embeddings slightly changes, and there are no upheavals in the 
best five embeddings when varying 𝑘. Only cui2vec improves its ranking when increasing 𝑘. Indeed, considering the low percentage 
of coverage, selecting the third best-ranked embedding in place of the first or second-ranked might not generally determine a big 
difference in the performance.

In conclusion, the proposed metrics for similarity coverage provide tools of increasing complexity for inspecting the embeddings 
and promoting their aware adoption in applications. The poor support of similarity in a specific domain of interest is a warning bell 
for tuning the overall expectations when adopting the embeddings in particular tasks.

A second part of the experiments applies the analogy measures discussed in section 3.3.2 to evaluate the embeddings for the 
relations listed in Table 1. All the detailed results are available in Tables 5 and 6, while the experimental pipeline may be found at 
git repo. Fig. 3, 4 and 5, exemplify the results obtained for Percentage Analogy Coverage (𝑀𝑎𝑟), Analogy Reasoning Coverage (𝐴𝑅), 
and In-Vocabulary for analogical reasoning (𝐼𝑉 𝑎𝑟), conveying the qualitative considerations that follow.

The analysed embeddings support only a limited percentage of the analogies expected by UMLS: the maximum percentage 
analogy coverage (𝑀𝑎𝑟 in Fig. 3) is for the disease_has_associated_gene relation is 0.023, which corresponds to 2.3% of the expected 
8

seed-constrained UMLS analogical reasonings.

https://github.com/clinicalml/embeddings
https://github.com/beamandrew/cui2vec
http://bio.nlplab.org/
https://github.com/dartrevan/ChemTextMining
https://code.google.com/archive/p/word2vec/
http://diego.asu.edu/Publications/ADRMine.html
https://github.com/SaGiancani/medical-concepts-embeddings/blob/main/experimentation.ipynb
https://github.com/SaGiancani/medical-concepts-embeddings/blob/main/analogy_pipeline.ipynb
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Table 4

Examples of how seeds are covered by the embeddings.
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C0006261, Bronchial Diseases ✓
C0006264, Bronchial Neoplasms ✓ ✓
C0006266, Bronchospasm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C0006270, Bronchioles ✓ ✓ ✓ ✓ ✓ ✓ ✓
C0008679, Chronic disease ✓ ✓
C0024109, Lung ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C0024115, Lung diseases ✓ ✓ ✓ ✓ ✓ ✓ ✓
C0024117, Chronic Obstructive Airway Disease ✓ ✓ ✓ ✓ ✓ ✓ ✓
C4255083, diagnostic imaging aspects ✓ ✓ ✓ ✓ ✓
C0600260, Lung Diseases, Obstructive ✓
C1969833, COPD, Severe Early-Onset
C0024121, Lung Neoplasms ✓ ✓
C0034050, Pulmonary Alveolar Proteinosis ✓ ✓ ✓
C0206062, Lung Diseases, Interstitial ✓ ✓ ✓ ✓ ✓ ✓ ✓
C0155883, Chronic Obstructive Asthma ✓ ✓
C0264364, Bronchiolar disease
C0746102, Chronic lung disease ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C0205191, chronic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C0264371, Chronic obliterative bronchiolitis ✓
C0264220, Chronic disease of respiratory system ✓ ✓

Fig. 1. The figure shows %𝐼𝑉 -in green-, 𝑝𝑜𝑠𝐷𝐶𝐺10 -in pink-, %𝐶𝐺10 -in blue- for the analysed embeddings, ordering the models in x-axis by 𝑝𝑜𝑠𝐷𝐶𝐺10 performances. 
The left y-axis shows a percentage scale, for %𝐼𝑉 , the right y-axis represents the scale for %𝐶𝐺10 and 𝑝𝑜𝑠𝐷𝐶𝐺10 . The values refer to 𝑘 = 10, using as domain 
representation the seed for concepts, obtained making the union between seeds of UMLS relations and seeds by MetaMap.

The low percentages are due to the normalisation factor |𝑊𝑖||𝑊𝑖 − 1| in 𝑀𝑎𝑟 (eq. (16)), which is the overall number of seed-
constrained UMLS analogical reasonings for the relationship 𝑖. The number of couples that UMLS can form involving seed concepts 
in the relation 𝑖, i.e., |𝑊𝑖|, might be quite big (see Fig. 6), making the number of reasonings to be supported considerably high.

Some embeddings support a remarkable number of analogies, although that number is only a low percentage of those modelled 
in UMLS. This can be observed considering the non-normalised analogy coverage 𝐴𝑅. For example, Fig. 4 shows that cui2vec can 
close more than 20000 analogies for the relation finding_site_of, though 20000 analogies are only a tiny portion of those induced by 
9

UMLS (percentage analogy coverage 𝑀𝑎𝑟 < 0.005 in Fig. 3).
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Fig. 2. The values of 𝑝𝑜𝑠𝐷𝐶𝐺 varying k: 5,10,20,30,40, correspond to k value for the k-NN. The x axis shows the investigated embeddings sorted by 𝑝𝑜𝑠𝐷𝐶𝐺10 .

Table 5

Results for Percentage Analogy Coverage (𝑀𝑎𝑟), Analogy Reasoning Coverage (𝐴𝑅) and In-Vocabulary for Analogical Reasoning (𝐼𝑉 𝑎𝑟). Selected relationships are 
indicated only by their initials (e.g., course_of as co, has_course as hc).

claims_cui DeVine cui2vec Healthvec tweetsvec

𝑀𝑎𝑟 𝐴𝑅
|𝐼𝑉 𝑎𝑟 ||𝑊 | 𝑀𝑎𝑟 𝐴𝑅

|𝐼𝑉 𝑎𝑟 ||𝑊 | 𝑀𝑎𝑟 𝐴𝑅
|𝐼𝑉 𝑎𝑟 ||𝑊 | 𝑀𝑎𝑟 𝐴𝑅

|𝐼𝑉 𝑎𝑟 ||𝑊 | 𝑀𝑎𝑟 𝐴𝑅
|𝐼𝑉 𝑎𝑟 ||𝑊 |
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Closing reasonings with inverse relationships does not present a consistent symmetry. That is quite evident comparing In-
Vocabulary for analogical reasoning 𝐼𝑉 𝑎𝑟 (Fig. 5) with analogical reasoning 𝐴𝑅 (Fig. 4). In-Vocabulary for analogical reasoning 
𝐼𝑉 𝑎𝑟 (Fig. 5) shows the number of couples that can be found in the embedding, but does not measure if the relation 𝑖 is actu-
ally represented. In fact, Fig. 5 shows the same values for the properties that are the inverse of each other (e.g., may_treat and 
may_be_treated_by or associated_finding_of and has_associated_finding). On the contrary, analogical reasoning 𝐴𝑅 represents the number 
of analogies an embedding closes via relation 𝑖. Columns for inverse relations score mostly different for embeddings in Fig. 4, since 
analogies closed for a relation are not necessarily closed for its inverse relation.

The proposed analogy coverage measures provide tools to inspect the embeddings. Whereas 𝐴𝑅 represents a mere count of 
analogies, 𝑀𝑎𝑟 represents a percentage of UMLS-derived analogies. The former could return high values that, when weighted, might 
appear negligible. Vice versa, relatively low scores of 𝐴𝑅 could correspond to high values of 𝑀𝑎𝑟.

Which embedding is the best might depend on the specific goals and relations considered, as embeddings do not support all the 
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relations equally. For example, PubMed covers the highest percentage of UMLS-driven reasoning for the relationship disease_has_as-
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Table 6

Results for Percentage Analogy Coverage (𝑀𝑎𝑟), Analogy Reasoning Coverage (𝐴𝑅) and In-Vocabulary for Analogical Reasoning (𝐼𝑉 𝑎𝑟). Selected relationships are 
indicated only by their initials (e.g., course_of as co, has_course as hc).
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Fig. 3. The Percentage Analogy Coverage 𝑀𝑎𝑟
𝑖

for a given relation 𝑖.

sociated_gene, but cui2vec outperforms PubMed when dealing with may_treat, see Fig. 3. If the aim is not supporting all the possible 
UMLS-driven reasonings, but rather enabling analogy for the widest number of couples, ones might privilege the 𝐴𝑅 measure in 
place of 𝑀𝑎𝑟. According to the 𝐴𝑅 measure, cui2vec shows generally better performances. Even if DeVine has lower performances 
than cui2vec in terms of 𝐴𝑅, it is the only embeddings except cui2vec showing 𝑀𝑎𝑟 > 0 for associated_finding_of and its inverse, 
associated_morphology_of and its inverse, and course_of and its inverse.

In conclusion, the analogy measures assess different aspects of domain coverage by the embeddings: 𝐼𝑉 𝑎𝑟
𝑖

quantifies the number 
of contemplated potential couples linked by the relationship 𝑖, assuring the presence of the couple elements inside the embedding 
vocabulary; 𝐴𝑅𝑖 measures the actual number of solved permutations between the aforesaid couples, whose result is weighted with 
the partial permutation of all the couples in UMLS for the relationship 𝑖 in 𝑀𝑎𝑟

𝑖
; 𝐴𝑅𝑖, as already described, provides a very detailed 
11

picture of the relationship inside the considered embedding, but, as side effect, it requires very high computational cost, particularly 
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Fig. 4. The Analogy Reasoning Coverage 𝐴𝑅𝑖 for a given relation 𝑖.

Fig. 5. The In-Vocabulary for analogy reasoning 𝐼𝑉 𝑎𝑟
𝑖

for a given relation 𝑖.

for benchmarking among several embeddings. This issue is partially overcome by the variety of the proposed measures: the “lightest” 
𝐼𝑉 𝑎𝑟

𝑖
would allow an initial sorting of the resources, hence for more accurate benchmarking 𝐴𝑅𝑖 and 𝑀𝑎𝑟

𝑖
are suggested.

5. Conclusions

In this paper we introduced a methodology to evaluate the quality of biomedical embeddings through bespoke measures of 
domain coverage. We targetted the specific branch of chronic obstructive pulmonary disease not only addressing the terminological 
coverage, but also how well the embedding supports similarities, relatedness and analogical reasoning within the domain. To the best 
of our knowledge, we have been the first to deal with this definition of coverage for a specific domain and we believe this approach 
12

is useful to select the most appropriate embedding in real use scenarios. In particular, we tailored existing measures and run the 



Heliyon 9 (2023) e16818S. Giancani, R. Albertoni and C.E. Catalano

Fig. 6. The cardinality of the seeds for analogy |𝑊𝑖| for a given relation 𝑖.

experimentation on several available embeddings, spanning from unstructured to structured ones, from word to CUI ones. We may 
conclude that the coverage on the COPD subdomain is generally poor, referring to the recent literature. Similarly, embeddings may 
misrepresent other specialised application areas, and our methodology can be deployed for testing the quality of models in these 
domains. In the future, we plan to face this issue, considering different biomedical domains, e.g., neurological disorders.

The general motivation of this paper resides in the issue of the best reuse of resources, which became a crucial point with the 
complexity and modularisation of the current systems. Indeed, intrinsic model evaluation is more and more important to select and 
exploit the most suitable available resources independently of specific downstream tasks: according to the principle of trustworthy 
AI, model quality needs to be documented in order to guarantee a fair adoption of technologies.

In this article we considered only static embeddings, which still have several advantages and may be interpreted and used as 
an alternative knowledge representation tool. Nevertheless, contextual embeddings have been gaining more and more importance 
thanks to their flexibility and potential in many applications, including the biomedical field, and consequently are worth to be 
explored. Among those, we shall mention BioBERT [21] and derivatives. Methods for the performance evaluation of BERT-family 
models in the biomedical field are present in literature [32]. Such methods are based on the characteristic fine tuning of BERT, 
which is more similar to extrinsic evaluation. We could not find measurable methodologies as we proposed in this paper. It would 
be possible to convert contextual embeddings in static ones and apply our approach, but the cost of such conversion is too high to 
make the problem tractable. Contextual embeddings will be then tackled in a future work.
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