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Abstract: Ecological modeling refers to the construction and analysis of mathematical models aimed 

at understanding the complexity of ecological processes and at predicting how real ecosystems 

might evolve. It is a quickly expanding approach boosted by impressive accelerations in the availa-

bility of computational resources and environmental databases. In the light of foreseeing the effect 

of climate change on forest ecosystems, the branch of ecological modeling focusing on species dis-

tribution models (SDMs) has become widely used to estimate indices of habitat suitability and to 

forecast future tree distributions. However, SDMs are usually informed based solely on environ-

mental data without any reference to the genetic makeup underlying responses to the environment, 

the possibility of exchanging variants helping to persist in situ, or the capacity to chase suitable 

conditions elsewhere. Among the main evolutionary processes that may complement forecasts of 

range shifts are local adaptation and gene flow, i.e., the occurrence of genetic variants conferring a 

population the optimal fitness in its own habitat and the exchange of adaptive alleles between pop-

ulations. Local adaptation and gene flow could be described by indices of genetic diversity and 

structure, genetic load, genomic offset, and an admixture of genetic lineages. Here, we advocate for 

the development of a new analytical approach integrating environmental and genomic information 

when projecting tree distributions across space and time. To this aim, we first provide a literature 

review on the use of genetics when modeling intraspecific responses to the environment, and we 

then discuss the potential improvements and drawbacks deriving from the inclusion of genomic 

data into the current SDM framework. Finally, we speculate about the potential impacts of genomic-

informed predictions in the context of forest conservation and provide a synthetic framework for 

developing future forest management strategies. 

Keywords: species distribution models; niche modeling; reaction norms; response functions; cli-

mate change; local adaptation; adaptive landscape; genomic offset 

1. Framework

The genetic diversity of forests, at both the phylogenetic and intraspecific levels, is a 

crucial resource for European forests and their capacity to cope with the current climatic 

crisis. In the two decades, the conservation of forest genetic resources in Europe has been 

coordinated through the EUFORGEN Programme, which released the Pan-European 

strategy for the genetic conservation of forest trees in 2015 and established a core network 

of dynamic conservation units [1]. This strategy was upgraded to a more holistic approach 

with the release of the Forest Genetic Resources Strategy for Europe in 2021 [2]. Both strat-

egies rely entirely on the mapping of species distributions to outline conservation targets 

outside of the species’ ecological niches, and they are meant to monitor the conservation 
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of forest genetic resources [3]; to feed international reports, such as the State of Europe’s 

Forests 2020 [4]; and to inform and support policy decision making. 

Estimates of the productivity of existing and future forests are often based on data-

bases of species records that are associated with the environmental characteristics ob-

served at the occurrence sites to build species distribution models (SDMs; Figure 1a,c,e), 

e.g., as carried out in the landmark European Atlas of Forest Tree Species [5,6]. Those 

models are then supposed to guide forest management and support the establishment of 

new plantations in the most suitable environments. However, to the best of our 

knowledge, the predominant modeling approach misrecognizes intraspecific genetic di-

versity among the key drivers of successful establishment in areas different from the his-

toric distributions, which could likely lead to (i) under- and/or over-estimating the adap-

tive capacity of individual populations [7], (ii) aprioristically assuming that a population 

at the core of the species distribution/ecological niche might have better chances to survive 

compared to marginal populations independently from its genetic composition and the 

environmental change foreseen [8,9], and (iii) misleading the identification of sources of 

reproductive material for both in situ evolutionary rescue and the ex situ establishment 

of new forests [10,11]. 

As a result, neglecting the usage of genetic information in ecological models may 

heavily affect model forecasts of forest products and services, possibly heavily penalizing 

the transition towards a bioeconomy. Here, we propose an evaluation of several aspects 

of this issue, including the need for more continental-scale projects and research efforts, 

and we aim to stimulate the scientific debate on the integration of genomic information 

into the current SDM framework in order to improve our capacity to predict climate 

change effects on forest ecosystems. 

2. Historic Attempts to Inform Species Distribution Models with Genetic Information 

The first examples of species distribution models in forestry date back to the mid-

eighties [12]. In that period, most of the effort was limited by the lack of reliable and spa-

tially consistent climatic data, which are necessary to characterize habitat conditions in 

any species spatial record [13]. Such models referred to low-resolution ‘habitat suitability 

models’ and employed BIOCLIM software [14]. The advantage of this tool was the deri-

vation of many climatic variables using interpolation routines. Such routines became the 

basis for the WorldClim database more than 20 years later [15], which is one of the cur-

rently most used climatic datasets worldwide. Since WorldClim, the 1 km spatial resolu-

tion became the standard for representing environmental information in spatial modeling, 

despite recent findings suggesting varying optimal resolutions depending on the species 

analyzed, the environmental covariates used, and the topographic characteristics of the 

sampled sites [16]. A broad range of statistical methods, including generalized linear and 

additive models, boosted regression trees, neural networks, random forests, and maxi-

mum entropy models, have since been applied to species distribution modeling [13]. 

To date, most work predicting the impact of climate change on species distributions 

has been developed around the core concept of ‘realized niche’ (sensu Hutchinson) 

[13,17]. In this framework, an ‘n-dimensional hypervolume’ is defined based on specific 

ecological factors, including biotic interactions, to describe under which conditions, and 

where, a species can survive. However, the observation that plasticity is widespread and 

can help plants to survive in habitat conditions different from those encountered within 

their natural distributions challenged the application of the realized niche approach in the 

studies predicting climate-change-driven geographic shifts [18]. Indeed, this approach 

forecasts future distributions based on the climatic requirements observed across a spe-

cies’ natural range without any reference to the species’ capacity to colonize new condi-

tions different from those experienced in the past [19]. Moreover, a small set of predictive 

algorithms (e.g., MaxEnt) has traditionally been applied with poor attention to overfitting, 

which has led to excessively complex or average models in several cases [13,20]. 
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Despite some attempt being made to inform SDMs with intraspecific indices of ge-

netic variation [21,22], the evolutionary potential has been largely neglected as a key factor 

contributing to the observed spatial patterns in species survival. This is reflected by both 

the use of information from neutral markers and the quality of the species records used to 

feed the models, where the core of the distributions is usually well-sampled at the expense 

of the margins, which might host relevant adaptive variants [23–25]. 

The first approach that included different genetic provenances to predict plant re-

sponses to environmental heterogeneity was theorized in North America between 2000 

and 2010, and it was based on common garden experiments [26–28]. In this seminal work, 

response and transfer functions were pooled together to merge within- and between-pop-

ulation variabilities in a single predictive model. The climatic characterization of both 

provenances and test sites was used as a covariate in the model so that both environmental 

and genetic effects were integrated in order to predict the response to the climate. This 

type of approach was rapidly transferred to other species from outside of North America; 

for instance, trait-based models were created using data from common garden experi-

ments in Europe, where several species were challenged across their native range, and the 

results were compared with growth traits observed in National Forest Inventory Surveys 

[29,30]. Despite the overall increase in the performance of trait-based models compared to 

niche-based models, the need for a better specification of the genetic component was ad-

vocated. 

In parallel to trait-based models, transfer functions and reaction norms were devel-

oped to identify deployment zones and to inform the usage of seeds for afforestation in a 

changing climate [31–34]. In agreement with trait-based models, the climatic divergence 

between provenances and test sites was the main driver of the model, along with some 

geographic variables, such as latitude. Trait-based modeling was applied to non-native 

European tree species, such as the Douglas fir [35–37], and resulted in a genetically-based 

model able to outperform niche-based models based on the presence/absence of data. Fi-

nally, structural equation models and multi-trait models were proposed to link traits 

measured at common gardens to fitness, and they were tested with encouraging results 

[38]. 

Importantly, the abovementioned approaches still use the climate as a proxy for ge-

netic differentiation with any explicit inclusion of genetic covariates in the models. How-

ever, a recent attempt to integrate climatic and genetic information was provided by Yu 

et al. [39], who used single-nucleotide polymorphisms (SNPs) to delineate seed and tree 

breeding zones for the lodgepole pine. 

3. Relevance and Critical Aspects of Including Evolutionary Processes into Species 

Distribution Models 

Evolutionary processes, spanning from past migrations to contemporary responses 

and selective pressure, have shaped extant genetic variations in forest tree populations. 

Among the outcomes of spatially divergent selection and gene flow, patterns of local ad-

aptation, which occurs when populations have the highest relative fitness at their home 

sites and a lower fitness otherwise [7,40], are deemed key to understanding the fate of 

forest tree populations in rapidly changing environments [41]. Searching for genes in-

volved in local adaptation, whether linked to a few loci with large effects or highly poly-

genic, is one of the major challenges that forest geneticists are tackling today, and it has 

profound consequences on the management of forest genetic resources [42]. 

The knowledge of specific genes and/or gene networks conferring local adaptation is 

crucial for projecting the adaptive potential of a population through space and time (Fig-

ure 1b,d,f). The adaptive potential of a population—i.e., the genomic and epigenomic var-

iations underlying responses to environmental heterogeneity and change—depends upon 

the tightness of the genotype–phenotype connection, especially when the limits of plastic 

responses/acclimatation are approached [43]. When the adaptive potential is low or weak-

ened, populations are likely to enter a spiral of demographic decline, possibly leading to 
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local extinction, especially in the case of small, fragmented, or highly isolated populations. 

If forest tree species are not be able to track the shifts in ecological conditions imposed by 

climate change, a progressive maladaptation is expected. Genetic maladaptation can be 

estimated by the genomic offset, which is the expected distance between the current ge-

netic makeup of a population and the optimal genetic composition that would be required 

for the population to maintain optimal fitness under future environmental conditions 

[44,45]. 

The recent literature stresses the importance of including different proxies for adap-

tiveness in predicting the genomic offset and, eventually, the fate of populations within 

their natural range and in areas where SDMs foresee suitable conditions [39,46,47]. Ide-

ally, such an effort would require a deep genomic characterization at the whole geo-

graphic range level to match the spatial scale at which SDMs usually work. However, it is 

likely that spatial precision will be required to be downscaled at regional or even local 

scales in future projections, as evidence is accumulating that natural selection can act at a 

high spatial resolution in forest trees [48–50]. Thanks to the combination of life history 

traits allowing for large within-population diversity and often massive juvenile popula-

tion sizes to be preserved, forest trees usually show great adaptive potential at the micro-

geographic scale despite low evolutionary rates [51]. Thus, we advocate not to neglect the 

genomic basis of microgeographic adaptation when discussing the results of future em-

pirical studies combining genomic information and SDMs. 

Among the main life history traits of forest trees is longevity, which often relates to 

offsets between the expected and observed genetic consequences of disturbances. For in-

stance, the ‘paradox of forest fragmentation genetics’ was proposed because the genetic 

structure and levels of gene flow in fragmented tree populations rarely showed results 

compatible with theoretical expectations [52]: since most studies on the genetic conse-

quences of fragmentation were based on comparing adult trees in fragmented vs. contin-

uous populations and fragmentation is recent in most forest ecosystems, the genetic com-

parison of plants that were established before fragmentation often resulted in the neglect 

of genetic outcomes actually linked with anthropogenic disturbance. Therefore, it was 

proposed that the focus of research should be shifted to the progeny sired in impacted 

landscapes for early signals to be more easily detectable in the short term [53]. In turn, the 

major genomic consequences of ongoing climate change should be ascertained in young 

generations of trees rather than in old long-lived individuals so as to assess the effects of 

current rather than historic selection. 

Besides such critical aspects that make forest trees so peculiar when studying adap-

tive patterns, current research is facing the challenge of integrating all the information that 

can be distilled from dense genomic data into the statistical framework of SDMs so as to 

refine spatial projections under future climates and to improve the effectiveness of con-

servation strategies [47]. To this aim, it is preliminary to characterize the intimate relation-

ship between genes and the environment as exhaustively as possible so as to outline the 

forest potential for adaptation under future climates [54]. The next section discusses a se-

ries of well-established ecological methods devoted to identifying adaptive variation 

based on genomic and environmental information. 

4. Ecological Methods Used to Identify Adaptive Variation 

Since the 2000s, high-throughput genotyping has been revolutionizing our capacity 

to track genetic diversity in both model and non-model species by allowing unprece-

dented numbers of SNPs to be discovered both genome-wide and within targeted ge-

nomic regions [55]. Refined and novel estimates of parameters of conservation concern, 

such as migration rates and inbreeding depression, have become feasible together with 

the characterization of the molecular bases of evolutionary potential [43,56]. As a conse-

quence, the putative genetic architecture of local adaptation started to be unveiled in for-

est plants for the first time, including genes and genetic pathways underlining polygenic-

based responses to the climate in lodgepole pine, interior spruce, and oaks [57,58]; the 
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major genes with phenological effects in the European aspen [59]; and the major genes 

that confer resistance to pathogens in lodgepole and jack pines, balsam fir, and spruce 

[7,60]. 

Among the most promising methods used to detect the genomic signature of spa-

tially divergent selection is landscape genomics, a multidisciplinary approach that links spatial 

modeling to population genetics and that tests intraspecific variations for associations with 

focal habitat features driving selection [61]. Depending on whether genotypes or allele 

frequencies are tested, such a genome scan for outlier SNPs is referred to as ‘gene-envi-

ronment association’ (GEA) or ‘environmental association analysis’ (EAA), respectively, 

the latter being more sensitive to small-effect loci [43]. Candidate genes can be searched 

for either up- or down-stream of the outliers within specific genomic windows or anno-

tated based on reference genomes [62], and they can include variants with major effects 

involved in epistatic pathways or contributing to quantitative traits and involving multi-

locus adaptation [63]. 

Two approaches to landscape genomics exist (Table 1): the first tests loci and focal 

selective pressures for associations one at a time (i.e., ‘univariate models’), and the second 

includes entire sets of loci and selective pressures in a single analysis (i.e., ‘multivariate 

models’). 

Table 1. A short list of uni- and multi-variate models in landscape genomics. ‘Genetic structure’ 

refers to the possibility of correcting for the confounding due genetic population structure in the 

association models. For an extensive review of the methods, we invite the reader to refer to Rellstab 

et al. [61]. 

 Software Target Genetic Structure Notes 

Univariate models 
Latent factor mixed linear 

models (LFMMs) [64] 

Major genes but also 

small-effect loci if al-

lele frequencies are 

used [43] 

A given number of latent factors 

is derived at the same time that 

the effect of environment is esti-

mated 

Can be used with geno-

types or allele frequen-

cies; linear relationship 

assumed by default 

 Samβada [65,66] Major genes 

PCs 1 [67], discriminant functions 

[68], and global ancestry coeffi-

cients [69–71] can be included as 

covariates provided that some 

criterion is used to identify K 2 

and the number of PCs to be con-

sidered 

Can be used with geno-

types; logistic (linear) re-

lationship assumed by 

default 

Multivariate models 
Redundancy analysis 

(RDA) [72,73] 

Both major genes and 

small effect loci 
No correction allowed 

Can be used with geno-

types or allele frequen-

cies; linear relationship 

assumed by default 

 
Partial redundancy analy-

sis (pRDA) [72,73] 
Same as RDA 

Same as Samβada; can also cor-

rect for geographic structures 

[74,75] 

Same as RDA 

1 PCs: principal components as defined based on a principal component analysis. 2 K: number of 

genetic clusters as defined based on cross-validation procedures or a K-means analysis. 

Both approaches allow for neutral genetic structures among a set of covariates to be 

included in order to decrease the rate of false discoveries (FDRs), which can be due to an 

alignment between the ecological gradients driving selection and the population structure 

arising from a range expansion [76,77]. Multivariate approaches, such as redundancy 

analysis (RDA; Figure 1b), were observed to be less sensitive to sampling strategies, to 

increase statistical power by c. 6%, and to decrease FDR by c. 12% in several demographic 

scenarios, including refugial expansions, isolation by distance, and the island model, as 

well as maintaining higher true-positive rates, even in the case of weak selection when 
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compared to univariate models (c. 81% vs. 51%, respectively) [63]. RDA was also demon-

strated to be more effective in detecting multilocus adaptation, possibly due to its capacity 

to outline groups of small-effect loci covarying with environmental variations [61]. 

Nonetheless, combining uni- and multi-variate modeling can increase power and de-

crease false detection, especially in exploratory landscape genomic studies [63], and using 

both genotype- and allele-frequency-based tests can enhance the spectrum of detection 

from major genes to multilocus adaptation [43]. Furthermore, population-differentiation-

based approaches have been used to complement ecological scans for local adaptation 

given their ability to detect signatures of selection associated with genetic clustering or 

haplotype differentiation rather than environmental variation [78,79]. These approaches 

have allowed for candidate genes for phenology regulation to be identified in beech [62] 

and for genomic regions highly differentiated between populations of European aspen, 

which would have otherwise been neglected, to be outlined [59]. 

 

Figure 1. General framework integrating species distribution modeling and landscape genomics to 

predict the optimal spatial distribution of adaptive diversity in the future. Both approaches start 

from the spatial occurrences of either the species observations or the genotyped individuals or pop-

ulations (a). A species distribution model can be derived based on the observed species records and 

some ecologically relevant habitat features (c), and it can project into the future based on specific 

climate change scenarios (e). In contrast, a landscape genomic analysis (e.g., RDA) can be devised 

to outline a set of candidate SNPs under selection (b) and to estimate the adaptive landscape of the 

species based on a previously inferred species distribution (d) [72]. The adaptive genetic structure 

identified can be projected into the future to outline the optimal distribution of adaptive diversity 

so as to tackle climate change and guarantee optimal fitness in the future (f). Finally, corridors for 

adaptive gene flow can be identified based on a conductance surface to inform forest management 

and conservation strategies (g,h). 
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5. Conclusions and Outlook 

Characterizing genome-wide diversity will become feasible for several forest species 

in the next few years, at least for those taxa with a manageable genome length and com-

plexity. While we are approaching the possibility of exploiting range-wide geographic 

information and finer environmental databases, advancements in analytical methods are 

keeping the pace in devising methods that can describe the molecular bases of adaptive 

potential and inform forest management and conservation under climate change on a ge-

nomic basis. 

Among the most impelling challenges is conjugating range-wide predictions of ge-

nomic offsets with the shifting niches forecasted by traditional SDMs so as to understand 

the need for possible assisted migration strategies and gene flow (Figure 1g,h). On the one 

hand, methods have been proposed to account for the dispersal distances minimizing the 

expected genomic offset in the future but neglecting to include the potential geographical 

shifts in the species distributions [46]; on the other hand, geographical shifts in species 

distributions are usually forecasted without any reference to the genomic makeup of pop-

ulations proximal to the newly suitable areas or to the potential patterns in dispersal [6]. 

Recent studies are indeed attempting to bridge this gap by developing comprehensive 

eco-evolutionary models [47,54] in the hope of providing conservation scientists with new 

tools to contrast the silent mass extinction of genetic diversity [80]. 
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