

Deliverable No D1.1.1:

“Test-bed Functional Specification”

February 2005

Test-bed Functional Specification Page 2 of 273

Document Information
Project

Project Title: DILIGENT, A DIgital Library Infrastructure on Grid
ENabled Technology

Project Start: 1st Sep 2004

Call/Instrument: FP6-2003-IST-2/IP

Contract Number: 004260

Document

Deliverable number: D1.1.1

Deliverable title: Test-bed Functional Specification

Contractual Date of Delivery: 28th February 2005

Actual Date of Delivery: 28th February 2005

Editor(s): CNR – ISTI

Author(s): Henri Avancini, Leonardo Candela, Pasquale Pagano,
Manuele Simi

Reviewer(s): Paolo Fabriani, Paolo Roccetti (ENG)

Participant(s): CNR – ISTI, UoA, ETH Zurich, FhG/IPSI, UMIT, ENG, USG,
FAST

Workpackage: WP1.1

Workpackage title: Test-bed functional and architectural design

Workpackage leader: CNR - ISTI

Workpackage participants: CNR – ISTI, UoA, ETH Zurich, FhG/IPSI, UMIT, CERN, ENG,
USG, FAST, 4D Soft Ltd.

Est. Person-months: 12

Distribution: Public

Nature: Report

Version/Revision: 1.3

Draft/Final Final

Total number of pages:
(including cover)

273

File name: D1.1.1.doc

Key words: Digital libraries, etc.

Test-bed Functional Specification Page 3 of 273

Disclaimer

This document contains description of the DILIGENT project findings, work and products.
Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to
using its content please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as
a representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to
be accurate, consistent and lawful. However, neither the project consortium as a whole nor
the individual partners that implicitly or explicitly participated the creation and publication of
this document hold any sort of responsibility that might occur as a result of using its
content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of DILIGENT consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
25 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice and
Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the Court
of Auditors. (http://europa.eu.int/)

DILIGENT is a project partially funded by the European Union

Test-bed Functional Specification Page 4 of 273

Table of Contents
Document Information ..2
Disclaimer...3
Table of Contents..4
Table of Figures ..11
Summary..14
Executive Summary...15
1 Introduction ..17
2 Rationale of Functional Specification ...18

2.1 Methodology ...19
2.1.1 Use Case Analysis..19
2.1.2 Use Case Management ..20
2.1.3 Structuring the Use-Case Model ...22

2.2 Requirements alignment ..24
3 Basic Concepts ..29

3.1 Resources ...29
3.2 Actors Hierarchy ..30
3.3 Metadata ..30
3.4 Collection ..31
3.5 Workspace ..31
3.6 Virtual Digital Library ...31
3.7 Virtual Organization ...32

4 DL Creation and Management ..35
4.1 Introduction ..35
4.2 DLs Management...35

4.2.1 Define a DL...37
4.2.2 Select Archives..40
4.2.3 Select Services ..41
4.2.4 Define Configuration..42
4.2.5 Define Web Portal Configuration...43
4.2.6 Ask for DL Creation ...43
4.2.7 Modify a DL ..44
4.2.8 Ask for DL Update ...46
4.2.9 Dispose a DL...46
4.2.10 Preserve content ...47
4.2.11 Ask for DL Removal ...48
4.2.12 Propose Archives to be added to/removed from DILIGENT...........................49
4.2.13 Propose Services to be added to/removed from DILIGENT...........................50
4.2.14 Create a DL...51
4.2.15 Check DL definition..53
4.2.16 Analyze Available Resources...55
4.2.17 Include DL Users ...56

Test-bed Functional Specification Page 5 of 273

4.2.18 Create DL Resources..57
4.2.19 Generate Web Portal..58
4.2.20 Maintain a DL ..59
4.2.21 DL Resources Monitoring..61
4.2.22 Report DL Status ...62
4.2.23 Update a DL..62
4.2.24 Remove a DL ..64
4.2.25 Remove DL Resources ...66

4.3 Resources Management ...67
4.3.1 Add a Resource to DILIGENT ...68
4.3.2 Register a Resource...69
4.3.3 Edit Sharing Rules ...70
4.3.4 Edit Resource Profile..71
4.3.5 Store Resource Profile ...72
4.3.6 Remove Resource Profile ...73
4.3.7 Update a Resource ..74
4.3.8 Remove a Resource...75
4.3.9 Manage a Resource in a DL..76
4.3.10 Add a Resource to a DL ...77
4.3.11 Create a DL Resource ..79
4.3.12 Find Optimal Allocation ..81
4.3.13 Configure Resource ...82
4.3.14 Update a DL Resource ...83
4.3.15 Remove a DL Resource ..84
4.3.16 Search Available Resources ..85
4.3.17 Get Available Resources ...86
4.3.18 Browse Available Resources ...87
4.3.19 Get Resource Status ..87
4.3.20 Monitor a Resource..88

4.4 VOs Management ..90
4.4.1 Manage a VO ..91
4.4.2 Create a VO ..92
4.4.3 Add a Resource to a VO...95
4.4.4 Edit Resource Policy ..95
4.4.5 Store Resource Policy ..96
4.4.6 Add a User to a VO..97
4.4.7 Edit VO Roles ..97
4.4.8 Store VO Roles..98
4.4.9 Edit User-Role Associations ..99
4.4.10 Store User-Role Associations ..99
4.4.11 Edit a VO .. 100
4.4.12 Remove a VO .. 101
4.4.13 Remove a Resource from a VO... 101

Test-bed Functional Specification Page 6 of 273

4.4.14 Remove a User from a VO.. 102
4.4.15 List VOs .. 102
4.4.16 List VO Users... 103
4.4.17 List User’s VO-Resources.. 104
4.4.18 Get User’s VO Resources.. 104

4.5 Users Management.. 104
4.5.1 Create a Group.. 106
4.5.2 Edit Group Profile .. 106
4.5.3 Store Group Profile .. 107
4.5.4 Add a User to a Group ... 108
4.5.5 Remove a User from a Group ... 108
4.5.6 Remove a Group ... 109
4.5.7 Add a User to DILIGENT .. 109
4.5.8 Edit User Profile .. 111
4.5.9 Request User Rights .. 112
4.5.10 Store User Profile .. 112
4.5.11 Remove User Profile .. 112
4.5.12 Remove a User from DILIGENT .. 113
4.5.13 Select Groups.. 114
4.5.14 Search for Groups by Details .. 115
4.5.15 Browse Groups .. 115
4.5.16 Select Users .. 116
4.5.17 Search for Users by Details .. 117
4.5.18 Browse Users .. 117
4.5.19 Invite a User ... 118
4.5.20 Propose User Rights .. 119
4.5.21 Invite a User to a DL.. 119
4.5.22 Invite a User to a Group .. 120
4.5.23 Invite a User to a Complex Object .. 121
4.5.24 Invite a Group ... 121
4.5.25 Propose Group Rights .. 122
4.5.26 Invite a Group to a DL ... 123
4.5.27 Invite a Group to a Complex Object .. 124

4.6 Notifications Management .. 124
4.6.1 Notify ... 125
4.6.2 Notify Role.. 125
4.6.3 Notify User.. 126
4.6.4 Notify Group ... 126

5 Content and Metadata Management ... 128
5.1 Introduction .. 128
5.2 Content Management: Objects Management ... 129

5.2.1 Access Object.. 129
5.2.2 Save Object .. 131

Test-bed Functional Specification Page 7 of 273

5.2.3 Remove Object ... 132
5.2.4 Browse Objects ... 133
5.2.5 Browse Archives .. 134

5.3 Content Management: Collections Management... 135
5.3.1 Collection Management.. 136
5.3.2 Create a Collection .. 136
5.3.3 Remove a Collection .. 137
5.3.4 Update a Collection ... 137
5.3.5 Define Membership Criteria .. 138
5.3.6 Import .. 138

5.4 Content Management: Workspaces Management... 139
5.4.1 Manage Workspace ... 139
5.4.2 Manage User Workspace.. 141
5.4.3 Manage a DL Workspace.. 142

5.5 Content Management: Storage ... 142
5.6 Content Management: Access and Content ... 144
5.7 Content Management: URI Management... 145
5.8 Content Management: Data Source Coupling... 147
5.9 Content Management: Change Tracking.. 148
5.10 Content Management: Content Security .. 151
5.11 Metadata Management... 152

5.11.1 Generate Metadata .. 154
5.11.2 Generate Object Metadata ... 155
5.11.3 Update Object Metadata .. 157
5.11.4 Generate Service Metadata .. 159
5.11.5 Management of Service Taxonomy: Add Taxonomy Node 161
5.11.6 Management of Service Taxonomy: Delete Taxonomy Node....................... 161
5.11.7 Management of Service Taxonomy: Change Node Parent........................... 162
5.11.8 Remove Metadata.. 162
5.11.9 User Metadata Generation.. 162

5.12 Annotation Management .. 163
5.12.1 Edit Annotation.. 166
5.12.2 View Annotation .. 167
5.12.3 Validate Annotation ... 167
5.12.4 Translate Annotation ... 168
5.12.5 Post Annotation... 168
5.12.6 Retrieve Annotation ... 168
5.12.7 List Annotation Stubs ... 169
5.12.8 Remove Annotation ... 169

6 Index & Search Management.. 170
6.1 Introduction .. 170
6.2 Index Management.. 170

6.2.1 Index Management ... 171

Test-bed Functional Specification Page 8 of 273

6.2.2 Describe Index .. 173
6.2.3 Generate Index ... 175
6.2.4 Update Index .. 178
6.2.5 Incremental Indexing .. 179
6.2.6 Register Object Change ... 180
6.2.7 Handle Object Change ... 181
6.2.8 Index Lookup.. 182
6.2.9 Wrap External Index.. 184
6.2.10 Develop Wrapper... 185

6.3 Content Source Description and Selection (CSDS) and Data Fusion..................... 185
6.3.1 Content Source Description .. 188
6.3.2 Content Source Selection ... 190
6.3.3 Data Fusion .. 192

6.4 Feature Extraction ... 193
6.4.1 Speech to Text.. 194
6.4.2 Translation Service .. 195
6.4.3 Process Text ... 195
6.4.4 Thesaurus Generation.. 196
6.4.5 Feature Extraction ... 196
6.4.6 Image Feature Extraction, Text Feature Extraction 198
6.4.7 Audio Feature Extraction, Video Feature Extraction...................................... 198
6.4.8 Image Segmentation ... 198
6.4.9 Colour Histogram, Colour Moments, Texture Features 199
6.4.10 Localized Colour Histogram, Localized Colour Moments, Localized Texture
Features 200
6.4.11 Face Detection .. 201

6.5 Personalization .. 201
6.5.1 Profile Schema Management .. 203
6.5.2 Create Schema.. 204
6.5.3 Delete Schema.. 205
6.5.4 Read Schema.. 205
6.5.5 Modify Schema.. 206
6.5.6 User Profile Management ... 206
6.5.7 Create Profile .. 208
6.5.8 Delete Profile .. 208
6.5.9 Update Profile Contents ... 209
6.5.10 Reset Profile.. 209
6.5.11 Read Profile Contents .. 210

6.6 Search .. 210
6.6.1 Functionality Breakdown .. 210
6.6.2 Search Functional Definition... 212
6.6.3 Query Personalization .. 218

7 Process Management ... 220

Test-bed Functional Specification Page 9 of 273

7.1 CS Management .. 220
7.1.1 Manage CS.. 221
7.1.2 Design CS ... 222
7.1.3 Create CS ... 224
7.1.4 Update CS... 225
7.1.5 Validate CS ... 225
7.1.6 Run CS ... 226
7.1.7 Monitor CS .. 229
7.1.8 Abort CS ... 230
7.1.9 Remove CS ... 232
7.1.10 Optimize ... 233

8 Application Specific .. 239
8.1 Introduction .. 239
8.2 Portal Functional Specification .. 239

8.2.1 Login .. 239
8.2.2 Logout.. 240
8.2.3 Portal Storage Access .. 241
8.2.4 Submit User Credentials... 242
8.2.5 Request User Registration.. 244
8.2.6 Access Portal Pages ... 244
8.2.7 Manage Digital Objects .. 246
8.2.8 Submit Search... 248
8.2.9 Browse Results.. 249
8.2.10 Digital Object Visualization ... 250
8.2.11 Digital Object Annotation ... 251
8.2.12 Drill In Search Results.. 253
8.2.13 Propose Resources & Services for Addition.. 254
8.2.14 Course Management and Participation .. 255
8.2.15 Workshop Management & Participation... 257
8.2.16 Exhibition Management.. 259
8.2.17 Portal Management.. 262
8.2.18 Portal Engine Configuration .. 263
8.2.19 Portal Personalization... 264
8.2.20 Discussions ... 265
8.2.21 Process Image... 266
8.2.22 Resolve Image into Parts ... 267

8.3 Report Management .. 269
8.3.1 Manage Report.. 269
8.3.2 Create Report.. 270
8.3.3 Select Model Definition .. 271
8.3.4 Update Report... 271
8.3.5 Remove Report ... 271
8.3.6 Build Report .. 271

Test-bed Functional Specification Page 10 of 273

8.3.7 Compare versions, Visualize versions .. 272
9 Conclusion .. 273

Test-bed Functional Specification Page 11 of 273

Table of Figures
Figure 1: Use-Case Model role in the UP process...18
Figure 2: Flows description ..21
Figure 3: Sequence Diagrams use in the Use-Case Model ..22
Figure 4: Decomposition of the ImpECt requirements..24
Figure 5: Decomposition of the ARTE requirements...25
Figure 6: DILIGENT Resources...29
Figure 7: DILIGENT actors...30
Figure 8: Relations between entities within a Virtual Organization32
Figure 9: Virtual Organization Structure enriched with Sharing Rules33
Figure 10: VO structure with sub-VO ..34
Figure 11: DL Management – DL Definition (use case diagram)..36
Figure 12: DL Management – DL Generation and Maintenance (use case diagram)37
Figure 13: Define a DL (sequence diagram) ..38
Figure 14: Create a DL (sequence diagram)..52
Figure 15: Maintain a DL (activity diagram)...60
Figure 16: Remove a DL (sequence diagram)..65
Figure 17: Resources Management (use case diagram) ...68
Figure 18: Register a Resource (sequence diagram) ..70
Figure 19: Add a Resource to a DL (sequence diagram)...78
Figure 20: Create a DL Resource (sequence diagram) ...80
Figure 21: VOs Management (use case diagram) ..91
Figure 22: Create a VO (sequence diagram) ...93
Figure 23: Create a VO (activity diagram) ...94
Figure 24: Users Management (use case diagram) .. 105
Figure 25: Add a User to DILIGENT (sequence diagram) ... 110
Figure 26: Notification Management (use case diagram).. 125
Figure 27: Objects Management (use case diagram) ... 129
Figure 28: Collection Management (use case diagram) .. 135
Figure 29: Workspace Management (use case diagram) .. 139
Figure 30: Content Management – Storage (use case diagram)...................................... 144
Figure 31: Access and Content (use case diagram).. 145
Figure 32: URI Management (use case diagram)... 146
Figure 33: Data Coupling (use case diagram).. 148
Figure 34: Change Tracking (use case diagram).. 150
Figure 35: Change Tracking (activity diagram) .. 150
Figure 36: Content Security Management (sequence diagram)....................................... 152
Figure 37: Metadata Management (use case diagram)... 154
Figure 38: Generate Metadata for a new Object - online processing (sequence diagram). 156
Figure 39: Generate Metadata for a new Object - batch processing (sequence diagram) . 157
Figure 40: Update Object Metadata - online processing (sequence diagram)................... 158
Figure 41: Update Object Metadata - batch processing sequence diagram)..................... 158

Test-bed Functional Specification Page 12 of 273

Figure 42: Metadata Services Taxonomy example ... 160
Figure 43: Generate Service Metadata (sequence diagram).. 161
Figure 44: Annotation Management (use case diagram) .. 166
Figure 45: Edit Annotation (sequence diagram)... 167
Figure 46: Index Management (use case diagram) .. 172
Figure 47: Describe index (sequence diagram).. 174
Figure 48: Describe index (activity diagram) ... 175
Figure 49: Generate index (sequence diagram)... 176
Figure 50: Generate index (activity diagram) .. 177
Figure 51: Incremental indexing (sequence diagram) .. 179
Figure 52: Incremental Indexing (activity diagram) ... 180
Figure 53 Index lookup (sequence diagram) ... 183
Figure 54 Index lookup (activity diagram)... 183
Figure 55: CSDS and Data Fusion (use case diagram) ... 188
Figure 56: Feature Extraction (use case diagram).. 194
Figure 57: Feature Extraction (sequence diagram) .. 197
Figure 58: Personalization Management (use case diagram) .. 203
Figure 59: Overall Search Use Case.. 216
Figure 60: Query personalization (sequence diagram) ... 219
Figure 61: CS Management (use case diagram) .. 220
Figure 62: Design CS (activity diagram).. 223
Figure 63: Design CS (sequence diagram) .. 223
Figure 64: Run CS (activity diagram) .. 227
Figure 65: Run CS (sequence diagram)... 228
Figure 66: Monitor CS (activity diagram)... 230
Figure 67: Abort CS (activity diagram).. 231
Figure 68: Remove CS (activity diagram) .. 233
Figure 69: Optimize Process Use Case .. 235
Figure 70: Optimize Process (activity diagram).. 236
Figure 71: Login (sequence diagram) ... 240
Figure 72: Logout (sequence diagram) ... 241
Figure 73: Portal Storage Access (use case diagram)... 242
Figure 74: Submit User Credentials (use case diagram) ... 243
Figure 75: Access Portal Pages (use case diagram) ... 245
Figure 76: Digital Object Management (use case diagram) .. 247
Figure 77: Search portlet (use case diagram).. 248
Figure 78: Browse portlet (use case diagram) ... 250
Figure 79: Object Visualization portlet (use case diagram) ... 251
Figure 80: Annotation Portlet (use case diagram).. 252
Figure 81: Drill In portlet (use case diagram).. 253
Figure 82: Requests portlet (use case diagram) .. 254
Figure 83: Course Management portlet (use case diagram).. 256
Figure 84: Course Teaching Portlet (use case diagram) ... 256

Test-bed Functional Specification Page 13 of 273

Figure 85: Course Participation Portlet (use ase diagram) .. 257
Figure 86: Workshop Management portlet (use case diagram) 258
Figure 87: Workshop Instruction portlet (use case diagram) .. 258
Figure 88: Workshop Participation portlet (use case diagram) .. 259
Figure 89: Exhibition Management portlet (use case diagram) 260
Figure 90: Exhibition Authoring portlet (use case diagram) .. 261
Figure 91: Exhibition Browsing portlet (use case diagram) ... 261
Figure 92: Overall Portal Configuration (use case diagram).. 263
Figure 93: Discussion portlet (use case diagram) .. 265
Figure 94: Image Processing portlet (use case diagram).. 266
Figure 95: Report Management (use case diagram)... 269
Figure 96: Multiple layers of an automatically generated Report in DILIGENT 269
Figure 97: Report Template structure example.. 270

Test-bed Functional Specification Page 14 of 273

Summary
This report presents the result of the activity conducted within the “WP1.Test-bed functional
and architectural design”, task “T1.1.1 Test-bed functional specification” of the DILIGENT
project in the period November 1st 2004 - February 28th 2005. By exploiting the analysis of
the user-communities requirements, collected in WP2.1 and WP2.2, the Test-bed functional
specification describes and specifies the functions and features of the DILIGENT system that
will be perceived by the users and it formalizes how the users will interact with the system.
The notation adopted here is that recommended by the Unified Process software
engineering methodology; this formal notation is accompanied by texts as expressed by the
DILIGENT technological partners.

Test-bed Functional Specification Page 15 of 273

Executive Summary
The objective of the task “T1.1.1 Test-bed functional specification” of the “WP1.Test-bed
functional and architectural design” is both to identify generic Digital Libraries functionalities
that are useful for all the potential DILIGENT user communities and to specific
functionalities that must be provided by the Application Layer in order to support the two
validation scenarios.
The functional specification produced by this task has to be interpreted as a “functional
solution”, specifying which system functions are needed to meet the user communities’
requirements. In other words, the functional specification describes which is the “visible” or
external behaviour of the system and its components.
Firstly, this activity has analyzed the user requirements expressed by the “WP2.1 ARTE
scenario” and “WP2.2 ImpECt scenario” in order to identify common basic functionality
matching the requirements of the user scenarios; then these functions have been associated
with the main functional areas of the DILIGENT project represented by WP1.2-WP1.6; after
that, each partner has focused its analysis on the specific aspects in which it is mainly
involved and in which it has more competences, contributing in this way to the specification
of the functional view of the entire system; finally all contributions has been collected,
analyzed, and integrated by CNR, leader of Task 1.1.1, with the support of all the other
partners.
The entire specification activity has been conducted according to the guidelines of the
Unified Process methodology and using the Unified Modeling Language to formalize
functionality dependencies and relations.
This report describes the DILIGENT system functional specification by first describing the
concepts that are common to the whole system and then presenting the system
specification as the composition of the specifications of six main areas. Each area illustrates
how the corresponding set of functionalities relates to the actors and to the other areas.
The identified areas are:

• Digital Library Creation and Management. The major functions and features needed
to create and maintain virtual digital libraries - i.e. transient DLs based on shared
computational, multimedia and multi-type content and application resources - are
described in this area. In particular the following group of functionalities is
presented: DLs Management, Resources Management, Virtual Organizations
Management, Users Management, and Notification Management.

• Content and Metadata Management. This area presents the functions and features
needed to support the seamless access and storage of content and content related
metadata in the DILIGENT system. In particular the following group of functionalities
is described: Objects Management, Collections Management, Workspace
Management, URI Management, Storage, Access and Content Management,
Metadata Management, and Annotation Management.

• Index and Search Management. This area is related to the functions and features
that allow DL users to locate information in DLs in a cost-effective manner, satisfying
the level of quality to be met by the overall data retrieval and delivery operation. In
particular the following group of functionalities is presented: Index Management,
Content Source Description and Selection, Data Fusion, Feature Extraction,
Personalization, and Search.

• Process Management. This area presents the main functions and features needed to
combine and integrate services into a coherent whole through workflow and process
technology. In particular, the following functionalities are described: Design, Create,

Test-bed Functional Specification Page 16 of 273

and Validate compound services, Update and Optimize compound services, and Run,
Monitor, Abort, and Remove compound services.

• Application Specific Management. This area presents the main functions and features
needed to address specific user communities’ requirements. Moreover it includes the
description of the user-system interactions and the composite document generator.
In particular the following group of functionalities are presented: Basic Portal
Functionalities (e.g. login, object visualization), Portal Management, Courses
Management, Workshops Management, Exhibition Catalogues Management, and
Reports Management.

The present functional specification will be used by WP1.2-WP1.6 in order to design all the
DILIGENT services and define a strategy for their rapid prototyping and testing.

Test-bed Functional Specification Page 17 of 273

1 INTRODUCTION

This report describes the result of the activity carried out in Task 1.1.1 “Test-bed functional
specification”. It has been produced by analysing the content of the two reports “D2.1.1
ARTE Scenario Requirements Reports” and “D2.2.1 ImpECt Scenario Requirements
Reports”, produced respectively by the ARTE and ImpECt communities in the context of
“WP2.1 ARTE scenario” and “WP2.2 ImpECt scenario”. This analysis has been the
foundation for the functional specification phase. This phase has identified both generic DL
functionalities that are useful for all the potential DILIGENT user communities and specific
functionalities that must be provided by the Application Layer in order to support the two
validation scenarios expressed by the ARTE and ImpECt user communities.
The first step in constructing the functional specifications has been to understand the
requirements that are common to more than one use case, reviewing each use case, and
taking notes of any commonality. Using the result of this step, the analysts have minimized
redundancy by creating included, extended, and generalized use cases. Requirements have
been made more understandable and easier to maintain, and at the same time a functional
decomposition that can be forwarded into the design phase has been defined.
The initial analysis has been conducted by each DILIGENT partner that has focused its
understanding on the specific aspects in which it is mainly involved and has more expertise.
Then, all contributions have been collected, analyzed, and integrated by CNR, the Task
1.1.1 leader, with the support of all other partners. This activity has been preceded by the
identification of a set of key domain specific concepts whose definition has been agreed
among all the partners before starting the specification phase.
The entire specification activity has been conducted according to the guidelines of the
Unified Process methodology and it has used the Unified Modelling Language to formalize
functionalities dependencies and relations.
This report is organised as follows: Section 2 reports the rationale of the functional
specification illustrating the rules followed in the in-depth analysis of the use cases and in
the use cases management; Section 3 briefly introduces the set of concepts of general
interest that are used in all sections of this document; Section 4 reports the Digital Library
Creation and Management area illustrating the major functions and features needed to
create and maintain virtual digital libraries; Section 5 describes the Content and Metadata
Management area presenting the functions and features needed to support the seamless
access and storage of content and content related metadata in the DILIGENT system;
Section 6 illustrates the Index and Search Management showing the functions and features
that allow DL users to locate information in DLs in a cost-efficient manner; Section 7
presents the Process Management area illustrating the main functions and features needed
to combine and integrate services into a coherent whole through workflow and process
technology; and finally, Section 8 presents the Application Specific Management area
inserted to accommodate the main functions and features needed to address the specific
ARTE and ImpECt user communities requirements.

Test-bed Functional Specification Page 18 of 273

2 RATIONALE OF FUNCTIONAL SPECIFICATION

As we reported in the Description of Work document, the Unified Process (UP, in short)
methodology has been adopted to drive the DILIGENT system engineering.
According to this methodology, the functional specification begins when the collection of the
user requirements ends, and it fills the important role of describing how the new system will
meet the items listed in the requirements specifications.
The DILIGENT functional specification has been written with two objectives: i) to complete
the established contract with the user communities by means of a clear and formal
functional representation of the system, and ii) to provide the design team with all the
information they need to begin the system design. It aims at outlining the entire experience
of the application, without really getting into the details of implementation, thereby
providing the designers (and then, developers) with a comprehensive knowledge base and
reference for any question concerning the project. The idea is that kinks in the design be
worked out at a conceptual level, and (more importantly) that users get a clear idea of what
the system is and how it will work. In the UP methodology, the functional specification
defines the Use-Case Model. This is a model of the system's intended functionalities and its
environment. Once finalized and approved by the user communities, the functional
specification can be used by designers to create a detailed software design document.
The following picture illustrates the role of the Use-Case Model in the whole development
process.

Figure 1: Use-Case Model role in the UP process

Test-bed Functional Specification Page 19 of 273

“System analysts”, i.e. technicians that lead and coordinate requirements elicitation and
Use-Case Modelling by outlining the system’s functionality and delimiting the system, have
performed the functional specification activity. Analysts have identified the user
requirements from the use case specification documents. Starting from these documents,
briefly summarised in Section 2.2, the produced Use-Case Model defines the system
behaviour rather than users requirements. This goal has been achieved by performing a
two-steps process, consisting in:

• An in-depth analysis of the use cases
• A use cases management

Both steps are discussed in detail in Section 2.1.
As a result of this activity, the present functional specification document:

• Describes any functionality included in the use cases
• Specifies functionalities not handled by the use case specifications
• Points out system delimitations – things that the system is not supposed to do
• Summarizes important technical facts about the system
• Gives a consistent, correct and realistic functional view of the system

2.1 Methodology
This section explains the steps that have been followed in order to obtain a useful Use-Case
Model. It starts with the reporting of the guidelines used to analyze the use case
specifications; then it presents how these use cases have been managed; finally it reports
the methodology followed to structure the Use-Case Model.

2.1.1 Use Case Analysis
The first step in the analysis has been an in-depth study of the use cases specified by the
two DILIGENT user communities in order to fully understand their needs and select, merge,
and integrate useful use cases.
The following questions have be addressed in this phase:

• Is each requirement consistent with the overall objective of the system?
• Is the requirement specified at the proper level of abstraction?
• Is the requirement really necessary?
• Is each requirement bounded and unambiguous?
• Does each requirement have attribution?
• Is each requirement testable?
• Is the set of requirement consistent?

In the case of a negative response to one or more questions, an assessment phase was
performed with the user communities, involved via T2.1.2 and T2.2.2 tasks, in order to
refine the user stories.
As the system being built must conform to requirements, and conformance to them decides
the success of the project, requirements have also been discarded, modified, and integrated
by system analysts, or given low priority when it has been judged that:

• Satisfying them is unfeasible with the current technology
• They are too effort-demanding and not in line with the objectives of the project

Moreover, the user requirements have also been integrated with functionality not included
in the use cases, when such functionality has been considered necessary for providing the

Test-bed Functional Specification Page 20 of 273

expected behaviour of the DILIGENT system also in other contexts not covered by the two
selected application scenarios.
The functionalities included in the Use-Case Model thus rise as:

• a direct consequence of a user request: the functionality is in a one-to-one
relationship with a user requirement;

• a indirect consequence of a user request: the functionality is needed to reach
another functionality requested by users;

• a internal starting point: the functionality has no relation with any use case but it is
considered mandatory by the analyst.

The following general specification rules have been established in order to use more easily
the results of the distributed analysis carried out by the different partners:

• A use case contains a segment of behaviour whose result - not the method for
getting the result - is of importance to the rest of the use case.
The analyst has factored out this behaviour to a new inclusion use case. The
include-relationship has thus allowed to clarify a use case by isolating and
encapsulating complex details so they do not obscure the real meaning of the use
case. Moreover, consistency is improved if the included behaviour appears in several
base use cases.

• A use case has segments of behaviour considered optional or exceptional in
character, and not relevant or not necessary to the understanding of the primary
purpose of the use case.
The analyst has factored those out to a new extension use case. Complex sub-flows
and optional behaviour have been the first candidates for being partitioned out into
extension use cases. Often this behaviour can be quite complex and hard to
describe: including it in the flow of events of a use case can make the "normal"
behaviour harder to see. Extracting it allows to improve the comprehensibility of the
use-case model.

• Two or more use cases have similarities in structure and behaviour.
The analyst has factored out the common behaviour to create a new parent use
case. The original use cases expressed by the user community thus become the child
use cases in generalization-relationships with their own parent. Clearly, each child
use case inherits all the behaviour described for the parent use case. A
generalization-relationship between two use cases means that when a use-case
instance follows the description of a child use case, it also needs to follow the
description of the parent use case in order to be considered complete.
Also actors that had common characteristics have been modelled using actor-
generalizations.

2.1.2 Use Case Management
After identifying functionalities, the analysts have enriched use cases with a number of
information useful to make the system behaviour clear to the system designers.
As UML has been employed as modelling language to support the UP methodology, the
following types of diagrams have been used to build the Use-Case Model.

Use Case Diagrams
The Use-Case Model includes use case diagrams capable to model the user requirements.
However user cases have been directly translated into use case diagrams only when
expressed in a form suitable for the functional specification scope; if not, they have been
rearranged, divided, integrated, detailed, and expanded to better describe functionalities.

Test-bed Functional Specification Page 21 of 273

Moreover, a common vision has also been provided of the two different use case
specifications from which the DILIGENT functional specification starts. This vision has been
obtained by:

• Starting from one of the two user communities specifications;
• Designing the integration of parts extracted from one of the two user communities

specifications;
• Designing a new use case capable of both meeting the user requests and being

more appropriate for the project.

Figure 2: Flows description

Activity Diagrams
A use case usually describes only what it is called the “Main flow”, i.e. a set of sequential
actions that drive the system from a state to another. On the other hand, designers need to
know also any alternative or exceptional flow of activities in order to design a system with a
correct behaviour. When this occurs, designers enrich the main flow with the prevision of all
the “flows” that a use case may follow. To draw out the primary and alternative paths in the
system behaviour, an Activity Diagram has been used.

Sequence Diagrams
Sequence Diagrams are to document usage scenarios and both capture the required objects
in the early stage of the analysis and verify the object usage later in the design stage. The
DILIGENT analysts have used a Sequence Diagram anchored with a Use Case to further
illustrate the sequence of steps taken to realize a use case. Sequence Diagrams have also
been used to model the interactions among different use cases.
The following example shows a very basic example about how a Sequence Diagram can be
used to describe the behaviour of a use case diagram (which is static by definition) we have
derived a Sequence Diagram from a use case diagram.

Test-bed Functional Specification Page 22 of 273

Figure 3: Sequence Diagrams use in the Use-Case Model

Of course, reaching the Sequence Diagrams we are beginning to move into the "how" of
system behaviour, switching into a/the detailed analysis, and ultimately in a partial design.
In fact, these diagrams provide a preliminary and partial description of the system
behaviour modelled in the design phase.

2.1.3 Structuring the Use-Case Model
This section provides the set of guidelines used to write the functional specification. It
illustrates the organization of the Use-Case Model and will help designers in using the model
in the service specification and design phases.

Writing style
All statements related to functionality have been written as much clearly as possible using
consistent terminology. This should let the design be naturally derived - and no
interpretation be necessary - and a test plan be easily written, thus ensuring that the final
system performs as described.
The functionalities have been grouped, where possible, under sub-headings to make an
easily readable and understandable system description. Each group of functionalities has
been described using a use case diagram that gives an immediate and formal representation
of its behaviour. Then, any functionality represented by one use case has been described
textually while including the pertinent subset of the sections listed in the paragraph below.
Moreover, a sequence diagram and an activity diagram have been added to specific
functionality to improve their readability and usability.

Sections
The following sections have been used as a standard for describing a single functionality of
the system.

• Description and Priority
Contains few sentences that provide a short description of the feature and indicate
whether, and motivate why it is of high, medium, or low priority.

• User Requirements Fulfilled
States the requirement (or requirements) that the functionality is attempting to fulfil.
This may be an understanding of a user’s requirements or a statement given as an
internal starting point. In the first case, the section refers the Use Case specification
document section from which the requirement is extracted or derived.

• Functional requirements

Test-bed Functional Specification Page 23 of 273

Illustrates functional requirements in the form of constraints or pre-requisites in
order to better explain the functionality and simplify its use or integration in the
flows.

• Numbers
Details the number of users expected to use the system, the expected number of
transactions (per minute/hour/day), peak usage times, etc.

• Constraints and assumptions
Identifies the constraints and assumptions to be satisfied in order to achieve the
functionality.

• UML diagrams
Is the core section where the use case specifications are really enriched with a lot of
information that forms the Use-Case Model. It contains any of the appropriate
diagrams described in Section 2.1.2, including the use cases or part of them from
which the functionality is extracted.

• Grid exploitation
Explains the Grid aspects related with the functionality. It states if the functionality is
suitable for an exploitation that will be based on batch system or if it requires
human-driven interactive behaviour, or both; it also indicates motivations. Among
the others, we have considered the following requirements as candidates for batch
usage: data intensive or computing intensive tasks, potential tasks parallelization
where each piece is independent from the execution of the others (DAG
dependencies could be defined), real-time performances.

• Mapping between functionalities and DILIGENT services (system integration)
Contains some considerations on design issues – even if the functional specification
should not describe how the system has to be realized – in order to ensure that a
realistic system is specified. Design considerations are facilitated by the fact that this
document is already partitioned in logical areas that are directly related to the
technical work-packages. Moreover this section allows to indicate which DILIGENT
service will offer the described functionality any time this information is necessary
but not immediately derivable from the functionality description.

• Use Stories
Includes meaningful example stories to clarify the functionality.

• Testing issues
Provides some information about the testing of the functionality: how this
functionality could be tested? How to specify test-cases in a very simple fashion?
This section allows to include functional and acceptance testing as well as any other
kind of testing that can help the activity scheduled in the WP1.7 (e.g. compatibility
testing, performance testing, stress testing, integration testing, regression testing,
structural testing etc.).

• Related non functional requirements
Lists a number of non-functional requirements. Typical examples are constraints on
various attributes of the functionality such as usability, reliability, interoperability,
scalability, and security. In particular, security issues (regarding both users and
content management) have been reported any time this information allows the
usability of this document be improved.

Test-bed Functional Specification Page 24 of 273

2.2 Requirements alignment
As already explained, the Technical Annex I - “Description of Work” and the two
deliverables “D2.1.1 ARTE Scenario Requirements Report” and “D2.2.1 ImpECt Scenario
Requirements Report” have been the main sources of information used to derive the
DILIGENT functional specification. In particular, each of them presents the requirements as
expressed by the corresponding community. Given the different background and objectives
of the two communities, these requirements were originally not aligned. A preliminary task
of the analysis phase was therefore aimed at classifying these requirements and
appropriately aligning them.
Figure 4 and Figure 5 show, respectively, a logical decomposition of the ImpECt and of the
ARTE requirements. Each box in the figure corresponds to a use-case described in the
deliverable of the community.

Figure 4: Decomposition of the ImpECt requirements

In particular, the “DL Specific Services” area of the ImpECt user community includes the
automatically reports generation and the management of compound services in the context
of a user story that sounds as follow: “The creation of a digital library produces the
activation of its Web portal (that represents the workspace for each community user) and
the initial set of resources is identified. Through their workspaces the users can access and
use the DL resources. To be able to access a DL the users have to be invited while the
resources are imported or registered in it: every Diligent-compliant resource (i.e. described
by Diligent-compliant metadata, recognisable by Diligent) is 'imported' in the DL, while any
external information source (e.g. retrieved on the Web) can be 'registered' in the DL,
becoming DILIGENT compliant. The objects that populate a DL can be further categorised in
simple objects (e.g. html, xls, doc, pdf, jpg files) or complex objects (e.g. reports,
collections, compound services (CS), news)”1.

1 Information extracted from the D2.2.1 report

Test-bed Functional Specification Page 25 of 273

Figure 5: Decomposition of the ARTE requirements

For the ARTE user community, instead, it was important to stress specific functionalities
capable to improve the collaboration among researchers as can be observed by their
management activity: “The creation of an ARTE DL produces the activation of its DL
workspace. Using this workspace, as reported in the second diagram, users can access and
use the DL. The third, forth, and fifth diagrams describe the activities that authorized users,
the ARTE members, can perform using the DL workspace. With their activities, the DL
becomes live and supports courses, workshops, exhibition catalogues, and video process
management. All the above mentioned diagrams use the packages included in the
remaining three diagrams in order to perform their activity”2.
Starting from these decompositions and by analysing the full list of use cases produced by
the two scenarios, similar requirements have been aligned. Then, the aligned requirements
have been partitioned in logical areas directly related to the technical work-packages.
The following tables report the results of this work.

DL Creation and Management

ARTE ImpECt

 DL Management

Create an ARTE DL Create a DL

Update an ARTE DL Update DL

Remove an ARTE DL Dispose DL

Define an ARTE DL

Redefine an ARTE DL

Dispose an ARTE DL

 Access Configuration

DILIGENT Resource Management Resources Management

ARTE DILIGENT Management

Add a Service

2 Information extracted from the D2.1.1 report.

Test-bed Functional Specification Page 26 of 273

Remove a Service

Add an Archive

Remove an Archive

 Import

 Remove

 Delete

Select Services

 Services Configuration

 Monitor Diligent Resources

User Management Users Management

Add user Create User

Remove user Remove User

Edit user properties Change User Details

Browse users

Search Users Search Users

Search by User properties

Search by User Category

Propose Services to be Added to / Removed
from DILIGENT

Propose Archives to be Added to / Removed
from DILIGENT

Browse Archives and Services proposals

 Register

Content and Metadata Management

ARTE ImpECt

Collection Management Collections Management

Update a Collection Update Collection

Create a Collection Create Collection

Remove a Collection Remove Collection

Define Membership Criteria

 Automatic Update

 Manual Update

Access Objects

Save Object

Remove Object

 Select Object

 Inner Browsing

Personalize Object Views

Test-bed Functional Specification Page 27 of 273

Navigate objects Navigate

Play Video / Audio

Manage Workspace Use Workspace

Manage an ARTE DL workspace

Manage Student Workspace

Annotation Management Annotation Management

Create an Annotation Create Annotation

Read an Annotation

Remove an Annotation Remove Annotation

Update an Annotation Update Annotation

Metadata Generation Metadata Generation

Index and Search Management

ARTE ImpECt

Search and Retrieve Objects Search

Search objects by Image

Search part-of objects by Image

Search objects by Video

Search objects by Full Text

Search video scenes by Keywords

Search objects by Tone

Search objects by Metadata

Relevance Feedback Interactive Information Discovery

 Define Context

Browse objects

 Search/Browse Diligent

 Browse

 Explore

 Retrieve Related Resources

Process Video

Index Management Index Management

Search archives

Search archives by Image

Browse archives

Search archives by ID

Search archives by Metadata

Resolve Image into parts

Process Image

Process Text

Test-bed Functional Specification Page 28 of 273

Speech to text

Thesaurus Generation

Translation Service

Process Management

ARTE ImpECt

 CSs Management

 Create CS

 Run CS

 Design CS

 Monitor CS

 Abort CS

 Remove CS

 Update CS

User Community Specific Application

ARTE ImpECt

Workshop Management

Course Management

Make an Exhibition Catalogue

 LogIn

 LogOut

Edit an ARTE DL web portal properties Personalise Portal

 Load Configuration

 Visualise Statistics

 Reports Management

 Create Report

 Document Model Definition

 Select Document Model

 Update Report

 Build Report

 Visualise Versions

 Compare Versions

 Remove Report

The technological partners have used the tables above as common starting point for the
functional analysis.

Test-bed Functional Specification Page 29 of 273

3 BASIC CONCEPTS

This section briefly describes some basic concepts underlying the entire specification. All the
partners have agreed the semantics of these concepts and the description given here
represents a first contribution to the construction of a common glossary that will be shared
among all the projects participants during all the phases of the project.

3.1 Resources
A resource is the basic component of a DL handled by the DILIGENT system. Examples of
resources are: services, pieces of software with self contained procedures, persistent
archives accessible via service public interfaces, Computing and Storage Element,
Compound Service specifications, collections of objects. Handling of resources comprises
gathering, storage, monitoring, and dissemination.
In particular, a resource is anything whose related information must be gathered, stored,
monitored, and disseminated in order to provide the valuable amount of knowledge needed
during the creation and management of a DL.
When the resources owner registers a resource, he/she will also provide a description of it.
The services that will implement the Resource Management functionality will complete this
description by automatically gathering additional information, if possible. The full description
will be stored in a XML format and will be maintained both as information handled by the
services of the Collective Layer and as a special materialized collection managed by the
services of Content Management. Storing these resource descriptions in a special collection
will permit to extend the basic discovery capabilities provided by the Resource Management
(mainly the browse and search functionality based on exact matching procedures) with the
advanced search functionalities that will be supported through the standard Search
capabilities.
The relations among resources are depicted in the Figure 6.

Figure 6: DILIGENT Resources

Test-bed Functional Specification Page 30 of 273

3.2 Actors Hierarchy
An actor is anything (human or not) that is able to interact with the system in some way.
The actors that access the DILIGENT system may have one or more roles. A role grants the
actor with some specific rights (those assigned by VO Managers to that role). Roles are
hierarchically related, where the specialization relationship means that the specialised role
has all the rights of the parent and a number of other specific ones. The actors in the
DILIGENT system are depicted in Figure 7. The role hierarchy reflects the actor hierarchy;
during the DILIGENT lifetime it could be possible to have more roles in order to better
model different authorizations granularities.
A detailed description of the rights of each role is provided when an associated functionality
is presented.

Figure 7: DILIGENT actors

Here, let us only emphasize that any user that accesses to the DILIGENT infrastructure
must be a registered user, i.e. a user that owns a valid DILIGENT identity.

3.3 Metadata
Metadata are data about data. As a result of the analysis phase the following types of
metadata have been identified:

• Descriptive Metadata: are associated with users, information objects and resources.
They describe the corresponding element from an objective point of view. They can
be given explicitly or they can be derived (automatically calculated).

• Annotation: descriptive and subjective (manually offered), focus on the semantic of
the data. They are associated with any kind of information object in order to enrich
its descriptive information capturing human remark on it.

• Features: derived and computing intensive. They are associated with any kind of
information object in order to highlight and capture various characteristics of it.
These data are usually used to populate an Index.

• Content Source Description: derived and computing intensive. They are associated
with any kind of Content Source, e.g. Archives, Collections, and describe them from
the content point of view.

• Index: derived, focus on efficient search. They are data structure associated with
any kind of Content Source to speed up the discovery process.

Test-bed Functional Specification Page 31 of 273

All metadata are expressed in a XML format and will be maintained through the
functionalities of the Metadata Management even if indexes could also be based on
autonomous and ad-hoc storing mechanisms in order to improve the efficiency of the query
processing.

3.4 Collection
A Collection is a set of digital objects. The DILIGENT system internally distinguishes two
types of collections: virtual and materialized collections.
A virtual collection is a collection built by specifying a membership condition, i.e. a condition
that is verified by all and only the objects that belong to the collection. The membership to
a virtual collection is established at access time, i.e. the objects belonging to the collection
are identified at the time a user have access to the collection. The main consequence is that
the collection content is highly dynamic, i.e. it is capable to follow the changes of the
DILIGENT content. From an operational point of view, these collections will be automatically
maintained making use of an appropriate workflow managed by the Process Management.
A materialized collection is a collection built by enumerating a pool of objects. As a
consequence, materialized collections will be managed similarly to archives of digital
objects, and therefore they will exploit the functionalities envisaged for the archive
management (e.g. content source description, search, etc).

3.5 Workspace
A Workspace is particular kind of service that offers functionalities for supporting specific
working activities. It allows downloaded or linked digital objects to be maintained,
organized, annotated, removed, etc. A workspace can be personal or public. In the former
case all the operations activated on the objects maintained in the workspace produce
effects that are only visible to the owner of the workspace, while in the latter case these
effects are visible to all the digital library users. The information space of a workspace is
represented as a particular materialized collection. As such, it is managed by exploiting all
the functions available for this type of collection.

3.6 Virtual Digital Library
A Virtual Digital Library (VDL) is a particular kind of Digital Library (DL), thus we need to
explain this latter concept before to introduce the former.
A classical definition3 states that “A digital library is an institution which performs and/or
supports (at least) the functions of a library in the context of a distributed, networked
collection of information objects in digital form. The functions meant are: selecting,
collecting, preserving, organizing, representing, providing access to, ensuring knowledge of,
and disseminating information objects, mediating and supporting interaction between
information users and information objects”.
From an operational point of view a DL is an entity that comprises a pool of integrated
Resources, mainly Archives and Services, where authorized users are entitled to perform
certain activities (those the DL have been built for) operating on the DL information space
(the pool of archives or a subset of them) via DL services.
A VDL is an entity that, making use of the VO mechanism to glue together users and
resources in a trusted environment, aggregate in a virtual way a pool of resources to
provide digital library functionalities to a well fixed set of users.

3 N. J. Belkin. Understanding and Supporting Multiple Information Seeking Behaviors in a Single
Interface Framework. In Proceeding of the Eighth DELOS Workshop: User Interfaces in Digital
Libraries, pages 11-18. European Research Consortium for Informatics and Mathematics, 1999.

Test-bed Functional Specification Page 32 of 273

However it is important to notice that throughout this document, and in general in
DILIGENT, we use the term “Digital Library” as a synonym of “Virtual Digital Library”
because all the DLs the system will create are VDLs.

3.7 Virtual Organization
A Virtual Organizations (VO) is a dynamic pool of distributed resources shared by dynamic
sets of users from one or more organizations.
Providers usually make resources available to other parties under certain usage rules. Users
are allowed to use Resources under Resource Provider (RP) conditions and with the respect
of a set of inter-VO access rules. It is worth noticing that Users are not only human beings,
but also resources and services willing to use other resources.
The VO model is defined in terms of users being assigned to roles and permissions being
assigned to roles. In this model, the definitions of “Role” and “Permission” are borrowed
from the Role Based Access Control standard4:

• “A Role is a job function within the context of an organization with some associated
semantics regarding the authority and responsibility conferred on the user assigned
to the role”.

• “A Permission is an approval to perform an operation on one or more objects”.
Usage rights are modelled in DILIGENT as associations between roles, actions and
resources.

Furthermore, roles are organized in hierarchies allowing a natural way to capture
organizational lines of authority and responsibility. Role hierarchies are not constrained to
be trees; each role can have several ancestors with the only constraint that cycles are not
allowed in the structure.
The concepts of User, Role and Permission and the relations between them, along with
other VO entities that will be introduced later in this section are presented in Figure 8.

Figure 8: Relations between entities within a Virtual Organization

In order to put similar users together or maintain information related to many users (e.g. a
contact person), the concept of group is also introduced. Figure 8 shows no relation

4 D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R.Chandramouli, “Proposed NIST standard for
role-based access control”, ACM Transaction on Information and Systems Security, vol. 4, no. 3, pp.
224-274, August 2001. http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf

Test-bed Functional Specification Page 33 of 273

between groups and either permissions or roles, meaning that a group is not meant to grant
any right to users. The concept of group and that of role have to be considered orthogonal.
An important aspect in the operation of Virtual Communities is the definition of resource
access policies by the Resource Provider and the fulfilment of those policies by members of
the virtual community. Clearly we must address this feature taking into account the
scalability of the system: resource and VO administration costs shouldn’t increase with the
number of users in the VO and the number of registered resources, respectively.
As a solution, the policy agreement between the Resource Provider and the Virtual
Organization is first enforced by a course-grained access policy on the resource with respect
to the Virtual Organization; then, a fine-grained access control is maintained within Virtual
Organization which delegates access rights to the users. Although the Resource Provider is
the ultimate authority for granting access to its resource, the trust contract between parties
imposes a fair use of the resource. For this reason, it’s highly important that the VO
enforces the resource access policies on its own. This need is taken into account by
modelling Resource Sharing Rules within the VO itself.
The need for decoupling sharing-rules and permissions is twofold:

• Sharing rules reflect, inside the VO, the trust contract between the Resource
Provider and the Virtual Organization in order that the contract between them be
respected. Usually, such a contract is expressed in terms of the whole community,
without any explicit reference to community members.

• Registration of a resource should not rely on the existence of a specific actor
authorized to use it. Modelling sharing rules with role-permission association would
force the VO Manager to create unneeded roles and give them unneeded
permissions (e.g. it might be unknown, at the registration time, what roles will have
access to the resource). Furthermore who’s registering the resource might not have
the right to grant permissions to roles.

In the following picture, our first VO model is enriched with Sharing Rules. It can be noticed
that there is a relation between Permissions and Sharing Rules modelling the fact that the
former must be set in a consistent way with the latter.

Figure 9: Virtual Organization Structure enriched with Sharing Rules

The need for sub-Virtual Organizations
Both ARTE and ImpECt scenario requirements state the need for a mechanism enabling a
restricted set of the user community to focus its work on a particular set of resources using

Test-bed Functional Specification Page 34 of 273

specific services in order to fulfil a well-defined goal. Further, it’s often the case that the
lifetime of these very specific VO is limited to the accomplishment of the VO task.
In the ARTE scenario, “the organization of the material to be used by course students or to
be exhibited/discussed in a workshop” is an example of goals of short-lived VOs. In the
ImpECt scenario, “a particular group of users could be interested in working on data related
to the Tyrrhenian Sea, to oil spill pollution and in the time span between year 2000 and
2002” is another example.
A deep analysis of these scenarios reveals the whole VO characterization given in the
previous section. Furthermore, several considerations can be done on the nature of these
specific user communities with respect to the larger VO:

• Users involved in the accomplishment of specific tasks are members of the VO too
• Resources needed for the fulfilment of the task have some visibility within the VO
• Users aren’t expected to have fewer privileges on resources than those granted to

them in the VO, and no more than those granted to the VO by the resource
provider.

• The specific user community is expected to maintain the same level of trust as the
VO does.

These considerations lead to a well-defined relation between a VO and its sub-VOs: given a
VO v and one of its sub-VOs s, the following relations hold:

• The set of resources in s is a subset of resources in v
• The set of users in s is a subset of users in v
• The sub-VOs inherits roles, role hierarchy and role-permission associations from v.
• In s, new roles can be added to the hierarchy as descendants of existing roles (i.e.

more privileged roles can be created) and new permissions can be granted to new
nodes, but the set of permission granted to inherited nodes can’t be changed.

• The sub-VO s inherits user-role associations from v. Users can be given further roles
in the context of the sub-VO.

• Sharing rules for a resource in v still hold for that resource in the context of s,
reflecting the fact that, from an external point of view, a sub-VO is still part of a
trusted VO.

Figure 10 puts together all the concepts introduced till now.

Figure 10: VO structure with sub-VO

Test-bed Functional Specification Page 35 of 273

4 DL CREATION AND MANAGEMENT

4.1 Introduction
This specification has been partitioned in five main areas that group the functionalities of
Digital Library Creation and Management. These areas are:

• DLs Management
It groups functionalities related to the definition, creation and management of new
Virtual Digital Libraries. Both the ImpECt and ARTE requirements analysis reports
underline the need to have these features in order to define their own DLs.

• VOs Management
A VO is a dynamic collection of distributed resources shared by dynamic collection of
users from one or more organizations. In DILIGENT there will be one global VO,
named DILIGENT VO, and a number of nested VOs that represent at the first level
the user communities, and at the second level the DLs of a specific user community.
These functionalities provide mechanisms to build and support the above-mentioned
scenario.

• Users Management
Users Management includes functionalities that allow to add new users to DILIGENT,
to create and manage groups of users, to invite users to something (a DL, a
Collection, a Group, etc.) and to search and browse existing users.

• Resources Management
This area deals with the resources used to create and manage DLs and those that
can be used from DILIGENT services instances (e.g. other services instances or
pieces of software with self-contained tasks). These resources must be registered as
DILIGENT resources (i.e. registered in the DILIGENT VO) and the owner must
provide a resource profile (e.g. description, copyright, data about the provider, etc.)
and set the sharing policies (e.g. who can do what, on what, in what context, etc.)
for each resource.

• Notification Management
This area deals with the mechanisms the system offer to notify various DILIGENT
users about certain action that have been executed or must be execute by the actor
itself.

4.2 DLs Management
One of the main objectives of DILIGENT is the creation of Virtual Digital Libraries, i.e.
transient DLs based on shared computational, multimedia and multi-type content and
applications resources that can be dynamically created and moved on the underlying grid
infrastructure thanks to the adoption of an advanced and innovative architectural model of
DL. The DLs Management includes the functionalities that can be used to set up new DLs.
In this context, main actors are the DL Designer and the DL Manager.
Due to its complexity, the top-level use-case diagram with the big picture of this area has
been split into two figures, Figure 11 and Figure 12. In the first diagram the main actor is
the DL Designer that is in charge to start the process of creation of new DLs. The actions
that she/he can perform are primarily related with the DL definition (by selecting archives
and services, and configuring the web portal of the DL). Then she/he can interact with the
DL Manager in order to modify or dispose existing DLs (of which it is the owner); finally
she/he can also make proposals to integrate new archives and/or service addressed to
DILIGENT Resource Manager.

Test-bed Functional Specification Page 36 of 273

The second diagram in Figure 12 illustrates the management of DLs from the DL Manager
point of view. This actor is responsible for the generation and the maintenance of DLs.
Following the definition criteria specified by the DL Designer, DL Manager oversees the
generation process of DL Resources and their allocation on the grid nodes. This process
ends with the generation of the web portal of the rising digital library. This second group of
functionalities has strong relationships both with the VOs Management and the Resources
Management area. In fact, at VO level, a new DL is a new sub-VO that must be created at
generation time (this is the reason why a DL Manager is also a VO Manager, see Figure 7:
DILIGENT actors). Interactions with the resources area are required because DL Resources
are basically DILIGENT Resources, so it is necessary to add them to the DL sub-VO and sets
their sharing policies.

Figure 11: DL Management – DL Definition (use case diagram)

Test-bed Functional Specification Page 37 of 273

Figure 12: DL Management – DL Generation and Maintenance (use case diagram)

4.2.1 Define a DL
Description and priority
Defining a DL is the first step in the two-steps process that permits the creation and setting
up of a new DL. The definition starts with an in-depth inspection of the resources that can
be used according to the sharing rules defined by resources owners.
The entire process includes the following actions:

- Selection of Archives which define the knowledge to use in the DL
- Selection of available operations (different types of search and browsing operations,

annotations, collection management, data generations, workflow management, etc.)
- Invitation of users and groups of users to access to the DL
- Configuration of the Web Portal used to access to the new DL
- Ask for DL creation to the DL manager actor

The result of these actions represents the DL Definition Criteria. This feature of the system
has an high-priority since without it DLs can not be created.

User Requirements Fulfilled
This functionality fulfills a number of requirements that come into evidence from
ARTE_ucd001 (ARTE DILIGENT Management, Define an ARTE DL) and ImpECt_ucd03
(Create a DL - partially).

Numbers
We do not expect that DL definition is a frequent action. It can be executed only by a
restrict set of authorized users.

Test-bed Functional Specification Page 38 of 273

Constraints and Assumptions
It assumes that there exists a DILIGENT portal that permits the operations described above
and an Information System from which is possible to extract information about available
archives and services.

UML Diagrams

Figure 13: Define a DL (sequence diagram)

See also Figure 11.

Grid Exploitation
Grid usage comes into play only in the selection of archives and services due both
discovering and Information System features of a Grid middleware are used to perform this
operation.

Test-bed Functional Specification Page 39 of 273

Mapping between functionalities and DILIGENT services (system integration)
The VDL Generator Service with the support of the Information Service will implement this
functionality. The DILIGENT portal provides a user-friendly interface to perform the tasks in
an intuitive way.

Use Stories
The ARTE project director and her team decide the definition criteria to create an ARTE DL,
i.e. archives, resources and services which might be useful to support the activities to be
held within the ARTE project (research, courses, workshops, expositions, etc.). Assuming
that there exists an ARTE DILIGENT Portal, the following actions should be possible for
defining any ARTE Digital Library:
1) SELECTING KNOWN ARCHIVES: The user wants to select one or more archives to insert
them in the DL, whether to create it ex-novo or to update it. The user knows the archive ID
or some elements of the archive description (Name, Publishing Institution, keywords, etc.)
and uses search/browse operations to find the archive s/he wants to select. Then s/he looks
at the archive description to verify if selection criteria regarding access/policy rights etc. are
met, and if everything is OK, selects that archive for the ARTE DL s/he is creating. If in the
archive description the user has seen a link to another archive of possible interest, then
s/he accesses that archive, evaluates its content, policy rights, etc., and repeats the
selection/inclusion operations.
2) SEARCHING ARCHIVES CONTAINING GIVEN IMAGES AND INCLUDE THESE ARCHIVES IN
THE DIGITAL LIBRARY: After selecting well-known archives for inclusion in the ARTE DL,
the user wants to enrich the ARTE DL with other possibly interesting archives. The user
doesn't know any description element of the archives s/he is interested in, s/he knows
instead which content s/he is interested in. For example, the user presumes that a given
image contained in a literary text has later been used to illustrate texts of different kinds,
for example texts of medicine or science history. S/he wants to verify such an hypothesis
and see: i) whether archives different from the well-known ones contain that image; and, if
so, ii) whether those archives are to be included in the ARTE DL. To this aim, the user
searches the archives (all or a class of them, if DILIGENT can organize archives into subject
classes) by submitting that image as a query. Then the user accesses each of the retrieved
images and, if it is of interest, identifies the archive where it is contained in order to include
that archive in the Digital Library.
3) SELECTING SERVICES: The people in charge for defining the DL want to select one or
more services for equipping the DL. In order to do it they must be authorized to search
among the DILIGENT available services and select those that will satisfy their needs, i.e. the
needs of the users of the DL. The ARTE team judges the following services to be very
useful: text and image searching, personalization of objects views, browsing of archive
content or indexes, definition of virtual collections, annotation of documents, personalization
of access rights, define user categories and associated rights.
4) SELECTING USERS: The ARTE Director or a Director Assistant wants also to define the
users who will have access to the DL. In order to do it, the ARTE Director or a Director
Assistant has to be able to i) search for potential users already registered inside DILIGENT
and ii) to register new users to DILIGENT.
5) EDITING THE WEB PORTAL PROPERTIES: Finally, the ARTE Director or a Director
Assistant wants to define the characteristics (e.g. the layout, the look&feel, etc.) of the Web
portal that will be the DL access point.
Lastly, the form defining an ARTE DL is to be filled in at least with the following data:
- Name of the DL to be created
- Description

Test-bed Functional Specification Page 40 of 273

- Information about the issuing (or cooperating) institution(s)
- Information about access rules/rights

Testing issues
This functionality needs to be tested from a “semantic” point of view as well as from a
“performance” point of view. The former testing issue is related with the correctness of the
DL definition criteria with respect to the choices performed by the DL Designer. The latter
one is related with the responsiveness of this functionality, i.e. the user must be able to
define its DL using an online process that must take just the time to perform the choices
without overhead due to acquire a picture of the system.

Related non functional requirements
The main non functional requirement is related with the usability of this functionality. It is
mandatory to realize a user friendly process for defining a DL as the DL designer, that could
not have technical skills, must put it effort on indicating the requirements s/he is interested
in, avoiding details and other technicalities that will take her/him attention off its goal.

4.2.2 Select Archives
Description and priority
This use case represents one of the steps the DL designer must perform in order to define
the DL definition criteria, i.e. the selection of the Archives that will constitute the knowledge
to use in the DL. Moreover, if an archive allows to identify the parts of its content to use, it
will be possible to specify the archive content that will be part of the DL using the
configuration functionality (see 4.2.4). This feature has an high-priority since without the
DLs definition process can not be completed.

User Requirements Fulfilled
This functionality fulfils a number of requirements that come into evidence from
ARTE_ucd01 (Define an ARTE DL, Select archives) and ImpECt_ucd03 (Create a DL –
partially).

Numbers
As this functionality is a part of the DL definition process and we do not expect that this
activity will be frequent, the select archives action will take place not so often and moreover
will be executed only by a restrict set of authorized users.

Constraints and Assumptions
It assumes that there exists a DILIGENT portal that permits the operations described above
and an Information System from which is possible to extract information about available
archives.

UML Diagrams

See Figure 13: Define a DL.

Grid Exploitation
Selection of archives asks for description and discovering features. A grid infrastructure will
allow these operations via the information system.

Mapping between functionalities and DILIGENT services (system integration)
The VDL Generator Service with the support of the Information Service will implement this
functionality. The DILIGENT portal provides a user-friendly interface to perform the tasks in
an intuitive way.

Test-bed Functional Specification Page 41 of 273

Use Stories
See 4.2.1 Define a DL.

Testing issues
Mainly related with semantic and performance. See 4.2.1 Define a DL.

Related non functional requirements
Usability is the main issue as reported in 4.2.1 Define a DL.

4.2.3 Select Services
Description and priority
This use case represents one of the steps the DL designer must perform in order to define
the DL definition criteria, i.e. the selection of available operations (different types of search
and browsing operations, annotations, collection management, data generations, workflow
management, etc.) the DL will be equipped with. Moreover, if these functionalities are
configurable, it will be possible to customize the functionality that will be offered by the DL
using the configuration functionality (see 4.2.4). This feature has an high-priority since
without it the DLs definition process can not be completed.

User Requirements Fulfilled
This functionality fulfils a number of requirements that come into evidence from
ARTE_ucd01 (Define an ARTE DL, Select Services) and ImpECt_ucd03 (Create a DL –
partially).

Numbers
As this functionality is a part of the DL definition process and we do not expect that this
activity will be frequent, the select services action will take place not so often and moreover
will be executed only by a restrict set of authorized users.

Constraints and Assumptions
It assumes that there exists a DILIGENT portal that permits the operations described above
and an Information System from which is possible to extract information about available
services.

UML Diagrams
See Figure 13: Define a DL sequence diagram.

Grid Exploitation
Selection of services asks for description and discovering features. A grid infrastructure will
allow these operations via the information system.

Mapping between functionalities and DILIGENT services (system integration)
The VDL Generator Service with the support of the Information Service will implement this
functionality. The DILIGENT portal provides a user-friendly interface to perform the tasks in
an intuitive way.

Use Stories
See 4.2.1 Define a DL.

Testing issues
Mainly related with semantic and performance. See 4.2.1 Define a DL.

Related non functional requirements
Usability is the main issue as reported in 4.2.1 Define a DL.

Test-bed Functional Specification Page 42 of 273

4.2.4 Define Configuration
Description and priority
This use case represents the configuration action that is performed during the DL definition
phase, in particular during the selection of services and archives the DL will be equipped
with. The aspects and characteristics that can be personalized/customized are different and
are usually related with the particular kind of resource the designer is configuring. For
instance, the configuration aspects of an archive can be related to a) the parts of its content
to make accessible (e.g. all the PDF objects, all the object belonging to a Set or a collection,
etc.), b) the format of data exposed, c) the action allowed on data exposed (e.g. an object
is completely accessible or just an excerpt is available for free), etc. On the other hand,
configure a service may deal with a) the kind of data the service is able to “process” (e.g. a
feature extraction tool for image is able to manage MPEG-7 images), b) the performance
level the service must offer (e.g. the DL must be equipped with a search service capable to
reply to hundreds of users concurrently), c) the data (information sources) the service must
act on (e.g. the DL is equipped with a classifier service, i.e. a service capable to
automatically classify objects according to a classification schema, and the designer must be
able to specify the repository off objects this service must be capable to manage), etc.
Finally, notice that if a resource is not customizable at all, this action is not allowed.

User Requirements Fulfilled
This functionality fulfils the ImpECt_ucd03 Services Configuration UC as well as an hidden
functionality of the ARTE_ucd01 Define an ARTE DL UC.

Numbers
As this functionality is a part of the DL definition process and we do not expect that this
activity will be frequent, the configuration action will take place not so often and moreover
will be executed only by a restrict set of authorized users.

Constraints and Assumptions
The main assumption underlying this functionality is related with the customizability of the
services and archives, i.e. it will be possible to configure a service or an archive if and only if
that archive or service have been designed to be configured. Moreover, the configuration
parameters are resource specific and must be discoverable, e.g. published within the
service/archive description data.

UML Diagrams
See Figure 13: Define a DL sequence diagram.

Grid Exploitation
There are no particular aspects related with the use of the Grid except some configuration
parameters, e.g. if a service is configurable with respect to the number of parallel processes
that can create/use.

Mapping between functionalities and DILIGENT services (system integration)
Even if this functionality is service/archive centric we figure out that it will be realized via
the VDL Generator Service with the support of the Information Service and of the DILIGENT
portal. This latter component provides a user-friendly interface to perform the tasks in an
intuitive way.

Use Stories
See 4.2.1 Define a DL.

Testing issues
Mainly related with semantic and performance. See 4.2.1 Define a DL.

Test-bed Functional Specification Page 43 of 273

Related non functional requirements
Usability is the main issue as reported in 4.2.1 Define a DL.

4.2.5 Define Web Portal Configuration
Description and priority
This use case represents the definition of the Portal configuration that is performed during
DL definition phase. The aspects and characteristics that can be personalized/customized
are clearly dependant by the configuration aspects offered by the DILIGENT Portal service.
Some of these aspects are related with the layout the portal must presents, e.g. the colours
to use, the fonts, the title, the logo and its placement, the services and its placement, etc.
The latter point is particularly interesting as we are figuring out that each service that needs
to interact with users via a GUI is responsible to supply it using a technology (e.g. Portlet)
that can be easily integrated into the portal engine.

User Requirements Fulfilled
This functionality fulfils the ImpECt_ucd03 ‘Services Configuration’ and, partially, ‘Access
Configurations’ UCs as well as the ARTE_ucd01 ‘Edit an ARTE DL web portal properties’ UC.

Numbers
See 4.2.4 Define Configuration.

Constraints and Assumptions
The main assumption underlying this functionality is related with the customizability of the
Portal.

UML Diagrams
See Figure 13: Define a DL sequence diagram.

Grid Exploitation
There are no particular aspects related with the use of the Grid.

Mapping between functionalities and DILIGENT services (system integration)
This functionality will be fully covered by the DILIGENT portal that provides a user-friendly
interface to perform the tasks in an intuitive way.

Use Stories
See 4.2.1 Define a DL.

Testing issues
See 4.2.4 Define Configuration.

Related non functional requirements
Usability is the main issue as reported in 4.2.1 Define a DL.

4.2.6 Ask for DL Creation
Description and priority
This functionality models the action performed by the DILIGENT system at the end of the
DL definition phase in order to notify the DL Manager about the new DL the DL Designer
has asked to create. The notification action can be performed using the push modality, i.e.
the DL Manager receives a notify message (e.g. an email), or the pull modality, the request
is stored on the system and the DL Manager asks to the systems for pending requests.

Test-bed Functional Specification Page 44 of 273

User Requirements Fulfilled
This functionality fulfils, in part, the ImpECt_ucd03 ‘Create a DL’ and the ARTE_ucd01
‘Define an ARTE DL’ UCs.

Numbers
This functionality is involved in a macro functionality that is quite rare in time, i.e. the
definition of a DL; as a consequence this functionality is executed with scarce frequency.

Constraints and Assumptions
This functionality asks for a notification mechanism, i.e. a mechanism allowing the system
to inform the DL Manager about a pending request. There are no particular requests for the
notification model, i.e. the push model as well as the pull model can be realized and
supported.

UML Diagrams
See Figure 13: Define a DL sequence diagram.

Grid Exploitation
This functionality has no particular issues in a Grid environment.

Mapping between functionalities and DILIGENT services (system integration)
The VDL Generator Service, with the support of the DILIGENT portal, is the service in
charge for realizing this task.

Use Stories
See 4.2.1 Define a DL.

Testing issues
There are no particular issues in testing this functionality.

Related non functional requirements
Security aspect related with the notification mechanism is mandatory in order to prevent
improper actions.

4.2.7 Modify a DL
Description and priority
This use case models the functionality that allows the DL Designer to modify the DL
definition criteria of an already defined DL. As it is a specialization of the Define a DL use
case, the steps to perform are the same, i.e.:

- Inspection of the resources that can be used according to the sharing rules defined
by resources owners

- Selection of Archives which define the knowledge to use in the DL
- Selection of available operations (different types of search and browsing operations,

annotations, collection management, data generations, workflow management, etc.)
- Invitation of users to access to the DL
- Configuration of the Web Portal used to access to the DL

All these actions have to be intended also as operations performed on a pre-existing
definition, e.g. selection of archives means also de-selection of archives previously identified
as useful, etc. However, the result of these actions represents the new DL Definition
Criteria. This phase ends with the request for a DL update operation performed to the DL
Manager actor.

Test-bed Functional Specification Page 45 of 273

User Requirements Fulfilled
This functionality fulfils the ARTE_ucd01 ‘Redefine an ARTE DL’ and the ImpECt_ucd03
‘Update a DL’, in part.

Numbers
As reported by the two user communities the operation of updating of a DL is executed
several times per month.

Constraints and Assumptions
This functionality assumes that the DILIGENT portals enables authorized users to perform
the steps described above as well as that the Information Service supplies to it the needed
information.

UML Diagrams
The logical flow of this task is the same as that for the DL definition presented in Figure 11:
DL Management – DL Definition except that all the operations are executed having a sort of
‘background knowledge’, e.g. when the DL Designer select the archives to be included into
the DL she/he find the same archives already selected.

Grid Exploitation
The use of grid technologies comes into play in the selection of archives and services. In
particular grid technologies and mechanisms will be used during the resources discovering
phase based on the resource descriptions that are made available. This discovering phase
must also take into account the limitations due to the resource sharing rules.

Mapping between functionalities and DILIGENT services (system integration)
The VDL Generator Service with the support of the Information Service will implement this
functionality. The DILIGENT portal provides a user-friendly interface to perform the tasks in
an intuitive way.

Use Stories
The ARTE Director and/or a Director assistant decides how to update a given ARTE DL
definition, e.g. when new archives/services/users must be included, or which existing ones
must be removed. Using the DILIGENT Portal she/he will compile this list and then stored it
into the system in order to allow the ARTE Administrator to effectively update the given
ARTE DL.

Testing issues
This functionality needs to be tested from a “semantic” point of view as well as from a
“performance” point of view. The former testing issue is related with the correctness of the
DL definition criteria with respect to the choices performed by the DL Designer. The latter
one is related with the responsiveness of this functionality, i.e. the user must be able to
redefine its DL using an on line process that must take just the time to perform the choices
without overhead due to acquire a picture of the system.

Related non functional requirements
The main non functional requirement is related with the usability of this functionality. It is
mandatory to realize a user friendly process for redefining a DL as the DL designer, that
could not have technical skills, must put it effort on indicating the requirements s/he is
interested in, avoiding details and other technicalities that will take her/him attention off its
goal.

Test-bed Functional Specification Page 46 of 273

4.2.8 Ask for DL Update
Description and priority
This functionality models the action performed by the DILIGENT system at the end of the
DL definition update phase in order to notify the DL Manager about the new characteristics
the DL Designer have asked for a DL. The notification is made using the notification
mechanisms described in Section 4.6.2.

User Requirements Fulfilled
This functionality fulfils, in part, the ARTE_ucd01 ‘Redefine an ARTE DL’ and the
ImpECt_ucd03 ‘Update a DL’ UCs.

Numbers
This functionality is related with the ‘Modify a DL’ functionality and thus it will be executed
several times per month.

Constraints and Assumptions
This functionality asks for a notification mechanisms, i.e. a mechanisms allowing the system
to inform the DL Manager about a pending requests. There are no particular requests for
the notification model, i.e. the push model as well as the pull model can be realized and
supported.

UML Diagrams
See 4.2.7 Modify a DL - UML Diagrams.

Grid Exploitation
This functionality has no particular issues in a Grid environment.

Mapping between functionalities and DILIGENT services (system integration)
The VDL Generator Service, with the support of the DILIGENT portal, is the service in
charge for realizing this task.

Use Stories
See 4.2.7 Modify a DL.

Testing issues
There are no particular issues in testing this functionality.

Related non functional requirements
Security aspect related with the notification mechanism is mandatory in order to prevent
improper actions.

4.2.9 Dispose a DL
Description and priority
This functionality is related with the removal of a defined DL. Via this action the DL designer
is enabled to ask for the removal of a DL (see 4.2.11) and is also enabled to specify the
action to perform on the DL content in order to prevent its loss (see 4.2.10).

User Requirements Fulfilled
This functionality fulfils the ARTE_ucd01 ‘Dispose an ARTE DL’ and, in part, the
ImpECt_ucd03 ‘Dispose a DL’ UCs.

Numbers
The requirements expressed by the two user communities conducted us to conclude that
this task is executed rarely, usually at the end of the activity that bring up the DL.

Test-bed Functional Specification Page 47 of 273

Constraints and Assumptions
This functionality assumes that the DILIGENT portal enables authorized users to perform
the steps described above in a user-friendly fashion. Particular attention must be posed on
the process allowing the DL Designer to take a decision about the DL content to preserve.

Grid Exploitation
There are no particular aspects related with Grid technologies.

Mapping between functionalities and DILIGENT services (system integration)
The DILIGENT portal provides a user-friendly interface to perform the tasks in an intuitive
way.

Use Stories
The DL designer selects the DL to remove and expresses the requirements about the
preservation via the user-friendly mechanisms offered by the Portal. At the end of this
phase a notification is sent to the DL Manager in order to physically remove the resources
forming the DL and performing the tasks needed for respecting the preservation
requirements expressed.

Testing issues
The testing issues related with this functionality are: (i) its correctness, i.e. the action
notified to the DL manager must comply with those specified by the DL designer, and (ii) its
performance, i.e. the time required to the DL Designer for expressing its needs and the time
needed to notify the DL Manager.

Related non functional requirements
Security aspect related with the notification mechanism is mandatory in order to prevent
improper actions.

4.2.10 Preserve content
Description and priority
This functionality regards the preservation of the DL content to perform before the DL
disposal operation. This need is due to the fact that during the DL lifetime new objects
could be created and they could be relevant for other community than those of the DL by
the DL designer. The DL designer may ask to make them permanently available as a new
DILIGENT resource. In this case a collection owned by DL Designer will be created.

User Requirements Fulfilled
This functionality fulfils, in part, the ARTE_ucd01 ‘Dispose an ARTE DL’ and the
ImpECt_ucd03 ‘Dispose a DL’ UCs.

Numbers
This task belongs to a non-frequent functionality; as a consequence, it is executed few
times.

Constraints and Assumptions
The main assumption underlying this functionality is related with the presence of a storage
area within DILIGENT that allows the eventually specified preservation activities to take
place. On the other hand, we can figure out the previous assumption as a constraint, i.e.
this functionality will be available if and only if an available storage area exists.

UML Diagrams
No Diagram is needed.

Test-bed Functional Specification Page 48 of 273

Grid Exploitation
The only use of Grid technologies within this task is about the discovering and eventually
reserving of a storage area where preserved content can be stored successfully.

Mapping between functionalities and DILIGENT services (system integration)
The DILIGENT portal provides a user-friendly interface to perform the tasks in an intuitive
way. The Information Service allows the discovering of available storage resources.

Use Stories
See 4.2.9 Dispose a DL.

Testing issues
See 4.2.9 Dispose a DL.

Related non functional requirements
See 4.2.9 Dispose a DL.

4.2.11 Ask for DL Removal
Description and priority
This functionality models the action performed by the DILIGENT system at the end of the
DL disposal phase in order to notify the DL Manager about the needs to physically remove
an existing DL. The notification is made using the notification mechanisms described in
Section 4.6.2

User Requirements Fulfilled
This functionality contributes to cover the ARTE_ucd01 ‘Dispose an ARTE DL’ and the
ImpECt_ucd03 ‘Dispose a DL’ UCs.

Numbers
See the 4.2.9 Dispose a DL, i.e. the UC that invoke this task.

Constraints and Assumptions
This functionality asks for a notification mechanisms, i.e. a mechanisms allowing the system
to inform the DL Manager about a pending requests. There are no particular requests for
the notification model, i.e. the push model as well as the pull model can be realized and
supported.

UML Diagrams
Due to the level of details adopted within this specification no further diagrams are needed.

Grid Exploitation
This functionality has no particular issues in a Grid environment.

Mapping between functionalities and DILIGENT services (system integration)
The DILIGENT portal is the service in charge for realizing this task.

Use Stories
See 4.2.9 Dispose a DL.

Testing issues
There are no particular issues in testing this functionality.

Related non functional requirements
Security aspect related with the notification mechanism is mandatory in order to prevent
improper actions.

Test-bed Functional Specification Page 49 of 273

4.2.12 Propose Archives to be added to/removed from DILIGENT
Description and priority
The DILIGENT system will be able to manage just the pool of resources it knows. Via this
functionality the DL designer notifies the Resource Manager, about a) new archives that are
relevant for the community/communities it represents and that it plans to integrate into its
DLs, i.e. the DLs s/he has defined/will define, and b) already registered archives that are
not appropriate for community/communities it represents. Before to see and use the new
archives or to remove the old ones, those must be added (4.3.1 Add a Resource to
DILIGENT)/removed (4.3.8 Remove a Resource) to/from the DILIGENT resources.

User Requirements Fulfilled
This functionality contributes to cover the ARTE_ucd01 ‘Propose Archives to be added
to/removed from DILIGENT’ and the ImpECt_ucd03 ‘Import’ UCs.

Numbers
Even if we hope that this task will be executed many times in order to enrich the DILIGENT
infrastructure, we figure out that the pool of archives of interests for a community will be
limited and will increase slower. As a consequence this task will not be executed with an
high frequency.

Constraints and Assumptions
The main assumptions underlying this activity are related with (a) the networked status of
the archive, i.e. it must be possible to have access to the archive content via a network
connection, (b) the DILIGENT system capability, via wrapper and other similar technologies,
to have access to the archive content.

UML Diagrams
As this functionality is just related with the gathering of information about the archives to
import into DILIGENT, no diagrams are needed.

Grid Exploitation
The exploitation of Grid technologies is related with the kind of import mechanism that will
be allowed by the archive and by DILIGENT as well. For example, if the archive open its
content to the DILIGENT infrastructure it will be possible to figure out that the DILIGENT
system gathers the content of the archive and uses the distributed storage capacity to
maintain those documents. On the contrary, if the archive maintains the documents by
itself, no exploitation of grid technologies will be possible.

Mapping between functionalities and DILIGENT services (system integration)
As this functionality is related with the gathering of archive descriptive information, the
DILIGENT portal is the appropriate service for realizing this task.

Use Stories
An authorized user (the ARTE Director or a Director Assistant) proposes new archives to be
included in or removed from the DILIGENT resources set by filling in the appropriate
request form. For each archive, minimal data to be filled in are:
- Name of the proponent
- Archive name
- Archive type (web portal, data base, etc.)
- Archive address (e.g. if archive is accessible using Internet the URL)
- Archive access rights
After having filled the form, the request is notified to the appropriate manager.

Test-bed Functional Specification Page 50 of 273

Testing issues
There are no particular issues in testing this functionality. An important aspect to verify is
the syntactical check of inserted data.

Related non functional requirements
Security aspect related with the notification mechanism is mandatory in order to prevent
improper actions.

4.2.13 Propose Services to be added to/removed from DILIGENT
Description and priority
The DILIGENT system will be able to manage just the pool of resources it knows. Via this
functionality the DL designer notifies the Resources Manager, about a) new services that are
relevant for the community/communities it represents and that it plans to integrate into its
DLs, i.e. the DLs s/he has defined/will define, and b) already registered services that are
considered not appropriate for community/communities it represents. Before to see and use
the new services or to remove the old ones, those must be added (4.3.1 Add a Resource to
DILIGENT)/removed (4.3.8 Remove a Resource) to/from the DILIGENT resources.

User Requirements Fulfilled
This functionality contributes to cover the ARTE_ucd01 ‘Propose Services to be added
to/removed from DILIGENT’ and the ImpECt_ucd03 ‘Import’ UCs.

Numbers
Even if we hope that this task will be executed many times in order to enrich the DILIGENT
infrastructure, we figure out that the pool of services of interests for a community will be
limited and will increase slower. As a consequence this task will not be executed with an
high frequency.

Constraints and Assumptions
The main assumptions underlying this activity are related with (a) the networked status of
the service, i.e. it must be possible to have access to the service via a network connection,
(b) the DILIGENT system capability to have full control of the service. In fact, it will be
possible to figure out two types of services, those that will be hosted by the Institution
supplying it and those whose code is make available and will be hosted on DILIGENT
infrastructure resources.

UML Diagrams
As this functionality is just related with the gathering of information about the services to
import into DILIGENT, no diagrams are needed.

Grid Exploitation
The exploitation of Grid technologies is related with the kind of import mechanism that will
be allowed by the service characteristics and by DILIGENT as well. For example, if
DILIGENT will have full control on the service, i.e. its source code is make available to the
system, the infrastructure will be enabled to use the distributed computing capacity to
maintain the service instances it needs up and running with the desired QoS. On the
contrary, if the Institution offering the service plans to host and maintain the service by
itself, no (or partial) exploitation of grid technologies will be possible.

Mapping between functionalities and DILIGENT services (system integration)
As this functionality is related with the gathering of archive descriptive information, the
DILIGENT portal is the appropriate service for realizing this task.

Test-bed Functional Specification Page 51 of 273

Use Stories
An authorized user (the ARTE Director or a Director Assistant) proposes new service to be
included in or removed from the DILIGENT resources by filling in the appropriated request
form. For each service/tool, minimal data to be filled in are:
- Name of the proponent
- Service/tool name
- Service type (web service, retrieval software, image processing software, etc.)
- Service/tool license (GNU, property, Open source, etc.)
- Service URI (the code or the instance address)
After having filled the form, the request is notified to the appropriate manager.

Testing issues
There are no particular issues in testing this functionality. An important aspect to verify is
and the syntactical check of inserted data.

Related non functional requirements
Security aspect related with the notification mechanism is mandatory in order to prevent
improper actions.

4.2.14 Create a DL
Description and priority
The second step of a DL creation is the real generation of the new DL as defined by the DL
designer. This complex operation justifies the usage of a Grid infrastructure as foundation of
the DILIGENT system. In fact, the new DL resources are created on the fly on the available
grid nodes that matches both their software and hardware requirements.
Starting from the list of resources identified in the definition step, this procedure asks for
the creation of a VO for the new DL, creates the necessary DL Resources (which means
create new resources or share already existing ones), registers them in the VO (and also in
the DILIGENT VO, if they are new), creates DL users (previously invited in the definition
phase), and finally generates the DL portal.
All these actions and their sequence are documented in Figure 14: Create a DL.

User Requirements Fulfilled
This functionality fulfills the Create an ARTE DL use-case from ARTE_ucd001 and Create a
DL, Access Configuration, Populate DL, Register, Import use-cases from ImpECt_ucd03.

Numbers
We do not expect that the DL creation is a frequent action. It can be executed only by a
restrict set of authorized users.

Constraints and Assumptions
It assumes that there exists a DILIGENT portal that permits the operations described above.
Moreover, there must exist an Information System (to extract information about available
grid nodes and their configuration), a Broker Service (to implement matchmaking algorithms
among services requirements and nodes equipment) and mechanisms for dynamic software
deployment.

Test-bed Functional Specification Page 52 of 273

UML Diagrams

Figure 14: Create a DL (sequence diagram)

See also Figure 12: DL Management – DL Generation and Maintenance.

Grid Exploitation
During a DL generation, the potential Grid exploitation is very high. Within this functionality,
the Grid infrastructure will be used as a single big computational environment where DL
Resources can be dynamically located and moved in order to guarantee the Qualities of
Services requested by DL designers.

Test-bed Functional Specification Page 53 of 273

Mapping between functionalities and DILIGENT services (system integration)
The Keeper Service is in charge for the creation and management of a DL. It first interacts
with the Information Service in order to obtain a set of service instances that are able to
satisfy the characteristics required by the DL specification criteria. In order to cover the un-
satisfied requirements, it must also be able to build a complex list of mutually dependent
services to submit to the Broker & MatchMaker (B&MM) Service. The B&MM responds with a
list of priority-label Grid nodes for each service. Once the Keeper receives this list, it
instances each service on the appropriate Grid node.
The B&MM should provide a parametric language for the incoming requests and a general,
efficient and flexible matchmaking algorithm for the discovery of the optimal topology of a
set of services. This activity is supported by the DILIGENT Information Service, that is
capable to collect and process all the information needed for discovering the appropriate
resources and nodes to use. The maintenance and update of these data is also assisted by
the Dynamic VO Support component that notifies changes in the structure of the Virtual
Organization (VO) to the Information Service.

Use Stories
The DL Manager creates a DL, in particular the resources forming it, according to the
instructions given by the DL Designer during the design phase (see 4.2.1 Define a DL). Such
instructions regard:
- Which name the DL is to be given;
- Which archives are to be included in the DL;
- Which services are to be associated; and
- Which are the users that will be entitled to access the DL.
At the end of this creation phase a DL, with its own portal, will be up and running and users
entitled to have access will use the DL service.
During the DL lifetime the Manager will be notified about malfunctions of the DL, e.g.
unavailable resources, low performance of services, etc. via an automatic notification
mechanism. In this way it will be able to take action on the pool of resources forming the
DL to ensure required QoS.

Testing issues
The test of this functionality is particular demanding and critic. The functionality we are
speaking about is related with the instantiation of a distributed system in accordance with
some definition criteria. First of all it must be identified an appropriate matching algorithm
in order to verify that the created resources fulfils the expressed requirements. Secondly it
must be identified and realized a sort of ‘secure ping mechanisms’ for testing the access to
the services forming the DL in a controlled way.

Related non functional requirements
There are many non-functional requirements related with this task. The usability of the
mechanisms offered to the DL manager in order to create the DL is an important issue.
Security is another important issue, in particular only authorized users will use this
functionality and the resources used to realize the DL must be those make available for that
community. Interoperability and scalability are other issues related with the selection of
resources to use.

4.2.15 Check DL definition
Description and priority
This functionality is related with the second phase of the DL creation action and represents
the checking, executed by the DL Manager, of the DL definition criteria expressed by the DL

Test-bed Functional Specification Page 54 of 273

designer. This check operation consists in a set of formal controls about the consistency and
compatibility of the expressed criteria. During this phase the DL Manager is able to modify
the definition criteria in order to make them consistent and complete, e.g. the DL designer
just express the requirements to execute queries on documents whose metadata are
expressed in Dublin Core format, the DL Manager enrich this definition adding the
requirements to have an index on those documents based on the Dublin Core metadata if
those exists, otherwise s/he must also add the requirement to generate those metadata
descriptions. Notice that these control must be done by the DL Manager because this actor
have the technical skills to execute them, on the contrary the DL designer is a non technical
actor that is able just to express its requirements.

User Requirements Fulfilled
This UC does not directly fulfil a user requirement, it has been derived to factorize out a
commonality among the various DL creation functionalities.

Numbers
We do not expect that the DL creation is a frequent action. It can be executed only by a
restrict set of authorized users. So also this checking operation is executed by the same set
of authorized users.

Constraints and Assumptions
This functionality assumes that exists a formal specification language agreed among the DL
designer and the DL Manager used to express the DL definition criteria. Moreover assumes
that the resources descriptions contain all the data needed to make the compatibility checks
needed.

UML Diagrams
At this level of detail, this functionality is considered as one step activity. No further
diagrams are needed.

Grid Exploitation
The exploitation of Grid technology is related with the gathering of data about resources
using the information system. In particular, this functionality needs also to acquire data
about the computing and storage resources in order to check if exists enough resources to
fulfil the user requirements expressed in terms of DL characteristics. For example, if to meet
the DL definition criteria is needed a service that asks for 20GB of storage space and the
infrastructure does not offer such kind of resource to the DL community then the DL cannot
be instantiated.

Mapping between functionalities and DILIGENT services (system integration)
This functionality will be mainly supported by the Information Service that is in charge for
supplying the information needed about the resources and by the VDL generator service
that, via the DILIGENT Portal, will support the DL Manager to perform its task.

Use Stories
See 4.2.14 Create a DL.

Testing issues
In order to test this functionality diverse set of DL definition criteria will be supplied and
matched against diverse pool of available resources in order to verify the correctness of the
verification algorithm.

Related non functional requirements
Two of the main non functional requirements are the usability of this functionality, e.g. the
DL Manager must be able to check the DL Definition criteria in a user friendly fashion, as

Test-bed Functional Specification Page 55 of 273

well as performance, i.e. the time required to perform the check test clearly depends by the
complexity of the DL definition but must be a ‘reasonable’ time overhead in the process of
DL creation.

4.2.16 Analyze Available Resources
Description and priority
This functionality is related with the second phase of the DL creation action and represents
the analysis and selection of the physical resources that will be part of the DL. This
operation is necessary in order to “translate” the definition requirements expressed by the
DL designer into a pool of physical resources that will represent the DL, i.e. the DL Manager
will identify the real archives, services and resources in general needed for fulfilling the DL
definition criteria. In order to execute this selection operation the DL manager must be able
to have a list of the available resources he can use.

User Requirements Fulfilled
This functionality does not arise directly from any user requirements but is obtained by
factorizing out one of the steps involved in the DL physical creation.

Numbers
We do not expect that the DL creation is a frequent action. It can be executed only by a
restrict set of authorized users. So also this checking operation is executed by the same set
of authorized users.

Constraints and Assumptions
We assume that the resources descriptions contain all the data needed to make the analysis
and selection of resources an easy task for the DL manager.

UML Diagrams
See Figure 14: Create a DL.

Grid Exploitation
The exploitation of Grid technology is related with the gathering of data about a distributed
pool of resources using the information system.

Mapping between functionalities and DILIGENT services (system integration)
This functionality will be mainly supported by the Information Service that is in charge for
supplying the information needed about the resources and by the Dynamic VO Support
service that is in charge to identify the available resources, i.e. the pool of resources that DL
users are entitled to see and use. Moreover, the DILIGENT Portal will support the DL
Manager to perform its task.

Use Stories
See 4.2.14 Create a DL.

Testing issues
In order to test this functionality diverse pool of available resources associated with
different Communities will be used to verify the correctness of the algorithm that will
identify the appropriate resources.

Related non functional requirements
The usability of this functionality is the most relevant requirement. Usability means, in this
case, that the process defined to perform this task must be as much intuitive and user-
friendly as possible.

Test-bed Functional Specification Page 56 of 273

4.2.17 Include DL Users
Description and priority
This functionality is related with the second phase of the DL creation action and represents
the inclusion of users that will be allowed to access and use the DL. (see the lower part of
the diagram in Figure 14: Create a DL in Section 4.2.14).

User Requirements Fulfilled
This functionality contribute to fulfil the user requirements for DL creation, i.e. Create an
ARTE DL from ARTE_ucd001 and Create a DL, Access Configuration, Populate DL, Register,
and Import from ImpECt_ucd03.

Numbers
We do not expect that the DL creation is a frequent action. It can be executed only by a
restrict set of authorized users. So also this operation is executed by the same set of
authorized users.

Constraints and Assumptions
This functionality assumes that all the users of the DL are already DILIGENT Users, i.e. they
have been already registered as system users. New users will be entitled to adhere to the
DL via invitation mechanisms, covered by a set of functionalities offered by the User
Management package, see Section 4.5.19 Invite a User.

UML Diagrams
See the lower part of the diagram in Figure 14: Create a DL in Section 4.2.14.

Grid Exploitation
Grid technologies already manage users, in particular deals with the management of their
identities and credentials. This functionality will be built making use as much as possible of
these already existing technologies. In particular, we figure out that DL resources will trust
and accept the certificate associated with DL users, moreover the resources will be able to
give the appropriate grant in terms of access and use to these ‘new’ users.

Mapping between functionalities and DILIGENT services (system integration)
The main service involved in this task is the Dynamic VO Support service. This service is in
charge to create the trusting environment to operate the DL, as a consequence it is in
charge to configure appropriately DL users and DL resources in order to allow the former to
have access to the latter. Clearly, the DILIGENT Portal that will offer a user-friendly
management modality will support this kind of arrangement.

Use Stories
See 4.2.14 Create a DL.

Testing issues
The testing environment to build in order to test this functionality must be composed by a
set of existing users and a set of existing resources. Different pool of users to create will be
supplied and the test activity must be capable to verify the correctness of trusted
environment created, i.e. verify the correctness of the right granted to the users.

Related non functional requirements
There are many non functional requirements related with this task. First of all the security
issue, the grant of rights to the users must be executed in a secure way in order to prevent
inappropriate actions and preserve the controlled sharing of resource. Secondly the
responsiveness of this task is important as the users will perceive the DL as soon as possible
these will have access to the DL resources. Finally, the usability of the task is a sensible

Test-bed Functional Specification Page 57 of 273

aspect, much simpler and intuitive the process of adding users to a DL will be, much limited
the introduction of errors will be.

4.2.18 Create DL Resources
Description and priority
This functionality is related with the second phase of the DL creation action and represents
the “creation of resources” that will constitute and realize the DL. Creation of resources
must be intended as the creation/sharing of single DILIGENT resource instances, i.e. new
resources instances can be physically created (see Section 4.3.11 Create a DL Resource) or
already existing resource can be shared just updating its sharing rules (see Section 4.3.10
Add a Resource to a DL).

User Requirements Fulfilled
This functionality contributes to realize the user requirements for DL creation, i.e. Create an
ARTE DL from ARTE_ucd001 and Create a DL, Access Configuration, Populate DL,
Resources management, Register, and Import from ImpECt_ucd03.

Numbers
We do not expect that the DL creation is a frequent action. It can be executed only by a
restrict set of authorized users. So also this operation is executed by the same set of
authorized users.

Constraints and Assumptions
There are two main assumptions underlying this functionality, i.e. the existence of the
resource to create and the capability to create them. It is clear that in order to create a
resource, the system must be capable to identify it and make the appropriate action (giving
grant to the DL users on an already existing resource or create a new instance of it) needed
to associate the resource to the DL.

UML Diagrams
See the middle part of the diagram in Figure 14: Create a DL in Section 4.2.14.

Grid Exploitation
Grid technologies are particularly appropriate to support this task. In particular the
possibility to acquire the pool of computing and storage resources needed to deploy and
host a service offering a new functionality is one of the main issue in order to offer a new
resource to the DL audience. Another aspect is related with the sharing of a resource, via
this mechanism an authorized user is entitled to have access to a resource without being
the owner of it, as a consequence the user perceives the resource as its own even if the
resource virtually belongs to the DL.

Mapping between functionalities and DILIGENT services (system integration)
The Information Service will be used to maintain the map of the existing resources. The
Dynamic VO Support service is in charge to create the trust environment enabling
authorized users to have access to the resource.

Use Stories
See 4.2.14 Create a DL.

Testing issues
Testing this functionality will be challenging. First of all is needed to have a testing
environment composed by a set of resources of different types, e.g. deployable resources,
hosting nodes, storage elements, resources just sharable as could be archives. Then it must

Test-bed Functional Specification Page 58 of 273

be built some configuration of pool of resources and verify how these poll will be created
and satisfied by this functionality.

Related non functional requirements
The reliability of this functionality is an important issue, it is mandatory that resources will
be effectively created. Moreover, the scalability of this functionality is critic, the number of
resources to create is not known a priori and the process must be capable to scale well
when this number increases. Security is another aspect to take care, security means that
only authorized users will have access to this task and that authorized users to create a
certain resource are not capable to create other kind of resources.

4.2.19 Generate Web Portal
Description and priority
This functionality is related with the second phase of the DL creation action and in particular
with the Create DL Resources. In fact, the Web Portal can be considered as one of the
resources constituting the DL. So, please refer to Section 4.2.18.

User Requirements Fulfilled
The Web Portal each DL will be equipped with is considered a DL resource, as a
consequence this functionality cover the same requirements as reported in Section 4.2.18
Create DL Resources. Moreover it partially fulfils the ARTE_ucd01 ‘Edit an ARTE DL web
portal properties’ and ImpECt_ucd02 ‘Personalize Portal’ and ‘Load Configuration’ UCs.

Numbers
We do not expect that the DL creation is a frequent action. It can be executed only by a
restrict set of authorized users. So also this task is executed by the same set of authorized
users.

Constraints and Assumptions
This functionality assumes that the Portal will be a resource that can be configured and
instantiate using the resource configuration and instantiation mechanisms supplied for DL
resources.

UML Diagrams
See the lower part of the diagram in Figure 14: Create a DL in Section 4.2.14.

Grid Exploitation
See Section 4.2.18 Create DL Resources.

Mapping between functionalities and DILIGENT services (system integration)
See Section 4.2.18 Create DL Resources. Moreover, as in this case the Portal is the resource
to create, part of this functionality is covered by it.

Use Stories
See 4.2.14 Create a DL.

Testing issues
Testing of this functionality consists in having a portal, with its own configuration
parameters, to instantiate and a pool of available hosting node where this portal can be
instantiated. The test aims at verifying the appropriate instantiation of the resource.

Related non functional requirements
See 4.2.14 Create a DL.

Test-bed Functional Specification Page 59 of 273

4.2.20 Maintain a DL
Description and priority
Once a DL is up and running, the system must be able to maintain the level of QoS required
and guarantees the responsiveness of the DL Resources by monitoring their status and
changing the DL network dynamically by creating and/or moving DL Resources. This
functionality provides a set of notification mechanisms (we plan to adopt both the push and
the pull model) to investigate the state of a DL Resource and reuses the same procedures
used during the creation of a DL in order to re-design the DL.

User Requirements Fulfilled
This functionality satisfies the Monitor DILIGENT Resources use-case from ImpECt_ucd01 as
well as a ‘hidden’ requirement underlying the ARTE scenario.

Constraints and Assumptions
To date, a number of notification mechanisms has been already standardized, developed
and tested in a different distributed environment. We do not want to implement our own
technology to solve this trouble but reuse one of these existing ones.
Moreover, there must exist an Information System that collects and maintains both static
and dynamic information about the DL Resources.

Test-bed Functional Specification Page 60 of 273

UML Diagrams

Figure 15: Maintain a DL (activity diagram)

Grid Exploitation
Resource notifications and monitoring are common issues in a Grid environment. We expect
that the underlying Grid middleware will provide a set of reusable tools capable to match
the DILIGENT specific needs and to simplify our work.

Mapping between functionalities and DILIGENT services (system integration)
The Keeper Service is in charge to monitor DLs. Keeper instances are DL-specific and there
must be one instance for DL, at least. It works in collaboration with the Information Service
that is queried to obtain information about DL Resources.
Each DL Resource must describe itself in a well-defined format (descriptive metadata) and
must have an interface that permits to investigate its status.

Test-bed Functional Specification Page 61 of 273

Use Stories
See 4.2.14 Create a DL.

Testing issues
In order to test this functionality, a testing environment consisting of a running DL must be
prepared. At this point random malfunctions will be introduced within the federation of
resource, e.g. removing a resource, making unreachable a shared resource, in order to
measure if the system will notify about these ‘mistakes’ and in which amount of time.

Related non functional requirements
Maintenance of a DL is an important task. The most important requirements is the reliability
of this mechanisms, the notification received must be real notification and must cover all the
malfunctions and unavailability of resources. The second requirements is related with the
scalability of the mechanisms, the system must be capable to notify each DL manager
within the same time independently by the ‘size’ of the DL. Finally, the usability of the
mechanism is an important aspect as the DL manager must be enabled to easily understand
the problem and solve it.

4.2.21 DL Resources Monitoring
Description and priority
Once a DL is up and running, in order to maintain the required QoS level and guarantees
the responsiveness of the DL Resources, the system must be capable to monitor the status
of DL resources. This functionality represents the collector of notification coming from DL
resources via notification mechanisms (we plan to adopt both the push and the pull model)
and the production of alert messages to notify the systems about malfunctions.

User Requirements Fulfilled
This functionality concurs in fulfilling the functionality covered by the Maintain a DL task.

Numbers
The use of this functionality depends on two factors: i) the number of DLs that will be
created during the DILIGENT lifetime, and ii) the complexity of them, i.e. the number of
resources that forms each of them.

Constraints and Assumptions
This functionality assumes that the system will be capable to monitor the resources forming
the DL, i.e. that each resource will supply a mechanism allowing the system to acquire
information about its status. If a resource does not supply these data then the system will
be just capable to say either if the resource is accessible or not, i.e. a sort of ping
mechanism that will not be appropriate for tuning the resource usage within the DL.

UML Diagrams
See Figure 15: Maintain a DL.

Grid Exploitation
Resource notifications and monitoring are common issues in a Grid environment. We expect
that the underlying Grid middleware will provide a set of reusable tools capable to match
the DILIGENT specific needs and to simplify our work.

Mapping between functionalities and DILIGENT services (system integration)
The service in charge to cover this functionality is the Information Service that will be
capable to supply data about the resources belonging to DILIGENT. However, in order to
supply this information, it will be capable to acquire them directly from these resources that
are in charge to offer them.

Test-bed Functional Specification Page 62 of 273

Use Stories
See Section 4.2.14 Create a DL.

Testing issues
See Section 4.2.20 Maintain a DL.

Related non functional requirements
See Section 4.2.20 Maintain a DL.

4.2.22 Report DL Status
Description and priority
As the system is capable to monitor the status of DL resources, it must be also capable to
notify the DL Manager about malfunctions and errors that prevent the DL service. This
functionality represents the notification made by the system of alert messages presented in
Section 4.2.21. Notification can be done in different ways, e.g. a mail, or whatever kind of
message could be automatically sent to the administrator.

User Requirements Fulfilled
This functionality concurs in fulfilling the functionality covered by the Maintain a DL task.

Numbers
The use of this functionality depends by three factors: i) the number of DLs that will be
created, ii) the size of these DLs, and iii) the number of faults that will happen and will be
discovered. The DL usability will be high if the third component of this list will be as lower
as possible.

Constraints and Assumptions
This functionality assumes that the system will offer a notification mechanism. No
assumption and constraint are posed on the kind of mechanism, i.e. push modality or pull
modality.

UML Diagrams
See Figure 15: Maintain a DL in Section 4.2.20.

Grid Exploitation
This functionality has no particular issues in a Grid environment.

Mapping between functionalities and DILIGENT services (system integration)
The main service involved in this functionality is the Portal service that is in charge to render
to the DL manager the notification directed to him by the system.

Use Stories
See Section 4.2.14 Create a DL.

Testing issues
See Section 4.2.20 Maintain a DL.

Related non functional requirements
See Section 4.2.20 Maintain a DL.

4.2.23 Update a DL
Description and priority
As already stated, the creation of DLs is made in two steps: the definition phase and the
real generation of the DL. Also the operation of update follows this schema, i.e. there is a

Test-bed Functional Specification Page 63 of 273

definition phase (see 4.2.7 Modify a DL) where the DL Designer express the changes
needed to its DL and a physical execution phase where the DL Manager execute the
modification requested. The latter operation is represented by this functionality.
As for the Create a DL functionality, starting from the list of resources identified in the
definition step, the manager/system will be capable to identify the resource to be added
to/updated/removed from the DL and then execute these actions using functionality
belonging to the Resources Management area.

User Requirements Fulfilled
This functionality fulfils the ARTE_ucd01 ‘Update an ARTE DL’ and, in part, the ImpECt_03
‘Update a DL’ UCs.

Numbers
This functionality will be executed in accordance with the number of DLs that will be created
within DILIGENT. This number will grow in accordance with the number of communities that
will join the infrastructure. Moreover, this number will also depend on the dynamicity of the
various DLs, e.g. if a DL is created with all the resources needed to fulfil the user needs for
the whole DL lifetime this functionality will be never used, if a DL will be continuously
redesigned via the ‘Modify a DL’ functionality this functionality will be executed in
accordance.

Constraints and Assumptions
Assumptions for this functionality are similar to those identified in DL Creation, i.e. it exists a
DILIGENT portal that permits the operations described above. Moreover, there must exist
an Information System (to extract information about available grid nodes and their
configuration, as well as a description of other available resources), a Broker service (to
implement matchmaking algorithms among services requirements and nodes equipment)
and mechanisms for dynamic software deployment.

UML Diagrams
This functionality is similar to the creation phase with the only difference that some of the
resources forming the DL already exist. As a consequence see Figure 14: Create a DL in
Section 4.2.14.

Grid Exploitation
See Section 4.2.14 Create a DL.

Mapping between functionalities and DILIGENT services (system integration)
During a DL update, the potential Grid exploitation is very high. Within this functionality, the
Grid infrastructure will be used as a single big computational environment where DL
Resources can be dynamically located and moved in order to guarantee the Qualities of
Services requested by DL designers.

Use Stories
This functionality represents the second step of the story reported in Section 4.2.7 Modify a
DL. During this phase the choice expressed by the DL designer take place and are
transformed into physical rearrangement of the running DL. For example, if the DL designer
has decided to add an archive to its DL, during this phase the archive is really added to the
DL, i.e. at the completion of this activity the DL users are entitled to see the new archive
and have access to it.

Testing issues
The test of this functionality is similar to those proposed for the creation phase. This
functionality is related with the instantiation of a distributed system in accordance with

Test-bed Functional Specification Page 64 of 273

some definition criteria. First of all it must be identified an appropriate matching algorithm
in order to verify that the created resources fulfils the expressed requirements. Secondly it
must be identified and realized a sort of “secure ping mechanism” for testing the access to
the services forming the DL in a controlled way.

Related non functional requirements
The usability of the functionality is mandatory. The DL manager will be enabled to easily
identify the pool of resource to instantiate and also to express and execute all the
rearrangement of the DL that she/he deem as relevant to fulfil the new DL requirements.
The reliability is another main point: the operation performed by the DL manager must be
reported on the physical pool of resources managed. Underlying this task there is also the
needs to have a controlled access to this functionality, i.e. the system must prevent
improper use of this functionality to unauthorized users.

4.2.24 Remove a DL
Description and priority
The operation of removal of a DL follows the two phase schema presented for other
operation related to DLs, i.e. there is a sort of definition phase (see 4.2.9 Dispose a DL)
where the DL Designer express the requirements to remove a DL and a physical execution
phase where the DL Manager execute the request. The latter operation is represented by
this functionality. In order to remove a DL, all the resources belonging to the DL must be
removed (see 4.2.25) taking into account preservation requirements expressed by the DL
designer (see 4.2.10 Preserve content).

User Requirements Fulfilled
This functionality fulfils the ARTE_ucd01 ‘Remove an ARTE DL’ and, in part, the ImpECt_03
‘Dispose a DL’.

Numbers
The utilization of this functionality is related with the dynamicity of the created DLs. It is
clear that if the DILIGENT mechanism to create DLs will be easy to use an open to an high
number of community, as a consequence a big number of DLs will be created to serve
temporary user needs. When the community that brought up the DL ends its short activity
the DL must be removed, i.e. its resources must be deallocated.

Constraints and Assumptions
This functionality has no particular assumption and constraint.

Test-bed Functional Specification Page 65 of 273

UML Diagrams

Figure 16: Remove a DL (sequence diagram)

Grid Exploitation
During the DL removal, the potential Grid exploitation is very limited. However this
operation must be executed keeping in mind that the operational environment is a Grid
environment where resources are shared across different DLs. This mean that if the
resource to remove is owned by the DL it must be physically removed, on the contrary if the
resource is shared, this operation is just in charge to update the resource data in order to
prevent future access to the resource by users of this DL.

Mapping between functionalities and DILIGENT services (system integration)
Services involved into this functionality are the Dynamic VO Support service and the
Information Service as back end element, and the Portal service as the front end element,
i.e. the service offering this functionality in a user friendly fashion. The Dynamic VO Support
service is in charge to rearrange the trust relationship among shared resources in order to
restore the correct resource access rules. The Information Service must remove the entry
about the resources that will be removed.

Use Stories
This task represents the second phase of the user story reported in Section 4.2.9 Dispose a
DL. The DL manager performs the technical operation to physically removing the pool of
resources forming the DL. All these operations are made in accordance with the

Test-bed Functional Specification Page 66 of 273

requirements and guidelines expressed by the DL designer. These guidelines are mainly
related with preservation actions.

Testing issues
In order to test this functionality, various DLs will be built and different preservation
directive should be indicated over these environments. The objective of the testing activity
is to verify the correctness, i.e. only appropriate resources are physically removed while
shared resources are ‘virtually’ removed, and completeness, i.e. all the resources forming
the DL are removed, of the operation executed.

Related non functional requirements
Reliability of this functionality is a must, i.e. all the operation performed by the DL manager
must take effectively place in order to prevent the existence of garbage resources within the
infrastructure. The other must is the security, i.e. only authorized users must be entitled to
have access to this functionality and execute it in a successful way.

4.2.25 Remove DL Resources
Description and priority
In order to remove a DL, all the resources belonging to the DL must be removed taking into
account the preservation needs expressed by the DL Designer (see 4.2.10). As previously
observed, resources may be of exclusive use/visibility of the DL or may be shared between
DLs. Resources will be removed from the DL and/or from the DILIGENT system using the
corresponding functionality belonging to the Resources Management area (see 4.3.15). This
functionality is capable to take into account the preservation requirements expressed and
the underlying sharing rules.

User Requirements Fulfilled
This functionality concurs to cover the requirements fulfilled by the Remove a DL
functionality.

Numbers
This operation will be executed in accordance with the Remove a DL functionality.

Constraints and Assumptions
See Section 4.2.24 Remove a DL.

UML Diagrams
See Figure 16: Remove a DL in Section 4.2.24.

Grid Exploitation
See Section 4.2.24 Remove a DL.

Mapping between functionalities and DILIGENT services (system integration)
See Section 4.2.24 Remove a DL.

Use Stories
See Section 4.2.24 Remove a DL.

Testing issues
See Section 4.2.24 Remove a DL.

Related non functional requirements
See Section 4.2.24 Remove a DL.

Test-bed Functional Specification Page 67 of 273

4.3 Resources Management
In traditional computing systems, resource management is a well-studied problem. These
resource management systems are designed and operate under the assumption that they
have complete control of a resource and thus can implement the mechanisms and policies
needed for effective use of that resource in isolation. Unfortunately, this assumption does
not apply to the Grid.
The current research and investment into computational grids is motivated by the
assumption that coordinated access to diverse and geographically distributed resources is
possible. In our context, we expect that some of the of work will be covered by the grid
middleware adopted. In the DILIGENT system, the role of Resources Management is to
provide mechanisms to:

• Join resources with one or more specific DLs
• Manage and store sharing rules that allow coordinated access
• Dynamically allocate new resources

We have two kinds of resource: the DILIGENT Resources (simply called Resources) and the
DL Resources. Example of the former is:

• Software packages that can be deployed as DILIGENT service
• Running instances of DILIGENT services
• Pieces of software with self contained procedures
• Pre-existing resources (legacy applications, persistent archives) accessible via public

interfaces compliant with the DILIGENT specifications
• Complex objects, i.e. compound services, collections of objects, and for example

reports of the ImpECt scenario and exhibition catalogues of the ARTE scenario.
A DL Resource is just a DILIGENT resource that becomes available for that DL.
Regarding the use and access rights, the resource owner is entitled to specify, for each
resource, who (consumer) can have access to the resource to perform what (action). The
consumer is a VO while an action is a resource-specific task.
The rule above should be read as: “a community X is entitled to invoke an Action Y on
Resource Z”.
Main actors of this area are the DILIGENT Resource Manager and the DL Manager.
DILIGENT Resource Managers act as the owners of the resources. They are in charge to
register their resources to the DILIGENT infrastructure and to add them to one or more
Virtual Organizations making them available in concordance with a set of policies.
DL Managers are authorized users that manage registered resources in the context of their
digital libraries to provide functionalities to the end-users.
Generic DILIGENT users can only search, browse, and monitor resources belonging to their
virtual organization.

Test-bed Functional Specification Page 68 of 273

Figure 17: Resources Management (use case diagram)

4.3.1 Add a Resource to DILIGENT
Description and priority
This functionality models the action enabling Resource Manager to make available resources
to the DILIGENT infrastructure. In order to add this resource to the system it must comply
with the DILIGENT requirements that will be defined in the design phase.

User Requirements Fulfilled
This functionality covers the ‘Add a Service’ and ‘Add an Archive’ use-cases from
ARTE_ucd001, ‘Register’ use-case from ImpECt_ucd03 and ‘Add Resources’ from
ImpECt_ucd01.

Numbers
In this case, numbers depend on the success of the project. If the DILIGENT infrastructure
will be widely joined the registration of new resources will occur frequently, otherwise, if it
will be used just as a first experimental testbed, the operation will occur rarely.

Constraints and Assumptions
In order to successfully register a resource, this must be compliant with some requirements
that will be identified in the following phases of the project, e.g. a resource description must
be available and coded in a well-defined format.

UML Diagrams
See Figure 18: Register a Resource.

Mapping between functionalities and DILIGENT services (system integration)
The Information Service, with the support of the Portal for the presentation aspect, is in
charge to offer this functionality. Another service involved will be the Dynamic VO Support
Service that is in charge to register the resource within the correct sharing environment.

Test-bed Functional Specification Page 69 of 273

Use Stories
A Resource owner, e.g. an Institution hosting an archive or a service provider that is
capable to supply a particular kind of functionality, plans to offer this resource to all the
communities that are interested in using it. She/he establishes the rules for utilizing its
resource and then notifies the DILIGENT infrastructure that in some way will grab the
resource and offer it to its community. From this point on, each DL designer or DL manager
is enabled to use the new resource for fulfilling the user requirements in a novel way. This
kind of usage must be executed in accordance with the sharing rules expressed by the
resource owner; the DILIGENT infrastructure is in charge for ensuring this controlled
sharing.

Testing issues
Testing issues are related with the correctness and completeness of this operation. The goal
of test is to verify that different kind of resources are correctly inserted within the
infrastructure, i.e. that the infrastructure become aware of these resources in a reasonable
amount of time.

Related non functional requirements
In order to enrich the DILIGENT infrastructure with the higher number of resources, the
process of registering a new resource must be as much as possible easy and user friendly,
as a consequence the usability of the functionality is an important aspects. On the contrary
this registration activity must be executed in a secure fashion in order to prevent that
garbage resources will invade the infrastructure.

4.3.2 Register a Resource
Description and priority
In order to be shared a resource must be prepared and registered. Resources that are
managed by grid applications like DILIGENT or those even within a grid node are
heterogeneous in nature, so prepare a resource is a resource-specific task. For instance,
adding a new node capable to host DL resources means to equip it with the necessary
software packages, trust it with the necessary security procedures and configure it; on the
other hand, adding a pre-existing resource (a legacy application, a persistent archive, a
storage element, etc.) means to configure it to be accessible via a public interface compliant
with the DILIGENT specifications.
Once a resource is prepared, the Resource Manager must set its use and access rules that
regulate the resource usage and notify the DILIGENT VO Manager about the new resource.

User Requirements Fulfilled
Resources registration satisfies a very basic requirement in the Grid environments. Moreover
this functionality contributes to fulfill the requirements expressed in Add a Resource to
DILIGENT section.

Numbers
The execution of this functionality will depend on the number of resource will be registered
and make available via DILIGENT.

Constraints and Assumptions
A well-defined specification should result from the design phase. Following this specification,
any type of resource could be added to the DILIGENT infrastructure.

Test-bed Functional Specification Page 70 of 273

UML Diagrams

Figure 18: Register a Resource (sequence diagram)

See also Figure 17.

Grid Exploitation
Authorization and authentication mechanisms of the underlying middleware will be exploited
in order to do this task. Standard ways to exchange authorization and authentication
information (such as the Security Assertion Markup Language) will be taken into account in
order to securely exchange resource policies.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support Service is in charge to offer this functionality.

Use Stories
See 4.3.1 Add a Resource to DILIGENT.

Testing issues
See 4.3.1 Add a Resource to DILIGENT.

Related non functional requirements
See 4.3.1 Add a Resource to DILIGENT.

4.3.3 Edit Sharing Rules
Description and priority
In the Resource Management framework, resource usage is governed by a set of “sharing
rules” specifying the actions that consumers can perform on the resource. The consumer is
a VO while an action is a resource-specific task.

Test-bed Functional Specification Page 71 of 273

Sharing rules are defined following the sharing rules specification that will be defined in the
detailed design phase. It is important to note that this specification will be user-oriented.

User Requirements Fulfilled
This functionality concurs to fulfill the requirements reported in Section 4.3.1.

Numbers
It is supposed that setting, updating, or deleting sharing rules will occur frequently.

Constraints and Assumptions
Edit sharing rules is a sub-task of the Register a Resource, Update a Resource, and Create a
DL Resource satisfying a very basic requirement in the Grid environment. Sharing rules
specification should be defined during the detailed design phase. It is assumed that this
specification will be user-oriented. Moreover, a sort of transactional protocol for this task
must be supplied in order to manage concurrent access to the same resource sharing rules
by different users.

UML Diagrams
See Figure 18: Register a Resource, Figure 19: Add a Resource to a DL, and Figure 20:
Create a DL Resource.

Grid Exploitation
Grid technologies already have mechanisms for setting the sharing rules on resources. The
exploitation consists in analyzing these mechanisms in order to identify its strengths and
weakness.

Mapping between functionalities and DILIGENT services (system integration)
Services involved into this activity are: i) the Portal by witch authorized users are enabled to
set and update the sharing rules about a resource, ii) the Dynamic VO Support service that
must act in accordance to these sharing rules and rearrange the policies in order to enforce
them.

Use Stories
See Section 4.3.1 Add a Resource to DILIGENT.

Testing issues
This functionality is critical, as a consequence its testing activity must be an heavy task.
First of all, correctness and completeness of this functionality must be tested. Moreover, this
task must be subject of stress tests as it will be used in a concurrent fashion by different
other tasks.

Related non functional requirements
Usability and security are important requirements for this functionality as reported in Section
4.3.1.

4.3.4 Edit Resource Profile
Description and priority
Edit Resource Profile provides the mechanisms to maintain (add, update, and remove)
detailed information about resources, i.e. about software packages, running instances of
DILIGENT services, pieces of software with self contained procedures, pre-existing
resources (legacy applications, persistent archives) accessible via public interfaces compliant
with the DILIGENT specifications, complex objects (like Reports in the ImpECt scenario),
collections of objects. This information is updateable anytime and is composed by an XML-
based configurable set of properties.

Test-bed Functional Specification Page 72 of 273

User Requirements Fulfilled
This functionality concurs to fulfill the requirements reported in Sections 4.3.2, 4.3.7, and
4.3.8.

Numbers
The execution of this task depends by two factors: i) the ‘dynamicity’ of the resource, and ii)
the information that will be maintained by the profile.

Constraints and Assumptions
Resource profile will be maintained as XML data and will be possible to store and retrieve
them in an efficient way.

UML Diagrams
See Figure 18: Register a Resource, Figure 20: Create a DL Resource.

Grid Exploitation
This task can be considered a data intensive task. As a consequence the exploitation of Grid
it related with the possibility to store the profiles in a distributed way making use of storage
resources offered by the infrastructure. Clearly, information stored in this distributed way
must be searchable in an efficient way and the system must take care about the
preservation of these data, mainly the loss of them must be prevented.

Mapping between functionalities and DILIGENT services (system integration)
The Information Service will maintain resource profiles, i.e. we figure out that each service
and/or user must query the Information Service to acquire data about resources. The
service in charge for visualize these data is the Portal.

Use Stories
See Section 4.3.1, 4.3.7, and 4.3.8.

Testing issues
Correctness and completeness of this functionality must be tested. Moreover, this task must
be subject of stress tests as it will be used in a concurrent fashion by different other tasks.

Related non functional requirements
Security, scalability and reliability of this functionality are orthogonal requirements that must
be traded off in implementing it. With security we mean that only authorized users are
entitled to act on resources profiles as well as that concurrent access will be correctly
handles. Scalability is related with the performance of this task, i.e. the responsiveness does
not degrade when the number of resources increases. Reliability means that resources
profiles will be changed accordingly to the user expressed actions, i.e. unpredictable
changes due to side effects are not allowed.

4.3.5 Store Resource Profile
Description and priority
Store Resource Profile models the storage action into the resources knowledge base of the
information constituting the resource profile. This information is updateable anytime and is
composed by an XML-based configurable set of properties.

User Requirements Fulfilled
This functionality has been obtained by factoring out a specific instance of the Set Resource
Profile task.

Test-bed Functional Specification Page 73 of 273

Numbers
The execution of this task depends by two factors: i) the ‘dynamicity’ of the resource, and ii)
the information that will be maintained by the profile.

Constraints and Assumptions
See Section 4.3.4 Edit Resource Profile.

UML Diagrams
See Figure 18: Register a Resource and Figure 20: Create a DL Resource.

Grid Exploitation
This task is a data intensive task. As a consequence the exploitation of Grid it related with
the possibility to store the profiles in a distributed way making use of storage resources
offered by the infrastructure. Clearly, information stored in this distributed way must be
searchable in an efficient way and the system must take care about the preservation of
these data, mainly the loss of them must be prevented as well as the synchronization of
eventually replicated data.

Mapping between functionalities and DILIGENT services (system integration)
See Section 4.3.4 Edit Resource Profile.

Use Stories
See Section 4.3.4 Edit Resource Profile.

Testing issues
Correctness and completeness of this functionality must be tested, e.g. data will be stored
in a complete way, replicated copies of data are modified accordingly, etc. Moreover, this
task must be subject of stress tests as it will be used in a concurrent fashion by different
other tasks.

Related non functional requirements
See Section 4.3.4 Edit Resource Profile.

4.3.6 Remove Resource Profile
Description and priority
Remove Resource Profile models the removal action from the resources knowledge base of
the information constituting the resource profile. This information is updateable anytime and
is composed by an XML-based configurable set of properties.
This functionality has been obtained by factoring out a specific instance of the Set Resource
Profile task.

Numbers
The execution of this task depends by the ‘dynamicity’ of the resources, i.e. if resources will
be continuously added to and removed from the infrastructure this task will be executed
many times.

Constraints and Assumptions
See Section 4.3.4 Edit Resource Profile.

UML Diagrams
See Figure 17: Resources Management in Section 4.3 Resources Management, no further
diagrams is needed.

Test-bed Functional Specification Page 74 of 273

Grid Exploitation
This task is a data intensive task. As a consequence the exploitation of Grid it related with
the possibility to remove profiles that potentially are stored in a distributed way making use
of storage resources offered by the infrastructure.

Mapping between functionalities and DILIGENT services (system integration)
See Section 4.3.4 Edit Resource Profile.

Use Stories
See Section 4.3.4 Edit Resource Profile.

Testing issues
Correctness and completeness of this functionality must be tested, e.g. data will be
removed in a complete way, replicated copies of data are removed accordingly, etc.
Moreover, this task must be subject of stress tests as it will be used in a concurrent fashion
by different other tasks.

Related non functional requirements
See Section 4.3.4 Edit Resource Profile.

4.3.7 Update a Resource
Description and priority
Registered resources can be updated in order to change their profiles or to modify the
sharing rules. Both tasks are human-driven. The former is a task that can be activated to
modify the property values related to a resource, or to change the set of properties used to
describe the resource. The latter can be activated to modify, add, or remove consumers
and/or actions.

User Requirements Fulfilled
This functionality completes the pool of classical management operations, i.e. add, update
and remove resources.

Numbers
The execution of this task depends on the dynamicity of the resource, i.e. the number of
times it is needed to update its profile as well as the number of times it is necessary to
update its sharing rules. All these changes are executed by a Resource Manager in order to
enlarge or restrict the usage of the resource within DILIGENT.

Constraints and Assumptions
We assume that the only authorized users are entitled to execute this task.

UML Diagrams
This functionality is quite similar to the functionality that add a new resource to the system,
in particular it deals with modifications of resource sharing rules (see 4.3.3 Edit Sharing
Rules) and/or with modifications of resource data (see 4.3.4 Edit Resource Profile).

Grid Exploitation
See Section 4.3.1.

Mapping between functionalities and DILIGENT services (system integration)
This functionality involves two services, the Information Service is in charge to update
resource profile data and the Dynamic VO Support service will be take care about new
resource sharing rules.

Test-bed Functional Specification Page 75 of 273

Use Stories
A Resource Manager has registered a resource within DILIGENT and has allowed a
community of mathematicians to use it. A new multidisciplinary community joins DILIGENT
and contact the Resource Manager in order to have access to the resource as they deem it
particularly relevant for their activity. The Resource Manager decides to open up its
resource for free for a trial period to this community. In order allow the new community to
use the resource, she/he update the resource. At the end of the trial period, the Resource
Manager can update the resource if the community is not capable or does not agree to ‘pay’
for use it.

Testing issues
Testing issues are related with the correctness and completeness of this operation. The goal
of test is to verify that different kind of resources are correctly updated within the
infrastructure, i.e. that the infrastructure become aware of resources changes in a
reasonable amount of time mainly for sharing issues.

Related non functional requirements
In order to enrich the DILIGENT infrastructure with the higher number of resources, the
process of update of a resource must be as much as possible easy and user friendly in order
to give to the DL Manager complete control on resource usage, as a consequence the
usability of the functionality is an important aspects. On the contrary this change activity
must be executed in a secure fashion in order to prevent that unauthorized usage of
resources will be possible.

4.3.8 Remove a Resource
Description and priority
In a Grid environment resources are not under the control of a single organization or
institution. Resources made available by their owners can be removed through a specific
human–based request or can be automatically dropped out for a scheduled life-time
management request or because they appear unstable or not correctly managed with
respect to the rules established by the DILIGENT specification. When a resource is dropped
out each VO manager is notified. If the resource is used within a DL the DL Manager is
notified by the monitor resource functionality (push modality).

User Requirements Fulfilled
This functionality fulfils ARTE_ucd01 ‘Remove a Service’, ‘Remove an Archive’ and
ImpECt_ucd01 ‘Delete’ UCs.

Numbers
The number of times this functionality will be used depends on the number of third party
resources that will be added to the system as well as by the correctness and secure
resource usage mechanisms offered by DILIGENT.

Constraints and Assumptions

UML Diagrams
This functionality deals with the modification of resource sharing rules (see 4.3.3 Edit
Sharing Rules), the removal of resource data (see 4.3.4 Edit Resource Profile) and, finally,
the physical removal of the resource, e.g. free resources like storage elements used by the
resource, etc.

Test-bed Functional Specification Page 76 of 273

Grid Exploitation
This functionality is resource specific as well as the grid exploitation. As a consequence the
removal of a resource could imply the necessity to free the other Grid resources that have
been reserved to this resource.

Mapping between functionalities and DILIGENT services (system integration)
Services involved are i) the Information Service, which is in charge to remove the entry
about the resource from its knowledge base, ii) the Dynamic VO Support service that must
rearrange the sharing rules removing those related with the resource, and iii) the Portal that
will supply the user interface enabling the Resource Manager to perform this action.
Removal of a resource involves also all the Keeper services that are in charge to maintain
the various DL where the resource is used, those services must find alternative resources to
equip with their DL or must notify the DL Manager about the impossibility to maintain the
DL.

Use Stories
The DILIGENT Administrator after having analyzed the pool of resources registered within
the infrastructure discover that exists an archive whose content have changed a lot from the
time this archive has been published within the system. Today this archive contains
questionable quality documents. Moreover, this archive makes use of storage resources
offered by the infrastructure. In order to guarantee a certain quality of the resource offered
as well as optimize the use of them the DILIGENT Administrator decides to remove the
archive and makes its storage capacity available for others usage.

Testing issues
The goal of the testing activity is to verify the correctness and completeness of this task.
Different kind of resources must be created and then removed. These resources will be
realized as single components as well as resources that make use of other resources offered
by the infrastructure and reserved to them. The removal of the former is more easy, while
the removal of the latter impose also to free the reserved resources.

Related non functional requirements
Security is the first requirements that this functionality asks for; only authorized users must
be entitled to remove a resource. Reliability is the other requirement; in particular an
authorized user that remove a resource must have assurance that the resource is really
dropped out.

4.3.9 Manage a Resource in a DL
Description and priority
This functionality represents the aspects related with the management of a Resorce within a
DL. This management activity can be decomposed into three sub-functionalities:
- the adjunction of a Resource to a DL (see 4.3.10);
- the updating of a DL Resource (see 4.3.14);
- the removal of a resource from a DL (see 4.3.15);

User Requirements Fulfilled
See the more specific functionalities.

Numbers
See the more specific functionalities.

Constraints and Assumptions
See the more specific functionalities.

Test-bed Functional Specification Page 77 of 273

UML Diagrams
See the more specific functionalities.

Grid Exploitation
See the more specific functionalities.

Mapping between functionalities and DILIGENT services (system integration)
See the more specific functionalities.

Use Stories
See the more specific functionalities.

Testing issues
See the more specific functionalities.

Related non functional requirements
See the more specific functionalities.

4.3.10 Add a Resource to a DL
Description and priority
Registered resources can be associated with a DL in order to fulfill specific DL requirements.
This functionality can be activated by a human-driven request or can be started by
DILIGENT services to share a service instance capable to fulfill the DL requirements and/or
to balance the workload, to manage temporarily peak of requests, or to overcome
malfunction of servers or partitioning of the network. Human-based requests have to specify
the policy for the DL resource; automatic generated DILIGENT services requests set for the
DL resource the same policy of other similar resources.

User Requirements Fulfilled
This functionality is a consequence of the DL creation model adopted into DILIGENT as well
as by the kind of resources the DILIGENT infrastructure plans to manage. In fact, after the
DL design performed by the DL Designer, the DL Manager is in charge for identifying the
pool of resources needed for fulfilling the designer needs and physically add them to the
federation of resources forming the DL. This task may require the creation of new resources
(see 4.3.11 Create a DL Resource) as well as the sharing of already existing ones.

Numbers
This task will be executed a number of times that depends on the number of DLs that will
be created as well as by the size of each DL.

Constraints and Assumptions
Resources are already registered as DILIGENT resources. Moreover, the system will be
capable to instantiate the resources that can be instantiated as well as must be capable to
appropriately rearrange the pool of sharing rules in order to make the resource available to
the DL.

Test-bed Functional Specification Page 78 of 273

UML Diagrams

Figure 19: Add a Resource to a DL (sequence diagram)

See also Figure 18: Register a Resource.

Grid Exploitation
This task will take many advantages by using Grid technologies. As previously stated, if it is
needed to create a new resource the system may ask for an hosting node that will be
gathered by the infrastructure, as well as for a storage element that again is gathered by
the infrastructure. On the other hand, if the DL Manager should be capable to share an
already existing resource it will rearrange the policy statements.

Mapping between functionalities and DILIGENT services (system integration)
Services involved within this task are the Information Service, the Dynamic VO Support
service and the Keeper Service. Information Service will maintain the knowledge base of all
the resources available within the DILIGENT infrastructure, as a consequence each time a
new resource is created it must be notified. The Dynamic VO Support service maintains the
knowledge base of the sharing rules holding within the infrastructure, i.e. it is in charge to
say if a certain resource is accessible within an environment (a DL, a community, etc.).

Use Stories
In order to fulfill the DL requirements expressed by the DL Designer, the DL Manager is in
charge to identify the pool of resources needed and then adding them to the DL
environment. At this point, with the support of the system, the DL manager will be capable
to create the new resource instances he identifies as needed as well as ‘share’ already
existing ones, i.e. make already existing resource available and accessible to the DL
community.

Test-bed Functional Specification Page 79 of 273

Testing issues
The main goal of the testing activity is verifying the correctness and completeness of this
action. Moreover, the time needed to create a new DL resource is another important aspect
to be considered. As a consequence, a pool of representative resources among those the
system is capable to manage must be selected and diverse infrastructure environment must
be used to instantiate/share them.

Related non functional requirements
Due to the importance of this functionality, its reliability is a must, i.e. if a DL manager asks
for a new DL resource then this resource must be effectively made available to DL users.
Another aspect to keep in mind is the scalability of this task, the response time must be as
much as possible independent by the number of resources to create. Interoperability of this
functionality is also important, where we intend that this functionality must be capable to
deal with the greater number of resource possible, e.g. it must be capable to instantiate a
search service as well as an index service or a repository, it must be capable to share an
archive as well as a running instance of an index. Finally, security is another mandatory
requirement: only authorized users must be entitled to execute this kind of functionality.

4.3.11 Create a DL Resource
Description and priority
As mentioned above, a DL Resource is a Resource that can be used by a DL. It can be
created for a specific DL as well as shared among a number of DLs. This functionality covers
the creation of a new resource for a DL in order to fulfill the functionalities of the DL, to
balance the workload, to manage temporarily peak of requests, or to overcome malfunction
of servers or partitioning of the network. For example, a service instance is created from
scratch when a new DL is set up or when becomes necessary a workload balancing.
The new resource must be registered as DILIGENT Resource on behalf of the DL Manager
(this is the reason why DL Manager is a specialization of DILIGENT Resources Manager
actor, see Figure 7: DILIGENT actors). Human-based requests have to specify the sharing
rules; automatic generated DILIGENT services requests set for the DL resource the same
sharing rules of other similar resources. At the end the DL Resource will be added to the DL
VO.

User Requirements Fulfilled
This functionality is a consequence of the DL creation model adopted into DILIGENT as well
as by the kind of resources the DILIGENT infrastructure plans to manage. As some of the
DILIGENT resources can be deployed making use of other resources, this functionality
covers this activity.

Numbers
This task will be executed a number of times that depends by the number of DLs that will
be created as well as by the size of each DL and by the number of resources within them
that can be deployed.

Constraints and Assumptions
The main assumption underlying this functionality is the presence of DILIGENT resource
that can be dynamically deployed. Usually resource to deploy are services, as a
consequence to deploy a resource it is mandatory for the system to be capable identify an
appropriate hosting node where the service can be deployed. Moreover, if the DILIGENT
service will supply resources that can be virtualized, e.g. a storage element capable to offer
a 10GB capacity can be virtualized into two storage elements of 5GB each, the creation of a
resource can be simply the virtualization of an existing one. The second aspect is also

Test-bed Functional Specification Page 80 of 273

possible if the resource support a sort of reservation mechanisms, i.e. creating a 5GB
storage element means that the original resource reserve this amount of space to the
particular application or community.

UML Diagrams

Figure 20: Create a DL Resource (sequence diagram)

See also Figure 17: Resources Management.

Grid Exploitation
This task will take many advantages by using Grid technologies. As previously stated, the
creation of a new resource may asks for an hosting node that will be gathered by the
infrastructure, as well as for a storage element that again is gathered by the infrastructure.

Mapping between functionalities and DILIGENT services (system integration)
The two services involved into this functionality are the Information Service and the
Dynamic VO Support. The former is in charge to add the new resource to its knowledge
base, the latter will prepare the environment allowing to use the resource in accordance
with the sharing rules expressed by the DL manager. The Information Service is also in

Test-bed Functional Specification Page 81 of 273

charge to supply all the information needed to deploy the resource, e.g. identification of an
available hosting node.

Use Stories
The DL Manager, monitoring the status of the resources forming the DL, discover that a
new instance of a search service is needed in order to fulfil the new user requirements
expressed by the DL Designer. As a consequence she/he select the search service
appropriate for the DL, create a new instance of this service and rearrange the DL resource
topology.

Testing issues
Creation of new DL resources is an important task. The goal of the testing activity must aim
at verifying the correctness and completeness of this action. Moreover, the time needed to
create a new resource instance is another important aspect to consider. As a consequence,
a pool of representative resources among those the system is capable to instantiate must be
selected and diverse infrastructure environment must be used to instantiate them.

Related non functional requirements
Due to the importance of this functionality, its reliability is a must, i.e. if a DL manager asks
for a Resource creation then this resource must be effectively created. Another aspect to
keep in mind is the scalability of this task, the response time must be as much as possible
independent by the number of resources to create. Interoperability of this functionality is
also important, where we intend that this functionality must be capable to instantiate the
greater number of resource possible, e.g. it must be capable to instantiate a search service
as well as an index service or a repository. Finally, security is another mandatory
requirement, only authorized users must be entitled to execute this kind of functionality.

4.3.12 Find Optimal Allocation
Description and priority
The identification of an optimal allocation for each resource is the foundation to improve the
reliability of the DILIGENT infrastructure and to mitigate faults during new DL deployment
and management. During the detailed design different tasks will be designed to
accommodate different kind of resources. The common goal of each task will be to acquire
a deeper understanding of the potential and actual allocation weaknesses with the intent of
enhancing the reliability of the system by removing the cause of the weakness or mitigating
its effects. The outcome from each task is not expected to be an absolute optimal allocation
because all tasks must take into account the DL set of resources already allocated and the
same allocation weaknesses may be overcome through a number of choices. Moreover, the
opportunity to enhance the system reliability is traded off against the costs of a distributed
management.

User Requirements Fulfilled
This functionality is related with the model underlying the DILIGENT DL creation. We figure
out that resources can be shared as well as created on demand and that this second aspect
must be executed with the goal to promote an optimal allocation and use of resources. This
task cover the latter aspect, i.e. it is in charge for identifying the most appropriate hosting
node needed to create a new resource instance.

Numbers
See Sections 4.3.11 Create a DL Resource.

Test-bed Functional Specification Page 82 of 273

Constraints and Assumptions
This functionality assumes that a pool of hosting nodes will be available within the
DILIGENT infrastructure, as well as that an appropriate description of them and of the
resources that can be instantiated will be available in order to support the matchmaking
mechanism.

UML Diagrams
See Figure 20: Create a DL Resource.

Grid Exploitation
See Section 4.3.11 Create a DL Resource.

Mapping between functionalities and DILIGENT services (system integration)
The main service involved into this task is the Broker & MatchMaker. This service will
implement the matchmaking algorithm making use of resource descriptions acquired via the
Information Service.

Use Stories
See Section 4.3.11 Create a DL Resource.

Testing issues
The goal is to test the correctness, completeness and performance of the matchmaking
algorithm. With correctness we mean that the algorithm will identify one of the best hosting
nodes among those available, with completeness we mean that the algorithm will perform a
search among all the resource available, and finally, performance mean that this ‘search’
task will be executed in a reasonable amount of time. To test these aspects an environment
containing different hosting nodes, i.e. hosting nodes with diverse characteristics, will be
prepared. This environment can be also a virtual environment, i.e. realized just with the
description of the hosting nodes. Against this environment must be executed the requests
for identifying the hosting nodes for different kind of resources having different needs.

Related non functional requirements
See Section 4.3.11 Create a DL Resource.

4.3.13 Configure Resource
Description and priority
When a new resource is created, it will be possible to personalize its behaviour. The
configuration parameters and their amount is clearly a resource specific characteristic.
However, the choice of the resources forming the DL and their configuration aims at
fulfilling the DL definition criteria specified by the DL designer.

User Requirements Fulfilled
This functionality represents the back end part of the user requirements fulfilled by the
Define Configuration defined in Section 4.2.4. Moreover, the configuration of a service can
be also due to a side effect of expressed user requirements or a need of operating the DL.

Numbers
This functionality will be executed in accordance with the Create a DL Resource in Section
4.3.11. Moreover, it depends by the number of customizable resources each DL will be
equipped with.

Test-bed Functional Specification Page 83 of 273

Constraints and Assumptions
The customizability of a resource, i.e. a resource must be as much as possible customizable
in order to promote its usage in different contexts. Moreover these configurations
parameters must be available, e.g. included within the resource descriptive data.

UML Diagrams
See Figure 20: Create a DL Resource.

Grid Exploitation
The exploitation of grid technologies does not influence directly this functionality. However,
if a resource has been designed for being deployed on a grid infrastructure its configuration
parameters can be dependent by the usage this resource plan to do about other shared
resources. For instance, a configuration parameter for a resource representing a computer
intensive task can be the number of parallel jobs this task can be split in.

Mapping between functionalities and DILIGENT services (system integration)
The configuration of a resource depends by the resource itself. However, the service in
charge to create a resource instance is the Keeper service and it is also in charge to specify
the configuration parameters.

Use Stories
See Section 4.3.11 Create a DL Resource.

Testing issues
See Section 4.3.11 Create a DL Resource.

Related non functional requirements
See Section 4.3.11 Create a DL Resource.

4.3.14 Update a DL Resource
Description and priority
The DILIGENT DLs are dynamic and changeable in any time in order to be capable to follow
the changeable requirements of the user communities. In particular, DL resources can be
updated to modify their sharing rules: new users can be authorized to perform actions on
the resource; a more restrictive or permissive set of policy can be applied to other users;
new roles can be used to define the policy of the resources; etc.

User Requirements Fulfilled
This functionality contributes to fulfill the requirements related with the update of a DL
(4.2.23 Update a DL). Moreover, update of a resource can be also executed by the Keeper
service in response to the presence of a new resource instance that fits better then the
previous one with the DL needs.

Numbers
The execution of this functionality will depends by the number of DLs as well as by their size
and by the dynamicity of the DL resources.

Constraints and Assumptions
It assumes the presence of a versioning mechanism, i.e. a mechanism allowing identifying
and comparing different version or instance of the same resource.

UML Diagrams
See Figure 17: Resources Management.

Test-bed Functional Specification Page 84 of 273

Grid Exploitation
This functionality aims at promoting an optimal usage of available resources, where optimal
is related with the usage of the best pool of resources to support a functionality. For
instance, if a new and powerful computing element will be available to the DL community
then the services forming the DL will be capable to reply in faster fashion.

Mapping between functionalities and DILIGENT services (system integration)
This task will be executed by the DL Manager, in order to fulfil a new user needs, as well as
by Keeper Service, in order to promote an efficient usage of available resources.

Use Stories
A DL fulfilling user requirements have been created making use of a search service capable
to identify similar images with a certain level of similarity. During the DL lifetime, the
provider of the similarity search service produce a new version of it that is capable to
identify similar images with a more precise algorithm. The provider releases this new
version of the service and registers it also to the DILIGENT infrastructure. The system
identifies this new version and as it matches better with the DL definition criteria,
automatically updates the DL resources making this new functionality available to the DL
community.

Testing issues
Similar to those proposed in Section 4.3.11 Create a DL Resource.

Related non functional requirements
See Section 4.3.11 Create a DL Resource.

4.3.15 Remove a DL Resource
Description and priority
DL resources can be removed through a specific human–based request or can be
automatically dropped out for a scheduled life-time management request or because they
appear unstable or not correctly managed with respect to the rules established by the DL
specification. Removing a resource from a DL implies also the automatic removal of the
resource from the DL VO.

User Requirements Fulfilled
This functionality contributes to the requirements fulfilled in Section 4.2.25 Remove DL
Resources.

Numbers
It is executed in accordance with the number of times the Remove DL Resources task is
executed and to the size of each DL.

UML Diagrams
See Figure 17: Resources Management.

Grid Exploitation
The exploitation of the Grid is a direct consequence of the exploitation of it during the
resource creation phase. For instance, if the resource make exclusive use of shared
resource like a computing element or a storage element, when the resource is removed
these grid resources must be make available to the infrastructure.

Test-bed Functional Specification Page 85 of 273

Mapping between functionalities and DILIGENT services (system integration)
Services involved are the Information Service, which must remove this resource from its
resources knowledge base, the Dynamic VO Support service, which must remove the
resource from all the trusting environments the resource is known in.

Use Stories
See 4.2.25 Remove DL Resources.

Testing issues
This task can be tested in conjunction with the testing of Remove DL Resources
functionality, in particular the same testing environment could be used.

Related non functional requirements
The execution of this task must be done in a secure and reliable fashion, i.e. only authorized
users are entitled to remove a DL resource and if this task is executed the resource must be
effectively removed from the infrastructure.

4.3.16 Search Available Resources
Description and priority
Search Available Resources allows to identify resources with desired properties. The domain
of the search is automatically restricted to the VO pertinent to the actor that activates this
functionality. The query language supported will be defined in the design phase.

User Requirements Fulfilled
This functionality covers a lot of user requirements expressed both by the ARTE and ImpECt
communities. These communities expressed a mechanism allowing them identify the
resources that can be used within a DL or, in a more general sense, to be aware of the
resources the infrastructure offer (ARTE_ucd01 ‘Select Services’ and ‘Search archives’,
ImpECt_ucd01 ‘Search/Browse Diligent’).

Numbers
This functionality is executed in many contexts and as a consequence will be ‘called’ many
times.

Constraints and Assumptions
This functionality will be capable to interpret and use the diverse trusting environments
managed by the Dynamic VO Support service, as a consequence it must be context aware.
For instance, if it is executed within a DL then those forming the DL will compose the pool
of available resources. Moreover, it must be capable to understand and manage resources
descriptive data.

UML Diagrams
This task will be executed in different contexts, see for instance Figure 13: Define a DL.

Grid Exploitation
The exploitation of grid technologies is related with the distributed discovery of them.
Usually, grid environments are equipped with a collector of data (the information service)
that acquires data about the available resources. When a user asks to this collector for
available resources, it replies with the list of those the user is entitled to have access to.

Mapping between functionalities and DILIGENT services (system integration)
This functionality is covered by the information Service and by the Dynamic VO Support
service. The former, with the help of the latter, will be capable to supply the most updated
list of resources a user is entitled to have access to within an operational context, e.g. a DL,

Test-bed Functional Specification Page 86 of 273

a VO. Moreover, this functionality will be accessible in a user-friendly fashion, the Portal is in
charge to host the presentation aspect of the functionality.

Use Stories
This functionality is used in different contexts, for instance see 4.2.1 Define a DL.

Testing issues
This functionality will be used in different contexts; in order to introduce errors due to its
eventual imperfect implementation, a testing environment must be realized. Within this
simulation environment diverse virtual resources will be registered and diverse operational
environment will be configured to have access to different resources. Then a set of search
activities will be executed with different goal and within different contexts in order to verify
the correctness and completeness of the functionality.

Related non functional requirements
The reliability of the functionality is the most important issue, the resources identified must
be effectively available. Its scalability is also a critical aspects, the system must be capable
to identify the resources in a reasonable time that will be as much as possible independent
by the number of resources the infrastructure hosts and by their distribution, i.e. their
physical location.

4.3.17 Get Available Resources
Description and priority
This functionality factorizes out a common action needed when a search for resource is
done, i.e. the gathering of the list of available resources.

User Requirements Fulfilled
This functionality does not fulfil any particular requirement but is used in many other
contexts.

Numbers
Due to the generality of this task, it will be executed many times.

Constraints and Assumptions
This functionality will be capable to interpret and use the diverse trusting environments
managed by the Dynamic VO Support service, as a consequence it must be context aware.

UML Diagrams
This task will be executed in different contexts, see for instance Figure 13: Define a DL.

Grid Exploitation
See 4.3.16 Search Available Resources.

Mapping between functionalities and DILIGENT services (system integration)
This functionality is covered by the information Service and by the Dynamic VO Support
service. The former, with the help of the latter, will be capable to supply the most updated
list of resources a user is entitled to have access to within an operational context, e.g. a DL,
a VO. Moreover, this functionality will be accessible in a user-friendly manner, the Portal is
in charge to host the presentation aspect of this functionality.

Use Stories
See 4.3.16 Search Available Resources.

Testing issues
See 4.3.16 Search Available Resources.

Test-bed Functional Specification Page 87 of 273

Related non functional requirements
See 4.3.16 Search Available Resources.

4.3.18 Browse Available Resources
Description and priority
Browse Available Resources allows to access to a list of resources described with the
specified properties. The result is automatically restricted to the VO pertinent to the actor
that activates this functionality. The list of presented properties will be defined in the design
phase.

User Requirements Fulfilled
See 4.3.16 Search Available Resources.

Numbers
See 4.3.16 Search Available Resources.

Constraints and Assumptions
See 4.3.16 Search Available Resources.

UML Diagrams
This functionality has many aspects related with the Search Available Resources, the
difference is related with the selection mechanism. No further diagrams are needed.

Grid Exploitation
See 4.3.16 Search Available Resources.

Mapping between functionalities and DILIGENT services (system integration)
See 4.3.16 Search Available Resources.

Use Stories
This functionality can be executed in all the contexts where a user driven resource discovery
mechanism is needed.

Testing issues
This functionality will be used in different contexts; in order to introduce errors due to its
eventual imperfect implementation, a testing environment must be realized. Within this
simulation environment diverse virtual resources will be registered and diverse operational
environment will be configured to have access to different resources. Then a set of
browsing activities will be executed with different goal and within different contexts in order
to verify the correctness and completeness of the functionality.

Related non functional requirements
First of all usability of this task is a mandatory requirements, users must be enabled to have
access to this discovery functionality with the most user-friendly mechanism. Reliability of
the functionality is also important, the resources identified must be effectively available. Its
scalability is another critical aspects, the system must be capable to identify the resources in
a reasonable time that will be as much as possible independent by the number of resources
the infrastructure hosts and by their distribution, i.e. their physical location.

4.3.19 Get Resource Status
Description and priority
This functionality allows users to access to the information about the status of a resource. It
implements the user interface of a monitoring functionality.

Test-bed Functional Specification Page 88 of 273

User Requirements Fulfilled
DILIGENT, and in particular its DLs, will be a distributed environment composed by a
distributed pool of resources. This monitoring activity is a mandatory functionality in such
kind of systems. Even if it is not a proper user requirement, the ImPECt community have
explicitly expressed it, see ImpECt_ucd001 ‘Monitor Diligent Resources’.

Numbers
This functionality can be executed in any time for the whole lifetime of the resource.

Constraints and Assumptions
The main assumption is related with the capability to acquire information about the status
of various kinds of resources. Push modalities, i.e. the information are acquired on demand
by issuing a sort of query against the resource, as well as pull modalities, i.e. the resource
notifies registered subscribers about changes in its status, can be implemented.

Grid Exploitation
Grid environment are usually equipped with a sort of monitoring mechanism. The
exploitation of these technologies is highly recommended within the DILIGENT project.

Mapping between functionalities and DILIGENT services (system integration)
The Information Service, i.e. the service in charge for supplying the ‘map’ about DILIGENT
resource and their related information, is the service that will execute and support this task
with the support of the Portal.

Use Stories
A Resource Manager having registered an archive within DILIGENT decides to have a look
at the status of its resource. She/he logs in the DILIGENT system and via the administrative
section of the Portal is enabled to visualize the current status of the archive.

Testing issues
See Section 4.3.20.

Related non functional requirements
Reliability and security are the two main requirements that this functionality must fulfill. In
fact, in managing in a sound fashion a distributed pool of resources the system must firmly
rely on the information about the status of these resources. Moreover, the usability of the
functionality is also important, e.g. the DL Manager must be capable to easily identify the
information about resources she/he is interested in.

4.3.20 Monitor a Resource
Description and priority
“Monitoring mechanisms are concerned with obtaining, distributing, indexing, archiving, and
otherwise processing information about the configuration and state of resources. In some
cases, the motivation for collecting this information is to enable discovery of resources; in
other cases, it is to enable monitoring of their status.”
Therefore in any distributed system and in particular in a Grid environment, where system
spans multiple locations managed by different people and organizations where no one has
detailed knowledge of all components, monitoring become crucial for the success of the
system.
Monitoring allows us to detect and diagnose the many problems that can arise in such
contexts. Two modalities, pull and push modalities, are normally supported and allow to be
aware about changes in resource properties: the former is supported through a query

Test-bed Functional Specification Page 89 of 273

mechanism, the latter via a subscription mechanism that automatically sends a notification
message to registered subscribers.
It is important to take into account that this functionality must be able to collect data from
any arbitrary information source, whether XML-based or not, and that historical data must
be stored to collect statistical information.

User Requirements Fulfilled
DILIGENT, and in particular its DLs, will be a distributed environment composed by a
distributed pool of resources. This monitoring activity is a mandatory functionality in such
kind of systems. Even if it is not a proper user requirement, the ImPECt community have
explicitly expressed it, see ImpECt_ucd001 ‘Monitor Diligent Resources’.

Numbers
This functionality will be executed in a continuative fashion. For instance, the Information
Service execute this kind of activity at predefined interval of time for the whole lifetime of
the resource in order to maintain the information about the resource in line with the real
status of the resource.

Constraints and Assumptions
The main assumption is related with the capability to acquire information about the status
of various kinds of resources. Push modalities, i.e. the information are acquired on demand
by issuing a sort of query against the resource, as well as pull modalities, i.e. the resource
notifies registered subscribers about changes in its status, can be implemented.

UML Diagrams
This functionality can be utilized in different contexts, moreover it is considered as atomic at
this level of specification. No further diagrams are needed.

Grid Exploitation
Grid environment are usually equipped with a sort of monitoring mechanism. The
exploitation of these technologies is highly recommended within the DILIGENT project.

Mapping between functionalities and DILIGENT services (system integration)
The Information Service, i.e. the service in charge for supplying the ‘map’ about DILIGENT
resource and their related information, is the service that will execute and support this task.

Use Stories
The Keeper service, after having created the set of resources forming the DL, subscribes to
the Information Service the notification mechanisms allowing it to be notified about the
status of DL resources. Each time a DL resource status change, the Information Service
notifies the Keeper that can act in accordance to its maintenance procedure.

Testing issues
Testing this functionality means to create a set of resources having different characteristics
and then investigating the different notification mechanisms. In order to create a
notification, it must be possible to introduce resources changes within the testing
environment. This testing activity must be direct to investigate i) the performance in terms
of time required in discovering resource changes and ii) the completeness of the
mechanisms, i.e. that all the changes introduced are identified and notified.

Related non functional requirements
Reliability and security are the two main requirements that this functionality must fulfill. In
fact, in manage in a sound fashion a distributed pool of resources the system must firmly
rely on the information about the status of these resources. Moreover, the scalability of this
task is important in order to allow the system to react in a quasi real time to system

Test-bed Functional Specification Page 90 of 273

changes. Finally, the usability of the functionality is also important, e.g. the DL Manager
must be capable to easily identify the information about resources she/he is interested in.

4.4 VOs Management
The DLs that DILIGENT plans to realize are logical entities dynamically created to satisfy a
specific user community need, and whose resources are allocated and provisioned on-
demand. In order to address sharing and access control issues within these logical entites,
DILIGENT will exploit mechanisms, built on the concept of Virtual Organization (VO), that
glues together users and resources through a set of rules.
A detailed description of the Virtual Organization model adopted in the DILIGENT project is
included in the Basic Concepts Section.
This model is build around the concepts of Role, Action and Resource. The establishment of
a controlled access environment relies on the definition of a set of relations:

<Role, Action, Resource>
where:

- A Role is a job function with associated semantics about the authority and
responsibility conferred to the User or Service assigned to the Role

- An Action is a Resource-specific task
The above rule should be read as: “a User with a Role X can perfrom an Action Y on
Resource Z” in the contest of a specific VO.
VO Management includes basic functionalities like creation (see 4.4.1), editing (see 4.4.11)
and removal (see 4.4.12) of VOs.
Further functionalities are needed in order to manage the internal structure and status of
individual VOs, e.g. the inclusion of users and resources in a VO, the establishement of user
roles, the setting of roles permissions, etc.
Finally, other functionalities allow querying the status of the VO and the retrieval of
information about entities: e.g. list the VOs in DILIGENT (see 4.4.15), list the users of a VO
(see 4.4.16), and list the VO Resources a user is entitled to use (see 4.4.17).

Test-bed Functional Specification Page 91 of 273

Figure 21: VOs Management (use case diagram)

4.4.1 Manage a VO
Description and priority
This functionality represents the main task of VO Management. This task deals with:

- The creation of a new VO (see 4.4.2);
- The editing of an existing VO (see 4.4.11);
- The removal of an existing VO (see 4.4.12).

User Requirements Fulfilled
This functionality factorizes out a number of other functionalities and represent the user
access point to them.

Numbers
As it represents the management activities related to VOs, the execution frequency of this
task depends on the number of VOs that will be created within DILIGENT. It should also be
taken into account that the creation of a new DL implies the creation of a new VO.

Constraints and Assumptions
None.

UML Diagrams
As previously stated, this functionality gives just access to a pool of other functionality. See
Figure 21: VOs Management. No further diagrams are needed.

Test-bed Functional Specification Page 92 of 273

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
None

Use Stories
None

Testing issues
None

Related non functional requirements
None

4.4.2 Create a VO
Description and priority
This functionality represents the task of VO creation. This task deals with:

- The management of the initial set of VO roles (see 4.4.7);
- The inclusion of Users to the VO (see 4.4.6);
- The inclusion of Resources to the VO (see 4.4.3); the VO Manager can choose the

pool of resources to be included among those s/he has access to.

User Requirements Fulfilled
None of the user communities has expressed requirements for the VO mechanism, at least
in an explicit fashion. However both communities ask for a controlled sharing of resources.
VOs have been introduced to satisfy this need.

Numbers
This functionality is not supposed to be a frequent action as it’s strictly related to the
creation of new user communities and the set-up of new DLs.

Constraints and Assumptions
Within grid environment already exists mechanisms for creating VOs, even if VO are
perceived as quite static environment. Moreover, the DILIGENT VO concept is different from
the Grid ones for other reasons, e.g. the resources forming a VO are different and of diverse
types, the membership mechanism will be more flexible and easily, etc.
The assumptions underlying this functionality is the capability to create VO on demand, i.e.
having more flexible mechanisms enabling the system to create new sharing environment in
a dynamic fashion.

Test-bed Functional Specification Page 93 of 273

UML Diagrams

Figure 22: Create a VO (sequence diagram)

Test-bed Functional Specification Page 94 of 273

Figure 23: Create a VO (activity diagram)

See also Figure 21.

Grid Exploitation
As previously stated, within the grid community mechanisms capable to create trusted
environment already exist even if they appear to be not so flexible as DILIGENT needs.
DILIGENT plans to build on top of existing mechanisms to supply more flexible, user friendly
dynamic ones.

Mapping between functionalities and DILIGENT services (system integration)
Dynamic VO Support Service is in charge to realize this task

Use Stories
This functionality represents one of the back end functionalities needed for creating a new
DL. Another usage is related with the management of the user community.
The ARTE director receives a request from a group of researchers about the needs to share
an archive to a controlled pool of users, a restrict subset of the ARTE users. In order to
support this need, the ARTE VO Manager, i.e. the identified VO manager for the ARTE
community, create a new VO representing this restricted set of users as a sub-VO of the
ARTE VO. After having executed this activity, it will be possible to share the archive in a
secure way just to this community.

Testing issues
Due to the relevance of this task, its testing activity must verify the correctness and
completeness of it. Diverse VO, having diverse ‘size’ and kind of resources, must be created
and then an attempt to access to these resources must be executed making use of
respectively an authorized and an unauthorized identity.

Test-bed Functional Specification Page 95 of 273

Related non functional requirements
Reliability and security mechanisms are must given to the relevance of this task. Security
means that only authorized users will be entitled to execute this activity. Reliability means
that the creation of a VO must be executed effectively within the infrastructure creating a
new trusted environment.

4.4.3 Add a Resource to a VO
Description and priority
This functionality models the action of inclusion of a resource in a VO, i.e. this resource will
be added to the pool of resources accessible by VO users. As previously stated, the VOs are
logical entities governed by policies, so this functionality aims also at setting new resource
policies for the resource.

User Requirements Fulfilled
See 4.4.2 Create a VO.

Numbers
This functionality depends on the dynamicity of the VO, e.g. if a VO represents a DL and a
new resource must be added to the DL this functionality will be executed.

Constraints and Assumptions
None.

UML Diagrams
See Figure 22: Create a VO.

Grid Exploitation
See 4.4.2 Create a VO.

Mapping between functionalities and DILIGENT services (system integration)
Dynamic VO Support Service is in charge to realize this task

Use Stories
See 4.4.2 Create a VO.

Testing issues
The testing environment is similar to those proposed for the Create a VO task.

Related non functional requirements
See 4.4.2 Create a VO.

4.4.4 Edit Resource Policy
Description and priority
This functionality covers the operations of add, update, and remove of access policies for a
resource. It represents the interface to a policy knowledge base and via this interface
authorized users are entitled to change the access rules for a given resource.

User Requirements Fulfilled
See 4.4.2 Create a VO.

Numbers
This functionality will be executed each time a resource is added to a VO, each time the
access policies for a resource change within a VO, and each time a resource is removed
from a VO.

Test-bed Functional Specification Page 96 of 273

Constraints and Assumptions
The existence of knowledge base about resource policies where this information is stored
and retrievable.

UML Diagrams
At this level of detail no further diagrams are needed.

Grid Exploitation
This functionality may be considered a data intensive task. As a consequence a mechanism
for realizing it as a distributed task must be taken into account. However, a mechanism for
make secure these sensible data must be also considered.

Mapping between functionalities and DILIGENT services (system integration)
Dynamic VO Support Service is in charge to realize this task.

Use Stories
See 4.4.2 Create a VO.

Testing issues
This functionality represents the access to a repository of policy. As a consequence stress
tests to verify the performance must be executed.

Related non functional requirements
Due to the importance of the information this task deal with, reliability and security are the
two major requirements. Security deals with a secure access to these data, i.e. only
authorized users must be capable to have access to and operate on these information, as
well as preservation, i.e. data must be always available. Reliability means that the execution
of the task must be performed correctly, a sort of transaction mechanism must be
implemented in order to prevent concurrent access in modification to data as well as a
rollback in order to remove uncompleted operation.

4.4.5 Store Resource Policy
Description and priority
This functionality represents the storage of a resource policy within the policy knowledge
base maintained by the system.

User Requirements Fulfilled
See 4.4.4 Edit Resource Policy.

Numbers
See 4.4.4 Edit Resource Policy.

Constraints and Assumptions
See 4.4.4 Edit Resource Policy.

UML Diagrams
See 4.4.4 Edit Resource Policy.

Grid Exploitation
See 4.4.4 Edit Resource Policy.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support is in charge to supply this functionality.

Test-bed Functional Specification Page 97 of 273

Use Stories
See 4.4.4 Edit Resource Policy.

Testing issues
See 4.4.4 Edit Resource Policy.

Related non functional requirements
See 4.4.4 Edit Resource Policy.

4.4.6 Add a User to a VO
Description and priority
This functionality models the action of adjunction of an user to a VO, i.e. this user will be
added to the pool of VO users. As previously stated, the VOs are logical entities governed by
policies, so this functionality aims also at assigning a set of Roles for that user within the
VO.

User Requirements Fulfilled
This functionality is an administrative task needed for managing VO concepts.

Numbers
This task will be executed each time it is needed to add a new user to a VO.

UML Diagrams
At this level of detail no further diagrams are needed.

Grid Exploitation
This functionality does not ask for any particular grid activity. However, this community has
already studied these aspects and this functionality will be build as much as possible using
existing mechanisms.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support is in charge to supply this functionality.

Use Stories
See 4.4.2 Create a VO.

Testing issues
Stress tests will be executed in order to verify scalability and response time of this task.

Related non functional requirements
See 4.4.2 Create a VO.

4.4.7 Edit VO Roles
Description and priority
This functionality models the management of the Roles in the VO. Actions covered by this
functionality are the creation and removal of roles (including the management of the Role
hierarchy), as well as the modification of permissions associated to a role. If involved role
belongs to a hierarchy, the modifications will influence all the children roles in that
hierarchy.

Numbers
The task will be executed many times.

Test-bed Functional Specification Page 98 of 273

Constraints and Assumptions
None.

UML Diagrams
Due to the level of details of these specifications no further diagrams are needed.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support is in charge to supply this functionality.

Use Stories
The VO manager needs to differentiate VO users in order to give them more fine-grained
policy on VO resources. In order to be capable to manage a pool of users having more
rights than others she/he creates a new role within the VO termed ‘super user’. Then she/he
assign the new role to all the users that needs these particular rights and changing the
policies granted to the role it will be able to grant the rights to the appropriate users.

Testing issues
Stress tests must be executed in order to verify the scalability of this task.

Related non functional requirements
Security is a mandatory requirement when operations related with rights are executed.

4.4.8 Store VO Roles
Description and priority
This functionality represents the storage of a associations between a role and its
permissions within a VO.

User Requirements Fulfilled
See 4.4.7 Edit VO Roles.

Numbers
See 4.4.7 Edit VO Roles.

Constraints and Assumptions
See 4.4.7 Edit VO Roles.

UML Diagrams
Due to the level of details of these specifications no further diagrams are needed.

Grid Exploitation
See 4.4.7 Edit VO Roles.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support is in charge to supply this functionality.

Use Stories
See 4.4.7 Edit VO Roles.

Testing issues
See 4.4.7 Edit VO Roles.

Related non functional requirements
See 4.4.7 Edit VO Roles.

Test-bed Functional Specification Page 99 of 273

4.4.9 Edit User-Role Associations
Description and priority
This functionality covers the operations of set/unset of associations between a user and its
Roles within a VO. It represents the interface to the association knowledge base and via this
interface will be possible to change the set of roles associated to a user.

User Requirements Fulfilled
This functionality is obtained factorizing out the activity of maintenance of the data needed
to identify the association among users and roles within the VO.

Numbers
This functionality will be executed each time it’s needed to change the associations between
a user and its role within a VO.

UML Diagrams
Due to the level of details of these specifications no further diagrams are needed.

Grid Exploitation
The exploitation of grid technologies can be related with the maintenance of the data
needed in a distributed fashion, i.e. making use of the distributed storage capacity offered
by the grid infrastructure.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support is in charge to supply this functionality.

Use Stories
See 4.4.7 Edit VO Roles.

Testing issues
Stress tests will be executed in order to verify the scalability of this functionality.

Related non functional requirements
Reliability and security are the two major requirements. Security deals with a secure access
to these data, i.e. only authorized users must be capable to have access to and operate on
these information, as well as preservation, i.e. data must be always available. Reliability
means that the execution of the task must be performed correctly, a sort of transaction
mechanism must be implemented in order to prevent concurrent access in modification to
data as well as a rollback in order to remove uncompleted operation.

4.4.10 Store User-Role Associations
Description and priority
This functionality represents the storage of an association between a user and its roles
within a VO.

User Requirements Fulfilled
See 4.4.9 Edit User-Role Associations.

Numbers
See 4.4.9 Edit User-Role Associations.

Constraints and Assumptions
See 4.4.9 Edit User-Role Associations.

Test-bed Functional Specification Page 100 of 273

UML Diagrams
Due to the level of details of these specifications no further diagrams are needed.

Grid Exploitation
See 4.4.9 Edit User-Role Associations.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service will be in charge for supplying this functionality.

Use Stories
See 4.4.9 Edit User-Role Associations.

Testing issues
See 4.4.9 Edit User-Role Associations.

Related non functional requirements
See 4.4.9 Edit User-Role Associations.

4.4.11 Edit a VO
Description and priority
Updating a VO has different aspects, all covered by this macro functionality. In particular
the following actions are modelled:

- Adding a Resource to those accessible within the VO;
- Removing a Resource from those accessible within the VO;
- Modifying the resource access policies within a VO
- Adding a User to the VO
- Removing a User from the VO
- Changing the User-Roles associations within a VO, i.e. entitle an user to have access

to resources or deny user to access to resources previously usable;
- Adding a new Role to the VO in order to establish a new class of policies.

User Requirements Fulfilled
This functionality complete the management tasks required to operate with VOs.

Numbers
This functionality will be executed many times, each time the VO manager consider an
update of the DL as needed.

UML Diagrams
See Figure 21: VOs Management.

Grid Exploitation
See the following more specific update functionalities.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic Support service will be in charge to cover this functionality.

Use Stories
See the more specific update functionalities.

Testing issues
More details are reported within the more specific update functionalities.

Test-bed Functional Specification Page 101 of 273

Related non functional requirements
See the related more specific update functionalities.

4.4.12 Remove a VO
Description and priority
This functionality models the removal of a VO executed by the VO manager. Associating
users and resources composes a VO, removing a VO deals with the removal of the users
having access to the VO (see 4.4.14 Remove a User from a VO) and the disposal of the
resources belonging to it (see 4.4.13 Remove a Resource from a VO).

User Requirements Fulfilled
This functionality completes with the ‘Create a VO’ and ‘Edit a VO’ the set of VO
management task.

Numbers
This functionality will be executed in accordance with the number of VOs created during the
DILIGENT lifetime.

Constraints and Assumptions
The removal of a VO implies the removal of all its sub-VOs.

UML Diagrams
Due to level of detail used within this specification, no further diagrams are needed. See
Figure 21: VOs Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to supply this functionality.

Use Stories
See 4.2.9 Dispose a DL.

Testing issues
This functionality can be tested together with the Dispose a DL functionality.

Related non functional requirements
Reliability is an important requirement. Security is also important in order to prevent
inappropriate removal of needed VOs.

4.4.13 Remove a Resource from a VO
Description and priority
This functionality covers the removal of a Resource from a VO. As this operation aims also
at deny to the VO users to have access to it, this functionality uses the Set Resource Policy
functionality in order to unset all the policies previously defined on the resource.

User Requirements Fulfilled
This functionality factorizes out an aspect of the Remove a VO functionality.

Numbers
This task is executed each time a VO is removed and for each resource belonging to the VO.

Test-bed Functional Specification Page 102 of 273

UML Diagrams
Due to the level of details adopted within this specification no further diagrams are needed.
See Figure 21: VOs Management.

Grid Exploitation
This task does not require for particular grid features.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to supply this task.

Use Stories
See 4.4.12 Remove a VO.

Testing issues
Stress tests will be executed to verify the removal mechanism.

Related non functional requirements
The security of this task is a must. Only authorized users must be capable to remove VO
resources.

4.4.14 Remove a User from a VO
Description and priority
This functionality covers the removal of a User from a VO. It uses the Edit User Roles
functionality in order to unset all the roles previously assigned to the user and so to unset
all the grants on VO resources.

User Requirements Fulfilled
This functionality factorizes out an aspect of the Remove a VO functionality.

Numbers
This task is executed each time a VO is removed and for each user belonging to the VO.

UML Diagrams
Due to the level of details adopted within this specification no further diagrams are needed.
See Figure 21: VOs Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to maintain all the data inherent to the VOs.

Use Stories
See 4.4.12 Remove a VO.

Testing issues
See 4.4.12 Remove a VO.

Related non functional requirements
See 4.4.12 Remove a VO.

4.4.15 List VOs
Description and priority
This functionality aims at make available a list of the VOs the DILIGENT systems manages.

Test-bed Functional Specification Page 103 of 273

User Requirements Fulfilled
This functionality completes with the ‘Create a VO’, ‘Edit a VO’ and ‘Remove a VO’ the set of
VO management task.

Numbers
This functionality can be executed many times, for instance each time a manager wants to
know the DILIGENT living VOs.

UML Diagrams
Due to the level of details adopted within this specification no further diagrams are needed.
See Figure 21: VOs Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to maintain the needed data and to supply
this functionality.

4.4.16 List VO Users
Description and priority
This functionality aims at supply the list of users that are entitled to have access to
resources of a VO.

User Requirements Fulfilled
This functionality, together with the other list functionalities, contributes to supply the
management functionality related with VOs.

Numbers
This functionality can be executed many times.

Constraints and Assumptions
The existence of a knowledge base containing the associations between the users and their
associated VO/VOs.

UML Diagrams
Due to the level of details adopted within this specification no further diagrams are needed.
See Figure 21: VOs Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to maintain these data and to supply this
functionality.

Use Stories
During the canonical management activity the VO Manager needs to know the list of the
users belonging to its VO. One of the parameters included within the information listed by
the system is the role the user play within the VO. The VO manager decides then to assign
another role to a user because its profiles match with the skill needed to play that role.

Testing issues
See 4.4.15 List VOs.

Test-bed Functional Specification Page 104 of 273

Related non functional requirements
See 4.4.15 List VOs.

4.4.17 List User’s VO-Resources
Description and priority
This functionality aims at producing the list of VO resources a user have access to. This kind
of functionality is particularly critical and used as the information it supplies is fundamental
in order to establish the rights a user has.

User Requirements Fulfilled
This functionality, together with the other list functionalities, contributes to supply the
management functionality related with VOs.

Numbers
This functionality can be executed many times. For instance it will be executed each time it
is necessary to identify the pool of resources a user is entitled to have access to.

UML Diagrams
This functionality does not need per se of other diagrams. See Figure 21: VOs Management.
However, it is used in different contexts, for instance see Figure 14: Create a DL.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to maintain these data and thus to supply this
functionality.

Use Stories
This functionality is used in different contexts, for instance see 4.2.14 Create a DL.

Testing issues
See 4.4.15 List VOs.

Related non functional requirements
See 4.4.15 List VOs.

4.4.18 Get User’s VO Resources
Description and priority
This functionality arise factorizing out a part of the task that is in charge to list the
resources a user is entitled to have access within a VO, i.e. List User’s VO-Resources. This
functionality represents the back end of the other task that is responsible to show the data
retrieved making use of the data acquired via this activity.

User Requirements Fulfilled
This functionality can be used in different contexts.

4.5 Users Management
The management of information about users and groups of users is mainly divided into four
functional parts users management, groups management, selection, and invitation as
reported into the Use Case Diagram in Figure 24: Users Management.
Users management part covers functionalities for adding and removing users as well as to
edit user profiles and request user rights.

Test-bed Functional Specification Page 105 of 273

Groups management part includes use cases to create and remove group of users as well as
to edit the group profile. The model underlying the adjunction of a user to a group imply
that a user has been invited to be part of a group; then the invited user accept or reject the
invite; finally, the User Manager include into the group the users that have accepted the
invitation.
Selection part deals with search and browse of users and groups.
Invitation part deals with invitee users and groups to be part of a DL, to get access to a
Collection, etc.

Figure 24: Users Management (use case diagram)

Test-bed Functional Specification Page 106 of 273

4.5.1 Create a Group
Description and priority

This functionality represents the operation allowing to create a new Group entity enabling
thus to put together set of users and manage then as a single entity. This operation is
performed by a User Manager actor and include editing of a “group profile”, i.e. the set of
group information like group name, group description, group contact user, group members,
etc.

User Requirements Fulfilled
Even if user communities do not have expressed explicitly the need to have group
management functionalities, we consider it an important concept that eases the users
management task.

Numbers
This functionality can be executed many times, i.e. each time a group manager needs to
create a new group.

Constraints and Assumptions
None.

UML Diagrams
Due to the level of detail exposed within this functional specification, no further diagrams
are needed. See Figure 24: Users Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
This functionality will be covered by the Dynamic VO Support service while the Portal
service will give access it.

Use Stories
The ARTE Group manager decides to create two groups: the student group and the teacher
group. Users belonging to the first group will have less rights that users belonging to the
second group. For instance, she/he will be capable to make a request to the VO Manager in
order to grant students a permission to ‘read’ an archive and teachers a permission to
‘read/write’ the archive.

Testing issues
The classical testing activity related with an object creation must be executed.

Related non functional requirements
Security is an important issue. Only authorized users must execute the creation of a group.
Usability of this functionality is also important. More easy to use the functionality will be,
more error free usage of the functionality will be performed.

4.5.2 Edit Group Profile
Description and priority
Once a group has been created the User Manager can edit the group profile. The editing of
a group profile means one of the following operations: adding a user to the group (see
Section 4.5.4), removing a user from the group (see Section 4.5.5). These operations imply
the storage of the group profile (see Section 4.5.3) and a potential modification of profiles
of users belonging to the group (see Section 4.5.8).

Test-bed Functional Specification Page 107 of 273

User Requirements Fulfilled
See 4.5.1 Create a Group.

Numbers
See 4.5.1 Create a Group.

UML Diagrams
Due to the level of detail exposed within this functional specification, no further diagrams
are needed. See Figure 24: Users Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to supply this functionality while the Portal
service will give access it.

Use Stories
See 4.5.1 Create a Group.

Testing issues
See 4.5.1 Create a Group.

Related non functional requirements
See 4.5.1 Create a Group.

4.5.3 Store Group Profile
Description and priority
This functionality represents the storage of the group profile within group profiles
knowledge base maintained by the system.

User Requirements Fulfilled
This functionality factorizes out the storage aspects related with the group information.

Numbers
This functionality will be executed each time an update on group data is performed.

Constraints and Assumptions
This functionality assumes that a storage area needed to maintain the user profiles will be
available.

UML Diagrams
Due to the level of detail exposed within this functional specification, no further diagrams
are needed. See Figure 24: Users Management.

Grid Exploitation
This functionality may use the storage area offered by the grid infrastructure, i.e. the group
profiles may be stored in a distributed fashion on the grid.

Mapping between functionalities and DILIGENT services (system integration)
See 4.5.1 Create a Group.

Use Stories
See 4.5.1 Create a Group.

Test-bed Functional Specification Page 108 of 273

Testing issues
This functionality is a data intensive task Stress tests will be performed in order to verify the
performance.

Related non functional requirements
Reliability of this functionality is an important requirement. The maintenance of these data
is important for all the other group tasks. Moreover, security is another requirements. It is
important that only authorise users will have access to this information.

4.5.4 Add a User to a Group
Description and priority

This functionality covers the adjunction of a user to a group. Only already registered
DILIGENT users can be added to a group.

User Requirements Fulfilled
See 4.5.1 Create a Group.

Numbers
This functionality can be executed many times. This number will depend by the number of
groups that will be created as well as by their size.

UML Diagrams
See 4.5.1 Create a Group.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
See 4.5.1 Create a Group.

Use Stories
See 4.5.1 Create a Group.

Testing issues
See 4.5.1 Create a Group.

Related non functional requirements
See 4.5.1 Create a Group.

4.5.5 Remove a User from a Group
Description and priority

Via this functionality, the User Manager is entitled to remove a user from a group.

User Requirements Fulfilled
See 4.5.1 Create a Group.

Numbers
This functionality can be executed many times. This number will depend by the number of
groups that will be created as well as by their size.

UML Diagrams
Due to level of detail adopted within this document this task no further diagrams are
needed.

Test-bed Functional Specification Page 109 of 273

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
Dynamic VO Support service will supply this functionality with the support of the Portal for
the presentation part.

Use Stories
See 4.5.1 Create a Group.

Testing issues
See 4.5.1 Create a Group.

Related non functional requirements
See 4.5.1 Create a Group.

4.5.6 Remove a Group
Description

Via this functionality, the Group Manager is entitled to remove a group.

4.5.7 Add a User to DILIGENT
Description and priority

This is one of the main UC about User Management, which deals with the addition of new
user to the DILIGENT infrastructure. The User Manager adds a new user to DILIGENT by
filling in the user data (user profile), i.e. name, contact address, telephones, home page,
organization, etc. After having registered the user data, the User Manager can notify the
DILIGENT VO Manager in order to add the user to the DILIGENT VO.

User Requirements Fulfilled

User requirements fulfilled: ImpECt_ucd03 ‘Create User’ and ARTE_ucd08 ‘Add user’.

Numbers
Hopefully, this functionality will be executed many times.

Constraints and Assumptions
The physical person that asks for being registered within the system must supply all the
data needed for identifying it.

Test-bed Functional Specification Page 110 of 273

UML Diagrams

Figure 25: Add a User to DILIGENT (sequence diagram)

See also Figure 24: Users Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service will be in charge to supply this functionality with the
support of the Portal for the presentation part.

Use Stories
A new researcher, Mr. Black, joins the ESA research group in Frascati - Rome. Mr. Jones,
one of the ESA people involved within the same project as Mr. Black, notifies it about the
presence of a DL supporting the project and then invites it to take part in this environment.
At the same time, a notification of this invitation activity is sent to the ImpECt User
manager. When Mr. Black accept the invitation, the user manager add a new user to the
DILIGENT system and from now on the researcher is entitled to have access to the DL and

Test-bed Functional Specification Page 111 of 273

enjoy with it. During the DL lifetime, the ImpECt user manager identifies in Mr. Black the
people identified by the ImpECt community to become a user manager. In order to give him
this grant, the manager updates the set of roles associated with Mr. Black

Testing issues
This functionality will be subject to the testing activities needed to perform this classical
operation. Particular attention must be posed on the security aspect of this functionality.

Related non functional requirements
Security is a mandatory requirement to fulfil. Only authorized users must be entitled to add
new users to the system.

4.5.8 Edit User Profile
Description and priority
Each DILIGENT user has an associated profile. This profile contains useful information about
the user, e.g. its name, its e-mail address, its institution, etc. Performing this use case, the
User Manager has access to these data and is enabled to edit them. In particular, via this
functionality the User manager can send a request to the VO Manager in order to grant new
rights to the user.

User Requirements Fulfilled
This functionality fulfils the requirement described in the ARTE_ucd08 ‘Edit user profile’.
However, due the generality of this activity it can be considered as a general user
requirement.

Numbers
This functionality is potentially executable many times.

UML Diagrams
This functionality is well known; No further requirements are needed. See Figure 24: Users
Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the help of the Portal, will support this functionality.

Use Stories
See 4.5.7 Add a User to DILIGENT.

Testing issues
This functionality must be tested in accordance to its semantic, i.e. it represents an update
task and the relative test must be executed. For instance, stress tests can be executed in
order to verify the correct behaviour in case of concurrent access in modification.

Related non functional requirements
Security is clearly a must. User profiles maintains data about the rights a certain user has,
as a consequence only authorized users must be entitled to modify them.

Test-bed Functional Specification Page 112 of 273

4.5.9 Request User Rights
Description and priority
This functionality enables the User manager to request more or few privileges for a user
over a resource. For each VO the resource is registered in, the corresponding VO Manager is
notified. He’s in charge of performing the actual grant by giving the user the suitable roles.

User Requirements Fulfilled
This functionality represents a classical task in user management system.

Numbers
This functionality can be executed many times.

UML Diagrams
This functionality is used in different contexts, e.g. see Figure 25: Add a User to DILIGENT.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The main service involved into this activity is the Dynamic VO Support service that will act
with the support of the Portal.

Use Stories
See 4.5.7 Add a User to DILIGENT.

Testing issues
The goal of the testing activity is to verify the performance and correctness of this task.
Stress tests will be executed to measure the performance of this task, while controlled test
must be set up in order to verify its correctness.

4.5.10 Store User Profile
Description and priority
This functionality models the storage of the user profile within the users knowledge base
maintained by the system.

User Requirements Fulfilled
This functionality derives from test-bed community requirements related with user
management, i.e. ARTE_ucd08 and ImpECt_ucd03.

Numbers
This functionality will be executed each time a request to add a new profile or update an
existing one will be performed.

Constraints and Assumptions
A storage area to maintain user profiles is available.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to supply this functionality.

4.5.11 Remove User Profile
Description and priority
This functionality models the removal of the user profile from the users knowledge base
maintained by the system.

Test-bed Functional Specification Page 113 of 273

User Requirements Fulfilled
This functionality derives from test-bed community requirements related with user
management, i.e. ARTE_ucd08 and ImpECt_ucd03.

Numbers
This functionality will be executed each time a request to remove a user profile will be
performed.

Constraints and Assumptions
The user exists and its profile is stored within the system.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to supply this functionality.

4.5.12 Remove a User from DILIGENT
Description and priority
The User Manager could decide to completely remove a user from the DILIGENT
Infrastructure. The removal of a user implies the removal of its profile and the removal of
the user from all the VO s/he has access to. This will be achieved notifying the various VO
managers.

User Requirements Fulfilled
This functionality fulfils the two requirements from test bed user communities, the
ImpECt_ucd03 ‘Remove User’ use case and the ARTE_ucd08 ‘Remove User’ use case.

Numbers
This functionality will be used each time a DILIGENT user must be removed from the
system.

Constraints and Assumptions
The user is already registered and known to the system.

UML Diagrams
No further diagrams are needed. See Figure 24: Users Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service is in charge to supply this functionality.

Use Stories
At the end of a course organized by the ARTE community, the ARTE User Manager must be
capable to remove all the students of this course. In order to perform this activity, he
selects the whole set of users and then asks the VO Manager to remove them, if they are
‘only’ student of that course.

Testing issues
A set of dummy users must be created and then removed. Stress test on this functionality
can be executed to measure the responsiveness of the system.

Related non functional requirements
Security is an important requirement in order to prevent inappropriate removal of users.
Reliability is another requirement, if an authorized user decides to remove a user X from the

Test-bed Functional Specification Page 114 of 273

system then this activity must effectively be executed, i.e. from now on X does not be
capable to log in the system.

4.5.13 Select Groups
Description and priority

This functionality covers the operations a user can perform in order to discover groups of
users. For example, this functionality is used to identify already existing DILIGENT groups in
order to invite them to collaborate or have access to a complex object. Two kinds of
retrieval operations have been idengified in by analyzing the user requirements: the search
of groups using data stored into the profile (see 4.5.14) and the browse of the list of groups
(see 4.5.15).

User Requirements Fulfilled
The concept of group has been introduced in order to simplify the management of users

Numbers
This task will be executed each time a user wants to select one or more group for its
purposes. For instance, if a DL designer needs to identify groups of users that are interested
in the DL she/he is designing, performing this activity he/she will perform this selection in a
user-friendly fashion.

UML Diagrams
No further diagrams are needed. See Figure 24: Users Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal for the presentation part,
will supply this functionality.

Use Stories
One of the ARTE DL Designers is in charge to create a DL to support a workshop having a
certain topic. In order to promote this workshop to the broadest audience possible, he/she
performs a research about users and groups of users that have expressed the topic of the
workshop or a similar one among those they are interested in. Having a look at the profiles
of these users and these groups he/she will be able to select the subset of them that are
deemed as more close to the workshop topic and audience. Finally, the designer invites
them to participate to the DL in order to give them access to the information about the
event.

Testing issues
Various dummy groups will be created with different characteristics. A set of selection
operation must be performed against these dummy groups in order to verify the correctness
and performance of the underlying algorithm.

Related non functional requirements
The usability of this task is the most important requirement. This process must be as much
as possible intuitive and user friendly.

Test-bed Functional Specification Page 115 of 273

4.5.14 Search for Groups by Details
Description and priority

This functionality covers the search operations a users can perform in order to discover
groups of users. This search is based on data stored into the profile. For example, it will be
possible to retrieve all the DILIGENT groups that have expressed as a research field the
term ‘marine pollution’ or to retrieve all the DILIGENT groups that have more than 100 user.

User Requirements Fulfilled
See 4.5.13 Select Groups.

Numbers
See 4.5.13 Select Groups.

UML Diagrams
See 4.5.13 Select Groups.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.13 Select Groups.

Testing issues
See 4.5.13 Select Groups.

Related non functional requirements
See 4.5.13 Select Groups.

4.5.15 Browse Groups
Description and priority
This functionality covers the browsing operations a users can perform in order to discover
groups of users. Various granularity of browsing will be enabled by the system, e.g. the
browsing of all the DILIGENT groups, the browsing of the group in a DL, the browsing of
the group capable to access a certain collection.

User Requirements Fulfilled
See 4.5.13 Select Groups.

Numbers
See 4.5.13 Select Groups.

UML Diagrams
See 4.5.13 Select Groups.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Test-bed Functional Specification Page 116 of 273

Use Stories
See 4.5.13 Select Groups.

Testing issues
See 4.5.13 Select Groups.

Related non functional requirements
See 4.5.13 Select Groups.

4.5.16 Select Users
Description and priority
This functionality covers the operations a users can perform in order to discover other
DILIGENT users. For example, this feature is used to identify already existing DILIGENT
users in order to invite them to collaborate or have access to a complex object, or to invite
them in a DL as they have interests matching the DL content.
Analyzing the user requirements two kinds of retrieval operations have been identified: the
search of users by using the data stored into the profile and the browse of the list of users.

User Requirements Fulfilled
This functionality fulfils the ARTE_ucd08 Select Users and ImpECt_ucd03 Search users.

Numbers
This functionality will be executed each time a user needs to select end discover other
DILIGENT users. For instance, see also 4.5.13 Select Groups.

Constraints and Assumptions
The system maintains information about users, i.e. user profiles.

UML Diagrams
This functionality is quite simple, no further diagrams are needed. See Figure 24: Users
Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.13 Select Groups.

Testing issues
Various dummy users will be created with different profiles. A set of selection operation
must be performed against these dummy users in order to verify the correctness and
performance of the underlying algorithm.

Related non functional requirements
The usability of this task is the most important requirement. This process must be as much
as possible intuitive and user friendly.

Test-bed Functional Specification Page 117 of 273

4.5.17 Search for Users by Details
Description and priority
This functionality covers the search operations a users can perform in order to discover
other DILIGENT users. This search is based on data stored in the profile. For example, it will
be possible to retrieve all the DILIGENT users that have expressed as a research field the
term ‘marine pollution’ as well as all the DILIGENT users whose mother tongue is the
Italian.

User Requirements Fulfilled
This functionality matches the ARTE_ucd08 ‘Search by User Properties’ as well as the
ImpECt_ucd03 ‘Search Users’ UCs.

Numbers
See 4.5.16 Select Users.

UML Diagrams
See 4.5.16 Select Users.

Grid Exploitation
See 4.5.16 Select Users.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.16 Select Users.

Testing issues
See 4.5.16 Select Users.

Related non functional requirements
See 4.5.16 Select Users.

4.5.18 Browse Users
Description and priority
This functionality covers the browsing operations a user can perform in order to discover
other DILIGENT users. Various granularity of browsing will be enabled by the system, e.g.
the browsing of all the DILIGENT users, the browsing of the users in a DL, the browsing of
the user capable to access a certain collection.

User Requirements Fulfilled
See 4.5.16 Select Users.

Numbers
See 4.5.16 Select Users.

Constraints and Assumptions

UML Diagrams
See 4.5.16 Select Users.

Grid Exploitation
See 4.5.16 Select Users.

Test-bed Functional Specification Page 118 of 273

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.16 Select Users.

Testing issues
See 4.5.16 Select Users.

Related non functional requirements
See 4.5.16 Select Users.

4.5.19 Invite a User
Description and priority
A DILIGENT user may want to perform an invitation to another user to be member of a
Group or of a DL or to have access to a Collection, a Complex Object, etc. In order to do
that the DILIGENT user discovers and selects the user to invite (see 4.5.16) and proposes
the rights he/she will have on this new item/environment. At the end of this process both
the invited users and the User Manager receive a notification about the operation. Invited
users can accept or reject the invitation and User Manager, analyzing the users reply, will
performs required operations to update the user profile. Finally, the User Manager notifies
the VO Managers that, in order to make effective these rights, will transform them in terms
of appropriate roles.

User Requirements Fulfilled
In order to simplify and promote the usage of various products of the DILIGENT
infrastructure, e.g. DLs, Collections, Groups, and in accordance with the two user
communities this invitation mechanism has been identified.

Constraints and Assumptions
For each user the system maintains all the information needed to notify her/him, e.g. the
email address.

UML Diagrams
See Figure 13: Define a DL in section 4.2.1 Define a DL.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.16 Select Users.

Testing issues
A set of dummy users with a real email address must be created. Various invitations with
different user rights must be sent to these users in order to test the performance and
correctness of this mechanism.

Related non functional requirements
Usability is the most important requirement for this functionality.

Test-bed Functional Specification Page 119 of 273

4.5.20 Propose User Rights
Description and priority
The operation of invitation of a user to an item/environment implies the proposal of rights
the user will have on this new item/environment. This functionality covers the latter activity.
The DILIGENT system is in charge to establish the appropriate relationships between users
and roles in order to accommodate the proposed set of rights.

User Requirements Fulfilled
This functionality contributes to complete the user requirements fulfilled by the Invite a User
functionality.

Numbers
This functionality will be executed each time an invitation to a user is performed by the
Invite a User task.

Constraints and Assumptions
A user-friendly language enabling to express user rights will be available.

UML Diagrams
No further diagrams are needed. See Figure 24: Users Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.19 Invite a User.

Testing issues
See 4.5.19 Invite a User.

Related non functional requirements
See 4.5.19 Invite a User.

4.5.21 Invite a User to a DL
Description and priority
This functionality is a specialization of Invite a User (see 4.5.19) and deals with the making
of a proposal to a user to join a DL. The invitation implies that a notification message is sent
to the user, to the User Manager and to the VO Manager. Invited user may accept or reject.
According to the user decision, the User Manager updates the user profile and the VO
Manager gives him suitable roles.

User Requirements Fulfilled
See 4.5.19 Invite a User.

Numbers
This functionality will be executed each time a DILIGENT user needs to invite another one
to participate in a DILIGENT DL.

UML Diagrams
See 4.5.19 Invite a User.

Test-bed Functional Specification Page 120 of 273

Grid Exploitation
See 4.5.19 Invite a User.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.2.1 Define a DL.

Testing issues
A set of dummy users with a real email address must be created. A pool of dummy DL will
be also created. Various invitations with different user rights to different DLs must be sent
to these users in order to test the performance and correctness of the mechanism.

Related non functional requirements
See 4.5.19 Invite a User.

4.5.22 Invite a User to a Group
Description and priority
This functionality is a specialization of Invite a User (see 4.5.19) and deals with the making
of a proposal to a user to be part of a Group. The invitation implies that a notification
message is sent to the user and to the User Manager. Invited user may accept or reject.
According to the user decision, the User Manager updates the user profile and the VO
Manager gives him suitable roles.

User Requirements Fulfilled
See 4.5.19 Invite a User.

Numbers
This functionality will be executed each time a DILIGENT user needs to invite another one
to participate in a DILIGENT group.

Constraints and Assumptions
The user is already registered within the system, the group exists or it is in the definition
phase.

UML Diagrams
See 4.5.19 Invite a User.

Grid Exploitation
See 4.5.19 Invite a User.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.19 Invite a User.

Testing issues
A set of dummy users with a real email address must be created. A pool of dummy groups
will be also created. Various invitations with different user rights to different groups must be
sent to these users in order to test the performance and correctness of the mechanism.

Test-bed Functional Specification Page 121 of 273

Related non functional requirements
See 4.5.19 Invite a User.

4.5.23 Invite a User to a Complex Object
Description and priority
This functionality is a specialization of Invite a User (see 4.5.19) and deals with the making
of a proposal to a user to acquire access rights over a complex object. Complex objects are:
workflows, ImpECt reports, ARTE exhibition catalogues, Collections, etc. The invitation
implies that a notification message is sent to the user and to the User Manager. Invited user
may accept or reject. According to the user decision, the User Manager updates the user
profile and the VO Manager gives him suitable roles.

User Requirements Fulfilled
See 4.5.19 Invite a User.

Numbers
This functionality will be executed each time a DILIGENT user needs to invite another one
to participate in a DILIGENT complex object, e.g. a Compound Service, a Report.

Constraints and Assumptions
The user is already registered within the system, the Object exists or it is in the definition
phase.

UML Diagrams
See 4.5.19 Invite a User.

Grid Exploitation
See 4.5.19 Invite a User.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.19 Invite a User.

Testing issues
A set of dummy users with a real email address must be created. A pool of dummy complex
objects, e.g. compound services, reports, will be also created. Various invitations with
different user rights to different objects must be sent to these users in order to test the
performance and correctness of the mechanism.

Related non functional requirements
See 4.5.19 Invite a User.

4.5.24 Invite a Group
Description and priority
A DILIGENT user may want to perform an invitation to a group of users to join a DL or to
have access to a Complex Object, etc. In order to do it the DILIGENT user discovers and
selects the group to invite (see 4.5.13) and proposes the rights this group will have on the
new item/environment (see 4.5.25). At the end of this process the Group Manager receive a
notification about the operation. Invited groups can accept or reject the invitation via the

Test-bed Functional Specification Page 122 of 273

Group Manager that updates the group profile and notifies the VO Manager in order to give
suitable roles to group members.

User Requirements Fulfilled
In order to simplify and promote the usage of various products of the DILIGENT
infrastructure, e.g. DLs, Collections, and in accordance with the two user communities this
invitation mechanism has been identified.

Numbers
This functionality will be executed each time a DILIGENT user needs to invite a group of
users to participate in a DILIGENT activity.

Constraints and Assumptions
For each group the system maintains all the information needed to notify it, e.g. the email
address of the group manager.

UML Diagrams
Due to the level of detail adopted within this functional specification document and to the
simplicity of this functionality, no further diagrams are needed. Moreover this functionality
can be used in different contexts, e.g. see Figure 13: Define a DL.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the help of the Portal, will supply this functionality.

Use Stories
See 4.5.13 Select Groups.

Testing issues
A set of dummy groups with a real email address for the group manager must be created.
Various invitations with different group rights must be sent to these groups in order to test
the performance and correctness of this mechanism.

Related non functional requirements
Usability is the most important requirement for this functionality. Reliability is another
important aspect because the group must receive just valid invitation.

4.5.25 Propose Group Rights
Description and priority
The operation of invitation of a group to an item/environment implies the proposal of the
rights the group will have on this new item/environment. This functionality covers the latter
activity. It is important to point out that any operation made on a group is reflected on any
user belonging to it.

User Requirements Fulfilled
This functionality contributes to complete the user requirements fulfilled by the Invite a
Group functionality.

Numbers
This functionality will be executed each time an invitation to a user is performed by the
Invite a Group task.

Test-bed Functional Specification Page 123 of 273

Constraints and Assumptions
A user-friendly language enabling to express group rights will be available.

UML Diagrams
The functionality is quite intuitive no further diagrams are needed. See Figure 24: Users
Management.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.24 Invite a Group.

Testing issues
See 4.5.24 Invite a Group.

Related non functional requirements
See 4.5.24 Invite a Group.

4.5.26 Invite a Group to a DL
Description and priority
This functionality is a specialization of Invite a Group (see 4.5.24) and deals with the
making of a proposal to a group to join a DL. The invitation implies that a notification
message is sent to the User Manager that may accept or reject changing accordingly the
Group profile. Another notification message is sent to the VO Manager who, following the
VO rules and the group choice will give suitable roles to group members.

User Requirements Fulfilled
See 4.5.24 Invite a Group.

Numbers
This functionality will be executed each time a DILIGENT user needs to invite a group to
participate in a DILIGENT DL.

UML Diagrams
See 4.5.24 Invite a Group.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.2.1 Define a DL.

Testing issues
A set of dummy groups with a real group administrator email address must be created. A
pool of dummy DLs will be also created. Various invitations with different group rights to

Test-bed Functional Specification Page 124 of 273

different DLs must be sent to these groups in order to test the performance and correctness
of the mechanism.

Related non functional requirements
See 4.5.24 Invite a Group.

4.5.27 Invite a Group to a Complex Object
Description and priority
This functionality is a specialization of Invite a Group (see 4.5.24) and deals with the
making of a proposal to acquire access rights over a complex object. Complex objects are:
workflows, ImpECt reports, ARTE exhibition catalogues, Collections, etc. The invitation
implies that a notification message is sent to User Manager that may accept or reject
changing accordingly the Group profile.

User Requirements Fulfilled
See 4.5.24 Invite a Group.

Numbers
This functionality will be executed each time a DILIGENT user needs to invite a group to
participate in a complex object, e.g. Compound Services, Reports.

UML Diagrams
See 4.5.24 Invite a Group.

Grid Exploitation
None.

Mapping between functionalities and DILIGENT services (system integration)
The Dynamic VO Support service, with the support of the Portal, is in charge to supply this
functionality.

Use Stories
See 4.5.24 Invite a Group.

Testing issues
A set of dummy groups with a real group administrator email address must be created. A
pool of dummy Objects, e.g. compound services, reports, will be also created. Various
invitations with different group rights to different Objects must be sent to these groups in
order to test the performance and correctness of the mechanism.

Related non functional requirements
See 4.5.24 Invite a Group.

4.6 Notifications Management

Test-bed Functional Specification Page 125 of 273

Figure 26: Notification Management (use case diagram)

4.6.1 Notify
Description and priority
This functionality models a generic notification action to inform a user about an operation to
execute. This action can be performed using the push modality, i.e. the user receives a
notify message (e.g. an email), or the pull modality, the request is stored on the system and
the users ask to the systems for pending requests.

User Requirements Fulfilled
This functionality has been introduced in order to model the generic part of the various
notifications the system will offer.

Numbers
See the more specific notifications functionalities.

Mapping between functionalities and DILIGENT services (system integration)
The DILIGENT portal is the main service involved into this task.

4.6.2 Notify Role
Description and priority
This functionality models a generic notification action to inform all the users with a given
role within the context of a VO. This action can be performed using the push modality, i.e.
the user receives a notify message (e.g. an email), or the pull modality, the request is
stored on the system and the user asks to the systems for pending requests.

User Requirements Fulfilled
This functionality has been extracted factoring various functionalities, e.g. Ask for DL
Creation, Ask for DL Update.

Numbers
The frequency of this functionality depends to the frequency of the ‘caller’ UCs. As the
callers UCs are instantiated to perform operations having scarce frequency, this functionality
is executed in accordance.

Constraints and Assumptions
This functionality asks for a notification mechanisms, i.e. a mechanisms allowing the system
to inform the DL Manager about a pending requests. There are no particular requests for

Test-bed Functional Specification Page 126 of 273

the notification model, i.e. the push model as well as the pull model can be realized and
supported.

UML Diagrams
See 4.6 Notifications Management

Grid Exploitation
None

Testing issues
There are no particular issues in testing this functionality.

Related non functional requirements
Security aspects related with the notification mechanism is mandatory in order to prevent
improper actions. Moreover the availability of the notification mechanisms must be
acceptable in order to prevent loss in communication.

4.6.3 Notify User
Description and priority
This functionality models a generic notification action to inform a particular user within the
DILIGENT Infrastructure. This action can be performed using the push modality, i.e. the
user receives a notify message (e.g. an email), or the pull modality, the request is stored on
the system and the user asks to the systems for pending requests.

User Requirements Fulfilled
See 4.6.1 Notify and 4.6.2 Notify Role

Number
See 4.6.1 Notify and 4.6.2 Notify Role

Constraints and Assumptions
See 4.6.1 Notify and 4.6.2 Notify Role

UML Diagrams
See 4.6 Notifications Management

Grid Exploitation
None

Testing issues
There are no particular issues in testing this functionality.

Related non functional requirements
See 4.6.1 Notify and 4.6.2 Notify Role

4.6.4 Notify Group
Description and priority
This functionality models a generic notification action to inform a particular group of users
within the context of a VO. This action can be performed using the push modality, i.e. the
user receives a notify message (e.g. an email), or the pull modality, the request is stored on
the system and the user asks to the systems for pending requests.

User Requirements Fulfilled
See 4.6.1 Notify and 4.6.2 Notify Role

Test-bed Functional Specification Page 127 of 273

Number
See 4.6.1 Notify and 4.6.2 Notify Role

Constraints and Assumptions
See 4.6.1 Notify and 4.6.2 Notify Role

UML Diagrams
See 4.6 Notifications Management

Grid Exploitation
None

Testing issues
There are no particular issues in testing this functionality.

Related non functional requirements
See 4.6.1 Notify and 4.6.2 Notify Role

Test-bed Functional Specification Page 128 of 273

5 CONTENT AND METADATA MANAGEMENT

5.1 Introduction
This functionality has been partitioned in three areas that group the functionalities of
Content and Metadata management. These areas are:

• Content Management
This area covers the Use-Cases related with the content management service as part
of WP1.3 (“Content and Metadata Management”). These Use-Cases stem from both
the ARTE and the ImpECt scenario that include:
• Objects Management

ARTE scenario: Access Objects, Save Object, Remove Object, Browse Objects,
Browse Archives
ImpECt: Remove [Object], Import [Object], Browse [Object]

• Collections Management
ARTE scenario: Collection Management, Create a Collection, Remove a
Collection, Update a Collection, Define Membership Criteria

• Workspaces Management
ARTE scenario: Manage Workspace, Manage Student Workspace, Manage an
ARTE DL Workspace

Moreover, the DoW lists some basic functionalities, that Content Management will
provide within the DILIGENT infrastructure. These functionalities were discusses and
agreed upon at the CERN meeting on December 16th:
• Distributed storage of arbitrarily sized documents on dedicated DILIGENT

storage nodes including replication and partitioning of the data, dynamic re-
organization for improved performance through exploitation of existing
technology from distributed databases and file-based grid storage techniques

• Maintenance of global data dictionary holding location, replication, and
partitioning information for the data and mapping to system-wide unique URIs as
logical document identifiers which conceal physical storage details (database or
file-based, location, partitioning, replication)

• Access of documents stored on external 3rd party data sources including
“wrapping” of the data sources with potentially limited access patterns
(translation of access request, data transformation to DILIGENT document
format)

• Change tracking in DILIGENT storage nodes and 3rd party data sources through
trigger/polling mechanisms, maintenance of registry for interested DILIGENT
services to be notified upon change

• Transaction-aware change and removal mechanisms for documents with a given
URI including distributed change in/removal of all replicas, triggering of change
notification

A fundamental principle is to re-use existing techniques from (1) distributed
database products and (2) the EGEE middleware for file-based storage. The main
focus of “Content Management” within DILIGENT will be on (a) change tracking and
notification mechanisms and (b) 3rd party data source coupling.
Subsequently, we have organized the Use-Cases (UC) that express the Content
Management’s “core” functionality into five packages, namely:

Test-bed Functional Specification Page 129 of 273

• URI Management (maintenance of URIs as system-unique logical identifiers for
DILIGENT documents)

• Change Tracking (registration of services “listening” to changes in data
sources, observed by triggering/polling mechanisms)

• Storage (all UC related to storage and removal a document with all partitions
and replicas on dedicated DILIGENT storage nodes)

• Data Source Coupling (all UC related to coupling and wrapping 3rd party data
sources, including transformation of access requests)

• Access and Content (all UC related to access one document’s content by
picking a replica-hosting node and possibly re-assembling it from its partitions).

• Metadata Management (see Section 5.11)
• Annotation Management (see Section 5.12)

5.2 Content Management: Objects Management

Figure 27: Objects Management (use case diagram)

5.2.1 Access Object
Description and Priority
This Use-Case comprises two basic functionalities (1) the access to an object’s content by its
description and (2) the visualization of that content. From a content management
perspective, access to an object’s content can be conducted by means of various search
operations (see the respective Use-Cases). The actual fetching of the content data rests
upon a unique URI, which translates to one or more physical location(s) of that object. In
case that the object resides in a 3rd party data source with proprietary access patterns, an
appropriate wrapping service must be employed to fetch that object. Furthermore, the
content management service must decide from which node to fetch the object’s content, if

Test-bed Functional Specification Page 130 of 273

there is a choice. Finally, if the object is being incorporated into a collection, it must be
registered for notification upon change.

Requirements
This functionality encapsulates the requirements to (1) locate and (2) efficiently fetch an
object’s content. Optionally, (3) the “consuming entity” must be registered to be notified
upon change.

Numbers
As this functionality will be invoked whenever some content must be read from storage, it
will be very frequently used.

Constraints and Assumptions
The provided URI must be valid, i.e. map to a physical location within reach of the
DILIGENT infrastructure. Furthermore, the hosting node must be cooperative, i.e. deliver
the object in reasonable time. Content management must ensure the consistency of its
catalogue (data dictionary), i.e. removal or relocation of an object must be detected by
change notification mechanisms and propagated towards updated catalogue information.
Diligent storage nodes will be equipped with low-level notification functionality which “fires”
upon transactional commit of a change operation. Third party data sources will probably
lack such “hooks” and need to be observed by polling/crawling techniques. By concept,
there will be delays between the actual change of an object and its detection. This must be
appropriately taken into account by the access object functionality, which might, thus,
request an object, which does no longer exist in the 3rd party data source.
From the application scenario’s perspective, appropriate strategies for 3rd party data source
incorporation must be applied:

• Data may continue to exclusively reside in the 3rd party data source when (1) it
cannot be extracted for legal or technical reasons or (2) the application scenario is
fault-tolerant w.r.t. autonomous (and probably undetected/late-detected) changes of
the data. The major advantage lies within management of the data by a 3rd party
autonomous component, which is responsible for collecting, maintaining, and
updating the data. The disadvantage is given by the incorporation of wrapper
techniques, which have to deal with restricted access patterns, query transformation,
and parsing techniques.

• Data can be extracted from external data sources and fed into DILIGENT storage
nodes if (1) freshness of the data is non-critical, (2) distribution and replication
should be controlled from within DILIGENT, and (3) efficiency of access, remove,
and relocate operations is important.

Grid Exploitation
Grid exploitation comes into play whenever data needs to be stored, in particular if it is
replicated on distributed nodes. That is, (1) an object’s content either resides completely on
a node/different nodes or (2) a voluminous object (e.g. a video stream) is partitioned into
chunks, which are stored on different nodes. While in the first case the “right” node may be
picked due to load balancing concerns, in the latter case, many nodes must be accessed in
parallel.
Grid exploitation of data which resides in 3rd party data sources is restricted by (1) the
number of DILIGENT nodes which “wrap” this data source and (2) the access patterns of
the data source (e.g. number of concurrent accesses).

System Integration
As explained in “Constraints and Assumptions”, “Access Object” is a functionality, which
invokes numerous other functions like (1) wrapper services (including query transformation,

Test-bed Functional Specification Page 131 of 273

caching techniques, and result parsing), (2) data dictionary lookup, (3) load balancing, and
(4) object composition from partitions.

Use Stories
• An object is partitioned into three chunks, which are stored on three DILIGENT

storage nodes. When an access object request comes in, a lookup in the data
dictionary returns the DILIGENT nodes hosting the chunks (which may, themselves,
be duplicated on other nodes) and a composition rule to create the object’s content
from the chunks. The DILIGENT storage nodes receive a request to return the
chunks. When a chunk arrives at the node performing the “Access Object”
functionality, it will be cached until all chunks arrive. Finally, the complete object is
composed out of the chunks.

• An object is stored on a 3rd party data source. When an access object request comes
in, a lookup in the data dictionary returns the DILIGENT node(s) which host(s) the
wrapping service(s) of this data source. The wrapper transforms the access request
into a data source specific query (taking into account the limited access patterns and
query syntax). The result (i.e. the object content) is received and extracted by a
parser service.

Testing Issues
The most critical parts of this system lie within (1) reliability and efficiency of access
operations in the light of replicated and distributed data and load balancing concerns; (2)
change detection in 3rd party data sources; and (3) query transformation and result parsing
in 3rd party data source access.

Related Non-Functional Requirements
In particular, 3rd party data source must be willing to be incorporated into a DILIGENT
infrastructure. This fact is particularly expressed by (1) stable interfaces, (2) little access
restrictions, and (3) acceptable QoS (response times, number of concurrent accesses, etc.).

5.2.2 Save Object
Description and Priority
According to the ARTE requirements document, the “Save Object” functionality permanently
stores a previously retrieved object into the workspace. From our perspective, (1) one or
more storage nodes must be allocated, (2) the object must be partitioned and/or duplicated
onto these nodes, and (3) the data dictionary must be updated. In case, an object with an
identical URI has been saved before, this functionality corresponds to an update operation
where (1) storage nodes and (2) partitioning rules are fixed, (3) but update must be
commenced on all involved nodes and (4) the notification service must be invoked upon
transactional commit.

Requirements
As pointed out, this Use-Case harbours many functionalities of vital importance for content
management. In particular, the distinction between storage of a new object (with node
allocation and object partitioning) and update of an existing object must be taken into
account. That is, an appropriate replication scheme must be fixed for purposes of the
application scenario (query workload, number of concurrent accesses, etc.). In this way,
update of and existing object may also trigger a revised replication (allocate new nodes,
dispose existing nodes). Write operations in coupled 3rd party data sources are no objective
of content management in general, and this functionality, more specifically.

Test-bed Functional Specification Page 132 of 273

Numbers
This functionality will be invoked very frequently. Each write access to an arbitrary object
breaks down to this functionality.

Constraints and Assumptions
For the time being, we assume that the DL incorporates nodes, which are willing to store
content. However, sufficient capacity and node uptime are not considered as vital
preconditions but must be handled by the service. Furthermore, we assume we have access
to a data dictionary (possible replicated) in order to conduct the operation. If it does not
exist or is not accessible, the service cannot commence.

Grid Exploitation
Grid exploitation comes into play whenever data needs to be stored. Particular attention
must be posed in case of replicated objects, which have to be concurrently saved or
updated on different nodes. Likewise, change notification will likely “touch” many interested
services, which may also reside on different nodes.

System Integration
Like the “Access Object” Use-Case, “Save Object” incorporates many fundamental content
management functionalities like (1) node allocation, (2) object partitioning, (3) change
notification, and (4) data replication.

Use Stories
A spacious object, say a video sequence, shall be appropriately stored. That is, the video
streams shall be decomposed into a number of scenes where each is stored on a different
node with a replicate on just another node. Twice the number as there are scenes must be
allocated and requested for storing a object of a particular size. When this is done, the
transportation of the content to that nodes and the actual storage must be commenced in a
complex distributed transaction. When it is ready to commit, (1) the data dictionary is
updated and (2) interested services are registered for change notification.

Testing Issues
The main problem of “Save Object” lies within establishing an appropriate
replication/partitioning scheme, which must be tested from a performance point of view
(w.r.t. to the typical query workload).

Related Non-Functional Requirements
Especially for complex objects, decomposition rules must (partially) be provided by the
invoking service. This comes in handy when read requests do not actually access the object
as a whole but only certain parts of it.

5.2.3 Remove Object
Description and Priority
A certain object is removed from the workspace upon user request.

Requirements
As an object may be replicated on different nodes and/or partitioned into chunks residing on
different nodes, a removal mechanism must concurrently remove the object in all its
partitions from all involved nodes. Moreover, registered services for change notification
must be notified from object removal and be automatically unregistered.

Test-bed Functional Specification Page 133 of 273

Numbers
It is still to be determined, if object removal is a frequent operation. In fact, this heavily
depends on the application scenario, at hand. In many cases, removal operations will rarely
occur.

Constraints and Assumptions
In order to have to removal operation complete successfully, all storage nodes (as listed in
the data dictionary) must be within reach (operational and on-line). If this can not be
guaranteed, there might be a mechanism which postpones the actual physical removal of an
object’s replicate on a dedicated node and tags this object and “non-existent, to be deleted
on node(s) {x, y, …}” in the data dictionary.

Grid Exploitation
Dedicated grid functionalities will only be exploited, if the object is replicated/partitioned
onto different nodes that can concurrently conduct the delete operation.

System Integration
There will be a dedicated “Remove Object” functionality in the system, which is responsible
for distributed delete. It also involves data dictionary lookup and change notification.

Use Stories
Suppose a video stream is partitioned onto different DILIGENT storage nodes and each
chunk is, itself, replicated on a backup node. If a removal request comes in, all affected
nodes as listed in the data dictionary receive a dedicated removal request concurrently. If all
removals complete smoothly, the object’s entry can safely be removed from the data
dictionary. If there are non-available storage nodes, the object must be tagged for
postponed delete and be physically deleted as soon as the node is up again. Important:
there must be no object accesses, which bypass the data dictionary as central housekeeping
instance.

Testing Issues
As the handling of non-available nodes is the major weakness of this service, testing must
simulate such scenarios while keeping the transactional guarantees (in particular: conflict
avoidance) in mind.

Related Non-Functional Requirements
Though the grid comes with a large extent of node autonomy, there must be mechanisms
that DILIGENT storage nodes do not change their content, unless a “Save Object”
functionality is invoked. Content management heavily relies on a central data dictionary that
may become invalid/corrupted by “uncontrolled” data accesses.

5.2.4 Browse Objects
Description and Priority
The “Browse Objects” Use-Case harbors a functionality, which permits ARTE users to
visualize an archive’s content. A summary/header of each object is presented along with its
metadata where the sort criterion is given by a user-selectable metadata element (e.g.
author’s name).

Requirements
“Browse Objects” is no core content management functionality as it actually invokes “Access
Object” and also requires functionality of (1) search, (2) metadata management, and (3)
visualization. In addition to “Access Object” a summary of the object must be generated for
display (e.g. thumbnail, textual header, etc.).

Test-bed Functional Specification Page 134 of 273

Numbers
According to the requirements document, this is a frequently invoked functionality.

Constraints and Assumptions
As content management accesses objects by unique identifiers (URIs), but “Browse Objects”
displays objects according to their membership in a certain archive, (1) the objects must be
equipped with an archive membership tag and (2) there must be a search functionality
which returns the URIs of all objects contained in a given archive.

Grid Exploitation
Very likely, an archive’s content (i.e. the contained objects) is stored on separate storage
nodes (or 3rd party data sources). In that sense, those objects can be accesses concurrently
with “Access Object” requests being sent to the involved storage nodes in parallel.

System Integration
The “Browse Objects” Use-Case rests upon (1) content management, (2) search, (3)
metadata management, and (4) visualization functionalities.

Use Stories
A user decides to browse the content of an image archive with the archive provided by the
user. A search functionality returns (1) the URI of the archive (which is, itself, a DILIGENT
object) and (2) returns the URIs of the contained images by the archive URI. At this point,
content management comes into play and invokes the “Access Object” functionality, which
can be done in a grid-aware fashion (i.e. in parallel, if objects are stored on separate
nodes). Likewise, the summary (thumbnail) of the images will be computed in parallel and,
finally, ranked for display according to their metadata.

Testing Issues
The main testing issues in this complex interaction of various DILIGENT services lie within
(1) the correct invocation of those services and (2) the parallelization of the object access
which must be in-line with the replication/partitioning scheme (according to data dictionary)
and the current storage node’s workloads.

Related Non-Functional Requirements
The generation of a summary representation for expressive, non-spacious visual
representation of an object heavily depends on the media type. While DILIGENT may be
equipped with transformation/extraction rules for common media types (text, images, video,
etc.), complex user-defined objects will require dedicated rules to compute a “meaningful”
summary representation.

5.2.5 Browse Archives
Description and Priority
The “Browse Archives” Use-Case is similar to the “Browse Objects” Use-Case but happens
on a different storage hierarchy level. That is, all archives existing in a DL shall be visualized
and ordered according to their description.

Requirements
See “Browse Objects”.

Numbers
See “Browse Objects”.

Constraints and Assumptions
See “Browse Objects”.

Test-bed Functional Specification Page 135 of 273

Grid Exploitation
See “Browse Objects”.

System Integration
See “Browse Objects”.

Use Stories
See “Browse Objects”.

Testing Issues
See “Browse Objects”.

Related Non-Functional Requirements
See “Browse Objects”.

5.3 Content Management: Collections Management

Figure 28: Collection Management (use case diagram)

Test-bed Functional Specification Page 136 of 273

5.3.1 Collection Management
Description and Priority
A collection is an entity, which comprises some content (i.e. DILIGENT objects). A detailed
description is reported in Section 3.4. There are a number of “basic” collection
functionalities (expressed by the “Create a Collection”, “Remove a Collection”, and “Update
a Collection” Use-Cases, see there) to operate on this entity.

Requirements
From a content management point of view, a collection is just another (complex) object,
which is identified and accessed by its URI. Therefore, any access/manipulation/removal
operation implicitly invokes the respective content management functionalities (“Access
Object”, “Save Object”, “Remove Object”).

Numbers
For purposes of ARTE, a collection is a quite central entity to accommodate the content and
assign services and users. Therefore, collection management will be invoked very
frequently.

Constraints and Assumptions
In particular, the fitting of a specific operation to be conducted on the collection content will
not be semantically checked. Therefore, users must carefully craft a collection and assign
services to operate on it.

Grid Exploitation
See “Create a Collection”, “Remove a Collection”, “Update a Collection”.

System Integration
In a sense, the content, services, and users assignment of a collection is its metadata,
which has to be handled by metadata management. However a collection is a resource and
thus the services and users assignment are fulfilled by manipulating resource policies, i.e.
making use of Dynamic VO functionalities. In the other way around, content management is
responsible for storing/accessing collections, which are abstracted as complex objects.

5.3.2 Create a Collection
Description and Priority
A named entity (collection) comprises a number of (user defined) objects (content). In case
of virtual collection, the content is being imported into the collection by some membership
criterion. In that sense, a virtual collection is more like a logical view than a physically
materialized set of objects (i.e. a materialized collection).

Requirements
In case of v irtual collectiopns, the “Create a Collection” must meet a number of
requirements, which are given by (1) automatic collection update upon “arrival” of new
objects, which meet the membership criterion, and (2) automatic notification of permitted
users whenever new objects (virtually) enter the collection.

Constraints and Assumptions
Besides manual specification of permitted users, further collection-wide restrictions may
constrain the access of a specific user to a collection. That is, in general, only users, which
exhibit certain properties, may be granted access.

Test-bed Functional Specification Page 137 of 273

Grid Exploitation
Automatic membership of newly arriving objects is an extension of the change notification
mechanism is content management. That is, all objects are implicitly equipped with a
change notification mechanism, which checks the membership criteria of all existing
collections for inclusion of the new object. Grid exploitation comes into play when the
checked objects and the checked collections reside on different storage nodes. In that case,
they can be checked in parallel.

System Integration
“Create a Collection” invokes “Save Object” and “Change Notification”.

Use Stories
See ARTE requirements document.

Testing Issues
In case of virtual collection, the most important part is given by the automatic membership
of objects in a collection. That is, the implicit change notification upon object insertion,
update, and removal in/from DILIGENT storage nodes and 3rd party data sources must be
thoroughly tested.

5.3.3 Remove a Collection
Description and Priority
An existing collection is removed from storage and can be safely unregistered for
notification upon object change.

Requirements
In terms of content management, a collection is a complex object that is (1) removed (by
“Remove Object” invocation) and (2) unregistered for notification of arrival of new objects
or changes in the contained objects.

Grid Exploitation
Grid exploitation comes into play, when the previously contained objects reside on different
storage nodes. In this case, un-registration of change notification can be conducted in
parallel.

System Integration
“Remove a Collection” makes use of the fundamental object removal and change
notification mechanisms from content management.

5.3.4 Update a Collection
Description and Priority
Updating a collection involve the collection’s content that may be expressed through the
membership criterion.

Requirements
In case of virtual collection, the collection’s content must be automatically adapted if the
membership criterion is being changed. As the content is a virtual view onto physical
objects, that change is transparent for content management. Access to a collection’s object
is then conducted by a search operation that takes the membership criterion as search
predicate.

Test-bed Functional Specification Page 138 of 273

Constraints and Assumptions
In case of virtual collection, changing the membership criterion must be conducted such
that a non-contradictive predicate is formulated which permits objects to become content of
the collection. Furthermore, appropriate access structures (indexes) must exist to allow
efficient access to the collection’s content.

System Integration
“Update a Collection” requires functionalities from “Search” and “Content Management”
(change notification, save object).

5.3.5 Define Membership Criteria
Description and Priority
A membership criterion is a logical predicate, which states the inclusion of DILIGENT objects
in a collection. This predicate rests upon atoms which are (1) a basic metadata check (e.g.
for name, identifier), (2) an archive membership, or (3) more complex metadata predicates
(e.g. subject).

Requirements
The requirements document distinguishes between fixed and dynamic content, which does
not make sense, from a functional point of view. In detail, we assume that no metadata tag
is fixed but may be changed, and, thus also alter the membership of the object in a
collection. Though this does not necessarily have to be true for all metadata, it is the most
conservative assumption, which simplifies the handling of a membership criterion.

Constraints and Assumptions
We consider the membership criterion as an arbitrary complex Boolean predicate composed
out of atoms, which are comparisons among the metadata tags. We do not permit fuzzy
predicates, which return some scoring value, here.

System Integration
The major component of “Define Membership Criteria” is metadata management, as it
provides the basic metadata tags, which are to be employed in the predicate. Furthermore,
the search functionality must provide generic query processing where this membership
criterion can be plugged into a selection clause.

5.3.6 Import
Description and Priority
A collection is a group of objects that are logically related. In order to populate a
materialized collection, via this functionality, it is possible to gather documents or just to link
documents maintained in a third party data source.
In the former modality when the importing begins, the collection management imports
objects one by one by using the Export Documents of the Data Source Coupling area.
In the latter modality, the membership to data source has to be maintained and therefore
the collection becomes a meta-object that is simply associated with the concrete instances
of content objects that previously belong to the data source. A collection by itself doesn’t
contain any content, but metadata can be associated with it that can help in focussed
searching. Often descriptions about collections are widely available which talk about the
collection as a whole, and are supported by a single information provider. In the case the
data source contains metadata objects in a proprietary schema the metadata has to be
converted into the scheme the Collection creator decides for collection objects. For this
purpose, DILIGENT metadata broker maintains a library of transformations that can convert

Test-bed Functional Specification Page 139 of 273

proprietary (XML) schemas into the other ones. This functionality is similar to the previous
one except that there are additional steps involving the schema library and invocation of a
particular transformation. The transformed schema is then stored and associated with the
actual object in the storage.
This functionality can be also used when a new DL is created. W.r.t. metadata
management, it is important to note that more than one DL may access the same collection.
While modifying the collections objects maybe not be possible (due to copyright restrictions
etc.), each individual DL might choose to add its own metadata like annotations to a content
object or collection. Similarly, different DLs might choose different services or same services
with different parameters to generate/update different sets of metadata about the same
object. To accommodate these scenarios, one approach would be to maintain different
metadata for different DLs. Therefore, when a DL is created, metadata management simply
choose to copy the metadata for all collections that the DL includes.

5.4 Content Management: Workspaces Management

Figure 29: Workspace Management (use case diagram)

5.4.1 Manage Workspace
Description and Priority
The “Manage Workspace” Use-Case permits any user to perform certain operations like
accessing/saving/removing objects, processing images, managing collections, and searching
and retrieving objects. This requires a valid login of a member where each has its own
workspace. Certain operations may be authorized whilst others are restricted. Clearly, this

Test-bed Functional Specification Page 140 of 273

does not exclusively comprise content management functionalities. However, content
management comes into play (1) to recover from system failures, (2) to save retrieved
objects, (3) to access a certain [stored] object, (4) to remove a certain [stored] object, and
(5) to manage collections from within the workspace.
In particular, the following sub-functionalities belong to this group:

• Cleanup space: deletes all local digital objects and temporary space. Additionally
deletes the container structures;

• Copy digital object (DO): duplicates a digital object to the local workspace if all
authorization requirements are met and reports synchronization needs;

• Insert digital object: copies an external digital object to the local workspace;
• Link digital object: links a digital object to the workspace, allowing local naming and

tagging and reports synchronization needs;
• Delete digital object: deletes a link or a physically stored digital object from

workspace;
• Tag local object: inserts tags in a local object (some comments, a title etc, which are

being defined by user profile schema). This tagging is supported by the Annotation
functionality;

• Retrieve digital object: retrieves the actual digital object, through underlying storage
mechanisms;

• Synchronize digital object: gathering notification about DO changes (e.g. deletion or
updating) acts on the workspace accordingly in order to maintain the DO
consistency.

Numbers
This functionality is supposed to be frequently required (several times a day), i.e. whenever
a user interacts with DILIGENT.

Constraints and Assumptions
In terms of content management, access to and saving of objects is constrained by (1)
available storage capacity, (2) compliance with access rights, and (3) existing access
patterns to coupled external data sources, (4) security layer support for safeguarding
privacy. Furthermore, the storage nodes must provide transactional support in order to
enable recovery from system failures.

Grid Exploitation
Grid architectures come into play to serve two different purposes. One the one hand, data
storage should be conducted on distributed grid nodes with transactional support to access
the data. Although full independency of concurrent data accesses cannot be guaranteed in
all cases, distributed transactions avoid conflicts while maintaining a better transaction
throughput than on a single storage node. To enhance reliability and query processing
times, data will be replicated on different nodes.
On the other hand, DILIGENT explicitly seeks to attach existing data sources. To do so, data
source specific wrappers must be employed which offer a common interface to the
DILIGENT infrastructure. These wrappers must deal with potentially restricted access
patterns of the data sources and translate any request to a data source specific format,
filter and transform the results. Each wrapper may potentially reside on a distinct grid node,
which is responsible for accessing a particular data source. Since the coupled data sources
may safely be regarded as mutually independent, such that they can be queried in parallel.

Test-bed Functional Specification Page 141 of 273

System Integration
The “Workspace Management” Use-Case requires functionalities to be provided by “Content
Management” and “Search Service”.

Use Stories
• Case 1: An end user wants to locally store a digital object that she/he has located

for further use and processing, however does not want to depend on the future
object availability. So she/he requests that a local copy of the object is being created
to his personal storage area. The systems checks to allow this operation, with
regards to object security, user quota and permissions and provides the local copy.
The object can be locally renamed and referenced by its identifier.

• Case 2: An end user wants to search for images that mach an image that he holds
on his personal computer. He submits his request; the UI uploads the digital object
to her/his personal storage; the system extracts the similarity search features
through DILIGENT feature extraction components; finally the system searches for
digital objects that meet match criteria on the same sate of features, either by
checking already extracted features or by on-the-fly extraction.

Testing Issues
The major testing issues lie within the reliability of accessing/storing objects. This involves
the access to coupled (i.e. DILIGENT external) systems, replication issues, and transactional
processing.

Related non-functional requirements
Underlying storage of user profiles exploits distributed storage management.
Supports both creating local copies of objects or links to other collection contained digital
objects.
Secure access to personal and temporal data storage area.
Facilities to watch and limit personal storage to specific use and size.

5.4.2 Manage User Workspace
Description and Priority
The “Manage User Workspace” is a specialization of the “Manage Workspace” Use-Case.
From an interface perspective, if offers exactly the same functionality as the “Manage
Workspace” Use-Case. Potential differences (though not stated in the requirements
document) might be (1) restricted access to certain objects, (2) restricted search
operations, and (3) restricted collection management facilities which is closely related to (1).
In general, (2) is not subject of the content management functionality and (1), (3) can be
achieved by appropriate content security mechanisms, which is a dedicated functionality.
Therefore, the “Manage User Workspace” should be dropped unless the user community
provides more specific insights into the distinction to the “Manage Workspace” functionality.

Requirements
Specific restricted student workspace, also see “Manage Workspace”.

Numbers
See “Manage Workspace”.

Grid Exploitation
See “Manage Workspace”.

Test-bed Functional Specification Page 142 of 273

System Integration
See “Manage Workspace”.

Use Stories
See “Manage Workspace”.

Testing Issues
See “Manage Workspace”.

Related Non-Functional Requirements
See “Manage Workspace”.

5.4.3 Manage a DL Workspace
Description and Priority
The “Manage a DL Workspace” Use-Case differs from “Manage Workspace” and “Manage
Student Workspace” in that it permits additional related functionalities to be invoked. These
include (1) workshop management (preparation), (2) exhibition catalogue creation, (3)
course management, and (4) video processing.

Requirements
From a content management perspective, this Use-Case complements the “Manage
Workspace” Use-Case in that it must provide all storage and change notification
functionalities required to enable the additional operations (see there).

Numbers
See “Manage Workspace”.

Constraints and Assumptions
A DL must exist and the user must be a DILIGENT member (i.e. must have the required
credentials).

UML Diagrams

Grid Exploitation
See “Manage Workspace”.

System Integration
See “Manage Workspace”.

Use Stories
See “Manage Workspace”.

Testing Issues
See “Manage Workspace”.

Related Non-Functional Requirements
See “Manage Workspace”.

5.5 Content Management: Storage
Description and Priority
Storage comprises all functionalities to (1) initially store, (2) finally remove, (3) partition,
and (4) replicate documents. For the time being, the storage service is invoked to either
store a document in one chunk (i.e. unpartitioned) in one replica or partition and/or
replicate the document according to a user-provided partitioning and replication scheme. In

Test-bed Functional Specification Page 143 of 273

no case, the invoking service has to indicate the DILIGENT node(s) on which to store the
document. For the time being, those nodes will be automatically determined from their
current task and storage load.
This functional area comprises the following UCs:

• Store Document is the entry point for arbitrary storage requests, which includes
(1) “plain” document storage (no partitioning, no replication), (2) replicated
document storage (no partitioning, replication), (3) partitioned document storage
(partitioning, no replication), and (4) storage in replicated partitions (replicated
partitions). It picks the storage nodes according to their storage load (free capacity),
task load (current availability). Later, invoking services may additionally influence
that choice by providing “hints” including location of services accessing the
document content.

• Store Partitioned Document introduces a plain partitioning scheme into
document storage. That is, a document is decomposed into a certain number of
disjoint chunks. In a plain scenario, the invoking service does not care about the
number and size of partitions and leaves this choice to the “Store Partitioned
Document” service, which distributes the partitions for certain optimization criteria
(like balanced storage, etc.). Alternatively, invoking services may also provide “hints”
like number and size of the partitions (also see “Store Document”). The actual
document partitioning is conducted by means of the “Partition Document” service
(see there).

• Store Replicated Document introduces replication for improved availability and
performance to document storage. Invoking services will provide a number of
replicas whereas “Store Replicated Document” decides on the physical location of
those replicas. Actual replication is conducted by “Replicate Document” (see there).

• Store Replicated Partitioned Document is a mixture of replication and
partitioning in a sense that a document is partitioned into chunks that are replicated
on different storage nodes (a little bit like RAID). Please refer to “Store Partitioned
Document” and “Store Replicated Document” for further comments on replication
and partitioning.

• Partition Document will decomposes a given document into disjoint according to a
plain partitioning scheme. Notice, that document partitioning may either be
conducted on invocation by “Store Partitioned Document”/”Store Replicated
Partitioned Document” or, alternatively, later partition a previously stored document
which requires access to the data dictionary in order to add this partitioning scheme.

• Replicate Document replicates a document on a number of DILIGENT storage
nodes. Again, it may either by invoked by “Store Replicated Document”/”Store
Replicated Partitioned Document” or, alternatively, later replicate a previously store
document which requires access to the data dictionary to add the replication
information.

• Remove Document is a functionality that finally removes a document with all
partitions and replicas. It also revokes the document URI, meaning the
corresponding entry in the data dictionary will be deleted. If observing services
exists, they will be notified and the observer will be terminated.

• Cluster Document physically clusters a document with another document, i.e.
stores it at the same node for efficiency reasons.

Requirements
Storage answers the requirements of efficient storage and removal of documents including
replication support and document partitioning.

Test-bed Functional Specification Page 144 of 273

Constraints and Assumptions
In order to have a document storage complete successfully, dedicated DILIGENT storage
nodes must be within reach and willing to accommodate this document (enough storage
capacity).

UML Diagrams

Figure 30: Content Management – Storage (use case diagram)

Grid Exploitation
Grid can efficiently be exploited as soon as it provides many dedicated storage nodes.
Besides the parallel handling of concurrently incoming storage requests for different
documents, storing document partitions and replicas is another example of potential grid
exploitation.

System Integration
Storage exclusively comprises “core” DILIGENT services.

5.6 Content Management: Access and Content
Description and Priority
Access and Content names the pool of remaining functionalities in Content Management.
Precisely, it accommodates functionalities to access and change a document’s content.
This functional area comprises the following UCs:

• Access Document will return a document’s content for a given URI. That
comprises access to the data dictionary to figure out the physical location and
replication/partitioning information. Potentially, it needs to visit several storage
nodes and assembles the document’s content according to the partitioning scheme.

• Change Content modifies the content of a (previously stored) document. It also
needs to access the data dictionary to find out the physical location of a document
and (if needed) adapt the partitioning scheme. It also represents the “official”
triggering mechanism for services observing the document.

Test-bed Functional Specification Page 145 of 273

Requirements
Access and Content is on document access and change.

Constraints and Assumptions
Only documents with write access can be modified. This implicitly excludes any document
from a coupled data source. Other (user or service specific) access rules can exist and must
be obeyed by Access and Content.

UML Diagrams

Figure 31: Access and Content (use case diagram)

Grid Exploitation
Both “Access Document” and “Change Content” can be parallelized in the presence of
partitioning. In those cases, the affected storage nodes can be accessed in parallel.

System Integration
Access and Content exclusively comprises “core” DILIGENT services.

5.7 Content Management: URI Management
Description and Priority
URI Management is responsible for providing, maintaining, and revoking URIs that are
logical document identifiers used throughout DILIGENT services (except for Content
Management services). They are maintained in a data dictionary that is a global repository,
yet not necessarily centrally stored. An entry in the data dictionary comprises the URI, the
partitioning scheme (number, size and location of the partition), the replication scheme
(number and location of all replicas), or a combined replicated partitions scheme (size of
partitions, number and location of their replicas). Notice, that we employ a basic partitioning
scheme that separates a document into disjoint chunks. The document can be re-
constructed by concatenating all chunks.
This functional area comprises the following UCs:

• Maintain URIs: manages the global data dictionary and provides some basic URI
management functionalities.

Test-bed Functional Specification Page 146 of 273

• Create URI is included as a partial functionality of “Maintain URIs”. Upon request, it
creates a new URI, for a document, allocates the physical storage space according
to replication/partitioning scheme, and inserts this information into the data
dictionary.

• Discard URI is also included as a partial functionality of “Maintain URIs” and will
release a URI of a document by removing its entry from the data dictionary and
marking all occupied storage space as available.

• List URIs is another partial functionality of “Maintain URIs” and lists all documents,
maintained by this data dictionary.

• Create Directory creates a virtual document container as part of a hierarchical
structure. Documents can be members of directories.

• Remove Directory removes an existing document container if it is empty, i.e.
contains no references to documents or sub-directories.

• Move Document moves a document from one directory to another. Documents
with no explicit assignment to a directory are assumed to reside within a virtual top-
level directory.

Requirements
URI Management answers the requirement of a global naming repository that translates
logical identifiers into physical locations enhanced by a replication and partitioning
mechanisms to exploit the capabilities of the grid.

Constraints and Assumptions
The data dictionary will require a sophisticated naming and allocation scheme. It is up to
the architectural design to either use pre-existing EGEE middleware for purely file-based
storage or to come up with a new proposal that also covers database-supported storage.
Possibly, existing EGEE technology will be supplemented to cover database storage, as well.

UML Diagrams

Figure 32: URI Management (use case diagram)

Test-bed Functional Specification Page 147 of 273

Grid Exploitation
Grid capabilities can be exploited for distributed data dictionary management to enhance
transactional throughput through parallel “Create/Discard URI” requests.

System Integration
URI Management exclusively comprises “core” DILIGENT services.

5.8 Content Management: Data Source Coupling
Description and Priority
Data Source Coupling comprises all functionalities to couple a 3rd party data source (web
site and the like) to DILIGENT Content Management. This primarily includes “wrapping” that
data source to permit read-only access to the coupled data stock. It also comprises
assignment of URIs to the documents stored in the data source, transformation of
document formats, and handling of limited access patterns.
This functional area comprises the following UCs:

• Register Data Source couples a data source and the included documents to
DILIGENT. It creates URIs for all documents and inserts them into the data
dictionary.

• Unregister Data Source de-couples a data source and permanently removes all
contained documents from DILIGENT Content Management. That is, though these
documents will not by physically deleted they will be no more within reach of
Content Management. The corresponding URIs must be discarded, i.e. removed
from the data dictionary. If any document observer is running on a contained
document, it will be stopped, and “listening” services will be notified.

• List URIs in Data Source returns a complete list of documents, which are
contained in the coupled data source along with their DILIGENT URIs.

• Export Documents has been introduced to “download” all documents from a
coupled data source and transfer it into DILIGENT storage nodes for enhanced
availability, increased performance, and write accesss.

Requirements
Data Source Coupling attaches a data source to DILIGENT Content Management.

Constraints and Assumptions
As 3rd party data source may be equipped with a large variety of access protocols and data
formats, dedicated wrappers must be implemented to access a data source. Though there
has been some work on semi-automatic wrapper generation, it is not the focus of Content
Management within DILIGENT. We will rather implement wrappers on a need to have basis.

Test-bed Functional Specification Page 148 of 273

UML Diagrams

Figure 33: Data Coupling (use case diagram)

Grid Exploitation
Grid exploitation is severely restricted by the capabilities of the coupled data source. If it
lives on many nodes, parallelization may be employed to speed up data access. In most
cases, however, grid exploitation is not an issue for 3rd party data source coupling.

System Integration
Data Source Coupling exclusively comprises “core” DILIGENT services.

5.9 Content Management: Change Tracking
Description and Priority
Change Tracking is another “Content Management” functionality which is responsible to (1)
keep track of modifications on data managed by DILIGENT and (2) inform interested
services (and users) of observed changes. Depending on the capabilities of the storage
nodes and any coupled 3rd party data source, change tracking may either by conducted by
triggering mechanisms which automatically “fire” upon changes or polling techniques which
check relevant document in short intervals. Interested services must register for each
document to be observed and provide an interface for notification upon change. The data
dictionary must also maintain a list of services observing each document (represented by an
URI).
This functional area comprises the UCs:

• Register Service for Document will register a specified service for a document
identified by an URI. It (1) accesses the data dictionary to register the service
(included partial functionalities of “Maintain URIs”) and (2) adds an observer for this
document.

Test-bed Functional Specification Page 149 of 273

• Add Observer adds an observing mechanism for the specified document. It is the
generalization of triggering-based and polling-based observers (see there).
Obviously, an observer only needs to be set up for a document, if this document is
not yet observed by another observer instance.

• Start Document Polling initiates a polling-based observation of a document
(primarily intended for 3rd party data sources with limited capabilities).

• Add Trigger for Document sets up triggering mechanisms to keep track of
changes in documents hosted by DILIGENT storage nodes that are not supposed to
bypass the official way of document changes (see there). It is up to the architectural
design to make the decision, if we permit other ways of changing a document. In
this case, other trigger mechanisms must additionally be employed (like database
triggers and the like).

• Observe Document performs the actual document observation (by polling or
triggering). That is, it is either invoked by content changing functionalities (see
there) or invokes document access functionalities (see there) in polling cycles. Upon
change, it will notify the registered service and needs to access the data dictionary
to do so. Upon document removal (special kind of document change), it stops the
observation of that document and notifies all interested services of this terminal
document change.

• Notify Service does the actual notification of a service that has registered for a
(changed) document. Our diagram also contains a link to an actor that must be
complemented or substituted by a link to a service. Notice, that a service that
registers for document change tracking must provide a calling interface permitting
the “Notify Service” functionality to actually perform the notification.

• Unregister Service for Document removes a service from a document’s list of
change-tracking services as maintained by the data dictionary. Existing observers
can be shut down, if no other service is keeping track of this document.

• Remove Observer does the actual removal of an observing mechanism from a
document. It is the generalization of revoking triggering-based or polling-based
observer mechanisms. It ends the observation of a document and can only be
invoked if no service remains to be notified upon changes on that document. Clearly,
this requires another lookup in the data dictionary.

• Remove Trigger for Document revokes a triggering mechanism to observe a
document. This functionality is primarily intended for dedicated DILIGENT storage
nodes that are supposed to support triggering mechanisms. It may also be applied
to any 3rd party data source, which provides similar techniques.

• Stop Document Polling ends a polling mechanism observing a document. Unlike
“Remove Trigger for Document” it will not just notify a triggering mechanism of the
underlying storage system but will explicitly terminate a cyclic access of the
observed document. As we assume DILIGENT storage nodes to provide triggers,
polling will predominantly be employed on coupled 3rd party data sources.

Requirements
Change Tracking answers the requirement of document observation and notification.

Constraints and Assumptions
Change tracking rests upon some basic functionalities, which we implicitly assume to be
given. In detail, a triggering mechanism will be built into the “official” document changing
functionalities of Content Management. This would actually suffice our needs, if we can
guarantee that no DILIGENT service (or even external service) bypasses Content
Management to alter the data on its own. Otherwise, the underlying storage system in

Test-bed Functional Specification Page 150 of 273

DILIGENT storage nodes must either provide triggers (which is true for most database
systems) or permit a frequent polling of a document.
Furthermore, we will need to provide a standardized interface to services that register for
document observation. This interface will permit the notification upon change in the
observed document.

UML Diagrams

Figure 34: Change Tracking (use case diagram)

Figure 35: Change Tracking (activity diagram)

Grid Exploitation
In particular, the “Observe Document” UC might turn out to be computationally intense.
That is, if polling needs to be employed, a document needs to be accessed in short intervals

Test-bed Functional Specification Page 151 of 273

to permit a timely detection of changes. Trigger-based observation might be
computationally intense, as well, but is subject of (1) the underlying storage system or (2)
the “Change Document” functionality (see there). As observation of a document in
independent of observing another document, this task can be parallelized taking advance of
the grid.

System Integration
Change Tracking exclusively comprises “core” DILIGENT services.

5.10 Content Management: Content Security
Description and Priority
The system allows the user to integrate security mechanism to protect the content of the
provided media types. The user can decide of the type of security characteristics: between
integrity, authenticity and traceability. The system provides the two security mechanisms:
watermark and cryptographic solutions to cover the necessary security characteristics.
The integrity of the media is controlled by the integrity watermark. The authenticity of the
media can be checked with an authentication watermark and the traceability with a
fingerprint solution. The cryptography is an additional solution to provide a secure
transmission and usage of the data.
The security mechanisms are offered as services to select standalone or combinations of the
cryptographic and watermark solutions. The Content Security Management System manages
the necessary processes or elementary services of the security service. With a necessary set
of service parameters the processes are done to add the security mechanism to the media.
To add the security mechanism in the right order a service map order the necessary service
processes.
After the diligent user has selected the security mechanism the Content Security
Management System starts the selected security mechanism after asking of the best
parameter sets. A service structure map orders the necessary elementary services of the
selected security mechanism to the right order. After ordering the elementary services are
started and added to the DILIGENT media. For example an order of elementary services for
a media can be decoding of the media, embedding of a watermark, encoding of the marked
media and encrypting of the encoded media. The new encrypted media is send back to the
DILIGENT user. The media decoding process decodes the media to get the necessary data
for the watermarking process, for example in audio the frequency values of samples and in
video and images the pixel values. The watermark embedding process adds a predefined
watermarking scheme to the decoded media values. The encoding process encodes the
marked media values back to a marked media and the encryption process encrypt the new
marked media with a pre-selected key.

Requirements
The add security mechanism the user has to select the kind of mechanism. The system has
to know the list of services to integrate the security mechanisms. To execute the services in
the GRID system the Content Management System needs to list of GRID computers to
distribute the services over the GRID system.

Numbers
The system will be required if the user starts requests to add the security mechanism

Constraints and Assumptions
The constraints exist between the security solutions and the type of media. Not every
security solution is usable of every media type.

Test-bed Functional Specification Page 152 of 273

UML Diagrams

Figure 36: Content Security Management (sequence diagram)

5.11 Metadata Management
For metadata management in DILIGENT, we have identified the following functionalities
from the user requirements of ARTE and ImpECt:

• Collection/Content related metadata
o Basic DL metadata functionality

 Insertion/deletion of content objects (and associated Metadata)
 Update Metadata
 Generation of Metadata

o Collection Metadata Management
 Importing collections
 Transformation of Existing metadata

• Definition of transformation rules
• Application of defined rules

o VDL- specific functionality
 Integration of a collection (and its metadata) into a VDL
 Integration of a subset of a collection (a view on a collection) and its

metadata integration
• Service Metadata Management

o Management of domain specific service taxonomy
o Deployment/Un-deployment of Services (and related metadata)
o Generation of Metadata for a DILIGENT Service

Test-bed Functional Specification Page 153 of 273

o Update Metadata

General notes about Metadata Management in DILIGENT
A typical digital library contains collections that are made available to the users via a
mediation process. In this mediation process, the user expresses requirements, possibly to
retrieve a subset of digital objects in a collection. The user might further wish to explore
more than one collection, or use services to process the output of a object retrieval to
generate new objects. The role of metadata can be in improving these processes, and more
accurate.
Having developed initial ideas about what metadata needs to be stored, we can now better
understand how the architecture needs to be. Understanding how EGEE currently handles
metadata allows us to make this picture more concrete.
What Metadata can be used:

(i) User Management: Identification and Authorization data, Skills (themes, areas
of expertise), Preferences, User context (Tasks, Roles, Relationships with other
people)

(ii) Service Management: Semantic data (Ontological references for input output),
Quality of service (Performance, efficiency, Computational resources available,
Operation time, Information from service provider, User ratings, Availability)

(iii) Object Management: Indexing Data, Annotations, Annotation Schema, Source
Schema (Syntax), Dublin Core (Who, where, etc.), Ontological Annotations
(Semantics), Versions, Size, Cost

One important aspect is replication of metadata. Since DILIGENT is a distributed system
which is based on an underlying distributed middleware, replication is an advantage as well
as a necessity. Many replication schemes can be used, however, at this stage we use the
replication strategies provided by the EGEE middleware.

Test-bed Functional Specification Page 154 of 273

Figure 37: Metadata Management (use case diagram)

5.11.1 Generate Metadata
Description and Priority
Metadata generation is an important part of search and index functionalities provided by
DILIGENT. This functionality is required when importing new objects or registering them.
The imported objects may or may not have existing metadata. While the metadata
management itself does not provide functionality to generate metadata, it provides the
underlying infrastructure to update and consistently maintain derived metadata about
objects. A typical example of this is feature extraction, which generates metadata about
image objects processed. The generated metadata now has to be structured, managed and
associated with the original content that it refers to. Since this is the overall task of the

Test-bed Functional Specification Page 155 of 273

metadata management, this functionality can be used to manage derived metadata in a
fashion similar to descriptive metadata.
Following the same line of argument, similar functionality can be extended to user
management and service management, to use the functionality of managing structured data
for purposes of user profile management and service management. Service management
also can benefit from some taxonomical arrangement of service offering (see Service
Metadata Management)

Requirements
It should be possible to locate an imported object and the associated location in the
metadata catalogue. Also, there should exist a service that can be invoked to generate
metadata for this class of objects.

Numbers
This functionality is supposed to be infrequently required (few times a day), e.g. whenever
new content is added to the system.

Constraints and Assumptions
The user invoking this functionality should have the requisite access rights, e.g. importing
new resources and reading & writing to the content and metadata storage subsystem.

UML Diagrams
This use case is further sub divided into 3 use cases:

• Object Metadata Generation
• Service Metadata Generation
• User Metadata Generation

Grid Exploitation
Since this will be a frequently executed functionality, the GRID should be used to do the
activities involved on multiple nodes.

Testing Issues
Batch import of a collection (e.g 10 pdf documents, 10 images, 10 text documents) and
testing if correct metadata are generated.
For testing the throughput (number of resources served per minute), random files can be
generated and time noted to generate metadata is noted.

5.11.2 Generate Object Metadata
Description and Priority
This functionality is used when new metadata about an object need to be generated. A
DILIGENT object is an abstraction for any form of content object that the underlying
content management can support. When a new object is added to the DILIGENT system,
either as a part of a bigger collection or individually, the underlying content management
component sends notification to the metadata management component, which has
subscribed to this notification. The next step required is to look, or query for the metadata
associated with this particular object. One approach to ensure that all objects have some
minimal descriptive metadata available is to require metadata in a so-called Minimal Core
metadata Schema for every object inserted. This minimal metadata will ensure that the
searching and indexing services can rely upon a minimum schema to index for better
searching. Additional metadata can be also be specified in a Additional Metadata Schema
which will be a much larger schema catering to a much larger set of particular metadata
attributes.

Test-bed Functional Specification Page 156 of 273

Object Metadata here could be Dublin core data (who, where, etc.), indexing information,
object details like size, version etc. A new object being added is added to the Content
storage and an entry is created in the metadata catalogue. The metadata is generated by a
service, possibly different services for different kinds of objects, and one service providing
the fixed interface:
generate-metadata(Object o, Type t, MetadataCatalogueLocation l)
The generation process could be online, or batch, depending on the object. In cases where
processing time per unit are high (e.g. feature extraction in images), this process could be
batched.

Numbers
This functionality is supposed to be frequently required (a few times a day), e.g. whenever
a new object is added to the system.

Constraints and Assumptions
• Every object has a Type associated with it. This could be standard data types like

Text, Image, BinaryFile, etc.
• For every Type of object, there exists a strategy (a set of services) to analyze and

generate metadata.
• There is an agreed-upon schema for metadata for each type of object.
• If a new type of Object is used in the system, or a new metadata scheme is used,

the services to do the necessary processing are also deployed.
• The inserted object provides some metadata in an XML format, at least in part,

which conforms to a DILIGENT Core Metadata Schema.
• Every object added to the DILIGENT system has atleast some metadata associated

with it. This metadata should ideally be in the DILIGENT Minimal Core Metadata
Schema (which has to be concretely defined).

UML Diagrams

Figure 38: Generate Metadata for a new Object - online processing (sequence diagram)

Test-bed Functional Specification Page 157 of 273

Figure 39: Generate Metadata for a new Object - batch processing (sequence diagram)

Grid Exploitation
For online processing, the grid node with a currently low usage can be called. However the
network transfer overhead of the object being sent to this new location has to be balanced
with the waiting time of closer nodes.
For batch processing, parallel processing of the batch is possible to reduce the overall time
required.

System Integration
Metadata generation for objects integrates into the workflow of a new object being
imported into the DILIGENT system.

Testing Issues
Batch import of a collection (e.g 10 pdf documents, 10 images, 10 text documents) and
testing if correct metadata are generated.
For testing the throughput (number of resources served per minute), random files can be
generated and time noted to generate metadata is noted.

5.11.3 Update Object Metadata
Description and Priority
This functionality requests update of metadata when the underlying content management
sends an update notification. Typical scenarios of usage of this functionality include
updating of data itself, a newer version replacing a previous one or re generation of
metadata using a newer service or with different parameters. While its not planned at this
point in time to allow the user to directly manipulate metadata, this could be another
possible scenario.

Test-bed Functional Specification Page 158 of 273

At the end of updating process of metadata, checking consistency and syntax and type has
to be performed and in case of error, the process has to be rolled back.

Requirements
See ‘Generate Metadata’

Numbers
Not very frequently (a few times a week)

Constraints and Assumptions
See ‘Generate Metadata’

UML Diagrams

Figure 40: Update Object Metadata - online processing (sequence diagram)

Figure 41: Update Object Metadata - batch processing sequence diagram)

Test-bed Functional Specification Page 159 of 273

Grid Exploitation
See ‘Generate Metadata’

5.11.4 Generate Service Metadata
Description and Priority
Services in DILGENT form an important building block in the overall architecture. Different
nodes in the DILIGENT offer services that are required for various digital library
functionalities. For choosing the right service for a particular functionality, metadata about
services could be used for brokering/recommendation. Also different nodes for faster
processing in a parallel manner can offer the same services. This also means that the best
service to choose depends on the individual ‘context’ of the service consumer (choosing
nodes which are closer, node which are more trusted, or the most powerful etc). Metadata
about instances of services can be useful in such a scenario.
Metadata about services can be of various types

1. Syntactic (input/output of a certain type): this is typically stored at the service
registry

2. Semantic information
a. Information about inputs or ‘resources’ used by a service (e.g. Service A acts

on JPEG images)
b. Information about the output and workflow of the services (e.g. Service B

returns Boolean result of weather a face has been detected in input Image)
3. Deployment Metadata

a. Service deployed at node a (geographic location, network speed, processing
power)

4. Performance and tractability (expected runtime of a job, average latency or service
response, average uptime, tractability of the service provider)

From this list, we can see how a user can be supported in a typical diligent scenario
1. “I want a service to manipulate images.”
2. “I want a service that does feature detection.”
3. “I want a service to detect features, but I want to choose a node which is closer to

me.”
4. “I want a service which will not be unavailable after 2 hours of processing ... I want

a service which will complete this 8 hour batch job.”
There are many additional types of metadata that could be used for service description. At
this stage we point out the observation that a multi-dimensional service metadata
description is required and the usage of this metadata is enhanced and automated service
selection.
To order the service offerings by various parameters offers a first level of filtering.
Associating services with nodes in the taxonomy related to the types of inputs and outputs
they can handle.
The second step could be associating services with some process classification.

Test-bed Functional Specification Page 160 of 273

Figure 42: Metadata Services Taxonomy example

In the above figure, we show the typical taxonomical associations of a face detection
service. This service takes an Image as in put and returns a metadata object as output. For
this service, the input parameter is classified under ‘image’ category and the ‘output’
parameter is classified under ‘Metadata’. Further, this service is classified under the feature
extraction node in the image manipulation process tree.
This functionality is provided to management the service taxonomy. At this point of time,
DILIGENT does not plan to include automatic generation of such taxonomies. Instead
taxonomies created by domain experts could be used to model the processes in the domain.
However, if services are available to generate such taxonomies, they could easily be
interfaced with the functionality described here to automatically add new nodes.

Numbers
This functionality is supposed to be in-frequently required (a few times a week), e.g.
whenever a new service is added to the system.

Constraints and Assumptions

For metadata management, there has to be service registry where the location of a service
can be retrieved.
Also every service should be registered when it is added to the infrastructure. At this time,
services should be classified for types of input and output parameters. Similar classifications
can be done for workflows and processes implemented.
See also “Metadata Generation”.

Test-bed Functional Specification Page 161 of 273

UML Diagrams

Figure 43: Generate Service Metadata (sequence diagram)

Grid Exploitation
Since the same service can exist in multiple locations, individual instances of services need
to have their own associated metadata. This might also require maintaining multiple
service–metadata repositories, or a metadata repository at every node extending the local
service registry and feeding into the larger composite service registry.

System Integration
Services form an important part of the GRID infrastructure. Generating metadata is an
important step of meta-data based filtering of services and choosing the one best suited to
the requirement of the user in a given situation.

Use Stories
See “Metadata Generation”.

Testing Issues
See “Metadata Generation”.

Related Non-Functional Requirements
See “Metadata Generation”.

5.11.5 Management of Service Taxonomy: Add Taxonomy Node
Description and Priority
This functionality simply adds a node to service taxonomy.

5.11.6 Management of Service Taxonomy: Delete Taxonomy Node
Description and Priority
This functionality deletes a node in a given service taxonomy.

Test-bed Functional Specification Page 162 of 273

5.11.7 Management of Service Taxonomy: Change Node Parent
Description and Priority
This functionality is used when the parent of a node has to be changed.

5.11.8 Remove Metadata
Description and Priority
This functionality is invoked when an object is deleted from the storage and requires
deletion of metadata as well. When a DILIGENT object is deleted from the storage layer,
the content management component sends a notification and associated metadata and the
associations themselves can be removed from the repository. In particular, all replicated
copies of this metadata have to be removed, and the indexing services have to be notified
of this change as well.

5.11.9 User Metadata Generation

Description and Priority
Metadata about users will consist of static information like Name, date-of-birth, etc and
dynamic information like skills and interests. Static information can be collected when the
user registers to use the system, while for the dynamic data, a consistent process of user
monitoring and analysis will have to be performed.
Like services, metadata about users will tend to be multi dimensional. Besides the
challenges in identifying a sufficiently powerful representation for user metadata, we also
need to keep in mind that user ‘profiles’ needn’t be unique, i.e. the same user might have
different values for the same type of metadata depending on the digital library. Since a user
can have different interests and skills depending on the ‘context’ and the application, either
different sets of user metadata (or profiles) need to be maintained, or a composite profile

Requirements
For metadata management of users, there has to be service registry where the location of a
service can be retrieved.
Also every user should register before the user can access the infrastructure. At this time,
classifications of users (administrator, DL creator, content manger etc) for access
management can be implemented separately from metadata management.

Numbers
This functionality is supposed to be frequently required (several times a week), e.g.
whenever new users are added to the system.

Constraints and Assumptions
See “Metadata Generation”.

Grid Exploitation
The underlying Grid infrastructure maintains a centralized user database. Therefore the
metadata repository for users could be centralized as well and linked to the main user
database.

System Integration
User metadata generation is an important part of the user personalization and will be
incorporated into the workflow of user registration. In addition, periodic updates to the user
metadata by the will be done by personalization service.

Test-bed Functional Specification Page 163 of 273

Use Stories
See “Metadata Generation”.

Testing Issues
See “Metadata Generation”.

Related Non-Functional Requirements
See “Metadata Generation”.

5.12 Annotation Management
This Section specifies a set of medium-priority functionalities for the integrated
management of annotations for digital objects available on the DILIGENT platform, primarily
multimedia content objects. The assigned priority reflects the key role of the identified
functionalities in effectively supporting a localised and yet critical subset of DL activities
based on remote, international, and invitational collaboration between qualified DL users. In
the ARTE scenario, for example, annotation management supports Course Management and
Workshop Management activities, particularly those associated with Exhibition Catalogue
Management.
The following table lists the functionalities identified from the user requirements and
associates each functionality (or set of functionalities) with an indication of the architectural
layer which should be responsible for its provision:

 Functionality DILIGENT Layer

View Annotation ASL5

Edit Annotation ASL

Validate Annotation DLL6

Translate Annotation DLL

Post Annotation DLL

Retrieve Annotation DLL

List Annotation Stubs DLL

Functional descriptions for each of the identified functionalities are reported in the next
Subsections, while some generic observations follow immediately:

• (on interpretation & scope) Annotations are here intended as manually authored,
subjective, context- and task-dependent forms of metadata about objects
persistently stored on the platform; semi-automatically authored annotations are not
currently among the user requirements but may be supported at a later stage.
Furthermore, no early constraint is imposed on the semantics of annotated objects.
Rather, the interpretation of ‘objects’ is assumed to be contextual to the annotation
process, in that, besides multimedia content objects, services, annotations, and
other forms of metadata may be themselves objects worth annotating. While the
requirement for meta-annotations is not directly derivable from the use cases, it is
considered desirable for the flexibility of the platform and it is not expected to
excessively raise the complexity of the system.

5 Application Specific Layer (see the DoW for details).
6 Digital Library Layer (see the DoW for details)

Test-bed Functional Specification Page 164 of 273

• (on structure) Annotations must be structured in accordance with the schema and,
where applicable, the controlled vocabularies associated with an annotation model,
or annotation ontology. The ontology must at least include properties about:

o the authoring of annotations (e.g. annotation ID, author ID, ingestion date,
last modification date);

o the binding of annotations to objects (object ID, anchor ID, collection ID);
o the semantics of annotations (e.g. annotation type);
o the content of annotations (e.g. annotation body, body type, annotation

language);
• (on representation) Models and formats for persistent storage and networked

exchange of annotations shall follow platform-wide guidelines and policies. At least
for data exchange, but possibly also for persistence requirements, the use of XML
and related management technologies is foreseen.

• (on interoperability) Reliance on annotation ontologies is expected to introduce
interoperability issues within any heterogeneous platform. Of course, such issues
shall be dealt with in alignment with more generic Metadata Management
functionality, and in fact with platform-wide strategy and policies. Nonetheless, it is
anticipated that some tension between, on the one hand, the flexibility required to
support diverse application-specific annotation ontologies at the ASL and, on the
other hand, the need to offer ontology-aware, cross-application Annotation
Management functionalities at the DLL, will become manifest within the platform.
At this stage, this tension may not be an immediate reflection of user requirements,
and a single, well-crafted ontology may well satisfy both user communities. The
problem, however, is expected to arise as soon as the platform opens its services to
other user communities. For this reason, an early approach to interoperability is
recommended.
To solve the problem for the purpose of these specifications, no explicit reference to
specific annotation ontologies is made in the following. Rather, ontology-aware
functionality is interpreted as a set of functionalities which span across the ASL and
the DLL of the platform. When interpreted at the ASL, the functionality should be
understood as relying on application-specific ontologies. When interpreted at the
DLL, the functionality should instead be understood as relying on a yet-to-be-defined
canonical annotation ontology. Translate Annotation functionality is then required at
the DLL to map between instances of application-specific ontologies and semantically
equivalent instances of the canonical ontology. In particular, it is required that the
canonical ontology be extensible so as to accommodate the properties of any
application-specific ontology that are not mandatory in the canonical annotation
ontology.

• (on authorisation) All annotation management functionalities are available to
specifically authorised DL users. In the ARTE scenario, for example, authorisation of
users is predicated on their authentication as ARTE members and is to be enforced
in respect of the authorisation policies defined through Course Management and
Workshop Management functionalities and, in turn, through Collection Management
and User Management functionalities (all of which are specified elsewhere in the
Use-case Model). In the context of Course Management activities, in particular, ARTE
members must act in the specific role of Collaborators.

• (on load) Load on Annotation Management functionalities is expected to be
intermittent within the system, and to intensify throughout the duration of related
events, such as courses and workshops across ARTE DLs. For Course Management
activities, in particular, the initial expectation is of a fairly contained low and a

Test-bed Functional Specification Page 165 of 273

limited number of users. Of course, load and number of users are directly
proportional to the number of concurrent course and workshop events, an estimate
of which has yet to be provided, if it may, from the user communities. In general,
however, load and users of DLL functionalities are expected to be higher than those
of ASL functionality, as the former concurrently support the activities of an
unspecified number of DILIGENT DLs.

• (on system integration) At this stage, the focus is on Annotation Management
functionalities which appear to be required across the platform at large. A possible
mapping of those functionalities onto different services is nonetheless sketched.
Following the approach to interoperability discussed in the previous point,
functionalities are mapped onto capabilities of the Annotation Service in WP1.3 when
they are interpreted at the DLL (and thus in terms of the canonical annotation
ontology), and onto capabilities of application-specific extensions of that service
when they are interpreted at the ASL (and thus in terns of annotation ontology
specific to the application). Such service extensions, in particular, delegate ontology
translation to ASL services that implement Translate Annotation functionality and
then use the translated annotations to interface the basic Annotation Service. In any
case, a precise specification of service capabilities is expected to emerge in later,
design-oriented phases of the iterative specification process.
Finally, no eager assumption is made on the exact nature of the relationship
between Annotation Management functionality and the related functionalities of
Content Management and Metadata Management. In particular, given the
assumption that annotations are context- and task-dependent forms of metadata –
and are thus subject to similar core management operations – it remains yet unclear
where, and even if, boundaries between related functionalities and services should
be drawn.

• (on GRID exploitation) As currently understood, none of the Annotation
Management functionalities appear to raise processing or storage intensive
requirements. Testing, however, may reveal high throughput for those functionalities
that pertain to the DLL layer and thus may serve an unspecified number of DLs
and/or an unspecified number of annotation-related activities within each DL. In any
case, however, the reliance of Annotation Management functionalities on the GRID
platform is justified on the basis of the good properties normally associated with
widely and heterogeneously distributed platforms.

Test-bed Functional Specification Page 166 of 273

Figure 44: Annotation Management (use case diagram)

5.12.1 Edit Annotation
Description and Priority
Medium-priority, ASL functionality for the authoring of annotations.

Requirements
The functionality provides an editing environment (e.g. an input form) structured in
accordance with the application-specific annotation ontology associated with the DL – or, if
required at a later stage, with particular collection or collections within the DL – and it
produces an instance of that ontology. Optionally, the functionality accepts an instance of
the ontology and sets the defaults of the editing environment to the current values of the
instance’s properties. Specific requirements remain application-dependent and will not be
discussed here.

Constraints and Assumptions
The functionality includes Validate Annotation functionality to ensure that input and output
annotations are instances of the supported annotation ontology.
More generally, we identify a need for metadata quality assurance within metadata
generation workflows and accept that such workflows are largely outside the scope of
Annotation Management functionality.
Specific constraints and assumptions remain application-dependent and will not be
discussed here.

Test-bed Functional Specification Page 167 of 273

UML Diagrams

Figure 45: Edit Annotation (sequence diagram)

5.12.2 View Annotation
Description and Priority
Medium-priority, ASL functionality for the rendering of annotations.

Requirements
The functionality requires an instance of the application-specific ontology associated with
the DL – or, if required at a later stage, with particular collection or collections within the DL
– and it provides a visualisation environment structured in accordance with the ontology in
which the values of all the properties of the instance are conveniently displayed.
Specific requirements remain application-dependent and will not be discussed here.

Constraints and Assumptions
The functionality includes Validate Annotation functionality to ensure that the input
annotation is an instance of the application-specific annotation ontology. Specific constraints
and assumptions remain application-dependent and are not be discussed here.

5.12.3 Validate Annotation
Description and Priority
Medium-priority, DLL functionality for the validation of annotations.

Requirements
The functionality requires an annotation and validates it as an instance of a given ontology
by matching the structure of the annotation against the schema associated with the
ontology.

Test-bed Functional Specification Page 168 of 273

Constraints and Assumptions
The functionality results in an error condition if the annotation is not an instance of the
supported ontology.

5.12.4 Translate Annotation
Description and Priority
Medium-priority, DLL functionality for the translation between application-specific annotation
ontologies and the canonical annotation ontology.

Requirements
The functionality accepts an instance of a given application-specific ontology and returns a
semantically equivalent instance of the canonical annotation ontology. Similarly, it accepts
an instance of the canonical ontology and returns a semantically equivalent instance of the
application-specific ontology.

Constraints and Assumptions
The functionality includes Validate Annotation functionality to validate the input annotation
as an instance of the input ontology (canonical or application-specific) and thus propagates
the errors that may result from that functionality.

5.12.5 Post Annotation
Description and Priority
Medium-priority, DLL functionality for the persistent storage of annotations within the
platform.

Requirements
The functionality requires an instance of the supported ontology and persistently stores the
annotation on the distributed DILIGENT platform.

Constraints and Assumptions
The functionality includes Validate Annotation functionality to ensure that the input
annotation is an instance of the supported ontology (even when this validation is already
provided by the Edit Annotation functionality).
At this stage, we do not distinguish between postings that result in the storage of new
annotations or in the update of already existing annotation. Such distinction may instead be
made on the basis of whether the value of the annotation ID is null or non-null. Accordingly,
a non-null annotation ID must identify an annotation currently stored in the Platform.
The author ID contained in the annotation must identify a user with posting privileges and,
under updates, one with update privileges. We assume that update privileges are granted
exclusively to the author of the annotation. More flexible, group-based authorisation
schemes may be envisaged at the cost of additional complexity within the system. For the
time being, however, this is not identified as a requirement.
Finally, the functionality propagates the failures that may be reported by the Validate
Annotation functionality.

5.12.6 Retrieve Annotation
Description and Priority
Medium-priority, DLL functionality for the retrieval of annotations previously stored within
the latform.

Test-bed Functional Specification Page 169 of 273

Requirements
The functionality requires an annotation identifier and returns the instance of the supported
annotation ontology identified by the identifier.

Constraints and Assumptions
The functionality results in an error condition if the input identifier does not identify an
annotation currently in the persistent storage of the platform.

5.12.7 List Annotation Stubs
Description and Priority
Medium-priority, DLL functionality for the retrieval of stubs for all the annotations of a given
multimedia object which have been previously stored within the platform.

Requirements
The functionality requires an object identifier and produces a list of the stubs of all the
instances of the supported annotation ontology that annotate the object associated with the
given identifier, if any such object exists in the persistent storage of the platform.

Constraints and Assumptions
Informally, an annotation stub is a yet-to-be-defined subset of the information contained in
an instance of the supported ontology, which is used to: (i) provide users with an overview
of the semantics of the annotation, and (ii) initiate and optimise application-level annotation
management. The definition of a stub must include the identifier of the annotation and may
include any other annotation property that is deemed necessary to support the two goals
above. Due to (ii), in particular, the stub must not include the body of the annotation.
In particular, the functionality allows applications to inform their users of the existence and
high-level semantics of all the annotations available for a given object before full
information about individual annotations is opportunistically retrieved from the platform.
The functionality results in an empty stub list when the input object identifier is not
recognised or when no annotations for the object are currently available in the platform.

5.12.8 Remove Annotation
Description and Priority
Medium-priority, DLL functionality for the removal of annotations previously stored within
the Platform.

Requirements
The functionality requires an annotation identifier and a user identifier and produces an
instance of the supported annotation ontology with the given identifier, if any exists in the
persistent storage of the platform.

Constraints and Assumptions
The annotation ID must identify an annotation currently stored in the Platform.
The author ID contained in the annotation must identify a user with removal privileges. We
assume that removal privileges are granted exclusively to the author of the annotation (see
also Post Annotation functionality).

Test-bed Functional Specification Page 170 of 273

6 INDEX & SEARCH MANAGEMENT

6.1 Introduction
This functionality has been partitioned in four areas that group the functionalities of Index
and Search management. These areas are:

• Index Management (see Section 6.2);
• Content Source Description and Selection (CSDS) and Data Fusion (see

Section 6.3);
• Feature Extraction (see Section 6.4);
• Personalization (see Section 6.5);
• Search (see Section 6.6);

6.2 Index Management
Indexing serves to optimize search. In that respect, the indexing service is subordinate to
the search service. Therefore it is mostly transparent to DILIGENT users, except for the
performance boost and the management functionality invoked to control indexing:
DILIGENT resource managers have full management control over indexing. (Other users,
e.g. DL managers, may also control to some extent how indexing is applied to collections
they own or manage.)
An index is associated with a collection of objects and enables efficient lookup of objects
within the collection. The index is part of the metadata for the collection, and the
association between the collection and indexes over it is maintained by the metadata
service.
The index contains a set of records, which again consists of a set of fields according to an
index description (schema). The field values are extracted7 or derived from the objects in
the indexed collection. This process is controlled by the metadata service. Depending on the
data type, fields support various matching operations (e.g. simple comparison operations,
wildcard matching, full text searches with various language-sensitive options). Fields can
also be used for ranking (i.e. be used in a query time calculation of rank) or sorting of the
result set. Finally, the result set consists of a set of records with fields either copied8 from
the index fields (e.g. object identifier) or derived from them (e.g. computed rank, summary
of object with hit highlighting).
The basic index functionality is lookup: Given a query, a set of object identifiers matching
the query (result set) is returned. Optionally, the query may specify ranking and/or sorting
of the result set, and that only a limited number of results are to be returned. This
functionality is invoked from the search service9 when search (query optimization) locates
an index which is applicable to the query search is evaluating.
The index service implementation receives content to be indexed from the content
management and metadata services. Both the processing that produces the index field

7 In a full-text index, the object content itself is one of the fields. It may be transformed in various
ways depending on the matching options enabled, e.g. lemmatization (matching independently of
inflexion forms of words) or character normalization, and for that reason the content must be copied
into the index, although the object itself resides outside the index. Also, different context (such as
titles, body text) can be handled by extracting content to different fields.
8 Many types of fields cannot be returned as part of the result set, as they are not stored literally in
the index.
9 In principle, not from the search service itself, but components activated by the search service in
order to carry out the query plan and running under control of the process management service.

Test-bed Functional Specification Page 171 of 273

values from the indexed object and the actual update and propagation of changes in the
index structures may be time consuming. For that reason, it is not normally feasible to keep
indexes perfectly consistent with the collections they are derived from. Thus, index update
functionality must include mechanisms that permit some level of control of this
inconsistency.10 The basic framework for this is provided by the process management
service.
The use case models from the scenario requirements touch on indexing in various ways, but
mostly implicit:

• Indexing is the specific topic of the Index Management use case in the ARTE
Scenario.

• Index Management extends Metadata Creation. (One would normally create an
index over the new metadata.)

• All use cases involving search in some way also depend on and define requirements
for index functionality. (Although search can be performed without an index, this is
the exception, and in all the search cases it must be possible to use an underlying
index.) In these use cases the user does not interact directly with the indexing
subsystem, so they are not, strictly speaking, indexing use cases.

• Finally, there are the use cases for adding archives to the Diligent infrastructure or
to a digital library. (Create/Redefine an ARTE DL, ARTE DILIGENT Management,
Archives to be Added/Removed, Create/Reconfigure a DL.) Generally speaking, in
order for an archive to be available for search, one or more indexes must be created
when it is made available in DILIGENT or included in a DL.

We have handled this by factoring the functionalities covered by Index Management into
separate extension use cases that extend both Index Management and the use cases
managing archives.

6.2.1 Index Management
Description and Priority
This use case, taken from the ARTE scenario, is the only one specifically concerned with
indexing. It is invoked from the other use cases whenever there is a need for an index to
be created. The result of the use case is the creation of the index.

Functional Requirements
This use case is not very specific with respect to requirements, only that there is a
requirement to be able to create an index to speed up search in order to support interactive
queries. The use case, as described in the user requirements, only covers “one shot”
generation of an index and does not include incremental index updates.

Numbers
There will be at least one index per archive included in the DILIGENT infrastructure, and it
is probable that one or more new indexes will be created each time an archive is included in
a DL (in order to cover the specific search functionality requested in that DL). The size of an
index depends on the number and size of documents covered, but also very strongly on the
features included in the specific index.

10 Some partial consistency constraints may be fulfilled, such as: Changes are applied and become
visible in the index in a well-defined, consistent order; new and old version of a changed object never
appear together in the same result set, but at least one of them does appear. On the other hand, if
there is a goal to maximize throughput or minimize indexing latency, it may be necessary to relax or
altogether remove such constraints.

Test-bed Functional Specification Page 172 of 273

Constraints and Assumptions
See more specific use cases.

UML Diagrams

Figure 46: Index Management (use case diagram)

Grid Exploitation
See more specific use cases.

System Integration
See more specific use cases.

Use Stories
See more specific use cases.

Testing Issues
See more specific use cases.

Related Non-Functional Requirements
Most non-functional requirements actually arise in the specific use cases, see below.
However there are some issues of a more “systemic” nature that don’t belong to any one of
these use cases.
Given the opportunistic nature of grid computing, consistency, durability and reliability
requirements are challenging. The user requirements do not appear to include strong
requirements in these directions, but that may partially be due to low awareness of the
issue. In the absence of more specific requirements, we assume that medium level
requirements apply:

Test-bed Functional Specification Page 173 of 273

• Indexes are considered as an optimization of search, and can in the worst case be
regenerated from scratch based on the underlying data sources, the main limitation
being the time and computational cost involved in index generation. Thus, no
absolute requirement to index durability.

• Replicas and partitions of an index need not be perfectly synchronized; it is
permissible (to some degree, to be defined) that objects are duplicated, missed or
inconsistently ranked in result sets, in particular in large, frequently updated indices.
That is, in the likely trade-off between index latency/freshness, lookup speed and
availability on one side, consistency on the other side, consistency can be down-
prioritized somewhat.

6.2.2 Describe Index
Description and Priority
This use case permits a DILIGENT user to describe an index (define a type or schema of
and index) for an archive or other set of documents. The use case in itself is mandatory, but
it covers all potential features of index descriptions, many of which are optional.

Functional Requirements
An index description specifies how the index can be used from the search subsystem, i.e.
what search and ranking operations the index supports on what data. It determines how
input documents must be preprocessed in order to index them (and what categories/types
of document can be indexed at all). There are also various technical parameters that must
be specified, e.g. index organization, performance tradeoffs, optimizations.
DILIGENT must be able to exploit existing (legacy) search/index engines. There should be
one uniform DILIGENT language/model for index descriptions, which can be mapped to
native index descriptions for the underlying engines. Federated search depends on this
capability.
DILIGENT users must be able to define new indices to be created over existing or new
document sets, but also to describe existing indices residing in external archives to be
imported into the DILIGENT infrastructure, such that these indices can be made available
for search in a uniform fashion.
Index descriptions may consist of both relatively high-level specifications (e.g. what user-
visible features the index should support) and more technical issues of how the index is
organized and mapped to the physical level. There should be a way for administrators to
prepare description templates or rule sets that fill out the technical details, enabling regular
users to define indices without need for specific technical expertise. In the simplest cases,
index descriptions may be implicitly selected or generated with no need for user
involvement.
Index descriptions provide the meta-information needed by the search service in order to
perform search on a given index, and in particular the meta-information needed by the data
fusion service to merge data retrieved via different indices.
The index description is separate from the set of documents (archive) it is applied to.
(Applying the index description to a set of document to yield an index instance and handling
updates to those documents is described in Create Index and Incremental Indexing.)
However, the index description contains specifications that directly or indirectly impact
creation or update of indexes, in particular whether incremental update is possible or what
freshness is achievable.
Example categories of functional and non-functional characteristics of indexes that should
be possible to specify:

• Schema/format of meta-information to be indexed.

Test-bed Functional Specification Page 174 of 273

• Fields/schema of index itself.
• Forward or reverse indexes.
• Sorting, ordering, normalization of data, supported search operators.
• Performance tradeoffs.
• Incremental update capabilities, freshness requirements.
• Index organization (data structures), in so far as this is not implied by other

specifications.
(The list is tentative, and specific index features to be supported are to be defined, taking
into account the particular requirements to multimedia search and geographical search.)
The functionality enabled through a particular index description is invoked through the other
use cases: Generate index and Incremental indexing for generating or updating the index,
Index lookup for all of the lookup functionality.
The index description is a particular type of document (object), probably expressed in an
XML-based notation. Index descriptions may be stored in the users’ workspaces or in
archives.

Numbers
The task may be performed for each index, but it is the intention that several indices may
share the same description or reuse an existing description with minimal modifications.

Constraints and Assumptions
The specific properties and functionalities the indexes should support must be derived from
the required search functionality, feature extraction and metadata, defined in other use
cases.

UML Diagrams

Figure 47: Describe index (sequence diagram)

Test-bed Functional Specification Page 175 of 273

Figure 48: Describe index (activity diagram)

Grid Exploitation
None. This task itself is not computing or data intensive.

System Integration
Index descriptions can be stored in workspaces and DLs and in general handled like any
other object.
The index description editor is a standalone tool, but there may be some integration with
the metadata management, e.g. to extract metadata schemas and auto-generate
corresponding index descriptions. The schema notations used in metadata management
and index descriptions should coincide.

Related Non-Functional Requirements
Many non-functional requirements to the index, such as resource requirements,
performance (space, time) tradeoffs, incremental updateability, are directly or indirectly
influenced by management functionality defined here.
The index description format should be extensible, such that new index types, matching
operations and other features and options can be handled in a plug-in fashion.

6.2.3 Generate Index
Description and Priority
The user applies an index description (see Describe Index) to a set of documents to create
or update an index. The use case is mandatory, since it is the only way a new index can be
created.

Requirements
The task is invoked at any time when an index is required, i.e. for any set of documents
that can be indexed. (This includes at least archives to be imported into the DILIGENT
infrastructure, see Constraints and Assumptions.)
For requirements to the index as such, see Describe Index and various use cases specifying
search functionality.

Test-bed Functional Specification Page 176 of 273

The index description may have to be amended with archive-specific details, e.g. how the
archive is to be accessed and updates are to be handled.
Specific features of an index, such as type and organization of index, supported metadata
types, matching operators and other options may depend on plug-in components.

Numbers
See Index Management. This use case is invoked at least once per new index. If Update
Index or Incremental Indexing is not supported, the use case will be invoked each time
there is a need to update an index, see Update Index.

Constraints and Assumptions
We assume that indexing is to be applied to archives. (It may be useful or required to
create indices over arbitrary collections or sets of documents defined in other ways, but we
haven’t identified any specific requirements in the scenario documents.)

UML Diagrams

Figure 49: Generate index (sequence diagram)

Test-bed Functional Specification Page 177 of 273

Figure 50: Generate index (activity diagram)

Grid Exploitation
Creation of an index is a data and processing intensive operation that in principle is well
suited for grid exploitation. However, an index is typically voluminous, and creating an index
typically requires reading all data in the collection to be indexed. While some of the
processing (see Preprocessing Contents) is easily parallelizable, some types of indices are
merged data structures with limited opportunities for concurrent generation. Existing
search/index engines tend to be tightly coupled through the index data and don’t expose
the index in itself to the outside, only through the search interface. All those reasons reduce
the opportunities for and benefits from grid deployment.
Short term:

• Wrap and publish existing search/index engines as grid services, but use native
installation/deployment facilities to manage them. (I.e. no grid-based dynamic
deployment of the engines or some of their components.)

Medium term:
• Grid-controlled deployment of existing search/index engines, but treating existing

products as black boxes, not exposing internal interfaces to the grid. Objective:
Deploy closely to/co-located with archives to be indexed.

Test-bed Functional Specification Page 178 of 273

System Integration
The task interacts with Content and Metadata Management to locate the content to index,
determine what content is changed and schedule feature extraction and other preprocessing
of content.
The storage service may be used to manage storage for the index itself.

Related Non-Functional Requirements
When updating an index, the work spent in re-indexing should be minimized. This in
particular applies to the case where the index description is unchanged, but documents in
the set have been modified or documents added to or removed from the set.
The index service should be extensible with respect to the types and features of indices to
support, see Describe Index. The basic interface to the index service for generating indices
accepts an index description, and should be able to handle extensions sensibly, either by
dispatching the extension to the appropriate plug-in component or informing the user that
the extension is recognized as such but is not supported.

6.2.4 Update Index
Description and Priority
After changes to the indexed set of object or the objects themselves, the index is updated
to make it consistent with the new object set. This use case specializes Generate Index and
is optional, since it is primarily an optimization.

Functional Requirements
Update Index is invoked periodically, when changes are known or suspected or when there
is a need to ensure the index is consistent with the indexed set of objects.
Full regeneration of an index (as in Generate Index) may be too expensive or cause too
long indexing latency, with index freshness suffering as a result. If the index organization
permits incremental update, and it is possible to detect changes since the last time the
index was regenerated or updated, the index update process may be optimized.

Numbers
The frequency with which this use case is invoked depends on the rate of update for the
underlying archive and what freshness is required from the index. The amount of work for
each invocation depends on how well re-indexing is optimized. In the optimal case, the
work would be on the order of the size of change, but in practice one should expect a (fairly
large) overhead per invocation, independently of size of change.

Constraints and Assumptions
Optimized re-indexing requires a means of identifying documents in the original and
updated set and detecting changes (e.g. timestamps or version identifiers). This
functionality ultimately depends on the archive system holding the set of documents to be
indexed.
The index structure itself must support incremental updates. (Some index structures, in
order to optimize for lookup speed, must be regenerated in batch.)

UML Diagrams
See Generate Index.

Grid Exploitation
See Generate Index.

Test-bed Functional Specification Page 179 of 273

System Integration
See Generate Index.

Related Non-Functional Requirements
The (old version of the) index should be available during index update. Time and resources
spent re-indexing must be significantly better, compared to Generate Index.

6.2.5 Incremental Indexing
Description and Priority
Indexes designated as incremental are automatically kept consistent with the underlying set
of documents as the set or the documents themselves change. This use case is optional.

Functional Requirements
The DILIGENT users should be able to define indices as incremental and have them
automatically kept consistent with the underlying set of documents. An incremental index
may receive updates in the form of document addition/deletion or modification (of fields in
a) document and incorporate these changes independently of other documents.
Incremental indexing can be driven by the document archive itself sending change
notifications. Alternately, a “crawler” must be configured to revisit each document in the
archive periodically to identify changes. The crawler may depend on the state of the index
(document IDs, timestamps or fingerprints) to determine changes in the archive.
Crawling and incremental indexing are relatively expensive operations, and DILIGENT
users/administrators must be able to manage the activities to make appropriate tradeoffs
between index freshness and resource consumption.
The stream of updates fed into an incremental index can also be fed in parallel to a
component managing collections defined by a search (cf. FASTs Real Time Filter).

Numbers
See Update Index. Unlike Update Index, Incremental Indexing is continuously and
automatically triggered as changes occur in the underlying storage system or are detected
by the crawling process. However, the eagerness of the updating process may be
configurable, such that some batching occurs.

Constraints and Assumptions
We assume that documents in a collection are relatively independent, such that there are no
strict requirements for changes related to different documents to be applied in a particular
order.

UML Diagrams

Figure 51: Incremental indexing (sequence diagram)

Test-bed Functional Specification Page 180 of 273

Figure 52: Incremental Indexing (activity diagram)

Grid Exploitation
With incremental indexing, there are additional benefits to deploying the agent (e.g.
crawler) responsible for identifying and extracting changes at or close to the archive node.
Otherwise, this case is similar to the Generate Index and Update Index cases.

System Integration
Incremental Indexing depends on triggering mechanisms in Content and Metadata
Management.
The storage service may be used to manage storage for the index itself.

Related Non-Functional Requirements
The work spent re-indexing should be minimized. This obviously depends both on a suitable
organization and implementation of the index itself and on the changes to be incorporated
being precisely identified.
The availability and consistency of the index should not be adversely affected by re-indexing
taking place.
The freshness of the index (i.e. the latency from a change occurs in the underlying
documents until the change is visible through the search interface) is to be minimized, but
depends on how much resources can be allocated to crawling and re-indexing.

6.2.6 Register Object Change
Description and Priority
This use case is invoked as an extension of the Notify Service use case in Change Tracking,
whenever an object is changed that is indexed in a non-incremental index. Its purpose is to
mediate between change tracking and the actual index update process. The index service
registers change notifications and schedules batch updates of the index. The use case in
itself is mandatory, although some of the variants of its functionality may be optional.

Functional Requirements
The basic required functionality is merely to mark an index as inconsistent, such that it will
eventually be regenerated. The decision to regenerate an index could be manual, or
triggered by some automatic strategy, for instance based on periodic checking, number of
pending changes or the time index has been inconsistent.
For the indexer, the fallback case is to regenerate the entire index from scratch, i.e. by
reading all objects currently in the indexed collection. Some types of indexes can be

Test-bed Functional Specification Page 181 of 273

regenerated more efficiently if more specific information about the changes is available;
thus specific index types should be able to install their own notification handlers. In
particular, updates affecting only some subsets of index fields may be particularly efficient.

Numbers
This use case is invoked each time an object indexed in a non-incremental index is changed,
i.e. very frequently.

Grid Exploitation
None in particular. However, change tracking may touch on fundamental grid mechanisms.

System Integration
This use case is the integration point between the index service and the Change Tracking
functionality in Content Management.
See also Handle Object Change below.

Related Non-Functional Requirements
See Handle Object Change below.

6.2.7 Handle Object Change
Description and Priority
This use case handles the processing performed when there is a change to an object that
appears in an index, including adding or removing objects in an index. Metadata to be
indexed is (re)generated and any other preprocessing that is required for the index fields is
performed. Change tracking in the Content Management service is set up in order to get
notifications of future changes to the object.
For incremental indexes, this use case is triggered by each change. For non-incremental
indexes, the triggering is mediated by the Register Object Change use case and can be
delayed, postponed or batched according to policies specific to a given index.
This use case is mandatory, but there are a lot of options (e.g. content- or index-type
specific functionality) that are not explicitly modeled as extensions.

Numbers
This use case is invoked each time an object that appears in some index is changed and the
index is regenerated or updated, i.e. very frequently.

Constraints and Assumptions
There are no specific assumptions as to the nature and precision of change information that
available, but clearly this will influence the interfaces to Content Management and the ability
to optimize index regeneration. In the simplest case, only object identifiers are available,
along with an indication of whether the change is addition, update or deletion. Ideally,
update notifications should indicate which fields/attributes are affected. It may not be
possible to (efficiently) perform a differencing operation to determine a minimal set of
changes to the object.

System Integration
It is not at this point clear whether it is the index service that is responsible for invoking the
metadata service in order to re-derive metadata needed for index fields, or whether this is
supposed to be handled more generically in a collaboration of the metadata and content
management services without involving the index service. (In other words, the question is
whether the index service is triggered directly by changes in the base objects or indirectly
by “downstream” changes in derived metadata.)

Test-bed Functional Specification Page 182 of 273

In the latter case, a generic version of this use case would more appropriately belong to the
metadata service. The generic use case is extended according to the nature of the specific
metadata in question, i.e. with indexing functionality for the particular cases of indexed
metadata or the index itself being considered as metadata.

6.2.8 Index Lookup
Description and Priority
The search subsystem invokes the index service to look up information in indexes, as
determined by the query optimizer. This use case is mandatory.

Functional Requirements
The lookup functionality (lookup interface) available for a given index is defined by the
index description. Performance and other non-functional requirements may also be
determined or influenced by the index description, e.g. through its selection of index
organization.
The basic functionality of Index Lookup is to perform a match operation on one or more
fields in the selected index and return (references to) the matching objects. The match
operators and options available depend on the type of index and the field being matched,
and the basic interface to Index Lookup should be neutral with respect to that.
The search service must be able to query the index description governing a particular index.
The result set may be very large, and it should be an option to retrieve only a part of the
result set, by specifying a limit to the number of results or by reading results sequentially
until satisfied. The results are returned in rank order. The index may support different
ranking criteria, and the search service must be able to select among them as well as supply
parameters (e.g. weights) for the rank computation.
In order to support data fusion, i.e. merging data from different indexes with proper
ranking, it should be possible to return relevant statistics about the result set (e.g. term
occurrence statistics) and per-document ranking information (at least the computed result
rank value, but input/intermediate values in the rank computation may be useful) to enable
data fusion to compute a normalized rank across different indexes.
The result set may contain additional information about the hit occurrences, e.g. positions,
context, match precision, depending on what is supported by the type of index and nature
of the data. This information is intended for further processing on the side of the search
service, such as matching or ranking operations not directly supported by the index, to
support data fusion or to generate “teasers” (summaries of search results for presenting to
human users).

Numbers
Search is assumed to be a very frequent operation.

Test-bed Functional Specification Page 183 of 273

UML Diagrams

Figure 53 Index lookup (sequence diagram)

Figure 54 Index lookup (activity diagram)

Test-bed Functional Specification Page 184 of 273

Grid Exploitation
The grid primarily acts to locate the index service containing the requested index. The grid
may also be a vehicle for replicating the index. The index service is a “grid service”, in the
sense that it can be located and invoked through standard grid mechanisms. However, on
the short and medium term, we expect most implementations to be based on legacy, non-
grid software, wrapped with grid-compliant interfaces, but statically installed on available
nodes. (Filtering and ranking components might be dynamically deployed on the node
where the actual index is located in order to increase precision, reducing the size of the
result set; it is not clear whether such components should be considered as part of the
index, search or perhaps data fusion service.)

Related Non-Functional Requirements
See Index Management.

6.2.9 Wrap External Index
Description and Priority
Indices outside DILIGENT are made available inside DILIGENT via a wrapper. This use case
in itself is mandatory, but the characteristics (interfaces etc.) and actual set of external
indices to support with wrappers is to be defined.

Functional Requirements
In order to be usable within DILIGENT, an index must provide the expected DILIGENT
interfaces. For indices that actually are implemented outside DILIGENT, the index is
represented inside DILIGENT by a wrapper implementation that implements the required
interfaces and adapts and forwards service request between internal DILIGENT components
and external components.
The index features and functionality provided by the external index is described through an
index description. The wrapper should behave like a native DILIGENT index described by
the same index description. There may be some restrictions on what index description
features may be used in/supported by wrappers in general, but such restrictions should be
minimized. (On the other hand, one particular wrapper implementation will typically cover a
very restricted set of cases.)
There should be a library of wrappers available covering the common cases, such that new
indices can be integrated without programming, merely by selecting and configuring a
wrapper from the library. However, the set of external indices is open-ended, and it must be
possible to create new, custom wrappers, see Develop Wrapper.
Note that there are two basic ways in which an external content source can be integrated
with DILIGENT:

• An external index over the content source is made available inside DILIGENT. (The
case in question here.)

• The content source is crawled and an index is built inside DILIGENT. “Generate
Index” and other use cases within this package cover this case.

In both cases, the content source itself must be wrapped and appear as a collection/archive
inside DILIGENT. This is outside the scope of the index service and is not discussed here
(although the wrapper approach is similar). From the point of view of other DILIGENT
services, the two cases should be indistinguishable (except for the index features exposed,
as described by the index descriptions).

Numbers
Comparable to “Generate Index”.

Test-bed Functional Specification Page 185 of 273

Grid Exploitation
Not relevant. (Some specific wrappers might have grid-related issues, however.)

System Integration
This is one of the major ways in which interfaces between DILIGENT and external services
are defined and implemented.

6.2.10 Develop Wrapper
Description and Priority
By using a DILIGENT software development kit (SDK), custom wrappers can be developed.
In this way new content sources and indices can be supported, or new/custom mappings
between DILIGENT and external functionality.
This use case is mandatory. (It is the way we are going to populate the wrapper library
initially.)

Functional Requirements
Wrappers should not unduly restrain the functionality and index features exposed: As long
as there is a useful mapping between the functionality and features supported by the
external source and those that DILIGENT can exploit, it should be possible to implement
that in a wrapper.

Numbers
Relatively infrequent, at least when a suitable library of wrappers has been built up over
time.

Constraints and Assumptions
The SDK should support common programming languages and programming models, since
there may be a requirement or at least strongly desirable to use existing components,
libraries, toolkits to implement the access the external content source.

Grid Exploitation
Not relevant.

Related Non-Functional Requirements
Most regular software engineering issues apply.
Wrapper APIs should be well-defined and stable, such that existing wrappers can be used
with new releases of the DILIGENT platform with no or minimal change.

6.3 Content Source Description and Selection (CSDS) and Data
Fusion

In their most general form, CSDS and Data Fusion are functionalities associated with the
provision of services, which rely in real-time on a distribution of data and control11.
Specifically:

• Data Fusion is real-time functionality concerned with the synthesis of service
responses from the partial outputs produced at individual loci of distribution, or
nodes;

11 Here and in the following, the term ‘real-time’ and its opposite ‘batch’ are informally intended with
respect to service end-users (human or otherwise).

Test-bed Functional Specification Page 186 of 273

• CSDS is functionality concerned with the optimisation of the number of nodes – and
thus network interactions – which are required to satisfy individual service requests.
In particular:

o Content Source Description is off-line functionality which produces
information about the data available at each node, and accordingly is a
specialised form of indexing functionality12;

o Content Source Selection is on-line functionality that uses the output of
Content Source Description in order to distinguish nodes on the basis of their
likelihood of `relevance’13 to the satisfaction of individual service requests.

From this general perspective, CSDS and Data Fusion functionalities are largely orthogonal
to the semantics and distributed architecture of the services they support. In the literature,
however, they are most commonly associated with content-based, application-level search
services – primarily full-text but also multimedia document search – and under the
assumption of client-server and, more recently, peer-to-peer architectures (Distributed
Information Retrieval, DIR). As shown below, it is largely in this sense and with such scope
that we shall interpret them within the Digital Library Layer (DDL) of the DILIGENT
platform.
Note: Functionality related to CSDS and Data Fusion may also be identified within the
Collective Layer (DCL) – and, further away from applications, within the underlying GRID
middleware – in the form of brokering and matchmaking functionality. Here, however, we
shall assume a more restricted scope that is closer to applications and their high-level
semantics (e.g. information content), rather than to computational resources and their
effective sharing within a distributed infrastructure14. In any case, we make no assumption
at this stage as to the specific distributed architecture of the supported services (client-
server or peer-to-peer), which may vary from service to service across the DILIGENT
platform.
As DLL functionalities, CSDS and Data Fusion do not explicitly emerge in the user
requirements of D2.1.1 and D2.1.2. Rather, they may be identified as supporting both
content-based and structure-based Search functionality, which interfaces directly with end-
users in a number of uses cases, namely:

• Search and Retrieve Objects (ARTE)/ Explore Objects (ImpECt)
• Search Objects by Full-Text (ARTE)/ Search for Objects (ImpECt)
• Search Objects by Video (ARTE)
• Search Video Frames by Keywords (ARTE)
• Search Objects by Tone (ARTE)
• Search Objects by Metadata (ARTE)
• Search Objects by Image (ARTE)
• Search Part-of Objects by Image (ARTE)
• Search Archives (ARTE)
• Search Archives by Image (ARTE)

12 Indeed, there may be some dependencies/overlap between Index Definition and Content Source
Description still to identify and resolve.
13 Notice that we assume here the most generic interpretation of the term ‘relevance’ and do not
immediately relate it to the information need underlying a user query (rather, we relate it only to
request satisfaction). Of course, a narrower interpretation is harmless as we will soon restrict our
scope to search services.
14 Of course, we do not exclude at this stage that implementation of such functionalities may directly
rely on related DCL functionality.

Test-bed Functional Specification Page 187 of 273

• Search Archives by Metadata (ARTE)
Of course, detailed analysis of these use cases concerns the functional specification of
Search functionality and thus escapes the immediate scope of these specifications. Here,
however, we observe that such functionality is given high priority across both user
communities; in the ARTE scenario of D2.1.1, for example, search functionality supports
most management activities, from DL Management and Workspace Management to
Workshop Management and Collection Management. Specifically, full-text search, search by
image, and structured search are perceived as mandatory or highly desirable functionality,
while more sophisticated forms of search, such as search by tone and search by video, are
described as desirable. In particular, we notice that Search functionality spans different
types of media – from plain text to images, videos, and audio – as well as approaches –
from structured to semistructured and unstructured content. We thus inherit a generic
requirement for media- and structure-dependent forms of source description and selection,
as well as data fusion.
Note: We notice that all forms of search are associated with auxiliary functionality which
allows users to indicate and thus limit the content sources against which searching should
be distributed. While this may be used towards performance optimisation – and thus as a
manual and user-driven complement to Content Source Selection functionality – it is more
directly intended, and typically used, to increase precision of query results on the basis of
static knowledge of the sources’ content. As such, we relate this functionality to the user
interface, locate it within ASL layer of the platform, and leave it outside the scope of these
functional specifications; its only effect is to subset the input of Content Source Selection
functionality.
Besides requirements, we also inherit an operative context from Search functionality and
base on it a number of assumptions. First, we assume the definition of a canonical query
language for DILIGENT – presumably one capable of mixing structured and unstructured
searches and with operator support for multimedia input – and expect all queries to be cast
in the form of expressions of such language. Similarly, we assume agreement on a
canonical format for query results and expect support for Data Fusion functionality to come
in the form of proposed extensions for such format.
Of course, we assume that the execution of user queries may be distributed across a finite
number of nodes – presumably via collaborating instances of the Search Service – and thus
that mechanisms (e.g. protocols) exist within the platform for dispatching queries to nodes
and gathering partial results prior to their fusion. We also assume that suitable query
engines are available at each node that participate of query execution, where each such
engine may have been deployed as part of the DILIGENT platform or as the result of some
ad-hoc wrapping of pre-existing search services. In the latter case, we assume – but not
concern ourselves with – the existence of mechanisms for (partial) query translation (e.g. as
carried out by ‘proxy’ nodes in the MIND project). In fact, we consider local search engines
as black boxes and thus abstract over the details of their indexing and retrieval strategies.
Finally, we capture the interactions between CSDS, Data Fusion, and Search functionality in
following use-case diagram.

Test-bed Functional Specification Page 188 of 273

Figure 55: CSDS and Data Fusion (use case diagram)

6.3.1 Content Source Description
Description and Priority
Set of high-priority DLL functionalities for the generation and management of content
descriptions for searchable data sources. The assigned priority reflects the key role of
Content Source Description in supporting the scalability of Search functionality, which has
been in turn identified as high-priority functionality across both user communities.

Functional Requirements
At the very least, the functionalities must allow the generation, binding, and retrieval of
content descriptions for searchable data sources. The binding of a description refers to its
explicit and persistent association with the content source from which it has been
generated. The generation of a description must trigger notification mechanisms available
within the platform (presumably as Content Management and Metadata Management
functionality), and these mechanisms must then be used to maintain bindings up-to-date
within an acceptable time lag – via re-generations or, preferably, incremental updates of
currently bound descriptions.
Descriptions must be generated from content sources of different media and format types.
Text must be supported while images, video, and audio – as represented through a small
range of popular formats yet to be identified – should be supported through media-sensitive
descriptions mechanisms. Specific kinds of structured and semistructured content sources,
such as relational or XML databases, must also be supported through structure-sensitive
description mechanisms (e.g. fielded descriptions). As description models vary across and
within media, we require the platform to offer basic descriptions for each of the supported

Test-bed Functional Specification Page 189 of 273

media and then accommodate application-specific descriptions within the platform through
inheritance mechanisms.
For the time being, we require that each content source be bound to a single description;
retrieval of descriptions is then predicated only on the successful identification of the
corresponding sources. As a longer-term goal, however, we plan to remove this constraint
and allow sources to be described in different ways for different purposes. Of course, this
requires descriptions to be explicitly identified (either opaquely or by a controlled vocabulary
of types) and the identifier used as a retrieval parameter. It also raises a requirement for
functionality, which caters for the retrieval of all the descriptions available within the
platform at a given moment in time for a given source.

Numbers
Load on Content Source Description functionality is expected to be relatively contained and
concentrated primarily at DL creation time. As the functionality is shared across DL
applications, testing is needed to reveal and quantify possible peaks of usage. On the other
hand, descriptions for given sources may outlive the DL for which they were initially created
and thus may be reused over time (possibly subject to updates, of course).

Constraints and Assumptions
We assume that the generation and binding of descriptions occurs as soon as sources are
included within a DILIGENT DL and thus that the functionalities operate in batch mode with
respect to the execution of queries which they ultimately support (see also System
Integration section).
Clearly, descriptions may be retrieved only after they have been bound to the sources from
which they were generated. Bindings themselves must be tested for conformance to the
description format, and an error should be generated when the test fails.
At this stage, we make no assumption as to the degree of persistence or distribution model
of descriptions within the platform.
Regardless of the media type, we assume all source descriptions to be structured and
mostly textual. In particular, we assume them to be represented in some canonical
description format for the DILIGENT platform. We expect such format to provide a number
of fields – whether compulsory or not, media-dependent or media-independent – which
prove necessary to support content source selection algorithms (e.g. local ranking algorithm
ID, stop word list flag, date of last change, support for fielded search flag, etc). Finally, the
description format should be extensible, so as to accommodate application-specific
extensions, which we expect to mirror/complement the functional extensions discussed
above15.
Note that description of text-based sources is well known and offers good properties.
Vocabularies annotated with frequency of occurrence data, or ‘unigram language models’,
offer favourable growth rates and their automated synthesis using query-based sampling
has been proved effective. Description formats for text have also been proposed (e.g. see
the STARTS protocol at Stanford). Description of non-textual unstructured sources is instead
a much less explored issue.

UML Diagrams
See Figure 55: CSDS and Data Fusion. Further functionality decomposition may occur at
later stages (design) but should be considered as ‘internal’ or ‘micro-functionality’ from the
system perspective (no direct interaction with other platform components).

15 At this stage, however, we are not directly concerned with approaches to the interoperability
problem, which we expect instead to be dealt with uniformly within the platform at large.

Test-bed Functional Specification Page 190 of 273

GRID Exploitation
As currently understood, Content Source Description functionality may raise intensive
processing or storage requirements, especially in the case of generation of non-textual
unstructured source (e.g. images, video, audio). For its batch nature with respect to the
query execution processes it ultimately supports, the functionality is an ideal candidate for
GRID exploitation.

System Integration
We expect the functionality to be invoked exclusively by Search functionality, in particular
after the L1 Source Selection functionality.

Related Non-Functional Requirements
From a qualitative perspective, descriptions must effectively support Content Source
Selection functionality and, in turn, the different forms of Search functionality which are
made available on the platform. Specifically, effective description is to be measured against
requirements of convenient storage, flexible evolution, and mostly effective source selection
(see Content Source Selection for a definition of ‘effective selection’).

6.3.2 Content Source Selection
Description and Priority
High-priority DLL functionality for the selection of searchable content sources based on the
likelihood that they will prove effective in satisfying the information need underlying a given
user query. The assigned priority reflects the key role of Content Source Selection in
supporting the scalability of Search functionality, which has been in turn identified as high-
priority functionality across both user communities.

Functional Requirements
Given a query q and a set SD of content source descriptions, the functionality must identify
a subset S’ of the sources described in SD across which the execution of q would be
effectively distributed. As a first requirement, the selection must be effective in promoting
the scalability of the different forms of Search functionality that are available on the
DILIGENT platform16.
We suggest a measure of effective selection in terms of the following:

• the ratio k/n between the number k of sources in S’ and the number n of sources
described in SD. For given source descriptions and values of (ii), smaller ratios k/n
indicate better optimisation of network use and smaller information overload for
users;

• the ratio R(k)/R(n) between the effectiveness of retrieval when the query is
distributed across the sources in S’ and the effectiveness of retrieval when the query
is distributed across all the sources described in SD. For given source descriptions
and values of k, smaller ratios R(k)/R(n) indicate that given optimisations can be
achieved at less significant losses of retrieval effectiveness;

and we notice that any such measure is always:
• relative the query q and the quality and freshness of the descriptions in SD and,
• (orthogonally to queries and source descriptions) ultimately dependent on the type,

semantics, and distribution of the content of the sources described in SD.

16 Besides scalability, other decision-theoretic parameters related to the effectiveness of service
provision may be identified at a later stage.

Test-bed Functional Specification Page 191 of 273

For these reasons, we identify a requirement for supporting multiple selection algorithms
within the DILIGENT platform and for allowing those algorithms to be parametrically
configured, possibly on a per-query basis. As with Content Source Description functionality,
and indeed in parallel with it, we require the platform to offer basic algorithms for each of
the supported media and also to be able to accommodate application-specific extensions
across and within media types through inheritance mechanisms.

Numbers
The load on Content Source Selection functionality is exactly that estimated for Search
functionality, upon which this functionality depends.

Constraints and Assumptions
We assume that the selection of content sources occurs prior to the dispatching of queries
to nodes that participate of their execution, and thus that Content Source Selection
functionality operates in real-time mode with respect to such execution.
The query q must be expressed in the canonical query language and the descriptions in SD
include all the information required by this functionality. Failing these conditions, the
functionality must produce an error. There is also an implicit assumption that the search
service that exposes the content sources described in SD is capable of executing q, even
though this is not directly tested or enforced by this functionality.
We assume that the sources in S’ are selected against a ranking of the sources described in
SD, where such ranking is based on the likelihood that such sources will prove convenient to
the satisfaction of the information need underlying q. After such ranking has been derived,
the sources in S’ may be the first k sources, or all the sources ranked below a given
threshold value, or else all those which satisfy some other cost metric to be defined. The
value of k, the threshold value, or the cost metric adopted for the selection should be
configurable, possibly on a per-query basis.
We make no early assumptions as to the exact definition of ‘effectiveness of retrieval’. It
may be defined exclusively in terms of relevance of query results or complemented by other
decision theoretic, application-level parameters (e.g. financial cost). Whatever the specifics
of the decision theoretic framework adopted, the exact notion of relevance employed
therein should be defined in the context of Search functionality and, mostly importantly,
taking into account the local search engines which participate of query execution. As such,
these specifics are outside the scope of Content Source Selection functionality.
As mentioned above, source rankings may be obtained in a number of ways and different
are also the metrics which may be used to measure their effectiveness at a given cut-off
point. For full-text retrieval, as an example, dedicated applications of the Baysian Inference
Network model (based on suitable variations of classic tf.idf formulas and known as the
CORI algorithm) have been proved – using and a metric largely based on document recall
values – to achieve acceptable results when selecting as little as 10% of a thousand
sources. Given the expected size of DILIGENT DLs, we believe that such results give
sufficient confidence – as far as full-text search is concerned – of the possibility of granting
effective source selections.

UML Diagrams
See Figure 55: CSDS and Data Fusion. Further functionality decomposition may occur at
later stages (design) but should be considered as ‘internal’ or ‘micro-functionality’ from the
system perspective (no direct interaction with other platform components).

GRID Exploitation
The functionality may require complex algorithms of multi-criteria decision making which
have not been explored for heterogeneous and mixed-media sources. On the one hand, this

Test-bed Functional Specification Page 192 of 273

complexity suggests good potential for GRID exploitation. On the other hand, it introduces
further real-time performance overheads and this may well discourage its wide distribution
for performance reason.

System Integration
We expect the functionality to be invoked exclusively by the Search service.

Related Non-Functional Requirements
For their particular relevance in this context, non-functional requirements are reported in
the Requirements Section.

6.3.3 Data Fusion
Description and Priority
High-priority DLL functionality for the integration of partial results produced during the
distributed execution of user queries across a number of searchable content sources. The
assigned priority reflects the key role of Data Fusion in supporting the distribution of Search
functionality, which has been in turn identified as high-priority functionality across both user
communities.

Functional Requirements
Given a query q, a list SD of content source descriptions which preserves the ordering of the
corresponding sources derived by Content Source Selection functionality, and a set PR of
partial result rankings, the functionality must produce a single merged ranking R of the
rankings in PR, where each ranking in PR is a finite list of results obtained by executing q at
exactly one of the content sources described in SD and ordered by relevance to q
accordingly to the notion of relevance defined at that source.
We require effectiveness of merged rankings, where an effective ranking is one that
deviates as little as possible from the raking which would have been produced by a single
query engine running q against the union of the content sources described in SD and under
one indexing algorithm, one retrieval algorithm, and one notion of relevance17. For this
purpose, we require fusion algorithms based on some notion of normalisation of the scores
of partial documents as independently computed at each of the content sources described
in SD. In particular, we require that score normalisation is such to: (i) favour results from
sources which ranked high during source selection processes, but also (ii) enable high-
scoring results from sources which ranked low during those processes.
Once again, we notice that effectiveness of merged rankings is dependent on the
information made available to the merging algorithm and one such algorithm depends in
turn on the type, semantics, and distribution of content across sources. For these reasons,
we identify a requirement for supporting multiple data fusion algorithms within the
DILIGENT platform and for allowing those algorithms to be parametrically configured,
possibly on a per-query basis. As with Content Source Description and Content Source
Selection functionalities, and indeed in sync with them, we require the platform to offer
basic fusion algorithms for each of the supported media and also to be able to
accommodate application-specific extensions across and within media types through
inheritance mechanisms.

Numbers
The load on Data Fusion functionality is exactly that estimated for Search functionality, upon
which this functionality depends.

17 Obviously, even if all sources used the same retrieval engine there would still be a need for result
fusion, but this would be trivial.

Test-bed Functional Specification Page 193 of 273

Constraints and Assumptions
We assume that fusion of partial results is a necessary condition to the satisfaction of a user
query, and thus that Data Fusion functionality operates in real-time mode with respect to
such execution. We predicate this assumption on the belief that, because of distribution and
content selection processes, all queries should produce ranked results, even those which
admits only exact answers at each participating content source. We note that, in this latter
case, a basic fusion algorithm might simply merge results in the same order produced by
Content Source Selection functionality. It is to support this and other non-trivial merging
algorithms that we require the descriptions in SD to preserve such ordering. Of course, the
ordering may also be ignored (e.g. when exact results must be sorted with respect to
specific field values).
The query q must be expressed in the canonical query language and the descriptions in SD
must include all the information required by this functionality. In particular, we expect that –
for purposes of effective normalisation – this functionality will rely on global statistics for
each of the sources described in SD, such as the number of documents in each source, the
number of distinct indexing features within each source (e.g. terms), the number of
documents with a given feature, the part of the query executed at a given query, etc. For
the same reasons, we require that the rankings in PR contain lists of results represented
according to an extension of the canonical query result format which provides all the input
required by the merging algorithm. This may include – and must include in all non-trivial
merging scenarios – the score locally computed for the result at each content source, as
well as the frequency with which a given indexing feature occurs within the result. Failing
any of these conditions, the functionality must produce an error.

UML Diagrams
See Figure 55: CSDS and Data Fusion. Further functionality decomposition may occur at
later stages (design) but should be considered as ‘internal’ or ‘micro-functionality’ from the
system perspective (no direct interaction with other platform components).

GRID Exploitation
See Content Source Selection functionality.

System Integration
Conceptually, Merge Results is invoked in the context of Search functionality. In practice,
however, searches will be executed as processes managed by Process Execution &
Reliability functionality, and thus the invocation of Merge Results will be part of such
process execution.

Related Non-Functional Requirements
For their particular relevance in this context, non-functional requirements are reported in
the Requirements Section.

6.4 Feature Extraction
Feature Extraction is the process in which an initial measurement patterns or some
subsequences of measurement patterns are transformed to a new pattern feature for
simplifying analysis processes. This functional area will provide functionality for:

• Image analysis: generation of metadata pertaining to the image content;
• Video analysis: generation of metadata pertaining to the video content;
• Audio analysis: generation of metadata pertaining to the audio content;
• Text analysis: generation of metadata pertaining to the text content;
• Cross media analysis: generation of metadata pertaining to different related media;

Test-bed Functional Specification Page 194 of 273

Figure 56: Feature Extraction (use case diagram)

6.4.1 Speech to Text
Description and Priority
This functionality will transform audio streams or audio tracks of video sequences into a
written text in a given language.

Requirements
The service shall extract speech from vocal audio streams.

Constraints and Assumptions
• A speech recognition software must be freely available and offer a functional interface to

couple it as a third party component.
• The given audio stream must contain speech in a supported language.
• All search functionalities taking advantage of this functionality must be aware, that

speech recognition rests upon algorithms that do not accurately extract text in case of
noisy audio, dialects or badly trained software.

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
Since speech recognition resides within a 3rd party component that processes complete
audio files, “Speech Recognition” offers little potential for grid exploitation.

System Integration
“Speech Recognition” is a kind of “Audio Feature Extraction” (see there).

Use Stories
See ARTE requirements document.

Test-bed Functional Specification Page 195 of 273

6.4.2 Translation Service
Description and Priority
This functionality supplements the “Speech to Text” UC by an additional translation
mechanism, which converts the extracted text into a text in another language.

Functional Requirements
“Translation Service” acts as a combination of (1) speech recognition in a given audio track,
which extracts text in the native spoken language, and (2) translation of the given text into
another language (probably the language of the user).

Constraints and Assumptions
Depending on the audio quality and the “training” of the speech recognizing software,
speech recognition works fairly well. In difference, translation software still lacks the
capabilities to correctly translate complex sentences. In terms of implementing this service,
a translation software must be freely available and offer a functional interface to invoke it
from within a DILIGENT component.

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
See “Speech to Text” service.

System Integration
“Translation Service” is a kind of “Audio Feature Extraction” (see there).

Use Stories
See ARTE requirements document.

6.4.3 Process Text
Description and Priority
“Process Text” is a plain text processing operation. The ARTE requirements document states
that “Process Text” primarily does word stemming which is a precondition for or part of
more complex text processing operations, like “Thesaurus Generation” (see there).

Requirements
“Process Text” will return a list of word roots of all words existing in a given textual
document.

Constraints and Assumptions
A 3rd party word stemming component will be required in order to conduct the actual
extraction of word roots.

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
“Process Text” comprises two phases, which (1) separate a given text into a list of separate
words and (2) extract their word roots. Stage (1) can not take advantage of the grid, but
stage (2) can be easily parallelized. Precisely, word stemming of a particular word is
independent of the remaining words. That is, each participating grid node receives a list of
words and extracts their word roots.

Test-bed Functional Specification Page 196 of 273

System Integration
“Process Text” is a kind of “Text Feature Extraction” (see there).

Use Stories
See ARTE requirements document.

6.4.4 Thesaurus Generation
Description and Priority
“Thesaurus Generation” generates a data structure for a given text, which establishes
manifold associations among the contained words, including word roots, synonyms, similar
words, etc.

Functional Requirements
“Thesaurus Generation” processes a multilingual text into a data structure which associates
meta information with the words.

Constraints and Assumptions
A 3rd thesaurus generator component must be freely available and offer a functional
interface.

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
Since the actual thesaurus generation is being conducted by a third-party component, grid
exploitation is restricted to the word stemming which is conducted by the (included)
“Process Text” UC (see there).

System Integration
“Thesaurus Generation” is a kind of “Text Feature Extraction” (see there).

Use Stories
See ARTE requirements document.

6.4.5 Feature Extraction
Description and Priority
The “Feature Extraction” Use-Case is the most general “umbrella” feature extraction
component, which is a generalization of any media-specific feature extractor. However, the
invocation of all feature extractors is conducted in the same manner, i.e. a media object
(e.g. an image) is submitted along with a selection of the feature extraction algorithms (e.g.
colour histogram) and its parameters (e.g. dimensionality of feature vector, colour space,
language of speech). The feature extraction component picks the right media-specific
feature extractors, which are likely to be “wrappers” for proprietary legacy components.

Functional Requirements
The “Feature Extraction” Use-Case will extract numeric or textual features from the content
of an arbitrary media object. In detail, it will receive the media object, pick the right feature
extractor and pass the media object to it (probably somewhere on the grid), collect the
results (i.e. the actual features) and either return them to the calling query processing
component or to the “Content and Metadata Management” component.

Test-bed Functional Specification Page 197 of 273

Numbers
This Use-Case will be one of the most frequently invoked functionality. That is, it is a
fundamental building block of any search operation that involves some sort of content-
based multimedia retrieval.

Constraints and Assumptions
The usefulness of a certain feature extractor to answer a particular similarity query heavily
depends on the application domain. Currently, the ISIS prototype incorporates a number of
low and medium level features that will be ported to the DILIGENT architecture. As we
receive more formal requirements from the ARTE community, more adequate features may
be included, depending on the state of the art in image, text, and audio processing.

UML Diagrams

Figure 57: Feature Extraction (sequence diagram)

Grid Exploitation
In terms of batch processing of existing multimedia collections, grid capabilities can be
exploited in a meaningful way. In particular, (1) there are no real time requirements, (2)
feature extractors are, in general both CPU and I/O intensive operations (images are
voluminous objects to be retrieved from storage, feature extraction may involve expensive
operations like Fourier transformation etc.), and (3) feature extraction can be parallelized in
an orthogonal way where (a) each object and (b) each feature may be processed on a
different grid node.

System Integration
There will be a dedicated functionality for feature extraction, which is being invoked from
various (1) search and (2) content and metadata management services.

Testing Issues
Testing must mainly check the incorporation of DILIGENT-external legacy feature extractor
components and their interaction with the DILIGENT architecture.

Related Non-Functional Requirements
The feature extraction functionality in DILIGENT depends on (1) the existence, (2) license-
free availability of legacy feature extractors which are present as (3) small components that
(4) can be wrapped and controlled from external software.

Test-bed Functional Specification Page 198 of 273

6.4.6 Image Feature Extraction, Text Feature Extraction
Description and Priority
The “Image Feature Extraction” and “Text Feature Extraction” Use-Cases model media-
specific feature extraction functionalities. They are specializations of the “Feature
Extraction” functionality for handling images and text. Beyond the “Feature Extraction”
functionality it provides mechanisms for image/text handling that are common in all specific
image/text feature extractors (e.g. image normalization, transformation into joint file
formats, common colour model, plain text extraction from other formats like MS Word, PDF,
HTML, etc.). Specific image/text feature extractors (like “Colour Histogram”, “Thesaurus
Generation”) are coupled via an extend-relationship and a generalize relationship). In other
words, they are more specific functionslities picked depending on the kind of invocation of
the “Image Feature Extraction” and “Text Feature Extraction” Use-Cases.

Requirements
These Use-Cases are responsible for feature extraction on all kind of image/text objects to
answer all content-based image/text retrieval requests.

Numbers
These functionalities will be invoked on the query image(s)/text(s) whenever a “Search X by
Image”/”Search X by Text”-style functionality is carried out.

Constraints and Assumptions
The actual usefulness of these functionalities for purposes stated in the ARTE requirements
document depends on (1) the coupled specific feature extractors and (2) precise similarity
measures, which must be provided by the user community.

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
See “Feature Extraction” Use-Case.

System Integration
The image/text feature extraction functionality is either invoked by the more general feature
extraction functionality which basically picks the right feature extractor based on the media
type or will directly by invoked by all “Search X by Image”/”Search X by Text” Use-Cases.

Testing Issues
See “Feature Extraction” Use-Case.

Related Non-Functional Requirements
See “Feature Extraction” Use-Case.

6.4.7 Audio Feature Extraction, Video Feature Extraction
The “Audio/Video Feature Extraction” Use-Cases have been introduced into our functional
specification as placeholders for future additions of (desirable) Use-Cases from the ARTE
requirements document.

6.4.8 Image Segmentation
Description and Priority
The “Image Segmentation” Use-Case has been introduced to reflect the user requirements
of the “Process Image” and “Resolve Image into Parts” requirements. Both are part of the
“Object Management” package and still present in our use-case diagram. They couple with

Test-bed Functional Specification Page 199 of 273

the “Image Segmentation” Use-Case via an include-relationship. The reason they are still to
be found in our diagram is twofold. On the one hand, this shall facilitate understanding our
revised diagram. On the other hand, the ARTE requirements document does not provide a
clear distinction between the “Process Image” and the “Resolve Image into Parts” Use-
Cases. We assume that “Process Image” is not restricted to image segmentation but
provides other image operations (and might, thus, be exploited by the “Image Feature
Extraction” Use-Case).

Requirements
See “Process Image” and “Resolve Image into Parts” Use-Cases.

Numbers
See “Process Image” and “Resolve Image into Parts” Use-Cases.

Constraints and Assumptions
See “Process Image” and “Resolve Image into Parts” Use-Cases.

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
See “Process Image” and “Resolve Image into Parts” Use-Cases.

System Integration
See “Process Image” and “Resolve Image into Parts” Use-Cases.

Use Stories
See “Process Image” and “Resolve Image into Parts” Use-Cases.

Testing Issues
See “Process Image” and “Resolve Image into Parts” Use-Cases.

Related Non-Functional Requirements
See “Process Image” and “Resolve Image into Parts” Use-Cases.

6.4.9 Colour Histogram, Colour Moments, Texture Features
Description and Priority
The “Colour Histogram”, “Colour Moments”, and “Texture Features” functionalities represent
low-level image feature extraction algorithms, which are coupled to the “Image Feature
Extraction” Use-Case via extends-relationships. That is, each may optionally belong to the
description of that Use-Case.

Functional Requirements
These Use-Cases accomplish the basic requirements for content-based image retrieval,
which matches images according to the overall colour distribution and texture properties.
Each image that is passed to any of those Use-Cases will be analysed and processed into a
high-dimensional vector of numeric features.

Numbers
See “Image Feature Extraction” Use-Case.

Constraints and Assumptions
See “Image Feature Extraction” Use-Case

UML Diagrams
See Figure 56: Feature Extraction.

Test-bed Functional Specification Page 200 of 273

Grid Exploitation
See “Image Feature Extraction” Use-Case

System Integration
See “Image Feature Extraction” Use-Case

Use Stories
See “Image Feature Extraction” Use-Case.

Testing Issues
See “Image Feature Extraction” Use-Case.

Related Non-Functional Requirements
See “Image Feature Extraction” Use-Case.

6.4.10 Localized Colour Histogram, Localized Colour Moments,
Localized Texture Features

Description and Priority
The “Localized Colour Histogram”, “Localized Colour Moments”, and “Localized Texture
Features” functionalities represent low-level image feature extraction algorithms, which are
coupled to the “Image Feature Extraction” Use-Case via extends-relationships. That is, each
may optionally belong to the description of that Use-Case. Besides, they refer to the non-
localized Use-Cases via include-relationships, which expresses that they apply the same
functionality on partitions (defined with a fixed grid) of the image.

Functional Requirements
These Use-Cases accomplish the basic requirements for content-based image retrieval,
which matches images according to the localized colour distribution and localized texture
properties. Each image that is passed to any of those Use-Cases will be analysed and
processed into a high-dimensional vector of numeric features. In contrast to the non-
localized feature extractors, image matching on a localized features takes some geometric
alignment information into account and, thus, exhibits better retrieval effectiveness.

Numbers
See “Image Feature Extraction” Use-Case.

Constraints and Assumptions
See “Image Feature Extraction” Use-Case

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
See “Image Feature Extraction” Use-Case

System Integration
See “Image Feature Extraction” Use-Case

Use Stories
See “Image Feature Extraction” Use-Case.

Testing Issues
See “Image Feature Extraction” Use-Case.

Test-bed Functional Specification Page 201 of 273

Related Non-Functional Requirements
See “Image Feature Extraction” Use-Case.

6.4.11 Face Detection
Description and Priority
The “Face Detection” Use-Case represents a medium-level feature extractor, which already
conducts a simple semantic analysis of the given image. That is, faces in front shots will be
detected. As the ARTE requirements does not state any mandatory Use-Case which takes
advantage of face detection, this Use-Case should just be labelled desirable.

Requirements
This Use-Case is useful for any image depicting human faces which is highly useful in
certain CBIR queries (potentially mixed with Boolean predicates on keywords), which seek
for a certain person in a given image set.

Numbers
See “Image Feature Extraction” Use-Case.

Constraints and Assumptions
See “Image Feature Extraction” Use-Case

UML Diagrams
See Figure 56: Feature Extraction.

Grid Exploitation
See “Image Feature Extraction” Use-Case

System Integration
See “Image Feature Extraction” Use-Case

Use Stories
At the DILIGENT Rome meeting a demonstration of the ISIS prototype was given which
included a complex similarity query searching for a certain person’s images when an
example image along with the person’s name were provided. By including face detection
into the query, images whose keywords match but that depict no person, could be
excluded.

Testing Issues
See “Image Feature Extraction” Use-Case.

Related Non-Functional Requirements
See “Image Feature Extraction” Use-Case.

6.5 Personalization
Personalization refers to the ability of the system to export a behaviour that matches the
personal needs and preferences of a user, i.e. virtually different for each and every user
that accesses its functionality.
Usually, personalization is handled using profiles, i.e. “records” that contain information
useful for adapting the system behaviour on a per-user basis. These profiles can be created
and maintained by various means, usually on user / group actions, and are consumed when
behaviour is to be exposed to the user.
Adaptation might refer to various topics:

Test-bed Functional Specification Page 202 of 273

• Conformance to the capabilities of the user client system (not always considered as
personalization),

• Presentation (layout, colours etc) based on user preferences,
• Functionality configured by explicit user preferences
• Implicit (usually slight) deviation from standard operation by monitoring user

activities
• Etc.

Topics that relate to personalization and fall in the DILIGENT scope are:
• Creation and maintenance of profiles

o Automated (intelligent)
o Manual

• Management of profiles
• Personalization of information retrieval
• Personalization of system interaction (presentation layer)
• Personal (and temporal) storage areas

Creation and maintenance of profiles for the DILIGENT will be manual, however the ability
for future extensions that will support automated intelligent profile creation and updating
will be there. On the other hand, the profiles will be available to be consumed by various
services, however the personalization of information retrieval through will be the main
objective of the DILIGENT platform.
Finally, although not part of the Index & Search group of services, personal (and temporal)
storage is a desired functionality in order to allow users to create owned placeholders for
Digital Objects.
Personalization of interaction falls in the application layer and is to be handled mostly by the
portal engine.

Test-bed Functional Specification Page 203 of 273

Figure 58: Personalization Management (use case diagram)

6.5.1 Profile Schema Management
This functionality gives access to the group of functionality that deal with the management
of the container of the personal data related to the user’s profile. Specifically, these
operations create, modify and apply the structure of the profile container. Issues such as
the way this information should be stored and exploited are the objects of this set of use
cases. So this group includes the following functionalities:

• Create Schema
• Delete Schema
• Read Schema
• Modify Schema

Constraints and Assumptions
The service relies on storage services provided by the substrate. Each schema will represent
the personal individuality of the system being configured under it and for simplicity it will
most probably applied that an instantiation of DILIGENT as a VDL will be ruled by a single
schema. In addition to that, simple transformations of schemas will be supported such as to
add/delete fields or add/drop behaviour monitoring data tables etc
Regulations for managing and accessing personal data should be fully respected and
supported by this functionality.

Test-bed Functional Specification Page 204 of 273

Use Stories
Only a high privileged user should be able to manipulate the schema of the data container.
This means that only an “administrator” can trigger these actions. When the creation
operation is triggered the system takes over to create a new schema, based on supplied
parameters and after that it is ready to store data and metadata regarding the user’s
personal preferences.
When the modification operation is executed, the system changes the structure of the data
container and when the “delete” operation is takes place the system saves the changes of
the modified schemas.
The “read” operation is performed when the personalisation service accesses the user
profiles for accessing stored information, on behalf of the user. Another potential user of the
read operation is the Annotation Service. This might lead the search service to limit search
in DL personal sub-domains by adding specific keywords to the query.

Grid Exploitation
Managing user’s data has no significant needs for grid technology, other than the provided
by the underlying storage service. Through these lower DLL services, the personalisation
service will exploit transparent distributed replicated storage provided by the Grid substrate.

Related non-functional requirements
Underlying storage of user profiles exploits distributed storage management.
This service and the structures it manages should guarantee that personal data will be
handled with respect to the laws and rules for safeguarding relevant regulations (privacy,
security etc).

Testing Issues
There are currently no special suggestions for service specific testing.

6.5.2 Create Schema
Description
Creates the schema (e.g. fields, options etc) of the profiles to be used throughout a VDL18.
The creation of the schema is an important process that must be executed in order to
create a new schema for a specific user. Creation takes place when a well-authorized user
(mainly the administrator) decides that some information plays a significant role in the
process of characterizing a user and wants to take into account this information in this
specific process.

Priority
This functionality is important for the administration of the personal data container and the
provision of the Personalization Service. However it could be replaced by the provision of
fixed profiles, which renders it as “conditional” in the context of Personalization.
The overall functionality is optional for the DILIGENT scope, due to the “optional” nature of
personalization.

Requirements
• Support for custom user profiles.
• Respect regulations for personal information management.

18 Multiple profiles will be considered at design stage.

Test-bed Functional Specification Page 205 of 273

Numbers
Only the administrators of the VDL are the ones to access this operation, which is to be
infrequently used.

System Integration
This functionality is to be provided as part of the Personalisation Service of the Index &
Search group of Services.
It accesses functionality provided by Storage and Metadata group of services (mainly
related to Object Management) in order to handle its data.

6.5.3 Delete Schema
Description
The second functionality of this group is “profile deletion”, which drops a schema of profiles.
Using this, one can delete a schema that is no longer needed. Normally used by DL
Administrator19.

Priority
This functionality should only exist if the “Create” functionality exists.
The overall functionality is optional for the DILIGENT scope, due to the “optional” nature of
personalization.

Requirements
• Support for custom user profiles.
• Respect regulations for personal information management.

Numbers
Only the administrators of the VDL are the ones to access this operation, which is to be
infrequently used.

System Integration
This functionality is to be provided as part of the Personalisation Service of the Index &
Search group of Services.
It accesses functionality provided by Storage and Metadata group of services (mainly
related to Object Management but Metadata management involvement can be considered
as well) in order to handle its data.

6.5.4 Read Schema
Description
This functionality is the one that reads schema. This is the one that is mainly exploited after
the creation of a DL. With this functionality the system (or the user) can read the
appropriate schema that needs so as to access the corresponding information stored in that
schema. Within the context of Profile Management, the “Modify” functionality exploits the
“Read”.

Priority
This functionality is important for the exploitation of the personal data container and the
provision of the Personalization Service. However it should only exist if the “create profile”
functionality is included in order to tackle with custom profile schemas.

19 Usefull if multiple profiles schemas are allowed on a single VDL.

Test-bed Functional Specification Page 206 of 273

The overall functionality is optional for the DILIGENT scope, due to the “optional” nature of
personalization.

Requirements
• Support for custom user profiles.
• Respect regulations for personal information management.

Numbers
All DILIGENT users do indirectly access the schema retrieval functionality since it has to be
consulted on every access to personalization data, in order to figure out the nature of the
user specific personalization information held in the system repositories.

System Integration
This functionality is to be provided as part of the Personalisation Service of the Index &
Search group of Services. It accesses functionality provided by Storage and Metadata group
of services (mainly related to Object Management) in order to handle its data.
It mostly provides its services to Search, and in particularly the “Personalize Query”
functionality in order to take any actions towards fulfilling a user’s request meeting his/hers
expectancies.
It is also being accessed by anyone who interested in managing a user profile, i.e. the
personalization facilities of the portal.

6.5.5 Modify Schema
Description
The last functionality refers to the modification of an already existing schema, in order to
better represent the new needs of the DL.
The modification of a profile schema is not just a sequence of read -> delete -> create.
Actually a special operation of migrating user profile contents to the new schema must be
applied. However in the DILIGENT scope this migration facility is entirely optional and if
provided it will be kept to a minimal level.

Priority
The overall functionality level is “optional”.

Requirements
• Support for custom user profiles.
• Respect regulations for personal information management.

Numbers
Only the administrators of the VDL are the ones to access this operation, which is to be
infrequently used.

System Integration
This functionality is to be provided as part of the Personalisation Service of the Index &
Search group of Services. It accesses functionality provided by Storage and Metadata group
of services (mainly related to Object Management but Metadata management involvement
can be considered as well) in order to handle its data.

6.5.6 User Profile Management
The User Profile Management case is subdivided into the following main cases.

• Profile creation case, when a new user is being added to the DILIGENT platform.
• Deletion of an existing user.

Test-bed Functional Specification Page 207 of 273

• Modification/Update of a profile is allowed (instead of Drop and Recreate)
• Resetting of a profile (initial values)
• Accessing the personal information store contents, which will be the most popular

member of this set of functionality.

Requirements
Respect regulations for personal information management.

• Allow creation of user descriptions and subsequent management of it
• Allow tracking of user activities
• Support personal content stores
• Support personalised information retrieval
• Support personalised information presentation

Grid Exploitation
Managing user profiles has no significant needs for grid technology exploitation, other than
the facilities already provided by the underlying storage services. Exploitation of user
behavioural information or complex processing of profiles could be computationally
demanding however these aspects will not be handled within DILIGENT.

Constraints and Assumptions
The here presented case, assumes that the user has already registered with the DILIGENT
platform and that he has already been given a unique ID or some other kind of distinctive
name.
Through an authentication and authorization facilities the user has already gained access in
the system.
Additionally, there should be a storage resource to keep the personalized data. The process
of managing and storing the profiles should be considered with security issues and the need
to protect any sensitive data. These mechanisms already exist and should be exploited
accordingly.
This use cases assume the existence of a profile schema management mechanism.

UML Diagrams
The functionalities are included in the general personalization service diagram (Figure 58:
Personalization Management).

Use Stories
The invocation of the functionality related to profile management is triggered either by the
administrator or the system itself. When a new user interacts with the system, a request for
a new profile should be implied if the system policy permits the user to access the DL. In
contrast only an explicit request for a deletion should result in the actual deletion of a user
profile. The addition request could be served by an automated procedure or it could wait
the administrator to take action. On the other hand the invocation of the deletion service is
triggered either by the administrator or the user himself.
Read invocation is to be performed by various actors: Query Personalisation, Results
Presentation, Personal Virtual Collection Management (optional?) etc
End users will mainly trigger modification of their profile, since it is expected that they will
be able to interact with their profiles through application provided user interface in which
they can determine their personal needs. Any user has full control over his profile so he can
invoke any of the previous operations. In addition to that, system will (optionally) invoke
the service to store data concerning user’s behaviour (submitted queries, preferred results
etc)

Test-bed Functional Specification Page 208 of 273

Testing Issues
There are currently no special suggestions for service specific testing.

Related non-functional requirements
Underlying storage of user profiles exploits distributed storage management.
This service and the structures it manages should guarantee that personal data will be
handled with respect to the laws and rules for safeguarding relevant regulations (privacy,
security etc).

6.5.7 Create Profile
Description
This functionality relates to the creation of a profile container, when a new user is being
added to the DILIGENT platform instance.
After the invocation of this “creation” case, the system is enabled to monitor and process
information regarding the personal preferences of that specific user. Apparently, this
operation requires high privileges in order to take place. This means that only the
administrator can trigger it.

Priority
The priority of the whole User Profile Management case is “conditional” within the DILIGENT
platform. Within the “Personalization” scope, this use case is of “essential” level, which
reflects the importance of tracking user needs and replying to user queries with information
that is regarded as the most interesting to him.

Numbers
DILIGENT administrators might be able to use this functionality however it is expected that
it will be infrequently used.

System Integration
This functionality is part of the Personalisation Service of the Index & Search group.
Currently it is a standalone functionality related to user management. It accesses
functionality provided by Storage and Metadata group of services (mainly related to
Metadata management) in order to handle its data. However at design stage the case of
directly using Object Management functionality will be considered.

6.5.8 Delete Profile
Description
This functionality relates to the deletion of a profile container, when a new user is being
dropped from a DILIGENT platform instance.
Regarding the “deletion” case, apart from the user he, only the administrator has the
authority to invoke it. When the operation is executed the specific personalized information
for this user no longer exists in the DILIGENT platform.

Priority
The priority of the whole User Profile Management case is “conditional” within the DILIGENT
platform. Within the “Personalization” scope, this use case is of “conditional” level, which
reflects the relevant need of cleanup.

Numbers
All DILIGENT users (especially administrators) might be able to use this functionality
however it is expected that it will be infrequently used.

Test-bed Functional Specification Page 209 of 273

System Integration
This functionality is part of the Personalisation Service of the Index & Search group.
Currently it is a standalone functionality related to user management. It accesses
functionality provided by Storage and Metadata group of services (mainly related to
Metadata management) in order to handle its data. At design stage the case of directly
using Object Management functionality will be considered.

6.5.9 Update Profile Contents
Description
In the updating / modifying case, information of the user’s personal preferences should be
gathered. This can be achieved through a process that could involve interaction with the
user (e.g. filling in a form). Inside the scope of this the user is able to create filters that
reflect own preferences. This includes preferences regarding ranking, searching categories
etc. An alternative or additional means to do this is to passively monitor user’s activities
inside the system. Both of these are application-domain specific cases.
Apart from “general” descriptions and preferences, a user’s profile might be capable of
storing activity information, which could be exploited by an advanced Query Personalisation
component. Storing such information will be optionally triggered by the system as a result
to a user query submission or result-ser management. However these options will probably
not be implemented as part of the DILIGENT personalisation related functionality.

Priority
The priority of the User Profile Management case is “conditional” within the DILIGENT
platform. Within the “Personalization” scope, this case is of “essential” level, which reflect
the importance of tracking user needs and replying to user queries with information that is
regarded as the most interesting to him.
Storing user activity information is ranked as optional within the DILIGENT scope.

Numbers
All DILIGENT users might be able to use this functionality however it is expected that it will
be infrequently used.

System Integration
This functionality is part of the Personalisation Service of the Index & Search group.
Currently it is a standalone functionality related to user management and specific parts of
the application layer. It accesses functionality provided by Storage and Metadata group of
services (mainly related to Metadata management) in order to handle its data. At design
stage the case of directly using Object Management functionality will be considered.

6.5.10 Reset Profile
Description
Through the resetting use case, the entire data of the specific user are set to default values
that correspond to a neutral profile. The need for this could arise in extreme cases such as
system failure or data loss.

Numbers
All DILIGENT users might be able to use this functionality however it is expected that it will
be infrequently used.

System Integration
This functionality is part of the Personalisation Service of the Index & Search group.
Currently it is a standalone functionality related to user management. It accesses

Test-bed Functional Specification Page 210 of 273

functionality provided by Storage and Metadata group of services (mainly related to
Metadata management) in order to handle its data. However at design stage the case of
directly using Object Management functionality will be considered.

6.5.11 Read Profile Contents
Description
Accessing the personal information store contents, which will be the most popular member
of this set of functionality.
As already stated, optionally the service might be designed to be capable of storing user
behaviour information, however accessing and using such information in a sophisticated
manner will not be applied within DILIGENT. This specific area is highly active in modern
research in Information Systems however DILIGENT application scenarios did not show
need for such advanced facilities.

Priority
The priority of the User Profile Management case is “conditional” within the DILIGENT
platform. Within the “Personalization” scope this case is of “essential” level, which reflect
the importance of tracking user needs and replying to user queries with information that is
regarded as the most interesting to him.
Processing this information through Computational Intelligence algorithms is optional and is
not being handled as part of the personalisation service.

Numbers
All DILIGENT users will indirectly access the profile retrieval functionality since it has to be
consulted on every access to personalization data.

System Integration
This functionality is part of the Personalisation Service of the Index & Search group. It is
being used by the application domain components (e.g. the portal engine, specific portlets
etc) and the query personalization component that needs this information to personalize the
search procedure. It accesses functionality provided by Storage and Metadata group of
services (mainly related to Metadata management) in order to handle its data. However at
design stage the case of directly using Object Management functionality will be considered.

6.6 Search
The “search” functionality is one of the most fundamental for a Digital Library Management
system and it is the main “front” end of the DLL layer to the application layer, along with
the content-related group of services.
Many different use-cases refer to the search functionality for different types of search.
However it is our intention to create an extendible open yet “all-in-one” search engine that
will uniformly cover all types of searches, be it for content or resources, similarity based,
field matching based, etc.
Under this perspective the functionality to be supplied is a single one, the “Search”.

6.6.1 Functionality Breakdown
Despite this, the Search functionality is a single function consumed by various system
components and the end users (mainly through the portal), when seen under different
perspectives one can define the a set “partial functionalities”. These will not be further
analyzed here, and for maintaining compatibility with the rest of the document they will be
presented in a formal way in the next section.

Test-bed Functional Specification Page 211 of 273

6.6.1.1 Search for Documents Using Criteria
This is the case when a user wants to locate a document using typical criteria. This is a
typical case of structured or semi-structured (depending on XML schema) search. These
criteria depend on the metadata supported by the VDL setup in question and typically could
include:

• Creation date
• Author
• Type of content
• Classification items
• Quality attributes
• Etc.

The system will provide typical logical operators for handling the content.
This type of search is mandatory for the system.

6.6.1.2 Search for Documents Using Textual Description
This is the case when the user wants to locate a usually text-containing document by
supplying some words that he/she expects to be located in the document. This is a typical
unstructured type of search usually found under the term of “full text search”, however the
specific approach to be implemented may vary significantly with regards to features.
This type of search could be possibly combined with the structured criteria-based search.

6.6.1.3 Search for Similar Documents
Another use case includes the search for similar documents when one or more prototypes
are being supplied. Search by similarity is yet another type of unstructured search, where a
set of documents are being processed and then the values of specific attributes are being
combined to form a matching index usually in a slightly more arbitrary manner than in the
full text search case.

6.6.1.4 Search for Archives by Content
This case refers to the ability to search for archives that contain documents that match a set
of supplied documents. In the most cases this is a highly unstructured type of search and is
based on supply of documents (e.g. images) and the already described search by similarity.
An altermnative structured search for Archives is handled in the section for “Search for
Resources / Objects”.

6.6.1.5 Search for Documents referring to Geographical Area
The search for data using geographical information is a quite complex use case to deal with.
Typically it could be refined to be a simple criteria-based structured form of search, by
obtaining a set of coordinates and performing a set of comparisons based on geometrical
operators. This would clearly be the case of a Geographical Information Management
System and such functionality could be integrated to DILIGENT. However users are not
expected to provide generally geocoded information to the system. Nor can the system deal
with geocoding arbitrary information, because this would be a far-beyond-scope feature
extraction topic. So spatial search will be handled as a mixture of full text search, when
referring to geographical areas by name, and pure spatial search. Other woprkarounds
could possible be defined in a per-application-case fashion.

Test-bed Functional Specification Page 212 of 273

6.6.1.6 Search for Resource / VDL Object
Both end users and the system require to be supplied the facility have an internal search
capability, in order to locate items in use. It is expected that this will be a solely structured
criteria-based search, to be performed on object / resource metadata. Typical searches to
be performed are:

• Users
• Supported Services
• Computing Elements
• Storage Elements
• Archives
• Etc

6.6.2 Search Functional Definition
Description
The role of the Search functionality is to process a user provided query and provide back
adequate information to locate and describe the Digital Library Objects that meet the user
query constraints. The functionality described here offers an aggregation of all search
capabilities tracked by the user requirements documents as well as the experience of the
DILIGENT platform architects.
By the term Digital Library Objects we intend to avoid limiting search to Documents hosted
or tracked by the Digital Library Management System (i.e. DILIGENT). Search can be
performed on Users, Services and other types of resources using many of the facilities
provided in typical search for documents.
This broadening of vision, allows search to be exploited by many more use cases other than
the expected portal search portlet.
On the other hand many different types of search are being supported. Due to lack of fully
satisfactory terms we will introduce the terms below, which might be revised at later stages
of the project:

• Semi-Structured Search, deals with search on matching semi-structured data. A
typical type of search that fits this category is search in XML based on xpath and
other relevant technologies.

o Fully structured search (or simple structured search) is a sub-category of
semi-structured search and is based on field matching via typical comparison
and containment operators.

 Spatial search is a sub-category of structured search20, which offers
operators to calculate overlapping of geometrical shapes.

• Unstructured search, which is usually based on the calculation of an index that
indicates the degree which two different samples of documents match one
another21.

o Similarity search is the most common type of search to be performed under
this category. “Similarity search” is usually22 a “two-step” procedure, which
invokes the feature-based search after a feature extraction performed on a
supplied prototype (or a set of them).

20 Spatial search can be build under the Semi-structured search, however for the DILIGENT platform,
spatial search will be based on well-defined information matching.
21 Spatial search can be also built under this concept, however this falls out of DILIGENT scope.
22 Based on the DILIGENT use cases and existing technologies.

Test-bed Functional Specification Page 213 of 273

 Full-text search is a rather well defined class of similarity search.
However full-text search can greatly benefit from structured data
existence, under proprietary implementations.

At this point we have to clarify that
• The various types of search are usually not mutually exclusive.
• The unstructured search algorithms can make use of structured data existence23.

Search has to meet user expectancies in terms of quality and performance. User
requirements showed that users expect to submit a query that might be evaluated over
various collections of digital content and provide back the results with minimal delay, clearly
proposing the most suitable ones either by estimation or by user provided rules. Additionally
users expect that they will receive the best suiting content with minimal search parameter
submission, sometimes through searching quite heterogeneous data sources, in terms of
content and structure.
It is also clear that the search facility has to be quite extendible in terms of services and
facilities it consumes. The diversity of applications to be potentially supported by an open
Virtual Library Management System inserts the requirement that many parts of the search
facility are open to extension / customization, in order to meet each application-domain-
specific need. A typical example is that an image content managing VDL should provide rich
functionality to process images while one dealing with Sound or Video objects should
present different capabilities.
Apart from the above, background knowledge on query processing, especially in a complex
dynamic environment such as the one to support DILIGENT, indicates that extreme mis-
utilization of resources might occur if not careful planning precedes the actual query
processing.
Although the “search service” offers just one end-user accessible entry point (“function”),
the “Search” it is internally broken down into many more components24. This approach is
roughly presented in bullets bellow, which reflects the internally needed functionality:

• Query parsing: Get the structured query and analyse its syntax and operators and
internally represent it in a machine friendly form. This form is most likely to be a
tree-like structure expressed in XML (quad query).

• Broker L1, is a front-end broker to select the search engine which is to carry out the
search (optional). Design stage might show that search should not be 1st level
invoked service but rather a composite workflow hosted by the Process Management
Service (optional)

• Source Selection (L1), is a pre-selection of resources to be sought by a specific
search, based on query supplied constraints, which might be an output of
personalization or user actions. It is clear that this is not based on the intelligent
facilities provided by CSDS service.

• Content Source Selection (L2): Interface with the Content Selection Service to select
the appropriate system to receive the query. Content sources might be collections or
external DLMSes (optional facility).

• DLMS Adapters: transform the quad query to the actual language understood by a
specific DLMS, if query is submitted out of DILIGENT control space. (Functionality is
optional)

23 A most obvious case is the Full-text search which can make use of special tags that denote
information such as title, author, subject etc
24 Not all components are related to functionality thus some of them are not being presented to the
diagrams included in this functionality.

Test-bed Functional Specification Page 214 of 273

• Query Optimiser: process query and provide and optimised execution plan based on:
operators and search space properties, resource state (optional), data collection
attributes and volumetrics, system configuration, QoS constraints (optional) etc. This
facility is complementary to the Process Optimisation however it bases its operation
on different classes of information.

• Broker L2: Submit the work to actual DILIGENT execution services i.e. Process
Management Service (functionality of brokering is optional at this level).

• Executive: carry out the details of search, i.e. index reads, ranking, invocation of
feature extraction and transformation components etc, indirectly invoked by the
Process Management Services as part of the Query Process Workflow. This group of
functionality (Execute) is

• Result formulator: prepare output and return it to end-user via a standard protocol.
Extra metadata might be added to the resultset in order to be reused for further
processing.

• Linguistics & Semantics Processing: refers to a group of facilities that deal with
normalization of text queries and semantics base search. This use case bases its
functionality on support provided by underlying metadata layer services and
ontologies25 (or taxonomies). The facility is optional to the DILIGENT platform, and it
is likely that it will mostly left blank. However placeholder for such class of
processing will be supplied26.

Priority
Search it is one of the two most important DL functions. The other one is the digital object
storage management.
This justifies that the priority of the Search functionality is considered of “essential” level
within the whole DILIGENT Platform. However some of the internal facilities to be proposed
or provided have lower ranking that might reach even level “optional”.

Requirements
The Search service is the front-end of the DILIGENT platform to the end user application.
Its functionality is directly derived from user requirements. However not both user scenarios
posed the same requirements on the service operation. Aggregating both of them gives out
a list of requirements enumerated below:

• Provide results sorted by specific fields of the referenced digital object (sorting)
• Multiple search capabilities (see Description section)
• Reasonably performing ranking function.
• Provide content description information back to end-user
• Support complex content processing
• Utilise provided and generated digital object features to perform search.

Numbers
Being one of the two most important DL functions, the search functionality is likely to be
accessed by each and every user accessing the DILIGENT.
Additionally the cardinality of the operation implementation instances in the DILIGENT
platform is 1-n. Absence of the operation leaves the DL almost unusable.

25 If these components are implemented in the DILIGENT scope, these structures will be manually
populated.
26 The “parsing” hosted placeholder is an obvious junction point, however exploitation of this facility
during “Matching” is also expected.

Test-bed Functional Specification Page 215 of 273

Constraints and Assumptions
Search will build on top of a series of facilities of the DLL and underlying layers. The
facilities have to provide enough support for the service to execute. For example, lack of a
process management component would render the actual execution of a Search Query
Workflow impossible.
A basic assumption however is that an extendible structured query language (not to be
confused with SQL) will be adopted. This does not need to be user friendly. An XML-related
“protocol” will most probably become the basis of the language.
On this presentation we assume that the plugging of components, and content sources are
not part of a hypothetical Search Administration facility. Under this point of view this is non-
existent. They are rather implemented as part of the lower Resources and VOs Management
packages.
Another assumption is that Personalisation Service is not integrated to the search; rather it
acts on its own. This opens a wider range of capabilities to link to external sources. The
“injection” of personalisation information is done prior to the actual search, by adding terms
to the end user query, an operation performed by the application domain specific
application. However a different approach could also be as valid as this one.
In order for a successful search to be performed, the system should exploit and cope with:

• Information related to configuration, resources availability and capabilities etc
(Operations supported, ranking approach, operators, resource existence, capabilities
and utilisation, content sources etc)

• Indices and relevant facilities
• Digital object management
• Invocation of processing components addressed by the query.
• etc

Additionally a standard (probably XML/SOAP based) must be adopted to return result sets to
end-user.

Test-bed Functional Specification Page 216 of 273

UML Diagrams

Figure 59: Overall Search Use Case

In Figure 59, we present the overall functionality and logical organization of the search
engine and its connection to various external services. On this diagram the dark boxes
represent blocks of functionality that will have the responsibility of creating resultsets that
will ultimately form the outcome of the operation.
The sub-functionality of Query Optimisation, which is part of the Process Optimisation, is
depicted in Figure 69: Optimize Process Use Case.

Grid Exploitation
The search function processing and storage requirements mainly depend on the complexity
and size of the supplied query and underlying Digital Content collections. Other factors
include the complexity of operators and the availability of resources etc
Both storage and computing power supplied by the Grid are most likely to be well exploited
under the DILIGENT platform search operation.
Finally, the optimisation component will be aware of resources and state by consuming Grid
supplied information services through DILIGENT CL Services.

System Integration
Search functionality mainly belongs to the Index and Search group of services, however
being one of the top layers of the DILIGENT platform, heavily depends on and influences
logically lower level services. Under this observation use cases of search include many
references to external components:

• Accesses metadata through functionality provided by the Metadata Management.
• Accesses digital objects through functionality provided by Object Management .
• Consumes taxonomies provided by the Metadata Management services.
• Processes documents through the Feature Extraction services.

Test-bed Functional Specification Page 217 of 273

• Merges resultsets through the Data Fusion components.
• Runs search under the Compound Services functionality (Run CS).
• Locates documents using the index services.
• Selects content sources through CSDS service.
• Personalizes queries and results through the Personalization service
• Retrieves information on system capabilities, configuration and state using DILIGENT

collective layer based information sources, via Metadata Management.
Search is consumed by:

• End user through a portal or any other non-DILIGENT provided front end in order to
retrieve a list of DL hosted objects.

• Other system services in order to locate items (objects / resources) managed by the
DILIGENT platform for internal use.

Use Stories
The main case of invocation of the search functionality is directly triggered by end-user
actions. However, alternatively the service could be triggered by external systems that
query a DILIGENT hosted Digital Library for content.
The functionality of Search is consumed through an application domain specific query
submission front-end. In the DILIGENT project case, the corresponding portals will provide
this. Nevertheless, expert users or other systems will be able to access the search facility
directly submitting queries using the DILIGENT structured query language, which is most
likely to be one of the well known “standard” query languages, adapted or extended with
facilities to capture the DILIGENT set of operators and requirements.
The service receives an end-user query, pre-processes it, selects the content sources that
are most suitable for fulfilling user expectancies and retrieves their contents based on a
workflow of operation which might range from simple selection to highly sophisticated
Computational Intelligence related processing.

Testing Issues
The overall performance of search facility must be tested and evaluated in terms of

• Quality, i.e. the distance of the provided search outcome when compared to a
hypothetical best matching result set.

• Efficiency, i.e. resource utilisation by the service itself compared to a hypothetical
optimal one

• Correctness, i.e. safeguarding the semantics of the supplied search.
Especially in non exact-match functionality, the degree of matching the end-user
expectancies (ranking) must be tested and evaluated.

Related non-functional requirements
High priority non-functional requirements include:

• Efficient resource utilisation
• Fast response
• Utilise dynamically linked content processing components such as feature extraction

components and transformations.
• Adoption of a “standard” query language to submit queries, extended as appropriate

to cover DILIGENT and DLMS specific needs.
Second priority level requirements (Wishes) include

• Dynamic exploitation of existing resource information.

Test-bed Functional Specification Page 218 of 273

• Support of highly interactive application scenarios (minimal response time over a
complex dynamic environment)

6.6.3 Query Personalization
Description
Query Personalisation is the action of injecting information in the query in order to provide
end-user with personalised results. Actually this functionality is the main “user” of personal
profile. Its operation consists of processing a quad query prior to submitting it to execution.
In an advanced form the component to provide the functionality understands specific terms
of the query and injects more filter or ranking criteria or adds “hints” and formatting
information. The rest of the procedure will be carried out by the remaining search
components. A more highly advanced personalisation service could also operate on lower
levels in higher detail however this would have a significant added value for the DILIGENT
platform.
A side effect of the functionality would be the addition of a record to a log of user submitted
queries containing the query or a summary of it.

Priority
This service is ranked as “conditional” in the DILIGENT context.
However the priority of the service is “essential” within the overall personalization service.
Lack of it leads to failure to personalise the search however personalisation can be still
applied to other aspects of the system, such as personal collections, presentation
preferences etc.

Requirements
Respect regulations for personal information management.

• Support personalised information retrieval
• Support personalised information presentation

Numbers
All DILIGENT users will indirectly access the query personalization functionality since it has
to be consulted on every search to personalization data. Administrators will access the rest
of the functionality.

Constraints and Assumptions
This functionality assumes the existence of user profile management mechanism.
Query language syntax should provide sufficient means to receive personalization
information.
Service exposes vulnerabilities to “personal data”.

UML Diagrams
The functionality is included in the general personalization service diagram (Figure 58:
Personalization Management).

Test-bed Functional Specification Page 219 of 273

Figure 60: Query personalization (sequence diagram)

Grid Exploitation
Personalizing a query does not expose significant grid exploitation needs.

System Integration
This functionality is part of the Personalisation Service of the Index & Search group

Use Stories
The invocation of this functionality is triggered just before the query processing. Actually the
user profile could also be attached to the query for future processing by enhanced
personalisation components; however the initial personalisation implementation will not
handle that.

Testing Issues
There is a need to validate the query semantics preservation after the “personalization”
facility.
Additionally the overheads that are introduced by personalization and the benefits are to be
evaluated.

Related non-functional requirements
• Avoid overloading system-processing requirements due to personalisation

information.
• Preserve query semantics.

Test-bed Functional Specification Page 220 of 273

7 PROCESS MANAGEMENT

This section provides the functional specification of the process management-related
services (process design & verification, process execution & reliability, and process
optimization) as part of WP1.5 (“Process Management”).

7.1 CS Management
Based on the ARTE and ImpECt user requirements documents, the following section
summarizes the functional specification for the management of compound services. As can
be seen from Figure 1, giving an overview of all use cases described in this section, the use
cases are grouped in four packages “Process Design & Verification”, “Optimization”,
“Process Execution & Reliability” and “Resource Management”. The first three packages are
described in detail within this section, whereas the details of the latter, Resource
Management, contains use cases which the others interact with, but which are not part of
process management.
There are three actors, “DL User”, “DILIGENT Administrator” and “DILIGENT” Service that
have to be distinguished in interaction with the described use cases. Two types of
compound services exist. First, there are “User CS” which can be designed and run by any
user of the DL having sufficient rights assigned. Second, there is a set of compound services
the overall system of DILIGENT relies on and which are triggered by the system itself, i.e.
DILIGENT services, and which can only be managed by a DILIGENT administrator.

Figure 61: CS Management (use case diagram)

Test-bed Functional Specification Page 221 of 273

7.1.1 Manage CS
Description and priority
 “Manage CS” is the most important use case, since all the other use cases can be seen as a
special case of it. In particular, it comprises both the necessary services for designing and
verifying processes (the terms ’compound service’ and ‘process’ can be considered as
synonyms; in order to be compliant with the DILIGENT DoW, we will use the term process
in the following) and also for executing processes in a reliable way.
Due to the abovementioned characteristics, this use case is very important since it includes
all services needed for process design & verification and also for process execution &
reliability.

User Requirements Fulfilled
This functionality fulfils the ImpECt_ucd08 ‘CSs Management’ UC.

Numbers
This use case is invoked several times per month (according to the requirement document).
Actually, since it comprises core functionality for the definition and especially for the
management/execution of compound services, the service has to be designed and
implemented in a way that it provides a very high degree of scalability.
Process design and verification services can be performed in online (i.e., interactive) mode
only, process execution should allow both interactive and batch mode.

Constraints and Assumptions
The process workflow includes: user interaction, interaction to the authentication
component/service, service selection (based on user input preferences). This means that
appropriate service management and access to existing services is required (both in terms
of process design and execution).
It assumes that there exists a DILIGENT portal that permits the operations described above.
Moreover, there must exist an Information Service that extracts the currently existing
information about the available nodes, their configuration and their current load. Thus, the
execution of a certain process should be performed based on this information. A Broker
Service (as requested in the functional specification document for work package 1.2) to
implement matchmaking algorithms between service requirements and nodes availability
and resources is also required. These two functionalities are particularly useful for our “Run
CS” use case.

UML Diagrams
See Figure 61: CS Management.

Grid Exploitation
Management of compound services / processes is essential in a grid environment. Especially
in terms of process execution, a core feature is efficient resource consumption, i.e., to
invoke a (basic) service at a provider that has sufficient resources or that is less loaded
compared to other providers of the same service. Therefore, tight interaction with load
balancing support and dynamic service selection capabilities of the underlying grid
environment are crucial.

Mapping between functionalities and DILIGENT services (system integration)
Some operations of this use case are part of the Process Design and Verification Service and
of the Process Execution & Reliability Service (details see below).

Test-bed Functional Specification Page 222 of 273

Use Stories
The detailed use stories will be given in the specification of the sub-cases of CS
Management (details see below).

Testing issues
The detailed testing issues will be described in the specification of the sub-cases of CS
Management (details see below).

Related non functional requirement
All process-related services need to be realized in a way that they provide a very high
degree of reliability. This is particularly true for process execution and reliability. However,
also process design and verification is affected, since alternative execution and failure
handling strategies have to be addressed already at process build time (definition of
compound services).

7.1.2 Design CS
Description and Priority
This use case is responsible for identifying the appropriate services and building a
compound service that includes these services. Configuration and compatibility checks must
be possible. On-the-fly validation of the newly designed compound service is required.
Two situations can arise: the user can manually select from the list of available services or
the services that will form the compound service are the output of a query (in which case
the user has to specify input data, functionality, desired output etc.).
Once a compound service is designed, it can be saved/referenced for later use (see “Update
CS”). Besides defining and configuring the compound service, the user is able to specify the
results to be saved (log files, output, intermediate files) and also environment requirements.

Requirements
The “Design CS” use case has been introduced by the ImpECt requirements document as a
component part of the “Compound Service Management” use case. Note that this use case
also comprises the functionality of the “Create CS” use case given in the ImpECt
requirements document; the decision to merge them was taken because their functionality
does not seem to justify the existence of two separate use cases (where “Create CS” would
include “Design CS”).

Numbers
This use case is invoked several times per month (according to the requirement document).

Constraints and Assumptions
Although the described functionality does not require an Authorized User to design a
compound service, it may be desired that access is not granted to any user to browse and
select from any list of available services.
The requirements document defines the “Design CS” use case result as the creation of a
new compound service by the selection of some of the available services. Although it may
be desirable that the configuration and definition of an already designed compound service
is stored for later use, one should have in mind the case when one or more of the services
involved is no longer available and implement proper failure handling mechanisms.
Since on the fly validation is required by the ImpECt scenario, we also introduce the
“Validate CS” functionality. This functionality is described in the “Validate CS” use case
At design time, a set of sharing rules should be established, concerning who can use the
process, under what conditions and so on.

Test-bed Functional Specification Page 223 of 273

UML Diagrams

Figure 62: Design CS (activity diagram)

Figure 63: Design CS (sequence diagram)

Grid Exploitation
Usage scenarios of the “Design CS” scenarios may occur in online (i.e. interactive) use only.
There is no need for data intensive or computer intensive tasks, but real-time performance
is desired. Since the service selection relies on search functionalities (browsing a list of
already available services), depending on the implementation of the latter, and on where
the information about the desired type of services is stored, task parallelization may also be
desirable.

Test-bed Functional Specification Page 224 of 273

System Integration
This operation is part of the Process Design and Verification Service.

Use Stories
One possible use story for this use case is the graphical modeling tool of the ETH-UMIT
hyperdatabase prototype (OSIRIS), called O’Grape, for easy composition of web services
and/or grid services into processes. The so-called whiteboard of the current process
contains the global variables of a process instance. During process execution, the
whiteboard of a process instance is first filled with the process arguments. The activities of
the process, i.e., service invocations are drawn as nodes in a process graph. For each
activity, the designer can choose among the list of services and processes known in OSIRIS.
A service invocation retrieves its input parameters from the whiteboard and maps output
parameters back to the whiteboard. Further, arcs between activities define the control flow
of a process.

Testing Issues
Testing of this service includes the usability of the graphical design and verification front-
end.

Related non-functional requirements
Security issues should be taken into account here, relating to which user is authorized to
invoke which service.

7.1.3 Create CS
Description and Priority
Once a compound service is designed, it can be saved/referenced for later use (see “Update
CS”). Besides defining and configuring the compound service (see “Design CS” use case),
the user is able to specify the results to be saved (log files, output, intermediate files) and
also environment requirements.

Requirements
The “Create CS” use case has been introduced by the ImpECt requirements document as a
component part of the “Compound Service Management” use case.

Numbers
See “Design CS” use case.

Constraints and Assumptions
See “Design CS” use case.

UML Diagrams
See “Design CS” use case.

Grid Exploitation
See “Design CS” use case.

System Integration
See “Design CS” use case. From the process management point of view, this functionality
does not differ from the “Design CS” use case.

Use Stories
See “Design CS” use case.

Testing Issues
See “Design CS” use case.

Test-bed Functional Specification Page 225 of 273

Related non-functional requirements
See “Design CS” use case.

7.1.4 Update CS
Description and Priority
This use case allows a user to modify an existing process, e.g., change its design, its
services, its input data or execution parameters like the OS in which it has to run.
The modified CS has to be verified using the “Validate CS” functionality before the changes
can be committed.

Requirements
The “Update CS” use case has been introduced by the ImpECt requirements document as a
component part of the “Compound Service Management” use case.

Numbers
See “Design CS” use case.

Constraints and Assumptions
See the “Design CS” use case for remarks regarding authentication and authorization. An
issue that has to be addressed additionally concerns the online modification of currently
running processes: one can expect that an on-the-fly modification is not possible if the CS is
being substantially modified; the process has to be stopped, the modification has to be
delayed or cancelled (in some cases, it may be possible to migrate a running process to the
new version).
Finally, if a CS is itself part of another CS, then it may not be modified in a way such that its
semantics change.

UML Diagrams
See “Design CS” use case.

Grid Exploitation
See “Design CS” use case.

System Integration
See “Design CS” use case.

Use Stories
See “Design CS” use case.

Testing Issues
Test cases will be similar to the tests for the “Design CS” use case. Additionally, modifying
running processes and modifying processes that are part of another CS will have to be
tested.

Related non-functional requirements
See “Design CS” use case.

7.1.5 Validate CS
Description and Priority
This use case provides validation functionality; it performs compatibility checks between the
services chosen to form a compound service. Validate CS cannot be derived directly from
the user scenarios but will provide core functionality for process design and verification

Test-bed Functional Specification Page 226 of 273

service since it allows to make sure that process specifications are inherently correct and
can be executed accordingly.

Requirements
See “Design CS” use case.

Numbers
This use case is invoked every time one of the “Design CS” or “Update CS” use cases is
executed; according to the numbers given in the requirement document for these use
cases, this is expected to be several times per month.

Constraints and Assumptions
For proper validation, compound services may not contain loops, and knowledge about the
side effects of all involved services is assumed. Whenever a CS produces side effects,
compensation strategies or alternative branches within the compound services have to be
present.

Grid Exploitation
See “Design CS” use case.

System Integration
This operation is part of the Process Design and Verification Service.

Use Stories
Validation is a mandatory part of each “Design CS” and “Update CS” operation. These
operations may only be committed if validation of the CS was successful.

Testing Issues
Testing of this component should focus on the correctness of the verification algorithms; the
assumptions mentioned in the “Update CS” use case also need special attention.

Related non-functional requirements
None.

7.1.6 Run CS
Description and Priority
The “Run CS” use case has been introduced by the ImpECt requirements document as a
component part of the “Compound Service Management” use case. It is responsible for
actually executing a compound service. Once the process is launched, it can be monitored
or aborted. The Run CS use case is the main use case for the Process Execution & Reliability
Service.

Numbers
This use case is invoked several times per month (according to the requirement document),
and it can be performed in either batch or online (i.e. interactive) mode.

Constraints and Assumptions
In this case the requirements document is specifying as a precondition to the use case
execution that the user is authorized to launch the compound service.
We also propose a scheduling functionality, for batch processing.
The “Run CS” component should first interact to an Information Service in order to obtain
information about the available nodes, their loads and system configurations. A Broker
Service is then matching from the list of available least loaded nodes those that satisfy the
requirements of the process to be run.

Test-bed Functional Specification Page 227 of 273

For a better process management, scheduling automatic runs of processes may be
implemented. For batch processing, some compound services may be scheduled to run
when the infrastructure is less used or not used at all. The input data and output data
format should be specified. Except for the case when online monitoring is desired (e.g., for
testing purposes), batch processing can be done at a time when the system is least loaded,
in order to optimize execution times. In addition to explicitly started processes by DILIGENT
users and batch processes, also automatic (system) processes have to be supported. These
automatic processes (designed by a DL administrator) have to be started automatically
whenever consistency within the DL has been violated and needs to be restored (e.g.,
when, in the case of replicated repositories, one repository is updated, the changes have to
be propagated to the replicated repositories; this propagation has to be transparent to
DILIGENT users).

UML Diagrams

Figure 64: Run CS (activity diagram)

Test-bed Functional Specification Page 228 of 273

Figure 65: Run CS (sequence diagram)

Grid Exploitation
Especially when the usage scenarios of the “Run CS” scenarios may occur in batch mode,
there is need for data intensive or computer intensive tasks. In some cases real-time
performance is also desired. Depending on the complexity of the compound service, its
throughput and/or execution costs, task parallelization may also be desirable. A major
aspect is that this service must be provided in a highly reliable way. Failures of service
providers have to be automatically resolved. For this purpose, three approaches (with
different semantics) exist: i) choose another service provider offering the same (or
semantically equivalent) service, ii) choose an alternative execution strategy (that has been
defined by using the process design and verification service), or iii) invoke the process
optimization service that will alter the overall process specification.

Use Stories
This service will be used by DILIGENT users that invoke a compound service (process). In
addition, it will be used in a batch mode (process is scheduled for execution, either by
system or by user request). Finally, processes might also be started automatically, due to
some events within DILIGENT.

Testing Issues
The Process Execution & Reliability service needs to be tested and evaluated in terms of:

• Reliability: can the different kinds of failures be handled correctly (given the correct
and verified specification of single processes). This can be tested by both simulating
a grid infrastructure and virtually disconnecting failed nodes that would be needed to
execute the compound service, or within a real world testbed.

• Efficiency: this includes the resource consumption of the service itself but also the
efficient resource consumption in the grid in terms of the services to be invoked
within a process

Test-bed Functional Specification Page 229 of 273

• Correctness: this includes the execution of a process according to its specification.

Related non-functional requirements
Security issues should be taken into account here, relating to which user is authorized to
launch which service. Most importantly, the reliable execution of processes is required. This
includes both failures of (basic) services in the grid (semantic failures, failures of service
providers) but also failures of the Process Execution & Reliability Service.
An evenly important issue is the reliability of the compound service execution. Due to the
nature of distributed environments, and especially in the scope of grid systems, the
availability of resources as well as the quality of service they can offer within a single point
in time is not predictable. Therefore, it is of high probability that services needed to
completely execute a compound service, especially in the case of long running services,
might be disconnected during runtime or fail in some other way. It would be undesirable in
this case that the execution is aborted or fails. The expected behaviour is rather that
execution is continued on other nodes in the grid if possible, or that it is, if reasonable in
the special scenario, hold until the needed resource is reconnected or a substitute can be
arranged.

7.1.7 Monitor CS
Description and Priority
This use case can be invoked for a service that is currently being executed. Although not
specified in the requirement document, online and offline monitoring should be possible. By
default, log files (audit logs) should be written to special folders in a predefined format.
These files should be available in order to perform statistical measurements and tests. For
the online monitoring requirements, the tools providing it should allow the monitoring of an
ongoing process (according to the requirements document). In terms of online monitoring,
different views are possible: i.) a process-centric view (how many instances of a process
currently exist, what is the state of these instances), ii.) an instance-centric view showing
details of one selected process instance, and iii.) a service-centric view showing how many
processes currently invoke a particular service.

Requirements
The “Monitor CS” use case has been introduced by the ImpECt requirements document as a
component part of the “Compound Service Management” use case.

Numbers
This use case is invoked several times per month (according to the requirement document),
and it can be performed in online, i.e. interactive mode (online monitoring) and in offline
mode (process analysis, process mining).

Constraints and Assumptions
In this case the requirements document is specifying also as a precondition to the use case
execution that the user is authorized to launch the monitor service.
Log files for offline statistical calculations should be available anyway.
In normal operation mode, the user should receive standard monitoring information, such
as the percentage of CPU use, estimated remaining time, which task is currently running,
output produced. It may be desirable that one can also choose to monitor a process in
expert mode, where extra information is prompted to the user. The distinction of normal
mode and expert mode is orthogonal to the three views described above.

Test-bed Functional Specification Page 230 of 273

UML Diagrams

Figure 66: Monitor CS (activity diagram)

Grid Exploitation
See “Run CS”.

Use Stories
The simplest justification for this use case would be that online monitoring allows the user
to perform simple statistics about the process that is currently running, check the remaining
execution time and, most important, monitor warning and error messages. Thus if a
problem should occur, the monitoring tool would offer a first hint to what went wrong. For
this monitoring tool, especially in the process-centric view and the instance-centric view, the
graphical process model (as it has been created by using the Process Design and
Verification Service), e.g., O’Grape, can be used.

Testing Issues
See “Run CS”

Related non-functional requirements
See “Run CS”

7.1.8 Abort CS
Description and Priority
This use case can only be invoked for a service that is currently being executed. Although
not specified explicitly in the requirement document, by abort here one means implicitly
both stopping the current process execution and interrupting the current process execution.

Requirements
The “Abort CS” use case has been introduced by the ImpECt requirements document as a
component part of the “Compound Service Management” use case.

Test-bed Functional Specification Page 231 of 273

Numbers
This use case is invoked several times per month (according to the requirements
document), and it can be performed in online (i.e. interactive) mode only.

Constraints and Assumptions
As mentioned in the “Monitor CS” use case, log files should be written during the process
execution, since the requirements document specifies that in case of process aborting, the
user should be prompted with a log file describing the processing activities done until the
abort. Depending on the process specification, the abort of a process might require certain
activities to undo the effects of the aborted process (according to the failure handling
strategies defined within the process).
Another functionality mentioned in the ImpECt requirements document for the “Abort CS”
use case, the possibility to evaluate intermediate results of a running process, will not be
catered for by this use case, but rather by the “Monitor CS” use case. Reasons are that the
“Monitor CS” is tailored to that specific functionality, and, more importantly, that any actions
taken by a process have to be undone (compensated for) on process abort – thus, a partial
execution of a process to gather only intermediate data is not possible.

UML Diagrams

Figure 67: Abort CS (activity diagram)

Use Stories
The abort of a process will be used by the DL users that have invoked a compound service
or by a DILIGENT administrator. In both cases, the effects of the process to be aborted
have to be considered by the Process Execution and Reliability service (these have to be
undone) such that the process abort does not leave any inconsistent states.

Test-bed Functional Specification Page 232 of 273

Testing Issues
This operation needs to be tested in terms of the correctness of process execution, i.e., no
intermediate data / side effects may survive the abort (they have to be undone during
process abort).

Related non-functional requirements
See “Run CS”

7.1.9 Remove CS
Description and Priority
As before, the user should be authorized to remove a compound service. The conditions
under which the compound services can be removed also have to be specified. The removal
of a compound service implies (according to the requirements document) that the log files
written during the execution of that process, and/or possible intermediate results have to
also be removed.

Requirements
The “Remove CS” use case has been introduced by the ImpECt requirements document as a
component part of the “Compound Service Management” use case.

Numbers
This use case is invoked several times per month (according to the requirements
document), and it can be performed in both batch and online (i.e. interactive) mode.

Constraints and Assumptions
We propose that the conditions under which the respective compound service can be
removed should be specified at creation time, since this is more a configuration issue rather
than input data. Removal of a service must not be available when this service is to be used
in currently running processes.
Since batch execution is also possible, we propose that automatic removal of a compound
service should be possible. One may schedule compound services that are no longer used to
be automatically removed.

Test-bed Functional Specification Page 233 of 273

UML Diagrams

Figure 68: Remove CS (activity diagram)

Grid Exploitation
See “Run CS”.

Use Stories
Removal of a service is used by a DILIGENT user (only the user who has defied a compound
service shall be able to remove this service) and by DILIGENT administrators. Prior to
removal, it has to be checked whether running processes uses this service.

Testing Issues
This operation needs to be tested in terms of the correctness, i.e., no user/administrator
must be able to remove a service when it is still in use. The same is true with the removal
of batch services.

Related non-functional requirements
See “Run CS”.

7.1.10 Optimize
Description and Priority
The Optimize use case is not being derived from any use case scenario. It is the only use
case of the Process Optimization Service and its sole purpose is to process a workflow of
operations and transform it in order to be carried out in an “optimal” manner.
The role of the Process Optimization Service is to process a workflow comprising service
invocation and provide a new modified workflow, which will be carried out in an optimal

Test-bed Functional Specification Page 234 of 273

way. Optimal is a term that cannot be defined in absolute terms (i.e. faster, cheaper, more
accurate etc). The abstract meaning of it is “at a minimal value of a cost estimation
function”.
Due to its nature, the process optimization service provides only one operation to its clients,
the Optimize.
The optimization process is very likely to produce sub-optimal results however this is well
acceptable in the current context.
Many of the aspects of the service need to be further discussed and defined within the
project since the area of optimizing a workflow of service invocations, in a dynamic
extremely complex environment such as the Grid is a very challenging area widely open to
research.
The cost estimation function is yet to be defined, however important metrics include
processor, network and storage utilization, overall execution time, financial cost, fault
tolerance etc.
Optimization will be performed on Direct Acyclic Graphs, which are quite adequate for a
large number of typical problems.
The service could be eliminated and the design could assume that end-users or other actors
(i.e. users & software) provide optimal workflows of operations to be passed to the actual
execution management service. Even “hand” made workflows will exploit some rough
optimization performed by end-users.
However, in the dynamic and complex environment of the Grid, this could potentially lead to
severe mis-utilisation of resources.
Taking into account that, the overall service priority is medium, since the system can carry
out its work if it is not present at all, even with significant cost.

Requirements
There is not end-user requirement that specifically instructs the inclusion of this
functionality. However the requested capability of composing workflows implies that these
are to be somehow executed in an efficient manner. So the Optimize Process functionality is
mostly derived by the experience of the system designers on similar cases.

Numbers
Currently there is no estimation on the “volumetrics” of the Optimize functionality. Although
it is a service that can be used by various DILIGENT components, it is expected that its
main usage will be to optimize workflows that are being manually created by end-users to
achieve some desired functionality. Examples are: a batch job on a Digital Library Collection,
or a batch feature extraction etc. Experience on workflows produced by other systems
shows that they could range from a simple 2-node graph to a 1000-node complex diagram.
However in our case diagrams are expected to be in the neighbourhood of 10 to 100 nodes.

Constraints and Assumptions
Invocation of the service is directly triggered by the process execution and reliability service
prior to executing a workflow. The invocation of the service is optional, i.e. the caller might
decide not to pass a workflow through optimization for various reasons, i.e. the user has
forced “no optimization” or the workflow has already been optimized etc
Service related preconditions include:

• Configuration (Cost estimation function configuration, operators etc)
• Information (i.e. resource existence, capabilities and utilization)
• Workflow (Cost X1)
• Workflow Cache

Test-bed Functional Specification Page 235 of 273

Service Post-condition include:
• Configuration (unmodified)
• Information (unmodified)
• Workflow (Cost X2<=X1)
• Workflow Cache (contains new workflow if no previously optimized, LFU?)

These exceptions are being internally caught by the service and cause it to stop
execution

• Any of the pre-conditions not present with the exception of the cache
• Errors in the supplied workflow
• Repeated failure to perform optimization

UML Diagrams

Figure 69: Optimize Process Use Case

Test-bed Functional Specification Page 236 of 273

Figure 70: Optimize Process (activity diagram)

Grid Exploitation
The optimize functionality can exploit Grid substrate in various ways, however not all of
them might be applied in order to achieve a desired outcome:

• Collects information on resources from Information Services.
• Exploits distributed processing for minimizing optimization time for large workflows

of operations.
• Produces outcome that is compatible with underlying Grid components and services

(e.g. DAG etc)

System Integration
The use case presented here belongs to the Process Optimization Service.

Test-bed Functional Specification Page 237 of 273

Use Stories
Other diligent services as well as end users might be potential beneficiaries of the Process
Optimization functionality. A typical example of is usage would be:

• User submits a flow of operations:
o Get data chunk A.
o Get data chunk B.
o Locate operation OppX.
o Get data chunk C.
o Locate operation OppZ.
o Process data A and B through OppX and produce data chunk D.
o Locate operation OppY.
o Process data chunks C and D through OppY.
o Return the results to node NdU.

• The system collects information on all operators and that are invoked in this
sequence and the various alternatives as well as constraints.

o Examples of operators are:
 Named operators (e.g. OppX, OppY etc)
 Implied operators (e.g. MoveData)

o Examples of resources are
 Nodes (e.g. NdU, NdG etc)
 Pathways (e.g. NdU-to-NdG etc)
 Data chunks (e.g. A, B, C etc)

o Examples Information on resources
 Location and size of data chunks
 Processing power of computing nodes
 Throughput & Response time of pathways
 Accessibility (e.g. access rights)

o Other constraints
 QoS related constraints
 Accounting related constraints

• Decides what is the best way to execute the operation workflow in order to minimize
cost and safeguard the constraints. Alternatives could be:

o Move all data and process code to node NdU and do all work locally.
o Process the large initial data blocs A and B locally (after an initial move of A

close to B) by moving the code close to them, and then move the small
expected result C to NdU along with necessary code and remaining data to
complete the operation locally.

o Move code closer to data and only the final result to NdU (e.g. NdU is very
far from other nodes and the result data are very small)

Testing Issues
There are two aspects of this functionality that need severe testing:

• The validity of the output workflow with regards to the original one, since semantics
should always be the same.

• The performance of the optimized workflow when compared to the original one.

Test-bed Functional Specification Page 238 of 273

Both of them can be checked in one step via “brute” testing: Submitting workflows on test
data twice, before and after optimization and gathering and evaluating the produced
results. Cost and match can be both evaluated at the same time.
However more formal approaches on testing semantic validity can also be applied.

Related non-functional requirements
Optimization service should pose minimal resource usage, so that the gain it offers is not
overtaken by the cost to run it.
Safeguarding the semantics of the process being optimized is a key priority of the service.
Output execution workflow should always be at least as good as the input one, in terms of
predefined cost function.
Security layer (authentication/authorization) should be capable of supporting the creation of
a-priori valid workflows, with regards to user access rights.
Service should be interoperable with underlying grid services and components that expose
overlapping facilities.

Test-bed Functional Specification Page 239 of 273

8 APPLICATION SPECIFIC

8.1 Introduction
This functional area aims to cover the remaining functionalities that are closer to the users
and in particular to those requirements that are more specific in nature, i.e. requirements
related with specific applications instead that with generic functions that could be used to
support and implement other ones. For this reason we have organized this area of
functional specifications in two sub areas:

• Portal Functional Specification (see Section 8.2);
• Report Management (see Section 8.3);

The former area covers various aspects related with the DILIGENT graphical user interface,
i.e. the Portal. These aspects range from the configuration of the portal engine to the login
and search functionalities. Moreover the presentation layer related with the workshops,
courses and exhibition catalogue management is modelled.
The latter area presents the functionality related with the management of reports, i.e.
virtual documents whose content is identified and produced on demand.

8.2 Portal Functional Specification
The following sections describe a set of functionalities which are relates to interfacing the
user to the core functionalities provided by the DILIGENT platform. From a technical
perspective every user interface component is considered to be a portlet or a subsection of
one. Thus in the remaining document the terms “User Interface” (abbreviated to “UI”) and
“Portlet” will be used interchangeably.

8.2.1 Login
Description and Priority
This function allows users to log in on the Diligent system. Depending on the user rights,
the login allows to access the Diligent/DL's functions and resources.
Logging in starts a session for this particular user.

Requirements
User must have an account before being able to log in.

Numbers
This functionality is likely to be used very frequently (it is the first action any user has to
take before being able to access Diligent Resources).

Test-bed Functional Specification Page 240 of 273

UML Diagrams

Figure 71: Login (sequence diagram)

Grid Exploitation
The purpose of the Portal is to hide the Grid infrastructure from the user. It is unknown to
the user, where the Portal retrieves its information.
Each Portal comes with its own Session Management, so it depends on the Portal whether
or not Grid infrastructure is used for the Session Management.

Use Stories
The user tries to log in via the (Web-)Interface.

8.2.2 Logout
Description and Priority
The logout is necessary to allow users to 'correctly' (e.g. checking for not saved data) exit
all the Diligent activities
Logout also terminates the session participated in.

Requirements
User must be being logged in, before being able to log out.

Numbers
This functionality is likely to be used very frequently (it is the last action any user has to
take before leaving the Diligent System)

Constraints and Assumptions
It is assumed that all communication between User and Portal is executed in the same
session.

Test-bed Functional Specification Page 241 of 273

UML Diagrams

Figure 72: Logout (sequence diagram)

Grid Exploitation
As in the “Login” use case, Grid specific functionality might or might not be encapsulated in
the Session Management

Use Stories
The user logs out via the (Web-)Interface

8.2.3 Portal Storage Access
Description
Portal storage access addresses the need for storing and retrieving information related to
the Portal Engine and to the hosted portal implementations.
The following sub-functionalities are provided:

• Store Portal Data Object
• Retrieve Portal Data Object
• Delete Portal Data Object
• Browse Portal Data Objects

These functionalities will not be analyzed because of two important observations:
• They relate to internal low-level functionality to be provided to the DILIGENT by

existing implementations of Portal Engines.
• They are abstract representations of various different approaches for storing portal

configuration and portlet data met in various different portal engines.
Making any further assumptions at this stage would raise risks for the future.

Priority
This use case has a high priority, because they are the primary means to keep persistent
portal and portlet behaviour.

Test-bed Functional Specification Page 242 of 273

Requirements
The inclusion of the functionality is based on a decision taken from evaluation of the
technical status regarding the portal engine and portlet technologies.
The portal engine is most likely to support a native storage management facility, which
might not be grid aware. Grid awareness at the portal level, although welcomed, is not
mandatory.

Numbers
We expect to be indirectly used by all Digital Library users when configuring or accessing
the portal.

UML Diagrams

Figure 73: Portal Storage Access (use case diagram)

Grid Exploitation
Portal Storage will not directly exploit any grid facilities unless provided by the Portal Engine
and lower level of storage management.

System Integration
Portal storage is being accessed by all portal related functionality.
The functionality could possibly integrate with Object Management (as depicted on the UML
diagram) if such a facility is to be easily supplied by the portal engine.
Alternatively, direct access to Grid storage could be utilized, if the engine directly supports
it.

8.2.4 Submit User Credentials
Description
This functionality encapsulates the user’s login procedure. The user must fill in the
username and the password, or supply the credentials in an alternative way (e.g.
certificate). The system has to check if the credentials are valid and then to find, retrieve
and load personal data for the home page.
If the user is not registered yet, he must first register and then try to login. In order to do
that a facility to request registration is provided.
Alternatively a “request for access grant” form should be filled and the procedure should
proceed as dictated by the system relevant policy.

Test-bed Functional Specification Page 243 of 273

Priority
This use case has a priority of level “mandatory”.

Requirements
The “Submit user credentials” functionality is stated in user requirements documents,
nevertheless it is an obvious requirement in order to exploit the security and accounting
mechanisms of the underlying DILIGENT platform.

Numbers
Almost each and every user that uses the DILIGENT platform capabilities through the portal
will consume the aforementioned functionality. Exception will be made on anonymous
access, if this is being supported by a DL.

Constraints and Assumptions
The functionality will be provided by a dedicated portlet that will exploit the security and
hosting facilities of the Portal Engine. The Portal Engine should provide standards-based
facilities for portlet inclusion.

UML Diagrams

Figure 74: Submit User Credentials (use case diagram)

Grid Exploitation
This functionality has no needs for grid technology other than the indirect consumption of
relevant services through the underlying Portal Engine and DILIGENT platform.

System Integration
Login is part of the application layer group of services. It mainly uses the portal engine
security mechanism, which accesses the DILIGENT and GRID security layer group of
services, based on well-known relevant grid technologies and paradigms.

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

Test-bed Functional Specification Page 244 of 273

8.2.5 Request User Registration
Description
This functionality allows users to ask for registering a digital library.
The action to be expected by the system could be one of the following:

• Reject users request (no open registration allowed)
• Automatically accept the user request and register the user (open system that allows

registration for enabling personalization and user experience enhancement)
• Notify the DL Administrator for taking further action:

o Accept the user request and register the user
o Reject the user request

Implementing any of these policies is out of scope for the DILIGENT.

Priority
This use case has a priority of level “optional”, as it can be achieved by alternative means
(e.g. e-mail)

Requirements
Requires the existence of a portal engine and sufficient portlets to render the supplied
content and provide the desired functionality.
Mechanism and policies for creating users automatically, semi-automatically or manually
should be provided by the DILIGENT platform.

Numbers
The usual case with this functionality will be mostly invoked once per user.
Restricted access systems might well omit this functionality.

Constraints and Assumptions
The Portal Engine should provide standards-based facilities for portlet inclusion to render
the page. Rendering of a page depends on configuration, personalization, portlets behaviour
and content.

UML Diagrams
The functionality is depicted in the Figure 74: Submit User Credentials (use case diagram).

Grid Exploitation
This functionality has no needs for grid technology other than the indirect consumption of
relevant services through the underlying Portal Engine and DILIGENT platform.

System Integration
Login is part of the application layer group of services. It mainly uses the portal engine
security mechanism, which accesses the DILIGENT and GRID security layer group of
services, based on well-known relevant grid technologies and paradigms.

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

8.2.6 Access Portal Pages
Description
This functionality refers to user navigation through the portal. The functionality should be
present for both visitors and authenticated DL users.

Test-bed Functional Specification Page 245 of 273

Rendering a page depends on
• system configuration
• personalization of portlets
• page configuration
• portlet behaviour
• content

Functionality for non-registered / logged on members might be somewhat limited,
depending on a per DILIGENT instance policy.

Priority
This use case has a priority of level “mandatory”.

Requirements
Requires the existence of a portal engine and sufficient portlets to render the supplied
content and provide the desired functionality.

Numbers
Each and every user that uses the DILIGENT platform capabilities through the portal will
consume the aforementioned functionality multiple times per interaction.

Constraints and Assumptions
The Portal Engine should provide standards-based facilities for portlet inclusion to render
the page. Rendering of a page depends on configuration, personalization, portlets behaviour
and content.

UML Diagrams

Figure 75: Access Portal Pages (use case diagram)

Grid Exploitation
This functionality has no needs for grid technology other than the indirect consumption of
relevant services through the underlying Portal Engine and DILIGENT platform.

System Integration
Accessing and rendering portal pages is part of the application layer group of services. It
mainly uses the portal engine rendering mechanism, based on well-known relevant grid
technologies and paradigms.
Additionally it indirectly integrates with the security mechanism provided by user
management and the storage mechanisms, if supported by the engine.

Test-bed Functional Specification Page 246 of 273

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

8.2.7 Manage Digital Objects
Description
This set of functionalities allows a user to:
Upload a Digital Object (DO) to the system for use under various cases:

• Include to a collection.
• Use for similarity search.
• Use as parameter to a process workflow.
• Delete a DO

The scope where the object belongs to is implicitly selected, depending on the context.
However some cases should allow scope could be selected manually (e.g. which Collection,
or what for upload the DO etc)

Priority
This use case has a priority of level “mandatory” because it is essential for various cases.

Requirements
This functionality is implicitly derived from user requirements.

Numbers
Almost each and every user that uses the DILIGENT platform search capabilities through
the portal will consume the aforementioned functionality.

Constraints and Assumptions
The functionality will be provided by a dedicated portlet that will exploit the security and
hosting facilities of the Portal Engine. Uploading of Digital objects will be achieved through
standard protocols, HTTP / HTTPS being the two most preferable, FTP being a third
candidate etc.

Test-bed Functional Specification Page 247 of 273

UML Diagrams

Figure 76: Digital Object Management (use case diagram)

Grid Exploitation
Portal components do not exploit grid by any other means than the underlying DILIGENT
services. Exception might be introduced for replicated portal configuration storage.

System Integration
Digital Object Management portlet is part of the application layer group of services and
components and is being hosted as a component of the Portal Engine. Although it might not
be the main mean for populating a Digital Library, it is necessary for various operations such
as creating Digital Collections, performing similarity search etc. It should provide the
opportunity for integration with various other portlets and consume the platform
functionality for the DO management operations.

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

Test-bed Functional Specification Page 248 of 273

8.2.8 Submit Search
Description
The “Submit Search” functionality has to do with the main exploitation of the DILIGENT
search service over the portal’s User Interface (UI). Its parts are: submit new search
criteria, add / remove criteria, produce the query (for search), call search service and
browsing the results. Domain specific application logic is added to search submission in
order to hide away the complexity of search query language. It uses personalization service
for all type of searching.
In case of similarity-based search, the portlet should allow the uploading or selection of
content through a Graphical UI (GUI) and typical transfer protocols (FTP, HTTP etc).
The functionality will be provided by a customizable search portlet that will support all the
types of search provided by the underlying search engine.

Priority
This use case has a high priority, because it deals with the exploitation of the search
service, which is one of the main objectives of DILIGENT.

Requirements
All user requirements mention search as main functionality, although types of search to be
supported differ quite a lot. However the functionality provided should allow to:

• Interact with all types of Search Engine services;
• Decouple from complexity of the underlying search language.

Numbers
Almost each and every user that uses the DILIGENT platform search capabilities through
the portal will consume the aforementioned functionality.

Constraints and Assumptions
The functionality will be provided by a dedicated portlet that will exploit the security and
hosting facilities of the Portal Engine. The Portal Engine should provide standards-based
facilities for portlet inclusion.

UML Diagrams

Figure 77: Search portlet (use case diagram)

Test-bed Functional Specification Page 249 of 273

Grid Exploitation
Portal components do not exploit grid by any other means than the underlying DILIGENT
services. Exception might be introduced for replicated portal configuration storage.

System Integration
Search portlet is part of the application layer group of services and components and is being
hosted as a component of the Portal Engine. It mainly consumes the DILIGENT Search
Engine functionality. However it indirectly accesses storage management functionality, while
it is tightly coupled with the results browsing portlet.

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

8.2.9 Browse Results
Description
The Results browsing functionality reflects the need for presenting search results to the DL
user in a user-friendly manner.
The functionality should provide the well-known facilities of movement within the results
and it is expected that asynchronous operation will be provided, i.e. gradually present
results as they become available, it he submitted query allows such an operation.
The results browsing functionality should allow rich customization for adopting a suitable
presentation form to fit in the general portal templates. Additionally there should be some
degree of customization with regards to the amount of info presented to the DL User.
Results browsing should support the “drill-in” use case so that the user can further refine or
redirect a query.
The optional “feedback” or “advanced personalization” facilities should be attached to this
functionality in future versions of the DILIGENT platform.

Priority
This use case has a high priority, as it is the main medium to use the search functionality
outcome.

Requirements
The functionality is embedded in all search-related use-cases.

Numbers
Almost each and every user that uses the DILIGENT platform search capabilities through
the portal will consume the aforementioned functionality.

Constraints and Assumptions
We assume that this functionality will be a specific visualization portlet for standard
DILIGENT partial resultsets. However this is to be discussed and defined.
The functionality is application-domain specific.
In order to further proceed needs information from search portlet components.

Test-bed Functional Specification Page 250 of 273

UML Diagrams

Figure 78: Browse portlet (use case diagram)

Grid Exploitation
This functionality has no significant needs for grid exploitation other than the implied from
the dependent services.

System Integration
Browsing functionality is part of the end user applications. It mainly uses the Search engine
and is hosted within the Portal Engine. However some functionalities deal with backend
storage management, while it integrates with the visualization and search portlets.

8.2.10 Digital Object Visualization
Description
This functionality has to do with visualization of “documents” stored in a Virtual Digital
Library. Selection of object is done through browsing a search resultset, or any other mean
of locating an object (e.g. an exhibition etc).
The “renderer” will depend on standard formats to present text, image, video, sound and
well-known multimedia formats. Client capabilities will be exploited to view the results as
appropriate.
Visualization is actually an intermediate between storage, optional visualization services and
the browser, however we do not expect to add much functionality as a layer.
The optional “feedback” or “advanced personalization” facilities should be attached to this
functionality in future versions of the DILIGENT platform.

Test-bed Functional Specification Page 251 of 273

Priority
This use case has a high priority.

Requirements
Referred by all user requirements as one of the most basic functionalities.
Depends on client capabilities for displaying standard digital formats of data and services to
store or produce these “viewable” formats.

Numbers
Almost each and every user that uses the DILIGENT platform capabilities through the portal
will consume the aforementioned functionality.

UML Diagrams

Figure 79: Object Visualization portlet (use case diagram)

Grid Exploitation
There are no significant needs for grid technology.

System Integration
The portlet integrates the Visualization functionality, which is part of application layer, with
the browse resultsets and the annotation portlets and exploits the use of Object
Management services.

8.2.11 Digital Object Annotation
Description
This functionality refers to ability of the user to annotate the digital objects through a
graphical user interface.

Priority
This use case has a priority of level “optional”.

Requirements
Requires the existence of a portal engine and sufficient portlets to render the supplied
content and provide the desired functionality.

Test-bed Functional Specification Page 252 of 273

Additionally it requires the existence of the corresponding annotation service.

Numbers
Every user that uses the DILIGENT platform capabilities through the portal might consume
the aforementioned functionality multiple times per interaction. However it is expected that
actual usage will be quite low for most objects / collections.

UML Diagrams

Figure 80: Annotation Portlet (use case diagram)

Grid Exploitation
This functionality has no needs for grid technology other than the indirect consumption of
relevant services through the underlying Portal Engine and DILIGENT platform.

System Integration
This is part of the application layer group of services. It mainly uses the portal engine
rendering mechanism, based on well-known relevant grid technologies and paradigms.
Additionally it indirectly integrates with the security mechanism provided by user
management and the storage mechanisms, if supported by the engine.

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

Test-bed Functional Specification Page 253 of 273

8.2.12 Drill In Search Results
Description
The Drill-In functionality is very closely connected to the “search” and the “browse” use
cases. Its purpose is to give the DL User the ability to either focus or redefine a search,
based on the items that are being currently presented and the original query.
Drill-In is a very application-domain specific functionality, because there is no obvious
generic rule on the roadmap to be followed. During the design and implementation phases
actual paradigms will be applied.
The inclusion of this functionality dictates that certain state and configuration information
must be persisted among user-service interaction stages (i.e. session)

Priority
This use case has a low priority, as the user can achieve similar results by manually
constructing a new query.

Requirements
The requirements for this functionality are being stated in the ImpEct portal scenario.
Additionally such facilities can be found in various search services with a varying degree of
complexity.

Constraints and Assumptions
In order for such facilities to be available, state information must be preserved either in
session object or (even better) as resultset metadata.

UML Diagrams

Figure 81: Drill In portlet (use case diagram)

Grid Exploitation
This functionality has no significant needs for grid technology.

System Integration
This functionality belongs to the application domain specific set of services.
It is hosted within the Portal Engine.

Test-bed Functional Specification Page 254 of 273

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

8.2.13 Propose Resources & Services for Addition
Description
This functionality is a “helper” functionality that serves as a “messaging” system between
DL users and DL Managers / DL Admins, for improving a DL towards covering all DL user
needs.
Through this facility DL Users will be able to submit their requests for new collections,
services or other types of resources to be included in a VDL.
DL Admins and DL Managers will be supplied with the appropriate means to browse and
manage user requirements. However this will be restricted to the functionality of managing
the proposals log records.

Priority
This use case has a low priority, as its functionality can be achieved by other means as well.

Requirements
Both end user scenarios imply the existence of such a capability, for a different purpose.
However alignment shows that a single functionality group is required.

Numbers
There is no clear estimation about the volumetrics of the aforementioned functionality,
however we expect to be used by small portions of authorized Digital Library users.

UML Diagrams

Figure 82: Requests portlet (use case diagram)

Grid Exploitation
Visualization has no significant needs for grid technology.

Test-bed Functional Specification Page 255 of 273

System Integration
Visualization is part of the application service layer. It is hosted within the portal engine.

Related non-functional requirements
The functionality should best be provided by components based on well-known standards
that would allow migrating from platform to platform and version to version.

8.2.14 Course Management and Participation
Description
Course management and participation functionality supports creation and maintenance of
educational courses within the thematic area of a DILIGENT-hosted digital library.
The functionality has two faces:

• the managerial one, which allows users to create courses and define the roles of
various users, and

• the DL user face, which allows users to participate a course as:
o Students
o Teachers

The two types of participants supported have slightly different rights when accessing course
material.
The system provides basic tools for collaboration, such as uploading and downloading of
educational material (lectures) and a discussion facility for making commentary or
interrogative posts.
The entire functionality is based on existing DILIGENT services (search, collections,
annotations, storage, security etc.) and is made accessible to the user through a dedicated
set of portlets.
The system supports browsing of courses and a sub-functionality for requesting
participation. If a course is not being marked as “open” then the course manager (DL
Manager or an authorized DL User) must register the user in the course.

Priority
This functionality has a low priority since it is not essential for the operation of a Digital
Library.

Requirements
The functionality described here is a direct consequence of the ARTE user scenario.

Numbers
There is no clear estimation about the volumetrics of the aforementioned functionality,
however we expect to be used by very small portions of authorized Digital Library users.

Test-bed Functional Specification Page 256 of 273

UML Diagrams

Figure 83: Course Management portlet (use case diagram)

Figure 84: Course Teaching Portlet (use case diagram)

Test-bed Functional Specification Page 257 of 273

Figure 85: Course Participation Portlet (use ase diagram)

Grid Exploitation
There is no need for grid exploitation specific to this functionality.

System Integration
This functionality is part of the application layer of services. However it exploits the
functionality various other services and facilities such as:

• Search
• Annotation
• Discussions
• Storage
• Visualization

8.2.15 Workshop Management & Participation
Description
Workshop management and participation functionality supports creation and maintenance
of workshops within the thematic area of a DILIGENT-hosted digital library.
The functionality is basically similar to the one provided by the “course management”,
differences are related with the users involved in the scenario and with the semantic of the
actions, e.g. even if there are functions for inviting users, invite a student in a course is
different than invite a speaker for a workshop.

Priority
This functionality has a low priority since it is not essential for the operation of a Digital
Library.

Requirements
The functionality described here is a direct consequence of the ARTE user scenario.

Numbers
There is no clear estimation about the volumetrics of this functionality, however we expect
to be used by small portions of a registered Digital Library users.

Test-bed Functional Specification Page 258 of 273

UML Diagrams

Figure 86: Workshop Management portlet (use case diagram)

Figure 87: Workshop Instruction portlet (use case diagram)

Test-bed Functional Specification Page 259 of 273

Figure 88: Workshop Participation portlet (use case diagram)

Grid Exploitation
There is no need for grid exploitation specific to this functionality.

System Integration
This functionality is part of the application layer of services. However it exploits the
functionality various other services and facilities such as:

• Search
• Annotation engine
• Discussions
• Storage
• Visualization

8.2.16 Exhibition Management
Description
Exhibition management is a group of facilities that allow the design of virtual subcollections
of a Digital Library objects for the creation of virtual exhibitions.
The functionality to be provided allows three types of uses:

• Administrative, that will allow creation and low level management of Exhibitions;
• Authoring, that will allow the addition and removal of objects from an exhibition, as

well as the annotation of them within the context of the exhibition;
• Browsing, that will provide the means for viewing the objects exhibited in an

exhibition.
These functionalities will be supported by dedicated user interface constructs that will allow
the selection, editing and visualization of the various attributes and objects.

Test-bed Functional Specification Page 260 of 273

Priority
This functionality has a low priority since it is not essential for the operation of a Digital
Library.

Requirements
The functionality described here is a direct consequence of the ARTE user scenario.

Numbers
There is no clear estimation about the volumetrics of this functionality, however we expect
to be used by small portions of a registered Digital Library users.

UML Diagrams

Figure 89: Exhibition Management portlet (use case diagram)

Test-bed Functional Specification Page 261 of 273

Figure 90: Exhibition Authoring portlet (use case diagram)

Figure 91: Exhibition Browsing portlet (use case diagram)

Test-bed Functional Specification Page 262 of 273

Grid Exploitation
There is no need for grid exploitation specific to this functionality.

System Integration
This functionality is part of the application layer of services. However it exploits the
functionality various other services and facilities such as:

• Search
• Annotation engine
• Storage
• Visualization

8.2.17 Portal Management
Description
Portal personalization refers to the capability of the generic Diligent Portal System to adapt
to application specific needs.
This functionality will be supplied by allowing the DL Manager to configure the behaviours of
the portlets that are available to him/her, enable them to end users etc.

Priority
This use case has a “mandatory” ranking of priority. The selected portal engine and the
specific portlet implementations will provide support for it.

Requirements
The inclusion of the functionality is based on a decision taken indirectly from user
requirements.
In order to provide the functionality the Portal Engine must provide the overall concept and
the specific portlets must support configurability.

Numbers
Digital Library Managers are the ones to be supplied with adequate privileges to configure
it.

Test-bed Functional Specification Page 263 of 273

UML Diagrams

Figure 92: Overall Portal Configuration (use case diagram)

Grid Exploitation
Portal Engines usually do not exploit grid facilities. However if the engine supplies such an
option the Diligent Portals will exploit it.

System Integration
Portal Engine is part of the application layer services and configuration / personalization falls
into the same scope. They might require support for storing preferences and they will
indirectly require authentication and authorization support by the substrate.

Related non-functional requirements
An open-source engine that bases its operation on well-known standards should provide the
functionality. This will allow migrating from platform to platform and version to version.

8.2.18 Portal Engine Configuration
Description
Portal engine configuration refers to the low level configuration of the portal engine, which
usually deals with managing configuration files, environment settings, configuration of
dependent components etc.
Tools for doing this are low-level editors, platform specific configurators etc.

Priority
This use case has an “optional” ranking of priority. The selected portal engine and the
specific portlet implementations will provide support for it.

Requirements
The inclusion of the functionality is not based on user requirements.
The need for functionality rises from the observation that most Portal Engines at some point
require configuration at a lower level than the Structural configuration of the portal.

Test-bed Functional Specification Page 264 of 273

Numbers
Every authorized Digital Library administrator will make use of the Portal Engine at least
when initiating a DL. Subsequent access of the functionality will be required to fine-tune it
and adapt to user requirements or environment changes.

UML Diagrams
Figure 92: Overall Portal Configuration (use case diagram) contains the relevant use cases.

Grid Exploitation
Portal Engines usually do not exploit grid facilities. However if such an option is supplied by
the engine, it will be exploited by the Diligent Portals.

System Integration
Portal Engine is part of the application layer services and configuration / personalization falls
into the same scope. They might require support for storing preferences and they will
indirectly require authentication and authorization support by the substrate.

Related non-functional requirements
The functionality should be provided by an open-source engine that bases its operation on
well-known standards. This will allow migrating from platform to platform and version to
version.

8.2.19 Portal Personalization
Description
Portal personalization refers to the capability of the Portal to adapt to user preferences.
This functionality will be supplied by allowing the user to configure the behaviours of the
portlets that are available to him/her.

Priority
This use case has an “optional” ranking of priority. The selected portal engine and the
specific portlet implementations will provide support for it.

Requirements
The inclusion of the functionality is based on a decision taken indirectly from user
requirements.
In order to provide the functionality the Portal Engine must provide the overall concept and
the specific portlets must support personalization.

Numbers
Every authorized Digital Library user will make use of the Portal Engine and will be able to
configure it. However it is most probable that this functionality will not be provided to
visitors, or at least it will be severely limited.

UML Diagrams
Figure 92: Overall Portal Configuration (use case diagram) contains the relevant use cases.

Grid Exploitation
Portal Engines usually do not exploit grid facilities. However if such option is supplied by the
engine it will be exploited by the Diligent Portals.

System Integration
Portal Engine is part of the application layer services and configuration / personalization falls
into the same scope. They might require support for storing preferences and they will
indirectly require authentication and authorization support by the substrate.

Test-bed Functional Specification Page 265 of 273

Related non-functional requirements
The functionality should be provided by an open-source engine that bases its operation on
well-known standards. This will allow migrating from platform to platform and version to
version.

8.2.20 Discussions
Description
Discussions functionality is a simple facility to allow DL users to perform a conversation on a
given topic.
Two types of access will be allowed:

• Administrative, which allows creation and management of topics to be hosted within
a DL

• User, which allows posting of comments on a given topic.

Priority
This use case has a low priority, because users can achieve similar results by other means,
e.g. external forums or e-mail lists.

Requirements
The inclusion of the functionality is based on a decision taken indirectly from user
requirements, in the ARTE Scenario, to support Course and Workshop management use
cases.

Numbers
There is no clear estimation about the volumetrics of the aforementioned functionality,
however we expect to be used by small portions of a registered Digital Library users.

UML Diagrams

Figure 93: Discussion portlet (use case diagram)

Test-bed Functional Specification Page 266 of 273

Grid Exploitation
Will not directly exploit any grid facilities unless provided by the Portal Engine.

System Integration
Discussions functionality belongs to the application specific layer services.

8.2.21 Process Image
Description and Priority
According to the requirements document this functionality is the origin of all image-
processing operations. It comprises image segmentation, which partitions a given image
into a number of segments. In terms of the goals expressed in the DoW, this functionality is
of importance (medium priority) for content-based access to multimedia digital libraries,
which frequently encompasses search requests for images that contain some given image.

Functional Requirements
In terms of the ARTE user requirements document, this functionality is mainly intended to
split up given drawings into semantic partitions.

Numbers
This functionality will be invoked whenever a user decides to (1) have the system identify
partitions of an image or (2) search for images in the DL by similarity based on a part-of
relationship.

Constraints and Assumptions
Given the state of the art in image segmentation which rests upon low-level features like
color distribution, shape detection, spatial proximity etc., semantic partitioning is, in general,
a difficult problem. This problem is even exacerbated by the fact that the documents
covered by ARTE research subjects widely differ from “typical” assumptions in image
segmentations. For instance, colour information is completely missing in many of those
images. Therefore, the segmentation task heavily relies on appropriate image segmentation
techniques, which are to be provided by the “Resolve Image into Parts” functionality.

UML Diagrams

Figure 94: Image Processing portlet (use case diagram)

Grid Exploitation
Usage scenarios of the “Process Image” scenarios may occur both in batch and online (i.e.
interactive) use. That is, images which are to be stored in the DL will typically be batch-
processed when they are fed into the system or at some other point in time way before the

Test-bed Functional Specification Page 267 of 273

result of this processing will be used by some search service (e.g. “Search for
Object/Resource”). Sophisticated image processing algorithms are computationally
intensive. Batch image processing can be parallelized in a way that images may be
independently distributed onto different nodes. As image partitioning is executed only once,
real-time performance is not an issue.
Online invocation of the service will occur on demand in query processing on the given
query image. Typically, region matching does not establish a simple 1:n relationship
between the whole query image and one or more segments of the images in the DL but
rather assume a m:n relationship of some query image’s segments to other stored image’s
segments.

System Integration
Process Image functionality belongs to the application specific layer services.

Use Stories
See ARTE requirements document.

Testing Issues
Besides ordinary software evaluation, the major focus in testing this functionality must be
put on how well the image segmentation (1) identifies semantically related parts of the
image as one partition and (2) to what extend it strips out non-related objects from it.
Based on a hand-segmented set of sample images, this can be related to classic information
retrieval measures. Another important aspect is given by the runtime performance of online
image segmentation that must meet the requirements of real-time answering times for a
issued similarity query.

Related non-functional requirements
It must be pointed out that the reliability of this functionality is bound to the potentials of
the underlying image segmentation algorithm/component. As we do not “invent” new
feature extraction mechanisms in DILIGENT but rather incorporate existing ones it is
important to teach potential users (i.e. the ARTE community) in the restrictions in
automated image processing as a building block for their (image) retrieval tasks. In
particular, it must be emphasized that we cannot guarantee results that precisely meet the
user’s expectations.

8.2.22 Resolve Image into Parts
Description and Priority
The “Resolve Image into Parts” Use-Case has been introduced by the ARTE requirements
document as a component part of the “Process Image” Use-Case. It is responsible for
identifying the semantic partitions of an image while the actual partitioning is carried out by
the “Process Image” Use-Case.

Functional Requirements
The requirements that a functionality of this kind would fulfil lie within the foundations for
the “Process Image” Use-Case. In terms of feature extraction (presumably carried out by
external proprietary components), a distinction between the segmentation identification and
image partitioning functionality is no longer justified nor desirable. In detail, “Process
Image” does not necessarily have to physically separate an image into a number of image
files but rather generate the geometric boundaries of distinct partitions and possible
establish relations between them (like “belongs together”). In that sense, the following
statements augment the statements with respect to the “Process Image” Use-Case.

Test-bed Functional Specification Page 268 of 273

Numbers
The usage numbers equals the invocations of the “Image Segmentation” functionality.

Constraints and Assumptions
One or more image segmentation components must be present in order to provide this
functionality. It is likely, that different application scenarios have a widely different notion of
meaningful image segmentation. Therefore, this functionality must be parameterised in
order to pick the right image segmentation algorithm and invoke it appropriately.

UML Diagrams
See Figure 94: Image Processing portlet (use case diagram).

Grid Exploitation
For the time being, grid exploitation is given by batch processing (i.e. segmentations) of
large image collections stored in the DL. Online (interactive) use (like in query processing)
will likely involve one or few query objects, only.

System Integration
Being merged with the “Process Image” Use-Case this functionality belongs to the
application specific layer services. It make use of the “Image Segmentation” offered by the
“Feature Extraction” service.

Use Stories
See ARTE requirements document.

Testing Issues
See “Process Image” Use-Case.

Related non-functional requirements
See “Process Image” Use-Case.

Test-bed Functional Specification Page 269 of 273

8.3 Report Management

Figure 95: Report Management (use case diagram)

8.3.1 Manage Report
Description and Priority
Report generation is an important end-user requirement in the ImpECt scenario. Automatic
report generation using templates is popularly used as front-ends with databases at the
back end. However report generation is a complex problem, where many layers of data-
representation are required. At the superficial level, there is the layout and styling data,
which is above the service layer that gets data from the data layer and transforms it
accordingly and formats it according to the style.

Figure 96: Multiple layers of an automatically generated Report in DILIGENT

Report Templates
Automatically generated reports are often associated with templates that can be visually
manipulated and new content can be added which uses the existing styles in the template.
A template could specify a style for each kind of object in the DILIGENT scenario (e.g.
images have to be maximum of width 400 pixels and therefore should be automatically
scaled and then centred). For this purpose using slots inside the template might work in the
following way; each slot could specify what kind of objects can be fitted into this slot, and

Test-bed Functional Specification Page 270 of 273

the template would have a collection of styles for each kind of object that can be fitted into
the slots in that template.

Figure 97: Report Template structure example

Requirements
Report Management requires input from the users to design 1-2 templates from the layout
point of view. These templates could be in XHTML format that can further be used to define
slots.

Numbers
This functionality is likely to be used frequently (10-100 times a week)

Grid Exploitation
Report Management has a 3 layered architecture with the user interacting only at the
service and layout layer, i.e. for every slot, the user specifies a service which provides input
to the slot, and then also define the style for this kind of object.

8.3.2 Create Report
Description and Priority
This functionality enables a DILIGENT user to create reports based on existing templates
made available in a template repository.

Requirements
For the user to be able to create reports, templates should be available in the template-
repository. Also, the user should have the requisite permissions to create new reports.

Numbers
Several times per year.

Constraints and Assumptions
In the early version, the user will only be able to select from existing templates. Creating
new templates or modifying existing templates is currently not supported.

Grid Exploitation
The report creation service can easily be deployed on different grid nodes to improve
performance.

Test-bed Functional Specification Page 271 of 273

8.3.3 Select Model Definition
Description and Priority
This functionality allows the report-creator to choose from the already provided templates.
The user can then use this template to fill up with objects and tie up with services that
generate them.

Requirements
The end-users have to provide feedback on the kind of templates required. 1-2 of such
templates can them be designed and made available in the system.

Numbers
Several times per year.

8.3.4 Update Report
Description and Priority
With this functionality, the report creator can change an existing report.
Update can mean:

• removing an object from a slot and adding a new one
• duplicating a slot and adding a new object there
• removing a slot
• re-order slots

Requirements
A report has already been created and the user has prerequisite access rights

Numbers
Several times per year

Grid Exploitation
This functionality can be easily deployed on different grid nodes since the underlying
services used to provide objects for the slots can be invoked from any grid node.

8.3.5 Remove Report
Description and Priority
Even though reports tend to be permanent documents, it should be possible to remove a
report if required. If supplied its identifier, a particular report can be retrieved from the
report repository and then removed.

Numbers
Several times per year.

8.3.6 Build Report
Description and Priority
In the creation stage of the report, the slots in the report template are filled with bindings
to the services or to objects on the file system. Building the report evaluates all the bindings
and creates a static document.

Requirements
All the services/ bindings invoked in the report exist and there is no type mismatch for any
slot.

Test-bed Functional Specification Page 272 of 273

Numbers
Several times per year.

Grid Exploitation
This process can be gridified since all nodes can invoke service on the grid and access the
file system.

8.3.7 Compare versions, Visualize versions
Description and Priority
This functionality allows a report creator to find the differences in two versions of the same
report. Since version management is a complicated functionality, and there exist very good
free tools like CVS and subversion for this functionality, we propose using CVS as the
backend for version management of reports. The report management tools can provide a
report – specific functionality on top of CVS.
Further, the comparison is visualized by using a visualization component.

Test-bed Functional Specification Page 273 of 273

9 CONCLUSION

This report presents the result of the activity conducted within the “WP1.Test-bed functional
and architectural design”, task “T1.1.1 Test-bed functional specification” of the DILIGENT
project in the period November 1st 2004 - February 28th 2005. By exploiting the analysis of
the user-communities requirements, collected in WP2.1 and WP2.2, the Test-bed functional
specification describes and specifies the functions and features of the DILIGENT system that
will be perceived by the users and it formalizes how the users will interact with the system.
The functional specification is given in the formal notation recommended by the Unified
Process software engineering metholology, according to Annex I – “Description of Work”;
this formal notation is accompanied by texts as expressed by the DILIGENT technological
partners.
This activity has first analysed the user requirements reported in “D2.1.1 ARTE Scenario
Requirements Analysis Report” and “D2.2.1 ImpECt Scenario Requirements Analysis Report”
in order to identify common basic functionalities matching the requirements of the user
scenarios; then these two groups of functions have been associated with the main
functional area of the DILIGENT project represented by WP1.2-WP1.6; after that, each
partner has focused its analysis on the specific aspects in which it is mainly involved and in
which it has more competences, contributing in this way to the specification of the
functional view of the entire system; finally all contributions has been collected, analyzed,
and integrated by CNR, leader of Task 1.1.1, with the support of all the other partners.
The complete functional specification will be used by WP1.2-WP1.6 in order to define data
elements, interfaces, and outputs for the rapid prototyping and testing of all services.

