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Abstract: Thin films based on tungsten oxide (WO3) were grown by nanosecond pulsed laser
deposition on alumina printed-circuit boards to fabricate electrochemical sensors for nitrogen dioxide
(NO2) detection. Samples exposed to thermal annealing (400 ◦C for 3 h) were also produced to
compare the main properties and the sensor performance. Before gas testing, the morphology and
structural properties were investigated. Scanning electron microscopy and atomic force microscopy
showed the formation of granular films with a more compact structure before the thermal treatment.
Features of the main WO3 phases were identified for both as-deposited and annealed samples by
Raman spectroscopy, whereas X-ray diffraction evidenced the amorphous nature of the as-deposited
samples and the formation of crystalline phases after thermal annealing. The as-deposited samples
showed a higher W/O ratio, as displayed by energy-dispersive X-ray spectroscopy. An Arrhenius
plot revealed a lower activation energy (0.11 eV) for the as-deposited thin films, which are the most
electrically conductive samples, presenting a better gas response (30% higher than the response of
the annealed ones) in the investigated NO2 concentration range of 5–20 ppm at the moderate device
operating temperature of 75 ◦C. This behavior is explained by a larger quantity of oxygen vacancies,
which enhances the sensing mechanism.

Keywords: pulsed laser deposition; thin films; tungsten oxide; gas sensing; surface oxygen vacancies;
thermal annealing

1. Introduction

The fabrication of sensors based on nanostructured resistive-type metal oxide semicon-
ductors is becoming one of the most studied solutions for gas detection, due to their simple
sensing principle, i.e., a variation in the surface electrical resistance due to the adsorption of
gases, together with the capability of achieving a high surface-to-volume ratio for the active
material [1,2]. Tungsten oxide (WO3), an n-type metal oxide semiconductor (bandgap of
2.6–2.8 eV), represents one of the most investigated materials used to act as a thin-film gas
sensor for different gas analytes, such as NOx [3,4], NH3 [5], H2S [6], H2 [7], CO [8], and
more [9,10]. The properties and the response of WO3-based gas sensors strongly depend
on the method of synthesis, which influences grain size, porosity, and electrical character-
istics. Various and complex morphologies of WO3 are reported in the literature, such as
nanorods [11], nanosheets [12], or nanoplates [13]. Additionally, different approaches for
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improving gas sensitivity and selectivity have been carried out, such as doping, surface
functionalization, or the formation of heterojunctions with low-dimensional materials [14].
Among the deposition methods, sputtering [15], thermal evaporation [16], sol–gel [17],
chemical vapor deposition [18], and electrodeposition [19] are the most diffused for the
growth of WO3 thin films. However, despite several promising results for fabricated WO3
thin-film sensors [20,21], most of the reported types of gas sensors operate at medium-high
temperatures (≥100 ◦C), thus complicating the device architecture for operations in rel-
evant conditions for long periods. Instead, lower operating temperatures for the device
are beneficial for fabricating low-power-consumption sensors, as well as improving the
compatibility with the electronic chain for compact detection systems.

In this work, we prepared WO3 thin films (with and without thermal annealing) grown
on alumina printed-circuit boards (PCBs) by means of nanosecond pulsed laser deposition
(ns-PLD) to be tested as gas sensors for nitrogen dioxide (NO2), which is one of the most rel-
evant gases to be detected for pollution in industrial and automotive applications, like the
release from battery instability behavior [22], and potentially harmful for human health [23].
The PLD technique has gained significant importance in developing a diverse range of
innovative materials, including superconductors, semiconductors, ceramics, and alloys,
characterized by well-defined compositions, phases, and properties [24]. This technique
allows the properties of the coatings to be controlled by changing deposition parameters
such as laser fluence, substrate temperature, gas pressure, or distance between target and
substrate. Both nanosecond (ns) and femtosecond (fs) pulses exhibit versatility in provid-
ing materials suitable for numerous applications, such as catalysis, energy conversion or
storage, and fabrication of plasmonic, electronic, thermionic, thermoelectric or photonic de-
vices [25–27]. These materials can be synthesized under different environmental conditions,
including vacuum, inert, or reactive background gases, as well as in liquid environments.
Although in many studies the growth of WO3 coatings occurs under an oxygen-controlled
atmosphere, in this work the deposition was conducted in vacuum at a pressure of 10−4 Pa.

Even if the absence of reactive gas during the process simplifies the experimental
conditions, the properties of the produced material must be studied to understand if the
desired characteristics can be achieved. In this study, thermal annealing has also been
performed to analyze the effect on the performance of thin films. After the analysis of the
physico-chemical properties of the thin films fabricated by ns-PLD, the NO2 response of
the WO3-based gas sensors is herein reported to demonstrate the devices’ operation at
moderately low temperatures (≤75 ◦C) with a significant value of sensitivity.

2. Materials and Methods
2.1. Preparation of WO3 Thin Films

The second harmonic (532 nm) of the Nd-YAG laser source (Handy-YAG; Quanta
System, Milano, Italy) was used for deposition experiments. The laser, operating with a
repetition rate of 10 Hz, a pulse duration of 7 ns, and a fluence of 20 J/cm2, was directed
into a stainless-steel vacuum chamber and focused on the target substrate obtained by cold-
pressing WO3 powder (Merck KGaA, Darmstadt, Germany) through a 350 mm-focus lens.
The chamber was evacuated by a scroll–turbomolecular vacuum system to a background
vacuum of 10−4 Pa. The substrates were placed 3 cm away from the target, and the
depositions lasted for 2 h with the substrate kept at room temperature, leading to a nominal
film thickness of 300 nm. A post-deposition thermal annealing at 400 ◦C for 3 h in air was
conducted on selected samples.

2.2. Characterization of the Physico-Chemical Properties

X-ray diffraction measurements were performed by means of a D5000 Siemens (Mu-
nich, Germany) instrument, using a Cu Kα1 radiation source (λ = 1.5405600 Å). The
following conditions were applied for the investigation: 2θ = 20–60◦, step size 0.040◦, time
per step 4 s.
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Raman measurements were performed using a Horiba Scientific Ltd (Kyoto, Japan)
LabRam HR Evolution confocal spectrometer equipped with a 100 mW Oxxius (λexc = 532 nm)
laser source, a computerized XY table, and an electron-multiplier CCD detector. A grating
with 1800 grooves/mm and an Olympus U5RE2 microscope with a 100× objective (nu-
merical aperture of 0.9) were used. All Raman spectra were recorded in backscattering
geometry focalizing 10% of the laser power (10 mW) on the sample (laser spot on the
sample surface 0.7 µm). Twenty spectra with an accumulation time of 10 s were averaged
for the measurements performed on the sensors measured before and after gas testing.

Field-Emission Gun Scanning Electron Microscopy (FEG-SEM, Zeiss, Oberkochen,
Germany, LEO Supra 35 and ThermoFisher, Waltham, MA, USA, SCIOS2 FIB-SEM appara-
tus) and Atomic Force Microscopy (AFM, OmegaScope platform, Horiba Scientific, Irvine,
CA, USA) were used to study the morphology of the WO3 thin films. AFM imaging was
carried out in tapping mode using a silicon pyramidal tip (MikroMasch, Sofia, Bulgaria,
HQ:NSC15/Al BS) with a characteristic radius of ~8 nm. The resonance frequency was
325 kHz, whereas the operational amplitude was set at 60 nm. All the AFM data were
acquired by fixing the scan rate at 1 Hz, then filtered and analyzed using the AIST-NT SPM
v3.5.160 control software.

EDS measurements were carried out using the ThermoFisher Scientific UltraDry
129 eV 60 M detector, which has a crystal active area of 60 mm2, mounted on the Ther-
moFisher SCIOS2 FIB-SEM apparatus. A fixed acceleration voltage of 10 kV was applied to
a 17.41 µm2 examined image area, and the Pathfinder X-ray Microanalysis 2.11 software
was employed.

2.3. Electrical and Gas Sensing Measurements

An alumina (thickness: 1 mm) printed-circuit board (PCB) with two copper/gold
electrodes was used as substrate for the deposited WO3, forming the device for the gas
sensing measurements, according to the design shown in Figure 1. The inter-electrode
gap at the minimum point between the two electrodes is 0.5 mm. On the rear of the
PCB, graphite electrodes were provided for heating the sensor (about 5 W consumed for
reaching the maximum temperature of 200 ◦C). A convenient push-and-pull connection of
the electrical contacts to the signal conditioner was obtained by soldering the connector
directly to these contacts.
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Figure 1. Design for the WO3-based NO2 sensors on an alumina PCB. The WO3 thin film is deposited
on the metallic fingers (i.e., half of the PCB) by using a mechanical mask. The values shown in the
sketch are reported in mm.

A commercial glove box (Cole-Parmer Instrument Company, Vernon Hills, IL, USA)
with a volume of about 0.25 m3 was used for the gas sensor tests. The sketch of the
experimental setup is shown in Figure 2 and also described elsewhere [28]. Thanks to
the use of calibrated flowmeters (one on the gas line for the NO2 gas cylinder already
mixed at 20 ppm and one for that of the synthetic air gas cylinder) and a precise controller,
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it was possible to regulate the flow of NO2 according to the 5–20 ppm concentration
range in the chamber, which was evacuated by a membrane pump (pressure of ~10 Pa)
to assure both stable conditions and fast removal of the gas during the different cycles
of measurement. The relative humidity was monitored and controlled to be in the range
of 50 ± 5% RH by a dedicated automatic humidity control system (humidity sensor,
humidifier, and desiccant drying system). Such RH range was selected because these are
typical values for indoor conditions. An electrometer (Keithley, Tektronix, Beaverton, OR,
USA, 487 Picoammeter/Voltage Source) was used for measuring the electrical resistance. To
control the measurements, customized software specifically developed with the LabVIEW
(National Instruments, Austin, TX, USA) language was used to record data in an automated
way. The same electronic measurement chain was used for the Arrhenius analysis of the
resistance evaluation as a function of the sensor temperature.
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Figure 2. Sketch of the experimental setup. The system is composed of a commercial glove box
equipped with an RH monitor and control system. For the gas exposure and the chamber evacuation,
two lines are connected, one to a gas mixing system and the other one to a membrane pump. The gas
concentration is obtained by mixing the flows from a synthetic air cylinder and calibrated cylinders
(certified by the company Nippon Gases, Anagni, Italy, which provided the gas mixture) that are
regulated by mass flow controllers. The sensor is electrically connected to an electrometer (Keithley
487), and the data acquisition is performed via a PC with customized software able to control and
register the gas exposure, the electrical signals, and the RH level.

3. Results

A visual inspection provided initial information about the effect of thermal annealing
by comparing the different samples. The as-deposited films appear dark (towards a dark
gray tone), whereas after the annealing, the films look transparent (i.e., white). Figure 3
shows optical images under UV-Vis fluorescent light source, showing the different optical
properties of the two films qualitatively.

Figure 4 shows the morphologies of the thin films investigated by FEG SEM. The
micrographs evidence the formation of granular films, with an average feature nanomet-
ric grain size of 100 ± 30 nm (calculated using the freely available software for image
analysis and processing ImageJ v1.54i) and the presence of some micron-sized droplets
or agglomerates and pores (i.e., lack of materials). The as-deposited samples result in a
more compact structure (i.e., with a lower average number of pores), even if a predominant
shape for the nanostructures cannot be distinguished in both cases. However, the random
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spatial orientation at the nanoscale should provide enhanced surface reactivity and fast gas
diffusion, which are required for good gas sensing performance.
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the PCB by using a 20× objective coupled to a DM6 M LEICA optical microscope and the LEICA
EL6000 UV-Vis fluorescent light source.
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Figure 4. SEM images of (a,c) as-deposited films and (b,d) annealed thin films.

Additionally, AFM was used to investigate and quantify the samples’ roughness,
which is one of the most informative parameters for gas sensors. The comparison of the
different thin films does not allow identifying features specific to each sample (Figure 5),
which presents similar values of roughness (146 nm and 132 nm for the as-deposited and
annealed samples, respectively) and a ratio of the effective surface area to the investigated
geometrical area equal to 1.1 for both samples. This means that the nanostructuring
increases the available surface for the detection of 10% with respect to a possible flat film.
This similar behavior is interesting since the annealing treatment is expected to modify the
grain size [29], whereas in this case, it seems to keep the overall surface structure unaltered.
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Figure 5. AFM topographies of as-deposited (a) and annealed (b) WO3 samples deposited on Al2O3.

The Raman spectra of the films are shown in Figure 6, where the WO3 main bands
at 75, 271, 711, and 807.5 cm−1 are detected for both samples. The band at 807.5 cm−1 is
assigned to the symmetric stretching mode of the WO3 monoclinic structure [30], whereas
the band at 711 cm−1 arises from the asymmetric stretching vibrations of WO3 [31]. The
band at 271 cm−1 is attributed to the O-W-O bending mode of vibrations [32]. Moreover,
the band at 75 cm−1 may be assigned to the (W2O2)n chain into the lattice of WO3 [33].
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Figure 6. Raman spectra of as-deposited and annealed WO3-based thin films on alumina substrates.

The Raman analysis indicates a better crystallization of WO3 for the annealed sample,
with the identification of sharper peaks (lower values of full width at half maximum for
most of the peaks). Conversely, the main bands for the as-deposited films are significantly
reduced in intensity and certainly broadened. This is possible to explain by considering
that the as-deposited films show coalescence of the formed nanostructures, resulting in an
increased light absorption and a consequential decrease in the Raman signal collected by
the detector. Interestingly, the thermal annealing performed in air does not induce further
oxidative phenomena (no different bands appear that could be attributed to differently
oxidized phases compared to the initial WO3).

To confirm this hypothesis, XRD measurements were performed (Figure 7). The
crystalline phase was detected only for the annealed sample, whereas the as-deposited
film presents an amorphous nature (in the spectrum, the only identified peaks, which are
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not labeled in the figure, correspond to the Al2O3 substrate). From the XRD pattern, the
peaks in the 2θ range 20–25◦ are the reflections of the (002), (020), and (200) crystal planes
of monoclinic WO3 (JCPD 01-089-4476), which is known to be the most stable phase for the
WO3 system.
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Figure 7. XRD spectra of the as-deposited and annealed WO3-based thin films on alumina substrates
in the range 2θ 20–60◦. The peaks not labeled by the crystallographic orientation correspond to the
Al2O3 substrate.

EDX measurements were performed on the samples to verify the chemical composition
of the structures. Since the morphology presents particles of different sizes, a statistical
analysis was carried out by acquiring spectra on several positions on the films deposited
on the Au-coated electrodes. The average values of the detected chemical elements are
reported in Table 1, whereas an exemplified map with the EDX spectra is shown in Figure 8.

Table 1. EDX elemental composition (in % atomic weight) of the as-deposited and annealed samples
taken on the Au fingers of the sensors.

Sample %C %O %Al %W %Au

Annealed 13.69 53.95 - 10.72 21.10
As-deposited 13.49 52.65 - 14.76 18.97

From this analysis, it appears that the quantity of the ratio W/O is generally higher
in the as-deposited films than in the annealed ones. It is important to state that no signal
from Al was detected, thus indicating that the volume investigated by EDX is stopped in
the Au electrodes without contribution of the alumina substrate. Even if a quantitative
analysis cannot be carried out (the %Au is higher in the annealed sample with respect to
the as-deposited one, meaning that probably the measured volume is not the same), the
oxygen deficiency for the as-deposited sample is clearly distinguished. Correlating the
results obtained from Raman spectroscopy (which identified the presence of WO3 on both
samples), XRD (which shows crystalline phases only after thermal annealing), and EDX, it
is probable to infer that the ns-PLD technique induces the formation of amorphous and
non-stoichiometric structures, like WO3−x, for the deposited films. Indeed, the different
stoichiometry is reported for WO3 systems with different colors [33], as it is the case of the
samples in this work (from the dark as-deposited films to the transparent and crystalline
films after thermal annealing).
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Before gas testing, electrical resistance (R0) measurements were performed in vacuum
(~0.1 Pa) as a function of temperature (T) from room temperature (RT) to 200 ◦C, with the
aim of determining the activation energy (EA) using the Arrhenius formula (Equation (1)):

R0 = R’·exp(EA/(kB·T)), (1)

where R’ is the pre-exponential factor and kB is the Boltzmann constant. For both samples,
the resistance decreases when the temperature increases, as expected for a semiconductor.
The as-deposited sample is more electrically conductive than the annealed one, with an
activation energy of 0.11 eV calculated from the application of a best fit (Figure 9). This
value is lower than that of the annealed film (0.36 eV).

From an electrical point of view, the sub-stoichiometry of the as-deposited films is
demonstrated to be beneficial for the transport of the charge carriers. Considering the
results obtained from the physico-chemical analyses, we can conclude that the electrical
data are indicative of a large presence of surface oxygen vacancies (VOs), as displayed for
other WO3-based complex structures [34], where the formation of VOs highly favors the
adsorption phenomena on the basis of the NO2 sensing mechanisms. A large concentration
of this kind of defect is reported for WO3−x structures [35] and also for WO3-based systems
affected by degradation in crystallinity [36], which are conditions fully compatible with
the as-deposited films in this work. The explanation of the recorded enhancement can be
found in the oxygen-deficiency conditions induced by the ns-PLD technique conducted
under vacuum without an oxygen flux, which natively promotes a boost in the presence
of VOs.
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The sensor gas response (defined as R/R0, where R is the sensor resistance upon gas
exposure compared to the baseline resistance R0) was studied in the concentration range
5–20 ppm and by varying the sensor temperature. First, the gas response was analyzed as a
function of temperature, as shown in Figure 10a. As expected from the well-known gas
sensing mechanism for n-type metal oxide semiconductors in an oxidizing environment
(like nitrogen oxide compounds, NOx), the electrical resistance increases when the material
is exposed to the gas [20]. The value of R/R0 increases up to 150 ◦C, where the maximum
values of 93 and 58 are reached for the as-deposited and annealed samples, respectively.
However, contrary to other proposed systems [13,37], the increase is below 5% in the range
75–150 ◦C, so the following characterization of the sensors will be performed at the fixed
temperature of 75 ◦C, with the aim of obtaining suitable performance while keeping the
operating temperature below 100 ◦C.

Figure 10b shows the dynamic response of the thin-film sensors at different NO2
concentrations ranging from 5 to 20 ppm. The gas response increases with an increase
in NO2 concentration, with a similar behavior shown for both samples. As it can be
observed in Figure 10c, a power fit (y = a × Cb, where C is the gas concentration and a,
b are the fitting parameters) is applied, similarly to the interpolation from a Freundlich
isotherm (a = 0.09 ± 0.03 and 0.12 ± 0.03 for the annealed and as-deposited sensors,
respectively). A quadratic dependence (b = 2.11 ± 0.10 and 2.21 ± 0.15 for the annealed and
as-deposited sensors, respectively) is calculated, thus indicating that the proposed sensors
are progressively more sensitive at high NO2 concentrations. Regarding reversibility, the
response transient curve of the sensors shows that the resistances recover to the initial
values after the removal of NO2, with an average recovery time, calculated as the time of
reaching at least 90% of the initial value, of 80 ± 10 s for both sensors. Additionally, the
sensors has a very fast response, reaching the saturation value at a fixed gas concentration
with an average time of 20 ± 5 s, which is in line with the results of the fastest sensors
reported in the literature [20,21].

Furthermore, considering the approach proposed in the literature for calculating
the detection limit (DT) of the sensors [38,39]—which can be obtained from the formula
DT = 3 × [5 ppm]/(R − R0)/σ, where σ is the electronic noise obtained during the electrical
measurement—a baseline gas concentration of 5 ppm over 10 min of exposure has been
investigated. From the resulting signal-to-noise ratio, a DT of 4 ppb has been calculated.
This analysis allows us to consider these sensors promising, identifying their target applica-
tion as the monitoring of NO2 in indoor environments such as buildings, where the gas
concentration is typically lower than 3 ppm, or industrial plants, where DT values as low
as possible are required.
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of 75 ◦C considering the saturation point taken from the dynamic curves.

In this context, a selectivity study has been carried out to understand the capability of
the as-deposited NO2 sensors compared to the detection of other gases. Figure 11 shows the
results obtained using the proposed system to measure other possible toxic gases present
in indoor conditions, like CO2, SO2, and O3. Even if a direct comparison cannot be made
because the concentration ranges are different for the gases according to the limitations of
the experimental setup in terms of accuracy under the minimum measurable level at which
the measurement was performed for each gas, it is possible to note that the WO3−x-based
sensors are extremely more sensitive to NO2, where the response is about five times higher
with respect to the other gases. Regarding ozone, whose detection was performed in the
ppb range, the gas response is very low (1.05 ± 0.05), and it is difficult to state if the sensor
is able to detect it.

The stability of the sensors based on the as-deposited thin films was tested by mea-
suring the sensitivity after several continuous cycles of exposure at the maximum gas
concentration of 20 ppm (Figure 12a). The gas response slightly decreases by increasing the
number of cycles, but the deviation from the starting value is less than 5% (85.8) after the
20th cycle of measurement, as shown in Figure 12b. This indicates a very good stability of
the sensor under critical conditions, which is also highlighted by the Raman spectrum of the
WO3−x thin films acquired after the test (Figure 12c). In fact, apart from a moderate increase
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in intensity of the band at 807.5 cm−1, which could indicate a modest modification of the
structure towards crystallization during the long operating conditions at a temperature of
75 ◦C, the spectrum remains unaltered after gas testing.
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Figure 11. Comparison of gas responses of the as-deposited WO3 thin-film sensor to different gases
at 75 ◦C at fixed gas concentration (110 ppm for CO2, 5 ppm for NO2 and SO2, 55 ppb for O3). The
gas concentration for each gas is the minimum level achievable in the calibrated experimental setup
used for this study (labelled on each column for every gas).
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Figure 12. (a) Gas response of the as-deposited sample measured at 20 ppm after twenty continuous
cycles of gas in/out; (b) example of dynamic response curves (eight curves) for the gas sensors at a
fixed gas concentration of 20 ppm and a fixed temperature of 75 ◦C; (c) Raman spectra before and
after the gas testing; (d) gas response of the as-deposited sample measured at 20 ppm on different
days of measurements spanned for 4 months.
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Additionally, to evaluate the lifespan and the reproducibility of the as-deposited
sensors, the results of the stability control over the long term and the batch-to-batch
reproducibility are reported. Figure 12d shows the gas response at 20 ppm after different
days of measurement. A decrease in performance was recorded, quantified in a reduced
gas response of 24% (gas response of 69) after four months from the first measurements.
It is important to note that the tests performed on days 1, 3, and 5 are prolonged tests in
critical conditions (20 cycles at 20 ppm) that could accelerate the deterioration of the surface.
However, by applying a fit to the recorded data, we can estimate the maximum time for
achieving a gas response higher than 1.2 (considered as the minimum reliable threshold of
detection) to be about 254 days.

Finally, three different samples were prepared and compared to evaluate the sensors’
reproducibility. Table 2 shows the results obtained for the different sensors (as-deposited)
for R0 and R measured under 20 ppm of NO2 concentration. This test indicates good batch-
to-batch reproducibility, with the recorded differences ranging within an experimental
error ≤ 2%.

Table 2. Values of resistance for three different as-deposited sensors in terms of baseline resistance
and resistance under exposure (5 ppm) at an operating temperature of 75 ◦C.

As-Deposited Sample Sample #1 (Ω) Sample #2 (Ω) Sample #3 (Ω)

R0 936.8 ± 4.9 944.4 ± 4.7 941.7 ± 4.7
R (5 ppm) 4680 ± 12.4 4748 ± 18.2 4686 ± 11.3

4. Discussion

To evaluate the results obtained in this work, a comparison with the main studies on
similar systems (WO3 for NO2 detection) was made. It is important to note that all the
mentioned works report that the change in resistance is an increase in the value when the
active material is exposed to NO2, which is typical for n-type semiconductors, as already
described previously. Therefore, the gas sensing mechanism is related to the adsorption
and desorption of gas molecules on the sensor surface, where the electronic concentration
varies according to the type of material (p- or n-type) and gas environment (reducing or
oxidizing atmosphere) [40]. This well-known working mechanism is based on the following
scheme: (1) oxygen molecules are chemisorbed on the surface, reacting with electrons of
the WO3-based layer and forming active oxygen species (like O2−, O−, etc.); (2) when
NO2 gas is present, oxygen species react with the gas by reducing the carrier concentration
in the surface material and thus increasing the electrical resistance. The efficacy of this
process depends on different factors, such as the presence of oxygen vacancies, electronic
defects, adsorption sites, etc. Table 3 shows the most significant solutions developed with
different techniques. For sake of clarity, only the works that considered the same method for
evaluating the gas response (as R/R0) have been presented. As it is possible to observe from
the table, most of the deposition methods are chemical synthesis for the formation of 1D and
2D nanoarchitectures. Generally, very significant results were obtained for WO3 nanosheets
that achieved high values of gas response at very low concentration levels (40 ppb). The use
of PLD has the advantage of being a physical method for rapid and scalable depositions for
the fabrication of large-area and serial sensors. Additionally, one of the advantages of this
work is the reduction in the device’s operating temperature under 100 ◦C. The objective is
to further decrease the temperature down to room temperature, as already reported for
different works present in Table 3. One possibility to obtain this condition is to apply doping
to the WO3−x matrix, which could enhance the performance, as shown in Ref. [41], or to
consider a multilayer approach for the formation of heterostructures with other metal oxide
semiconductors (like ZnO [42]), which significantly improves the performance through the
engineering of the heterojunction interface. In this context, PLD is a potential technique
that can be potentially beneficial for fabricating such different structures.
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Table 3. Performance of various structures based on WO3 in the sensing of NO2 gas.

System Deposition
Method

Gas
Response

Detected
Concentration

Response/Recovery
Times

Operating
Temperature References

WO3 nanoplates Hydrothermal 10 5 ppm - 100 ◦C [13]
WO3 nanoplates Hydrothermal 130 100 ppm - 100 ◦C [13]

WO3 nanoparticles Hydrothermal 251.7 5 ppm 11 s/124 s 100 ◦C [43]

WO3 nanorods Thermal
oxidation 2.02 10 ppm - 250 ◦C [44]

WO3 nanosheet Hydrothermal 30 40 ppb - 150 ◦C [45]

WO3 nanorods DC magnetron
sputtering 27 2 ppm - 250 ◦C [46]

WO3–ZnO
heterostructure Hydrothermal 186 200 ppm - 200 ◦C [42]

Polyaniline–WO3
thin film Hydrothermal 14.47 20 ppm - 50 ◦C [47]

2 wt % Sb-doped
WO3

Chemical method 51 10 ppm - 20 ◦C [41]

WO3 nanoparticles–
porous silicon Sol–gel 3.37 2 ppm 2 min/20 min 25 ◦C [48]

NiO/WO3
nanocomposites Chemical method 4.8 30 ppm 2.5 s/1.1 s 25 ◦C [49]

WO3 PLD 17 200 ppm - 300 ◦C [50]
WO3-Au PLD + Sputtering 69 200 ppm - 300 ◦C [50]

SnO2-doped WO3 PLD 39.5 20 ppm 6 s/13 s 150 ◦C [51]
As-deposited

WO3−x
PLD 5 5 ppm 20 s/80 s 75 ◦C This work

As-deposited
WO3−x

PLD 93 20 ppm 20 s/80 s 75 ◦C This work

Finally, the investigation at gas concentrations lower than 5 ppm will be needed in
the future to compare the performance with other solutions proposed in the literature and
confirm the calculated DT of 4 ppb obtained by applying a statistical method.

5. Conclusions

NO2 sensors based on WO3 thin films were successfully fabricated by the nanosec-
ond pulsed laser deposition technique. Structural and morphological analyses show the
formation of a granular amorphous material, which does not present additional chemical
phases not belonging to the WO3 composition. Thermal annealing (400 ◦C, 3 h, atmospheric
pressure) induces the organization of a crystalline structure in the film. The as-deposited
samples result to be more electrically conductive with respect to the annealed ones, prob-
ably due to a higher value of the ratio W/O with respect to the nominal stoichiometry,
as detected by EDX, which forms non-stoichiometric structures with a high number of
electronically active defects, i.e., oxygen vacancies into the WO3 film. The sensitivity of the
as-deposited sample is 1.8 times higher than that of annealed films at the device’s operating
temperature of 75 ◦C for a gas concentration of 20 ppm. The key factor enhancing sensing
performance is attributed to the higher amount of oxygen vacancies, which improve the
surface electrical properties of the thin films by increasing the number of charge carriers
available for the sensing mechanism. The stability of the fabricated sensors after several
cycles of measurement at the maximum concentration of 20 ppm, together with the possi-
bility of keeping the operating temperature at 75 ◦C, makes these gas sensors appealing for
their use in indoor monitoring applications for industrial plants.
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