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Abstract
Background & Aims: There is an unmet need for a reliable and reproducible non- 
invasive measure of fatty liver content (FLC) for monitoring steatotic liver disease in 
clinical practice. Sonographic FLC assessment is qualitative and operator- dependent, 
and the dynamic quantification range of algorithms based on a single ultrasound (US) 
parameter is unsatisfactory.
This study aims to develop and validate a new multiparametric algorithm based on 
B- mode images to quantify FLC using Magnetic Resonance (MR) values as standard 
reference.
Methods: Patients with elevated liver enzymes and/or bright liver at US (N = 195) 
underwent FLC evaluation by MR and by US. Five US- derived quantitative features 
[attenuation rate(AR), hepatic renal- ratio(HR), diaphragm visualization(DV), hepatic- 
portal- vein- ratio(HPV), portal- vein- wall(PVW)] were combined by mixed linear/ex-
ponential regression in a multiparametric model (Steatoscore2.0). One hundred and 
thirty- four subjects were used for training and 61 for independent validations; score- 
computation underwent an inter- operator reproducibility analysis.
Results: The model is based on a mixed linear/exponential combination of 3 US pa-
rameters (AR, HR, DV), modelled by 2 equations according to AR values. The com-
putation of FLC by Steatoscore2.0 (mean ± std, 7.91% ± 8.69) and MR (mean ± std, 
8.10% ± 10.31) is highly correlated with a low root mean square error in both 
training/validation cohorts, respectively (R = 0.92/0.86 and RMSE = 5.15/4.62, 
p < .001). Steatoscore2.0 identified patients with MR- FLC≥5%/≥10% with sensitiv-
ity = 93.2%/89.4%, specificity = 86.1%/95.8%, AUROC = 0.958/0.975, respectively 
and correlated with MR (R = 0.92) significantly (p < .001) better than CAP (R = 0.73).
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1  |  INTRODUC TION

In recent years, metabolic dysfunction associated steatotic 
liver disease (MASLD) has become the most common cause of 
chronic liver disease in Western countries and it is predicted to 
become also the most frequent indication for liver transplanta-
tion by 2030.1 The global prevalence of MASLD differs among 
geographical areas: United States–30%, Middle East–32%, South 
America–30%, Asia–27%, Europe–24% and Africa–13%, and is in-
fluenced by the different lifestyles and genetic factors.2 MASLD 
is closely associated with obesity, diabetes, insulin resistance, 
dyslipidemia and hypertension and is recognized as the hepatic 
manifestation of the metabolic syndrome. In addition, steatotic 
liver disease (SLD) is a comorbidity in many patients with chronic 
viral or autoimmune liver disease and major pathology in alcohol 
and many drug- induced liver diseases.1 Thus, the early measure-
ment of liver fat is of paramount clinical relevance for patients' 
management and decision- making; however, its evaluation by 
histology is limited because liver biopsy3 is an invasive procedure 
that is unsuitable for routine monitoring and burdened by sam-
pling error in cases of inhomogeneous distribution of intrahepatic 
fat.4 Therefore, in recent years, much attention has been paid 
to imaging techniques to non- invasively quantify liver steatosis, 
including ultrasound (US), computerized tomography (CT)5 and 
magnetic resonance (MR). Proton magnetic resonance spectros-
copy (1H- MRS) and proton density fat fraction (MRI- PDFF) are 
considered gold standard techniques,6 but they are time consum-
ing, expensive and not suitable for high throughput screening. CT 
is an ionizing technique, and, in addition, it demonstrated limited 
accuracy in steatosis detection.7 US is the most used technique: it 
is widely available, low cost and well tolerated by patients; how-
ever, the diagnosis of fatty liver content (FLC) by US is still consid-
ered operator- dependent with poor sensitivity and unsuitable for 
quantification.8 In fact, the degree of fat infiltration of the liver 
can be qualitatively estimated by grading some US features that 
include liver brightness, attenuation of the US signal across the 
liver parenchyma, contrast ratio between liver and kidney paren-
chyma, visualization of intrahepatic vessels and diaphragm.9 Since 
the assessment of the features by sonographers is qualitative and 
operator- dependent, quantitative US methods were proposed for 
the quantification of hepatic steatosis using a single- US param-
eter associated with fat accumulation.10 Controlled Attenuation 
Parameter (CAP, Fibroscan®, Echosens, Paris, France), continuous 

CAP (cCAP)11 and quantitative ultrasound (QUS)12 can be used 
to measure FLC, but both require the analysis of radiofrequency 
(RF) signals. Several different CAP cut- offs have been proposed 
for grading the steatosis severity classes suggesting the high vari-
ability of the technology. Furthermore, CAP has been shown to ef-
ficiently recognize low (<10%) and high (>33%) grades of steatosis 
with AUROC values higher than 0.90, but it is less efficient for 
intermediate degrees of steatosis.13

To overcome the limitations of the mono- parametric approach, 
few quantification systems have been developed combining the anal-
ysis of multiple US parameters14,15 extracted from both B- mode and 
raw RF signals. Recently, even the World Federation for Ultrasound 
in Medicine and Biology guidelines promoted the development of 
multiparametric US for quantifying liver fat content, by including 
attenuation, speed- of- sound and shear wave dispersion, that are 
still extracted from raw RF data.16 Accordingly, a multiparametric 
system based on ultrasound imaging that could be used both online 
and offline without the need of accessing the RF data would be ex-
tremely helpful. We recently proposed a quantitative multiparamet-
ric score (Steatoscore) representing the percentage of FLC obtained 
by a combination of five US parameters computed from B- mode US 
images using MR- derived measurements of FLC as gold standard.17 
Steatoscore was trained on 61 patients enrolled from two differ-
ent clinical centres achieving a correlation of 0.84 and a root mean 
square error (RMSE) of 6.41. In order to give more robustness to the 
prediction model of FLC and to overcome some limitations of the 
previous model, in the current study, we present the validation of 
the updated version of the Steatoscore (Steatoscore2.0) which con-
sists in a new model trained on a significantly larger cohort of sub-
jects with MR fat measurement acquired in a single clinical centre.

Conclusions: Multiparametric Steatoscore2.0 measures FLC providing values highly 
comparable with MR. It is reliable, inexpensive, easy to use with any US equipment 
and qualifies to be tested in larger, prospective studies as new tool for the non- 
invasive screening and monitoring of FLC.

K E Y W O R D S
fatty liver, MASLD, multiparametric model, quantitative ultrasound, Steatotic liver disease

HIGHLIGHTS

• There is an unmet need for non- invasive liver fat content 
measurement.

• Steatoscore2.0 exhibited excellent agreement with MR 
liver fat measurement.

• US multiparametric approach improves diagnostic accu-
racy in detecting steatotic liver disease.

• Steatoscore2.0 is inexpensive, easy to use and can be 
applied on any US equipment.
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    |  3DE ROSA et al.

2  |  MATERIAL S AND METHODS

2.1  |  Patients

The study enrolled 195 patients; 167 of them admitted at the 
Hepatology Unit, Pisa University Hospital, Italy, for liver disease clini-
cal evaluation because of elevated liver enzymes (transaminases and/
or gamma- glutamyl- transferase) and/or bright liver at US. Inclusion cri-
teria were as follows: age >18 years old and not contraindications at 
underwent MRI examinations. Patients with clinical, instrumental or 
biochemical signs of cirrhosis were excluded from the study. Subjects 
were consecutively enrolled, and US examinations were performed 
following a specific acquisition protocol to allow image analysis for 
parameter calculation (previously reported in17). In all the patients 
US and MRI examinations were performed within 1 week a part. Data 
from 134 patients (males:females 72:62, age: 52 ± 13 years old) were 
used for the model generation (training cohort) and data of 33 subjects 
(males: females 18:15, age: 56 ± 13 years old) were used to validate the 
model (validation cohort). A second external cohort of subjects (N = 28 
subjects, males:females 14:14, age: 49 ± 13 years old) has been used as 
external and independent cohort to further validate the model. Data 
on this second cohort have been acquired at IRCCS SDN Foundation 
of Naples and it was composed of consecutive individuals undergo-
ing a hepatology visit, none of them with already diagnosed metabolic 
syndrome or elevated serum iron and/or ferritin levels.

2.2  |  Ethics statement

The protocol was approved by the Ethics Committee of the 
University Hospital of Pisa (19/02/2016) and by the independent 
ethics committee of the IRCCS SDN Foundation (18/04/2013), for 
the population of Pisa and Naples, respectively. All the subjects 
signed a written informed consent.

2.3  |  1H- MRS and MRI- PDFF liver fat content 
evaluation

MR imaging was performed with two MR scanners (Pisa: Philips 
Ingenia 3.0 T, Philips Healthcare, Best, The Netherlands; Naples: 
Philips Achieva 1.5 T 3.0 T, Philips Healthcare, Best, The Netherlands). 
We used two commonly adopted MR- based quantification techniques, 
1H- MRS and MRI- PDFF, for FLC evaluation. Details of the two MR 
techniques used for FLC quantification are described in the following.

2.3.1  |  1H- MRS

Single- voxel magnetic resonance spectroscopy (1H- MRS) was ac-
quired with a point- resolved spectroscopy sequence (PRESS) with 
the same parameters described in.17 Spectral analysis was done 
offline using the jMRUI software package.18 Time- domain spectral 

fitting of the water peak at 4.7 ppm and of the lipid resonance (at 0.9, 
1.3 and 2.1 ppm) was performed using the AMARES method.19 1H- 
MRS values were assessed for each subject, normalizing the fitted 
signal amplitude of the fat to the sum of water and fat amplitudes.20

2.3.2  |  MRI- PDFF

Proton density fat fraction (MRI- PDFF) measurements were ac-
quired using a multi- echo gradient- echo MRI sequence (FOV 
440 × 400 mm, flip angle 3°, number of echoes 12, TR 15 ms, first TE 
1.1 ms, echo spacing 1.1 ms). PDFF maps were reconstructed offline 
using complex- based fitting of the source multi- echo images with a 
multicomponent water- fat model.20 PDFF values were recorded for 
each region of interest (ROI)/segment, and a final right- lobe MRI- 
PDFF value for each participant was obtained by averaging the val-
ues of the four corresponding ROIs.

2.4  |  CAP evaluations

CAP measurement by Fibroscan® 502 (Echosens, Paris, France) was 
obtained in a subgroup of 121 patients (all these patients have been 
enrolled in Pisa); M/XL probe was used when BMI </≥30 kg/m2 or if 
skin- to- capsule distance is </>25 mm according to the EASL- ALEH 
Clinical Practice Guidelines.21

2.5  |  US–acquisition

All US image acquisitions were performed with standard diagnostic 
US systems (Pisa: LogiQ E9, GE Healthcare, Bucking- Hamshire, UK 
and Naples: Philips iU22, Philips Healthcare, Bothell, WA, USA) both 
equipped with a 1.8–5 MHz convex probe. All acquisitions were per-
formed by a single experienced operator (one for each centre) blinded 
to MRI fat quantifications and with patients in the supine position in a 
temperature- controlled room (22°C–24°C). The images were acquired 
according to a defined protocol, that prescribe the acquisition of an 
intercostal or subcostal longitudinal scan view with subject in supine/
left lateral position, an oblique subcostal scan view and an acquisition 
of US images from a subcostal longitudinal view that is modified to cor-
rectly visualize a portion of the portal vein in the centre of the liver. All 
the images were acquired in breath- hold with the subject at maximal 
inspiration and maintaining the Time Gain Compensation (TGC) at a 
fixed value. All the US scans were then exported and saved on an ex-
ternal memory in order to be processed on a personal computer.

2.6  |  US–images processing

Five parameters were obtained by processing the US images. The 
theoretical basis of these parameters has been widely described in17 
and they are summarized in the following.
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4  |    DE ROSA et al.

Briefly:

• Attenuation Rate (AR) was calculated from the average of several 
grey level profiles (from 10 to 50 for each frame of the clip) along 
the US beam fitted by a decreasing exponential curve.22 These 
profiles were extracted considering a homogenous portion of the 
hepatic parenchyma avoiding as much as possible vessels or other 
structures.

• Hepatic- renal ratio (HR) represents the intensity ratio between 
the mean grey levels of a ROI placed within the liver parenchyma 
and of a second ROI within the renal cortex.

• Diaphragm visualization (DV) represents the mean peak intensity 
of five grey- level profiles of the diaphragm line normalized for 
both the overall gain of the B- mode scan and the depth at which 
the diaphragm is located.

• Portal vein wall (PVW) represents the ratio of the mean grey lev-
els of the hepatic parenchyma and of a ROI placed within the ves-
sel wall of the portal vein.

• Hepatic portal vein ratio (HPV) represents the ratio of the mean 
grey levels of the hepatic parenchyma and of a ROI placed inside 
the portal vein.

Note that for all subjects in the study cohort, evaluation of sin-
gle parameters and of the multiparametric score was successfully 
obtained. The US image processing algorithms for the evaluation of 
the US parameters were implemented on a graphical user interface 
(GUI) developed in MATLAB R2022b (The MathWorks Inc., Natick, 
MA, USA).

2.7  |  US parameters variability

The US parameters were computed by two different operators on 
the whole dataset. The variability analysis was performed to study 
the repeatability of the computation of each parameter and of the 
Steatoscore2.0.

2.8  |  Multivariable quantitative US models

Two classes of mathematical models (multiple linear and multiple 
exponential regression models) have been trained to build the pre-
dictive multiparametric score (Steatoscore2.0) for the assessment of 
FLC combining five5 US parameters and using MR imaging measure-
ments as the gold standard.

All models were trained both considering the full training data-
base, as well as splitting the training database according to the sign 
of the AR parameter. This choice was based on the physical mean-
ing of the AR parameter, i.e. attenuation or amplification of the ul-
trasound beam when AR >0 or AR≤0, respectively. In fact, a liver 
parenchyma that attenuates the US beam (positive AR) is generally 
characterized by a higher fat content than a tissue that does not 
show attenuation (AR negative), as the fatty tissue exhibits higher 

attenuation coefficients than other tissues.23 The best model to pre-
dict the FLC was obtained following a 3 steps procedure:

1. Selection of the US parameters that linearly and/or exponen-
tially correlate with a coefficient higher than 0.6 against the 
fat per cent value derived by magnetic resonance imaging;

2. Generation of the regression models:
 (i) Training on the main dataset of a fully linear, a fully expo-

nential and mixed (linear and exponential) multiparametric 
models. In this latter case, US features were included in the 
model as linear or exponential component according to the 
minimum value of root mean square error (RMSE) of the 
linear/exponential mono- parametric regression;

(ii) Iteration of the procedure described in steps 2a using the 
split dataset;

(iii) Selecting the best combination of two models derived at 
step 2b on the two split datasets. The final model was ob-
tained combining models with lowest RMSE;

3. Comparing all trained models and selecting the model 
(Steatoscore2.0) that showed the best RMSE on the full dataset. 
Training was performed using analytic forms of models' equations 
and the non- linear fit function Matlab command nlinfit. The mod-
els' coefficients were obtained iteratively with the minimization 
technique of the least square equation; RMSE, the coefficient of 
correlation (R) and the coefficient of determination (R2) between 
models' prediction and MR- derived fat content percentage have 
been evaluated for each model.

Once the model was parametrized, we assessed the prediction 
performance on the training/test set (training dataset, N = 134 sub-
jects). Finally, we performed the validation of that model evaluat-
ing Steatoscore2.0 on the independent dataset (validation dataset, 
N = 33 subjects) and a further validation on an external and indepen-
dent dataset (N = 28 subjects).

2.9  |  Statistical analysis

Descriptive statistics were computed for all variables and were 
expressed as percentages/counts for categorical variables and 
mean ± standard deviation (SD) for continuous variables. Correlations 
between variables were examined using Pearson's correlation coef-
ficients. The Bland–Altman Analysis (BAA) was performed to evalu-
ate the agreement between prediction fat content by the model 
and the gold standard. In particular, limits of agreement (LoA) and 
bias were assessed. Absolute errors (AEs) were assessed between 
the MR- derived fat per cent and the estimation of fat content value 
by the models; the Student's t- test was evaluated between distribu-
tions of AE values to statically compare different models. Receiver 
operator characteristic (ROC) curves were used to assess specificity 
and sensitivity of the model in discriminating patients with MRI fat 
values higher than the clinically accepted cut- off of 5% to discrimi-
nate health subjects from those with steatosis and of 10% to classify 
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    |  5DE ROSA et al.

absent/mild from moderate/severe level of steatosis and the cor-
respondent areas under the receiver operating characteristic curve 
(AUROC) were evaluated. Moreover, diagnostic accuracy, positive 
predictive value (PPV) and negative predictive value (NPV) were 
assessed by 2 × 2 contingency tables. The Intraclass Correlation 
Coefficient (ICC) and BAA were performed to evaluate the inter- 
operator variability. Correlation analysis and BAA were also per-
formed to validate the model on an independent (validation dataset) 
and external (external validation dataset) datasets. Correlation co-
efficient was also measured to assess correlation of CAP and MRI- 
PDFF values, and a statistical comparison between correlations of 
CAP and the proposed multiparametric model versus MRI- PDFF 
was evaluated by performing William's test for comparing depend-
ent correlations.24 Correlations were considered significant with 
R ≥ 0.300 and p < .05, while all other statistical tests were considered 
significant at p < .05. All statistical analyses were performed with 
SPSS Version 26 (IBM, Armonk, NY, USA) or with Matlab R2022b 
(The MathWorks Inc., Natick, MA, USA).

3  |  RESULTS

The demographic and clinical characteristics of the three cohorts 
(training, validation and external validation datasets) are reported in 
Table 1.

3.1  |  US–fat content estimation model

The quantitative values of the five parameters obtained in the train-
ing cohort are reported in Table 2. Table 3 reported the results of 
mono- parametric models (linear and exponential) for each of five 
US parameters (AR, HR, DV, HPW, PVW) on the training data-
set. Correlation plots between the US parameters and the MR fat 
content are shown in Figure S1 of Supplementary Materials with 
both linear and exponential fitting lines reported for each param-
eter. More in detail, AR, HR and DV (exponential only) showed a 

coefficient of correlation (R) greater than 0.6 [AR: 0.731 (linear), HR: 
0.761 (linear) and DV: −0.703 (exponential), respectively]. Hepatic 
portal vein- ratio (HPV) and portal vein wall (PVW) showed an R 
lower than 0.6 (both linear and exponential). Accordingly, HPV and 
PVW were excluded from the analysis for the generation of the fat 
content prediction model, while AR, HR and DV were included.

In Table 4 (first three rows) the results of multiparamet-
ric models on the training dataset (R = 0.83/0.81/0.85 and 
RMSE = 5.66/6.00/5.34 for fully- linear/fully- exponential/mixed 
models, respectively) are reported. Then, we performed the split of 
the dataset according to AR value (≤0 and >0) in order to differenti-
ate subjects showing attenuation from amplification. The results of 
mono- parametric and multiparametric models (both linear and ex-
ponential) on the two datasets derived from the split of the training 
dataset according to AR values are reported in Table 5. The best mul-
tiparametric model trained on the split dataset was chosen to maxi-
mize the performances in terms of RMSE minimization, by selecting 
among models trained on the two split datasets and by combining 
the two models with the minimum RMSE. Finally, the overall RMSE 
value was calculated by combining the RMSEs of the two models. 
The RMSE of the final models was equal to 5.15 and the correlation 
coefficient with the fat per cent values obtained by MR was equal 
to 0.86. The aforementioned best- performing model on the split 
dataset showed lower RMSE than the three multiparametric models 
trained on the no- split dataset (Table 4, first column), thus it was 
chosen as the final model (Steatoscore2.0).

TA B L E  1  Characteristics of the training, validation and external validation cohorts.

Characteristic Training (N = 134) Validation (N = 33) External validation (N = 28)
Significance level 
(p = .05)

Demographic

Age (years) 52 ± 13 (18–75) 56 ± 13 (26–75) 50 ± 13 (21–71) n.s.

Sex (male:female) 72:62 18:15 14:14 n.s.

Physical

Body mass Index 
(kg/m2)

26.7 ± 5.10 (15.8–41.7) 27.1 ± 5.0 (15.8–40.2) 25.3 ± 4.0 (15.3–31.5) n.s.

Imaging

MR–Fat (%) 8.13 ± 10.25 
(0.45–50.97)

7.99 ± 10.68 (0.70–39.62) 4.84 ± 7.44 (0.27–32.24) n.s.

CAP (dB/m) 260 ± 75 (100–400) 
N = 97

249 ± 71 (141–400) N = 24 221 ± 60 (122–332) N = 12 n.s

TA B L E  2  US quantitative parameters (mean ± standard 
deviation) assessed on the training database.

Mean ± std

AR 0.007 ± 0.019

HR 1.71 ± 0.79

DV 0.15 ± 0.075

HPV 0.15 ± 0.075

PVW 3.22 ± 1.12
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6  |    DE ROSA et al.

Accordingly, the Steatoscore2.0 was based on a mixed linear and 
exponential combination of the US parameters, modelled by two 
different equations depending on the value of the AR attenuation 
parameter and its analytical form is expressed by:

Steatoscore2.0=

⎧
⎪
⎨
⎪
⎩

3.21×exp(0.13×HR+4.46×AR−2.27×DV) AR≤0

13.3×exp(−13×DV)+3.53×HR+219×AR−4.6 AR>0.

The Steatoscore2.0 model has been proved to be statistically su-
perior to both the multiparametric fully- linear model (training dataset–
linear in Table 4, p < .001) and a similar result was achieved comparing 
the purely exponential model (training dataset–exponential in Table 4, 
p < .001). Finally, statistically significant better performances (p < .001) 
were obtained by comparing the Steatoscore2.0 with a mixed linear 
and exponential model (training dataset–mixed in Table 4).

3.2  |  Comparison of FLC measured by MR, 
Steatoscore2.0 and CAP

The correlation plots of MR- based fat content versus the 
Steatoscore2.0 values with the regression line as obtained on the 
training, validation and external validation datasets are shown 
in Figure 1A,C,E, respectively. The regression slope in the train-
ing cohort was 0.75 and the regression intercept was 2.06 (95% 
CI: 0.67–0.821). The Pearson correlation coefficient was R = 0.86 

and RMSE = 5.15. Bland–Altman plot of the comparison between 
Steatoscore2.0 and MR in the training dataset is shown in Figure 1B. 
The bias was non- significant (0.0, p = 1.0) and the lower and upper 
95% limits of agreements (LoA) were − 10% and + 10%, respectively. 
In the validation cohort, the coefficient of correlation between MR- 
based and Steatoscore2.0 fat measurements is 0.92 with a RMSE of 
4.62. Bland–Altman plot of the comparison between Steatoscore2.0 
and MR in the validation dataset is shown in Figure 1D. The bias 
was non- significant (−0.95, p = .24) and the lower and upper 95% 
LoA were − 10.0% and + 8.0%, respectively. Results on the external 
validation cohort showed a coefficient of correlation between MR- 
based and Steatoscore2.0 fat measurements of 0.83 and an RMSE 
of 4.17; the Bland–Altman plot showed a non- significant bias (−0.49, 
p = .49) and a 95% LoA of −7.6% and 6.6% (Figure 1F).

On the whole study population, the ROC curve discriminating 
subjects with MRI values ≥5% or ≥ 10% (Figure 2A,B) showed AUROC 
of 0.958 and 0.975, 95% interval of confidence (IC) of [0.922, 0.993] 
and [0.950, 0.999], sensitivity of 93.22% and 89.36% and specific-
ity of 86.11% and 95.83%, respectively. The diagnostic accuracy of 
Steatoscore2.0 in identifying patients with FLC ≥5% (Table S1 of 
Supplementary materials) and ≥ 10% (Table S2 of Supplementary 
materials) at MRI was 88.62% and 94.01%, with PPV of 95.88% and 
95.83% and NPV of 78.57% and 89.36%, respectively.

In the subgroup in which CAP was available, the correlation analy-
sis between CAP and MR values (Figure 3A) showed a R = 0.73 which 
was statistically lower than the correlation between Steatoscore2.0 

TA B L E  3  Performances of the linear and exponential mono- 
parametric models (one for each US parameter) trained on the 
training database.

AR HR DV HPV PVW

Linear

RMSE 6.47 6.68 8.49 9.11 8.56

R 0.754** 0.761** −0.566 −0.058 −0.347

p <0.001 <0.001 <0.001 n.s. <0.001

Exponential

RMSE 7. 02 7.69 6.88 9.03 7.83

R 0.731** 0.665** −0.703** −0.068 −0.505

p <0.001 <0.001 <0.001 n.s. <0.001

**The cells with the lower RMSE value for both linear/exponential 
models.

RMSE R p
t- test between AEs Model vs 
Steatoscore2.0

Training Dataset

Linear 5.66 0.83 <.001 <0.001

Exponential 6.00 0.81 <.001 <0.001

Mixed 5.34 0.85 <.001 <0.001

Steatoscore2.0

Exponential (AR≤0) 
+mixed (AR >0)

5.15 0.86 <.001 1

TA B L E  4  Comparison between the 
multiparametric models on the training 
database (fully linear, fully exponential 
and the best combination) and on the split 
database (best model).

TA B L E  5  RMSE values of the mono/multi- parametric models 
(linear and exponential) trained on the split dataset.

AR HR DV
Multiparametric 
(AR, HR, DV)

RMSE

AR ≤0

Linear 2.21 2.22 2.19 2.14

Exponential 2.17* 2.18* 2.15* 2.13*

AR >0

Linear 7.94* 7.90* 10.21 6.59

Exponential 8.36 8.62 8.84* 7.37

Mixed n.a. n.a. n.a. 6.43*

*The cells with the lower RMSE value.

 14783231, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.16078 by L

aura D
e R

osa - C
N

R
 Pisa , W

iley O
nline L

ibrary on [05/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7DE ROSA et al.

F I G U R E  1  Comparisons between the fat percentage values calculated with gold standard (MR) and with Steatoscore2.0 on training 
(N = 134), validation (N = 33) and the external validation (N = 28) datasets. (A) Linear regression between Steatoscore2.0 and MR fat% on 
training set. (B) Bland–Altman plot (Steatoscore2.0 vs. MR fat%) on training set. (C) Linear regression between Steatoscore2.0 and MR fat% 
on validation set. (D) Bland–Altman plot (Steatoscore2.0 vs MR fat%) on validation set. (E) Linear regression between Steatoscore2.0 and MR 
fat% on the external validation set. (F) Bland–Altman plot (Steatoscore2.0 vs MR fat%) on the external validation set.
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8  |    DE ROSA et al.

and MRI values in the same group of 121 patients (R = 0.92, p < .001) 
(Figure 3B).

3.3  |  Reproducibility of quantitative US parameters

Two different operators (Op1 and Op2) evaluated US parameters 
(AR, HR, DV, HPV and PVW) and Steatoscore2.0 on the cohort 
(N = 167) of patients enrolled in Pisa. AR, HR, DV and Steatoscore2.0 
computed by the first operator were strongly correlated with the 
measurement made by the second operator (AR: R = 0.94, HR: 
R = 0.90, DV: R = 0.85, Steatoscore2.0: R = 0.96; p < .001 for all). 
HPV and PVW values obtained by the two operators were mod-
erately correlated (HPV: R = 0.54, PVW: R = 0.62 and p < .001 for 

both). The inter- observer ICC values obtained for AR, HR, DV 
and Steatoscore2.0 were 0.97, 0.95, 0.92 and 0.98, respectively. 
The analysis performed on HPV and PVW parameters resulted in 
lower ICC values (0.60, 0.72, respectively). The BAA performed on 
Steatoscore2.0 measurement shows an excellent agreement be-
tween the two operators, with a negligible bias (of −0.27, not signifi-
cantly different from 0 and with p = .14) and satisfactory LoA (−4.8% 
and + 4.3% for lower and upper limit, respectively) (Figure 4).

4  |  DISCUSSION

The new multiparametric quantitative US imaging- based method 
(Steatoscore2.0) to measure fatty liver content (FLC) showed a good 

F I G U R E  2  Receiver operating characteristic (ROC) curves of Steatoscore2.0 for the diagnosis of liver fat content obtained using MRI fat% 
>5% (A) and 10% (B) as the cut- off values.

F I G U R E  3  Correlation analysis between CAP and MR fat % and between Steatoscore2.0 and MR fat% on a subgroup of subjects (N = 121 
patients). (A) CAP versus MR fat% values. (B) Steatoscore2.0 versus MR fat% values.
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correlation (R = 0.92, RMSE = 5.15) with the reference standard MRI 
as demonstrated also by the absence of bias in the Bland–Altman 
analysis (BAA) (bias = 0.0, p = 1.0). The new model was implemented 
in a large cohort of 195 patients (134, 33 and 28 in training, validation 
and external validation datasets, respectively): a larger sample size 
than most of the studies proposing US- based methods to estimate 
liver fat content using MR values as reference standard.25- 31 In addi-
tion, the high diagnostic performance showed by Steatoscore2.0 in 
the training cohort where most of the patients had MRI FLC <10% 
qualifies the method as very promising tool to stratify patients in 
clinical practice.

The Steatoscore2.0 is powered by an optimized image processing 
software aimed to improve the reproducibility of the measurements 
as confirmed by the Intraclass Correlation Coefficient (ICC) of 0.98 
and to promote the implementation of the method on commercial 
US devices. In this context, using a dataset focused on individuals 
with low- fat percentages has meant to improve the accuracy of FLC 
measurement in patients with low levels of steatosis, that is crucial 
but challenging for screening purposes.32 Indeed, the proposed sys-
tem is able to discriminate patients with MRI fat values ≥5% with a 
sensitivity, specificity, PPV, NPV and accuracy of 93.22%, 86.11%, 
95.88%, 78.57% and 88.62%, respectively, and an AUROC of 0.958. 
Nevertheless, Steatoscore2.0 showed a high diagnostic perfor-
mance (sensitivity, specificity, PPV, NPV and accuracy of 89.36%, 
95.83%, 95.83%, 89.36%, 94.01%, respectively) in the identification 
of patients with higher fat content (≥10%) and an AUROC of 0.975. 
We also reported (Figure 2A,B) the optimal cut- offs obtained by 
maximizing the Youden indexes, which may be useful for a prelim-
inary dichotomization of patients with or without >5%/>10% liver 
fat%. However, we recommend to use the quantitative value of the 
Steatoscore2.0 (instead of cut- off values) in the clinical practice, due 
to the great advantage of having a continuous measurement of the 
percentage of liver fat expressed in the same measurement unit of 
the recognized MRI gold standard. Therefore, Steatoscore2.0 ap-
pears as a suitable and reliable screening tool, but also it could be 

used for the follow- up and clinical management of the single patient 
with SLD/MASLD.

The methodology used to implement the model, namely the 
use of different statistical model in addition to multivariate linear 
regression, allowed to maximize the performances: specifically, 
US parameters were combined using linear, exponential and a mix 
of these models, which led to the identification of the three most 
relevant US parameters (AR, HR and DV) that are combined in 
the final prediction multiparametric model. Very recently, several 
non- imaging multiparametric models have also been proposed as 
predictor indexes of MASLD,33–35 that may be mainly used to pre-
dict the presence/absence of MASLD but not to directly quantify 
liver fat content for which US imaging- based parameters are more 
suitable, as also recommended in.36 To this regard, to date, there 
are few multiparametric systems capable to quantify the degree 
of hepatic steatosis from the processing of B- mode ultrasound im-
ages only, as most of the proposed systems are based on a single 
parameter. However, multiparametric US- based systems to mon-
itor the progress of MASLD are very recently gaining increasing 
attention.16 With the validation of the Steatoscore2.0, we demon-
strated that multi- parametricity strengthens the accuracy of the 
estimate compared to single- parameter models. Moret et al.37 
studied the correlation between the “B- mode ratio” and MRI in 
subjects with chronic liver disease finding a lower correlation with 
respect to our HR (0.6137 vs. 0.72 HR, p < .001 for both). In their 
studies, Jeon et al.25 and Ferraioli et al.,26 reported a good agree-
ment between ATI and MRI- PDFF measurements of FLC, showing 
correlation values ranging between R = 0.6625 and R = 0.81.26 As 
regards multiparametric systems, Han et al.38 proposed a sys-
tem reporting a correlation with MRI- PDFF of 0.76, while Labyed 
et al.39 proposed a two- parameter model for predicting MRI- 
PDFF, achieving a correlation of 0.87 and an RMSE of 4.5, com-
parable with our results (R = 0.92, RMSE = 4.62). Furthermore, in 
our work some single- parameter models were tested, from the 
simplest linear regression model to the exponential one. However, 
the significant improvement in performance was achieved only 
by switching to the multiparametric system. Indeed, the best 
mono- parametric model (using HR as a predictor) showed an R 
and RMSE of 0.76 and 6.68, respectively, which were significantly 
(William's test p < .001 and absolute errors t- test p < .001) lower 
than the prediction performance achieved by multiparametric 
Steatoscore2.0 (R = 0.92 and RMSE = 5.15). Furthermore, compar-
ing CAP measurements with MRI values on a subgroup of sub-
jects, we obtained an R of 0.73, significantly lower (William's test 
p < .001) than the correlation between Steatoscore2.0 and MRI 
values (R = 0.92).

Interestingly, the correlation between Steatoscore2.0 and MRI 
was comparable in the training, validation and external cohorts 
(0.92, 0.86 and 0.83) with similar RMSE (5.15, 4.62 and 4.17).

As regards the system reproducibility, inter- observer ICC values 
obtained for AR, HR, DV and Steatoscore2.0 demonstrate an excel-
lent reproducibility (0.97, 0.95, 0.92 and 0.98, respectively). These 

F I G U R E  4  Study of inter- observer variability. Bland–Altman plot 
to evaluate the Steatoscore2.0 inter- observer reproducibility.
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results have also been confirmed by the absence of a significant bias 
(−0.27, p = .14) and the range of LoA [−4.8; 4.3] in the BAA.

In our study, none of the subjects presented an estimated glo-
merular filtration rate <60 mL/min/1.73mq (median value of 98.1 
and IQR 25%–75% of 88.3–104.9). Although we did not exclude 
patients with chronic kidney disease (CKD) a priori, our cohort was 
relatively young and did not present a high burden of risk factor 
for CKD. In the presence of advanced stages of kidney disease, the 
reduction in the cortical thickness and the “contracted” appear-
ance of the kidney on ultrasound could limit the accuracy of the 
HR parameter, although this can be hampered by the multipara-
metric nature of the score. Future validation in this clinical setting 
would be needed.

Furthermore, the exclusion of patients with cirrhosis and the 
acquisition of ultrasound images by a single operator (one for each 
centre) are two main limitations of our study. The former was due 
to the need for a specific validation in cirrhotic patients, whose 
US images usually show a higher attenuation of the US beam, thus 
making them less suitable for the estimation of liver fat with a 
model using such a parameter. As well as for patients with CKD 
even at an early stage, which may impact on the value of HR pa-
rameter and, therefore, on the final score. Nevertheless, being the 
proposed model based on a multiparametric approach, it might 
prove in such patients (i.e. cirrhotic and advanced CKD patients) 
much more useful than mono- parametric models which are only 
based on the measurement of attenuation. The latter resulted 
from the decision to limit the inter- operator variability during the 
model generation phase. Future studies should therefore inves-
tigate the feasibility of Steatoscore2.0 in cirrhotic patients and 
the reproducibility of the results with data acquired from multiple 
sonographers. Finally, as the number of patients with high fat con-
tent (>24%) at MRI examination was limited (17 patients, 10% of 
the whole population) future studies should include these patients 
also. The challenging adoption of Steatoscore2.0 on patient with 
very high BMI (higher than 35 kg/m2) can be considered another 
limitation of the study, as it is well known that distal attenuation is 
also dependent on the physical conformation of patients, and for 
subjects with high BMI, a part of the attenuation may be due to 
physical conformation and not necessarily to steatosis. However, 
the multiparametricity of the proposed score can reduce the im-
pact of noisy distal attenuation.

In addition, difficulties in performing US examination due to me-
teorism or poor acoustic window, represent a limitation in assessing 
Steatoscore2.0, but it is worth emphasizing, as already demon-
strated in the previous paper,40 that right intercostal scanning can 
be used for comparison between renal cortex and liver parenchyma. 
This approach allows for clip acquisition even during the most chal-
lenging US examinations. An insurmountable limitation remains in 
the feasibility of the multiparametric score in all cases where com-
parison between cortex and liver parenchyma is not possible, such 
as renal agenesis, renal ectopia, nephrectomy, renal cortex thinning 
secondary to chronic disease and polycystic kidney disease. In these 
latter cases, Steatoscore2.0 calculation cannot be performed.

In conclusion, the proposed multiparametric approach based 
on three US- imaging features associated with intrahepatic fat ac-
cumulation is feasible and reliable to quantify fatty liver in clinical 
practice showing a good accuracy as compared to the standard MR 
fat percentage assessment. This method is quite inexpensive, easy 
to use and can be applied on any US equipment and qualifies as a 
new tool for fatty liver disease screening and monitoring response to 
therapies and lifestyle changes. These results prompt future studies 
aimed to evaluate the performance of this software tool in larger and 
different cohorts of patients including those with more advanced 
liver diseases and cirrhosis.
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