
Journal of Computational Physics 499 (2024) 112717

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Evaluation of advection schemes and surface tension model for 

algebraic and geometric VOF multiphase flow solvers

Simone Di Giorgio a,c,∗, Sergio Pirozzoli b, Alessandro Iafrati a

a Istituto di Ingegneria del Mare, Consiglio Nazionale delle Ricerche (INM-CNR), Via di Vallerano 139, Rome, 00128, Italy
b Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, Rome, 00184, Italy
c Institute of Fluid Mechanics and Heat Transfer, TU-Wien, Getreidemarkt 9, Vienna, 1060, Austria

A R T I C L E I N F O A B S T R A C T

Keywords:

Multiphase flows

Volume of Fluid method

Advection schemes

Energy conservation

Surface tension

This paper addresses the validation and verification of numerical models for complex multiphase 
flows involving immiscible fluids. Specifically, the focus is on the dynamics of the interface 
between the fluids, which remains a challenge in many applications. Previous studies have 
primarily examined simpler flows with limited complexity, while real-world scenarios involve 
intricate interfaces and turbulent dynamics. To overcome this, a representative test case involving 
the motion of an oil cube within a water cube proposed by [12] is used. Different computational 
models using volume-of-fluid (VOF) approaches are validated and compared, with particular 
attention given to the influence of numerical schemes for convective terms. The impact of these 
schemes on integral quantities and interface dynamics is analyzed. Particular attention is paid 
at the surface tension contribution to the energy budgets, which is usually neglected in the 
available literature. Furthermore, it is shown here that, the model adopted for the surface tension 
is responsible for an additional contribution to numerical dissipation. To the authors’ knowledge, 
it is the first time that a detailed analysis of such aspects is presented.

1. Introduction

In recent years, significant progress has been made in developing numerical models to simulate multiphase flows and immiscible 
fluids, with a particular emphasis on their validation and verification. One crucial aspect of these flows is the accurate representation 
of the interface dynamics between the two fluids. Previous studies validating interface tracking algorithms have often relied on 
assuming a prescribed and time-varying velocity field [37,33,11]. More comprehensive validation studies have been conducted 
for multiphase flow solvers that couple the solution of the Navier-Stokes equations with interface tracking/capturing algorithms. 
These studies involve comparisons with experimental data or theoretical solutions, often of a linear nature [20]. However, in these 
scenarios, the interface topology is usually not very complex, the flow itself is relatively simple, typically involving a single scale, and 
the comparisons focus on a limited number of physical aspects. Examples of these aspects include the continuity of stresses across 
the interface in a two-phase Poiseuille flow [2], the application of the Laplace law to a spherical or circular drop [30], the analysis 
of oscillation modes of a free surface in the linear regime [32], the head-on coalescence of two drops [1,34], or the Rayleigh-Plateau 
instability causing the breakup of a low-velocity round jet [7], to name just a few. However, none of these problems consider the 
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presence of a material interface near a turbulent flow involving two-phase dynamics, despite such situations being common in many 
practical scenarios.

In fact, highly complex multiphase flows are relevant to numerous industrial and environmental problems. To illustrate a few 
examples, these include the atomization of a liquid jet in an engine [22,23,10], phase separators in chemical engineering processes, 
ladle-based steel elaboration, boiling crises in nuclear reactors [15], complex bubbly flows such as the flow past Taylor bubbles in 
pipes [25], droplet or asteroid impacts [21], wave impact on structures, and the widespread phenomenon of wave breaking [6,8]. 
In most cases, computational approaches need to address the multiscale nature of these flows, especially in environmental and 
engineering contexts. On one hand, the largest interfacial length scales are associated with structures like jets, films, or massive 
drops. On the other hand, small interfacial scales emerge from fragmentation processes of bubbles or sprays, leading to the formation 
of microbubbles or microdroplets and the generation of dissolved aerosols. These two significantly different ranges of interfacial 
scales interact nonlinearly through processes such as ligament break-up or drop/bubble coalescence. The turbulence or unsteadiness 
of the carrier fluid motion plays a crucial role in governing these interactions.

One significant challenge lies in defining a benchmark that accurately represents the multiscale sharp interface structures evolving 
in a turbulent flow. In an effort to address this, Estivalezes et al. [12] proposed an artificial problem as a representative test case 
where all the typical issues and physical phenomena of multiphase flows come into play. In this problem, a cubic volume of oil 
initially positioned inside a cube of water moves upward due to the density difference between the two phases. In that reference, 
multiple multiphase solvers based on both the volume-of-fluid (VOF) approach [19] and the level-set approach [27] were compared, 
mainly in terms of macroscopic and integral quantities such as potential and kinetic energies, as well as enstrophy. However, a 
detailed analysis of the influence of the numerical discretization schemes used for the convective terms was not presented.

This study focuses on analyzing the impact of different numerical schemes for the convective terms on integral quantities, such as 
total energy, kinetic energy, and energy dissipation, as well as the dynamics of the interface between the two phases. The influence of 
the discretization schemes on the computed solution is herein assessed for both the algebraic and geometric VOF method. Specifically, 
both the algebraic TVD-VOF (Total Variational Diminishing) scheme as developed by Pirozzoli et al. [29], and the geometric VOF 
method developed by Weymouth and Yue [36] are considered. Particular attention is paid at estimating the contribution of surface 
tension to the energy budget, and to highlight errors introduced by the chosen discretization methods.

2. The numerical solver

The computer code solves for the Navier-Stokes solver for an incompressible two-fluids system with density and viscosity varying 
across their interface. The fluids are assumed to be immiscible, and the interface is implicitly tracked by means of an indicator 
function 𝜒 . The governing equations in nondimensional form are

∇ ⋅ 𝐮 = 0, (1)

𝜕𝐮
𝜕𝑡

+∇ ⋅ (𝐮𝐮) = 1
𝜌

[
−∇𝑝+ 1

Re
∇ ⋅

(
𝜇
(
∇𝐮+∇𝐮𝑇

))
+ 1

We
𝐟𝜎
]
− 1

Fr
𝐣, (2)

𝜕𝜒

𝜕𝑡
+ 𝐮 ⋅∇𝜒 = 0, (3)

where 𝜒 is the phase function, 𝐮 = 𝐮 (𝐱, 𝑡) is the fluid velocity, 𝑝 = 𝑝 (𝐱, 𝑡) is the pressure, 𝜌 = 𝜌 (𝐱, 𝑡) is the density, 𝜇 = 𝜇 (𝐱, 𝑡) is the 
dynamic viscosity, and 𝐣 is the unit vector oriented upwards. The surface tension is modelled as a volumetric force concentrate at the 
interface,

𝐟𝜎 = 𝑘𝛿
(
𝐱 − 𝐱𝑠

)
𝐧, (4)

where 𝑘 is the local curvature of the interface between the two fluids 𝐧 is the unit normal of the interface, and 𝛿 is the Dirac function 
which localizes the force at interface points, 𝐱𝑠 [35].

In equation (2), Re, We, and Fr are the Reynolds, Weber, and Froude numbers, respectively, defined as

Re = �̃� �̃��̃�
�̃�
, We = �̃��̃�

2�̃�

𝜎
, Fr = �̃�

2

𝑔�̃�
, (5)

where 𝜎 is the surface tension coefficient, 𝑔 is the gravity acceleration, �̃� and �̃� are the reference values for length and velocity, 
respectively.

In the VOF (Volume of Fluid) approach the phase function 𝜒 accounts for the volume fraction of one of the two phases, and the 
local density and viscosity are then defined as

𝜌 = 𝜌1𝜒 + (1 − 𝜒)𝜌2, 𝜇 = 𝜇1𝜒 + (1 − 𝜒)𝜇2. (6)

In this work, equation (3) is discretized by means of both algebraic and geometric VOF. The TVD-VOF method developed by 
Pirozzoli et al. [29] is considered as a candidate for the algebraic approach, whereas the method proposed by Weymouth and 
Yue [36] is considered as a candidate for the geometric approach. The Navier-Stokes equations are solved with a classical projection 
method in which the momentum equation is advanced in time by neglecting the pressure gradient. Hence, the pressure gradient term 
2

is determined by enforcing the continuity equation and it is added to the intermediate velocity field in a correction step [4,26]. Time 
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integration is carried out by means of the Adams–Bashforth explicit scheme for the convective terms and for the off-diagonal part of 
the viscous terms, and the Crank–Nicolson scheme for the diagonal diffusion terms. Hence, equation (2) becomes in discrete form

𝐮𝑛+1 − 𝐮𝑛
Δ𝑡

= − 1

𝜌𝑛+
1
2

∇ℎ𝑝−
(3
2
𝐍𝑛
ℎ
− 1

2
𝐍𝑛−1
ℎ

)
+ 1

2𝜌𝑛+
1
2

(
𝐃𝑛
ℎ
+𝐃𝑛+1

ℎ

)
+ 1

𝜌𝑛+
1
2

𝐟𝑛 , (7)

where Δ𝑡 is the time step. The superscript 𝑛 denotes quantities evaluated at the beginning of the step and 𝑛 + 1 identifies the end 
of the step. As suggested by Popinet [30], the material properties (viscosity and density) in the previous equation are evaluated 
by advancing the respective transport equation at staggered times at 𝑛 + 1∕2. In the above equation 𝐍ℎ and 𝐃ℎ denote discretized 
advective and diffusive terms, respectively, and 𝐟 includes both gravity and surface tension forces. Similarly, ∇ℎ stands for the 
gradient operator in discrete form. The momentum equation (7) is complemented with the divergence-free conditions,

∇ℎ ⋅ 𝐮𝑛+1 = 0 . (8)

The momentum equation (7) is solved in two steps. In the predictor step a preliminary velocity field (𝐮∗) is determined by ignoring 
the effect of the pressure,

𝐮∗ − 𝐮𝑛
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= −
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In the correction step the pressure gradient is added to the preliminary velocity field to yield the velocity field at the new time step,

𝐮𝑛+1 − 𝐮∗
Δ𝑡

= − 1

𝜌𝑛+
1
2

∇ℎ𝑝 . (10)

The sum of equations (9) and (10) yields exactly equation (7). By taking the divergence of equation (10) and using equation (8) to 
eliminate 𝐮𝑛+1, a variable-coefficients Poisson equation for the pressure is obtained
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(
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1
2

∇ℎ𝑝

)
= 1

Δ𝑡
∇ℎ ⋅ 𝐮∗ , (11)

whose solution yields the pressure, and thus the updated velocity field via equation (10).

The convective terms and the off-diagonal part of the viscous operator are rearranged as
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whereas the diagonal part of the viscous term becomes
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which, by defining 𝛿𝐮𝑛 = 𝐮∗ − 𝐮𝑛, allows to reformulate the problem in delta form,
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Starting from equation (9), it follows that
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The left-hand side of the above equation is discretized using second-order finite differences, and the right-hand side is denoted as 
𝑅𝐻𝑆𝑖, where 𝑖 is the 𝑖-th component, thus yielding[

1 −Δ𝑡
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The above equation is then solved through approximate factorization, namely(
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The left-hand-side of equation (17) can be shown to be a third-order accurate approximation of the large sparse matrix at the 
left-hand-side of equation (16) [26]. Equation (17) can then be solved by sequential application of tridiagonal equations solvers,(

1 −𝐴𝑖1
)
𝛿𝑢∗∗
𝑖

=𝑅𝐻𝑆𝑖,(
1 −𝐴𝑖3

)
𝛿𝑢∗
𝑖
= 𝛿𝑢∗∗

𝑖
,(

1 −𝐴𝑖2
)
𝛿𝑢𝑛
𝑖
= 𝛿𝑢∗

𝑖
,

(19)

where 𝛿𝑢∗∗ and 𝛿𝑢∗ denote time increments at fictitious intermediate stages.

The solution of the Poisson equation (11) for the corrective pressure is the most expensive part of the algorithm, as it should 
be carried out with iterative methods. In this respect, the algorithms in the HYPRE library [13] are found to be quite efficient in 
massively parallel computations. Either geometric multigrid and Krylov methods have been tested, the latter resulting to be more 
robust in the presence of complicated interface topologies.

2.1. Spatial discretization

The momentum equations are discretized in the finite-difference framework with a staggered grid layout, where the pressure, the 
phase function and the material properties are defined at the cell centers, whereas the velocity components are stored at the middle 
of the cell faces [17]. The right-hand-side (𝐑𝐇𝐒) of equation (15), is rewritten in order to cast convective and diffusive terms in a 
more canonical form,

𝐑𝐇𝐒 = −
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ℎ
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𝐣 ,

(20)

where 𝐇ℎ and 𝚺ℎ denote, respectively, convective and viscous terms. Terms associated with variation of viscosity appear in this case, 
which are rearranged as

1
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(
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1
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)
−∇ℎ ⋅

(
𝜇𝑛+
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, (21)

and exploiting incompressibility one obtains

∇ℎ ⋅
(
𝜇𝑛+

1
2 ∇𝐮𝑇 𝑛

)
= ∇ℎ𝐮𝑇 𝑛∇ℎ𝜇

𝑛+ 1
2 + 𝜇𝑛+

1
2 ∇ℎ ⋅ ∇ℎ𝐮𝑇 𝑛 = ∇ℎ𝐮𝑇 𝑛∇ℎ𝜇

𝑛+ 1
2 + 𝜇𝑛+

1
2 ∇ℎ

(
∇ℎ ⋅ 𝐮

)
= ∇ℎ𝐮𝑇 𝑛∇ℎ𝜇

𝑛+ 1
2 . (22)

As for the convective terms, defined as

𝐇𝑛
ℎ
=∇ℎ ⋅ (𝐮𝑛𝐮𝑛) , 𝐇𝑛−1

ℎ
=∇ℎ ⋅

(
𝐮𝑛−1𝐮𝑛−1

)
, (23)

a centered second-order discretization is used (e.g., [17,26]), which is generally best suitable for fully resolved single-phase flows, 
yielding discrete preservation of the total kinetic energy. For the diffusive terms, which are written as

𝚺𝑛
ℎ
=∇ℎ ⋅ 𝜇

𝑛+ 1
2
(
∇ℎ𝐮𝑛 +∇ℎ𝐮𝑇 𝑛

)
, (24)

a standard second-order central discretization is used [35].

2.2. Surface tension

In this work the continuum surface force method (CSF) [3], is used to determine the equivalent local body force to model surface 
tension. In particular, the Dirac delta function 𝛿𝑠 = 𝛿

(
𝐱 − 𝐱𝑠

)
, used in Eq. (4), is approximated as ||∇ℎ𝜒|| and since the interface 

normal is 𝐧 = −∇ℎ𝜒∕ ||∇ℎ𝜒||, the surface tension is rearranged to the following form

𝐟𝜎 = −𝑘∇ℎ𝜒 , (25)

where the interface curvature is evaluated through the height function method [5,14,18,24,30], which is known to work well as long 
as the height function is within the cell dimension [5]. At points where this condition is not met, the curvature estimation based on 
the gradient of the interface normal vector [16] is adopted, hence

𝑘 =
∇𝜒 ∗𝐻(𝜒) ∗ ∇𝜒𝑇 − |∇𝜒|2tr (𝐻(𝜒))

2|∇𝜒|3 , (26)

where ∇𝜒 and 𝐻 (𝜒) are, respectively, the gradient and the Hessian of the smoothed phase function. The first- and second-order 
derivative of the phase function field are approximated by using the least-square method [9]. A detailed verification and validation 
4

study of the surface tension model adopted here is provided in Di Giorgio et al. [8].
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Fig. 1. Initial setup of the phase-inversion problem in a closed box. The light liquid or oil is fluid 1 and the denser, less viscous liquid is fluid 2.

2.3. Discretization of advective terms

As for the advective terms (𝐇ℎ = ∇ℎ ⋅ (𝐮𝐮)) two options are considered, namely a centered second-order scheme (MAC) with 
energy-preserving properties, and a more robust second-order upwind-biased TVD scheme. The two schemes can be used either 
independently or in combined fashion. In the latter case, a simple “interface sensor” is introduced,

𝜙𝑖 =
|||𝜒𝑖+1∕2 − 𝜒𝑖−1∕2||| , (27)

such that it is zero inside each phase, and it is different than zero (however, less than one), around interfaces.

In a one-dimensional setting, the convective terms of momentum equation (23) become

𝐻𝑖 =
1
Δ𝑥

(
𝑓𝑖+1∕2 − 𝑓𝑖−1∕2

)
, (28)

where 𝑓 is the numerical flux. Now let

𝑓𝑀𝐴𝐶
𝑖+1∕2 =

(
𝑢𝑖+1 + 𝑢𝑖

2

)2
, (29)

be the numerical flux for the second-order MAC scheme, and

𝑓𝑇𝑉 𝐷
𝑖+1∕2 =

⎧⎪⎨⎪⎩
(
𝑢𝑖 +

1
2𝛿𝑢𝑖𝜑(𝜃𝑖)

)2
if

1
2

(
𝑢𝑖+1 + 𝑢𝑖

)
> 0,(

𝑢𝑖+1 −
1
2𝛿𝑢𝑖𝜑(𝜃𝑖+1)

)2
if

1
2

(
𝑢𝑖+1 + 𝑢𝑖

) ≤ 0,
(30)

be the numerical flux for the TVD scheme, where 𝛿𝑢𝑢 = 𝑢𝑖+1 − 𝑢𝑖, 𝜃𝑖 = 𝛿𝑢𝑖+1∕𝛿𝑢𝑖, and the minmod limiter is selected,

𝜑 (𝜃) = max (0,min (𝜃,1)) . (31)

The two numerical fluxes can be also combined together as

𝑓𝑖+1∕2 = 𝑓𝑀𝐴𝐶𝑖+1∕2 + 𝜙𝑖
(
𝑓𝑇𝑉 𝐷
𝑖+1∕2 − 𝑓

𝑀𝐴𝐶
𝑖+1∕2

)
, (32)

with 𝜙𝑖 defined in equation (27). The numerical flux (32) guarantees use of the energy-conserving MAC flux in single-phase regions, 
while restricting use of the TVD numerical dissipation to the surroundings of the fluids interface. This is especially appropriate as very 
often in multiphase flow simulations, the regions about the interface are not adequately resolved due to fragmentation processes, 
hence use of central schemes may induce nonphysical oscillations, which numerical dissipation effectively suppresses. This hybrid 
approach (hereafter referred to as HYB scheme) is also more computationally effective, as the computationally cheaper MAC scheme 
is applied to the vast majority of fluid points.

3. Case set-up and validation

To validate the numerical model, a benchmark test case is undertaken. This test case involves a cubic blob of a light liquid, 
denoted as fluid 1, initially positioned at the bottom of a cubic box filled with a heavier liquid, referred to as fluid 2, as illustrated 
in Fig. 1. The cubic box has dimensions (𝐻 , 𝐻 , 𝐻), and the light fluid blob occupies one corner, having dimensions (𝐻∕2, 𝐻∕2, 
𝐻∕2). To model the behavior at the boundaries, all the outer walls are considered as free-slip impermeable walls. This means that the 
normal velocity is set to zero, and the tangential components satisfy a symmetry condition, ensuring shear-free behavior. As for the 
volume fraction boundary condition, a 90◦ static contact angle at the walls is imposed. This is achieved by enforcing the wall-normal 
derivative of the volume fraction 𝜒 to be zero at the boundary. The gravitational acceleration is set to 𝐠 = (0, −9.81, 0)[𝑚∕𝑠2], the 
5

surface tension coefficient is 𝜎 = 0.045[𝑁∕𝑚], and the remaining fluid properties are provided in Table 1.
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Table 1

Physical properties of the two fluids for the flow cases under study.

Flow case 𝜌1 [𝐾𝑔∕𝑚3] 𝜌2 [𝐾𝑔∕𝑚3] 𝜇1 [𝑃𝑎 ⋅ 𝑠] 𝜇2 [𝑃𝑎 ⋅ 𝑠] 𝑅𝑒 𝑊 𝑒

FC1 900 1000 – – – –

FC2 900 1000 0.1 0.001 1.37 × 104 41.6

Table 2

List of computational set-ups under scrutiny.

Acronym Interface transport model Discretization of convective terms

A-MAC: Algebraic VOF Energy-preserving (MAC)

A-TVD: Algebraic VOF TVD-MinMod

A-HYB: Algebraic VOF Hybrid MAC-TVD

G-MAC: Geometric VOF Energy-preserving (MAC)

G-TVD: Geometric VOF TVD-MinMod scheme

G-HYB: Geometric VOF Hybrid MAC-TVD

To facilitate comparisons with other studies, it is beneficial to define non-dimensional parameters for the problem, namely the 
Reynolds number (Re) and the Weber number (We), which are expressed as follows

Re =
𝜌2𝐻𝑈𝐾
𝜇2

, We =
𝜌2𝐻𝑈

2
𝐾

𝜎
, (33)

where 𝐻 = 0.1 [𝑚] is the characteristic length scale of the problem, and 𝑈𝐾 is a representative upper-bound velocity, defined 
as Estivalezes et al. [12]

𝑈𝐾 =
√
11
8

√
𝜌2 − 𝜌1
𝜌1

𝑔𝐻. (34)

Two distinct flow cases were carried out to investigate the performance of different discretizations of the convective terms, and 
the role played by the interface sensor. In Flow Case 1, the rise of the oil box was simulated by neglecting the viscous and surface 
tension terms, thus effectively solving the Euler equation. This setup allows to quantify the artificial dissipation of the scheme and, 
more importantly, to characterize the behavior of different discretization approaches for the convective terms. In contrast, Flow 
Case 2 incorporates all terms from the Navier-Stokes equations, providing insights into the impact of the numerical scheme on the 
dynamics of the interface. For both flow cases, the time step was chosen to satisfy the CFL (Courant-Friedrichs-Lewy) condition, 
specifically set to C𝐹𝐿 = 0.25. The baseline spatial discretization relies on a uniform grid with 𝑁 = 323 nodes, resulting in a grid size 
of Δ∕𝐻 = 0.03125, hence coarser than the reference study of Estivalezes et al. [12]. The Kolmogorov length scale (𝜂𝑘 = Re−3∕4𝐻) and 
the Hinze length scale (𝜂𝐻 = We−3∕5𝐻) for Flow Case 2 are estimated by using Re and We defined in eq. (33), to be 𝜂𝑘∕𝐻 = 7.9 ⋅10−4
and 𝜂𝐻∕𝐻 = 0.107, respectively. Hence, the baseline 323 mesh suffices to resolve Hinze scale, whereas the Kolmogorov scale is largely 
under-resolved. Finer meshes have then been considered in a grid refinement study, reported in Section 6.

Numerical simulations of Flow Cases 1 and 2 have been conducted by using various discretizations of the convective terms, as 
well as interface advection schemes, as illustrated in Table 2). In particular, both algebraic (A), and geometric (G) interface tracking 
methods have been considered, along with various discretization schemes of the convective terms: purely central, energy-preserving 
scheme, purely upwind scheme (TVD), and a hybrid version of the two, controlled by the interface sensor (HYB). These simulations 
allow for a comprehensive investigation of the impact of the various numerical schemes on the predicted behavior of the fluid 
system. The goal is to analyze how each combination performs in terms of accuracy, stability, and preservation of energy and other 
key properties.

The comparison of the results obtained using different numerical setups is conducted based on several global physical quantities, 
including the mass-conservation error, the total energy of the system, and the total viscous dissipation. The mass-conservation error 
(𝑀𝑒𝑟𝑟) is defined as the variation of the total mass with respect to its initial value, namely

𝑀𝑒𝑟𝑟 =
||||1 − 𝑀𝑡𝑜𝑡

𝑀0

|||| × 100, (35)

where 𝑀𝑡𝑜𝑡 is the total mass given by

𝑀𝑡𝑜𝑡 = ∫
𝑉

(
𝜌1𝜒 + (1 − 𝜒)𝜌2

)
d𝑉 , (36)

and 𝑀0 is the total mass at the initial time. The mass-conservation error of the 𝑗-th fluid is defined as:

𝑀𝑗𝑒𝑟𝑟
=
(
𝑀𝑗0

−𝑀𝑗

𝑀0

)
× 100, 𝑗 = 1,2 (37)
6

where
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𝑀1 = ∫
𝑉

𝜒
(
𝜌1𝜒 + (1 − 𝜒)𝜌2

)
d𝑉 , 𝑀2 = ∫

𝑉

(1 − 𝜒)
(
𝜌1𝜒 + (1 − 𝜒)𝜌2

)
d𝑉 , (38)

and 𝑀𝑗0
is the mass of the 𝑗-th fluid at the initial time. The total energy of the system (𝐸𝑡𝑜𝑡) is defined as the sum of kinetic energy 

(𝐸𝐾 ) and potential energy (𝐸𝑃 ) and can be expressed as follows

𝐸𝑡𝑜𝑡 = ∫
𝑉

1
2
𝜌
(
𝑢2 + 𝑣2 +𝑤2)d𝑉

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸𝐾

+∫
𝑉

𝜌𝑔𝑦d𝑉

⏟⏞⏞⏟⏞⏞⏟
𝐸𝑃

, (39)

where 𝐸𝐾 denotes the total kinetic energy, and 𝐸𝑃 denotes the total potential energy. The contribution of energy content associated 
with surface tension effects is neglected in this definition. Last, the total dissipation associated with viscous effects (𝜖) is defined as

𝜖 = ∫
𝑉

∇ ⋅ 𝜇
(
∇𝐮+∇𝐮𝑇

)
∶ ∇𝐮d𝑉 , (40)

which quantifies the conversion of mechanical energy into heat due to viscous effects. By evaluating these physical quantities for 
each simulation with different numerical schemes, a comprehensive comparison of their performance can be outlined. In particular, 
based on the above equations, the artificial dissipation at a given time 𝑡 is evaluated in non-dimensional form as follows:

𝐸𝑎(𝑡) =
1

𝐸𝑡𝑜𝑡(0)

⎛⎜⎜⎝
[
𝐸𝑡𝑜𝑡(0) −𝐸𝑡𝑜𝑡(𝑡)

]
−

𝑡

∫
0

𝜖(𝜏) d𝜏
⎞⎟⎟⎠ . (41)

4. Flow Case 1: inviscid flow, no surface tension

To assess the impact of different numerical schemes for the discretization of the convective terms on numerical dissipation, 
simulations are initially carried out by discarding viscous and surface tension effects. Under these conditions the total energy should 
in principle be conserved since there are no physical dissipation terms in the governing equations. However, without surface tension 
effects the two fluids can mix freely, and density is no longer a material property. It means that the numerical model based on 
the VOF approach, which assumes a sharp interface between the two fluids, and without any diffusion term for the density, cannot 
capture the flow dynamics accurately. Hence, while this artificial setup provides valuable insights into the numerical dissipation 
characteristics of different schemes for convective term discretization, and allows to isolate the role played by the model adopted for 
surface tension, it is important to bear in mind its intrinsic limitations and their potential impact on solutions obtained in real-world 
scenarios involving fluid mixing and diffusion.

In Fig. 2a, the time histories of the mass-conservation error and of the energy content are presented, each scaled by its initial 
value. The results demonstrate that the variation of the total mass is consistently very small, reaching at most a fraction of the order 
of 10−5 times the initial mass. However, notable differences arise associated with both the interface tracking method and the schemes 
used for the discretization of the convective terms. This effect is particularly apparent in the case of the geometric VOF method, for 
which use of the TVD scheme or the HYB scheme significantly improves mass conservation as compared to the MAC scheme. Very 
similar trends of the total mass are observed when comparing the results with those obtained by the reference open-source solver 
Basilisk [31], based on the geometric VOF and TVD discretization, thus proving the reliability of the present solver. In addition 
in Fig. 2b the mass-conservation of the two fluids are reported separately, it is worth noticing that the variation of the mass of 
the individual fluids is much higher than the variation of the overall mass, and, here the algebraic VOF exhibits larger errors in 
comparison to geometric VOF.

Regarding the total energy, reported in Fig. 2c, the results obtained using the MAC scheme in combination with algebraic VOF 
show nearly perfect conservation. In all other cases, variations in the total energy content up to about 2% are found. The same 
also happens when the MAC scheme is combined with geometric VOF, although the variation of the total energy at the end of the 
simulation is less than half of that obtained when using other schemes. By comparing the energy losses obtained with the same VOF 
method, it is clear that simulations carried out with the TVD scheme display the highest dissipation, followed by the HYB scheme, 
whereas those carried out with the MAC scheme show least dissipation. The difference in the energy losses is due to the different 
approximations of the convective terms, and in particular to the use of upwind-biased TVD discretizations [28].

A better understanding of the solutions can be achieved by looking at the kinetic and potential energy components, which are 
provided in Fig. 2d, The Potential energy is drawn by subtracting the initial value so that it can be compared to kinetic energy on 
the same graph. The initial configuration, with the lighter fluid is at the bottom corner, is unstable and, as soon as the simulation 
is initiated, gravity pushes the lighter fluid upwards and the heavier fluid downwards. This motion leads to a reduction of the 
potential energy, which is converted into kinetic energy. The system then reaches a minimum of the potential energy, corresponding 
to a maximum of the kinetic energy. When the lighter fluid touches the upper boundary, it rebounds and its momentum gradually 
diminishes, while the potential energy approaches a constant value. The constant value is higher for the algebraic VOF approach, 
particularly when the MAC or HYB schemes are used which give a potential energy about 0.6% higher than the other methods. The 
results obtained with the geometric VOF are generally in line with the Basilisk solver. Being the fluids inviscid, the small-scale motion 
7

activated by gravity should not be damped out, and that is indeed the case for the MAC scheme for both algebraic and geometric 
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Fig. 2. Comparison of total mass-conservation error (a), mass conservation error for fluid 1 (oil, solid line) and fluid 2 (water, dashed line) (b), total energy (c), kinetic 
energy (solid line), and potential energy (dashed line) (d) versus time for FC1 simulations (inviscid flow, no surface tension) using algebraic VOF (open symbols), and 
geometric VOF (filled symbols) with MAC scheme (purple line), TVD scheme (yellow line) and HYB scheme (green line). Reference results obtained with the Basilisk 
solver are shown with black lines. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

VOF, which predict about 1% of the initial energy content remaining in the form of kinetic energy. In all other approaches kinetic 
energy goes back to zero as a consequence of the artificial dissipation induced by the numerical scheme and by the interface tracking 
algorithm. In particular, the TVD scheme is most dissipative, and its results are in line with the Basilisk solver.

The above results clearly highlight the extremely low level of artificial dissipation of the MAC scheme, in particular when used 
in combination with the algebraic VOF, compared to the other. The HYB scheme offers a good compromise keeping the robustness 
of the TVD scheme in terms of stability but, confining the use of dissipative schemes to a narrow region, yields better performance 
in terms of energy conservation compared to the TVD approach.

In Fig. 3, solutions at time 𝑡 = 1 [𝑠] of FC1 simulations are presented in terms of the volume fraction and interface. The volume 
fractions are displayed on the bottom plane and on the two side planes of the box, and the interface is visualized as the 𝐶 = 0.5
iso-surface of the volume fraction. At the top of the figure the results obtained with Basilisk are shown as a reference solution, 
whereas the two rows below display solutions obtained with the algebraic and geometric VOF methods. In each row, from left to 
right, the solutions obtained using the MAC scheme, the HYB scheme and the TVD scheme are displayed. Although characterized by 
some common features, remarkable differences can be noted in terms of interface shape and topology, which suggest that both the 
interface tracking algorithm and the discretization scheme of the convective terms significantly affect the behavior of the interface. 
When using the algebraic VOF method, the volume fraction gets smeared out, and this phenomenon is particularly evident when 
the MAC scheme is used (see Fig. 3b). Diffusion of the interface is significantly reduced when TVD schemes are used, although they 
introduce artificial dissipation. It is worth noting that diffusion of the interface does not imply mass loss, as shown in Fig. 2a. When 
the geometric VOF method is used, the interface remains much sharper, but energy conservation is significantly worse, as previously 
discussed and shown in Fig. 2b. The use of the TVD scheme (see Fig. 3d, g) yields similar interface configurations for both interface 
advection methods, confirming that the use of the TVD scheme for the convective terms, although introducing artificial dissipation, 
helps retaining sharpness of the density distribution. A much smoother interface is also observed, which is connected with increased 
numerical dissipation.

In Fig. 4, snapshots of numerical solutions at the final time (𝑡 = 8 [𝑠]) are shown. At this time the flow has reached a quasi-steady 
state, with some residual motion. Rather remarkable differences are observed between the results obtained with the algebraic and 
geometric VOF when the MAC or the HYB schemes are employed. The results shown in Fig. 4b, c, d, corresponding to simulations 
with algebraic VOF, indicate that the interface remains sharp only if the TVD scheme is used, while the MAC or the HYB schemes 
are unable to preserve sharpness of the interface. It is worth noting that, although formally the VOF method is used to model 
the density as a material property, when the algebraic approach is used, the MAC and the HYB schemes introduce significant 
smearing of the density jump, hence the 𝐶 = 0.5 iso-surface marking the interface between the two fluids, is lost over time. This 
8

is of course an artifact of the interface advection scheme but, as explained above, in absence of surface tension it mimics to some 
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Fig. 3. Flow Case 1: numerical results at 𝑡 = 1.5 [𝑠], obtained by using algebraic (b, c, d) and geometric (e, f, g) VOF with different discretization schemes of convective 
terms: MAC (b, e), HYB (c, f), TVD (d, g), and Basilisk solver (a). Colored contours of the volume fraction (𝐶) are shown in the coordinate planes, and the 𝐶 = 0.5
iso-surface is shown in grey.

extent the complete miscibility of the two fluids, in that the density of fluid particles varies in time as a result of artificial smearing 
of the density jump. Complete mixing of the two fluids would yield an average density of 987.5[𝑘𝑔∕𝑚3], which is above the value 
950[𝑘𝑔∕𝑚3] corresponding to the 𝐶 = 0.5 value of the VOF function used to identify the interface between the two fluids, which 
explains why the iso-surface is not visible in Fig. 4b, and c.

When the geometric VOF is used for tracking (Fig. 4e, f, g), the interface remains sharp, regardless of the advection scheme in use. 
In the geometric VOF scheme, the segments used to define the interface act as a sort of impermeable surface that prevents smearing 
of the density field and thus mixing of the two fluids. Therefore, the final solution is in all cases characterized by the lighter fluid 
lying at the top. As shown in Fig. 2c and d, when using the MAC scheme, the kinetic energy obtained with the geometric VOF is 
about the same as that obtained with the algebraic model, whereas the potential energy is about 0.6% less, because the lighter fluid 
is at the top. In this regard, the difference in the total energy observed in Fig. 2b between algebraic and geometric VOF computed 
with the MAC scheme is mainly associated with the difference in the potential energy. Since, based on the assumptions made in FC1, 
the total energy should be conserved, the difference in the potential energy of the geometric VOF should be converted into kinetic 
energy, which should then be higher than for the algebraic model. This means that, although from Fig. 2c the kinetic energy is about 
9

the same as for the algebraic model, geometric VOF introduces some artificial dissipation.
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Fig. 4. Flow Case 1: numerical results at 𝑡 = 8 [𝑠], obtained by using algebraic (b, c, d) and geometric (e, f, g) VOF with different discretization schemes of convective 
terms: MAC (b, e), HYB (c, f), TVD (d, g), and Basilisk solver (a). Colored contours of the volume fraction (𝐶) are shown in the coordinate planes, and the 𝐶 = 0.5
iso-surface is shown in grey.

By comparing the configurations obtained with the geometric VOF for the different advection schemes, one can notice the MAC 
scheme yields a rather bumpy interface, which is a consequence of the undamped motion of the fluid and of the residual kinetic 
energy content, as previously discussed. A much smoother interface is obtained when using the HYB scheme, and even more with 
the TVD scheme, due to artificial damping of the residual velocity field. The best results in terms of energy conservation are obtained 
when the geometric VOF is used in combination with the MAC scheme, whereas the HYB and the TVD schemes are responsible for 
extra 1% artificial dissipation.

In summary, FC1 is a test case designed to investigate the capabilities of the numerical schemes to preserve the energy and 
to correctly describe the interface dynamics. As observed, in the absence of surface tension the fluids can mix, hence the VOF 
method, developed to model immiscible fluids with an interface, conveys inherent approximations. It is found that the MAC scheme 
is definitively superior in terms of reduced artificial dissipation regardless of the approach used to track the interface dynamics, 
whereas the TVD scheme, although improving on robustness, introduces a substantial amount of artificial dissipation. The HYB 
scheme is somewhat better than the TVD in terms of energy conservation. Regarding with the model adopted for the advection of the 
VOF function, the algebraic approach, when combined with the MAC or with the HYB schemes, cannot retain the sharpness of the 
10

interface. The spurious smearing of the density jump that to some extent mimics the mixing of the fluids, yields better conservation 
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Fig. 5. Comparison of total mass-conservation error (a), mass conservation error for fluid 1 (oil, solid line) and fluid 2 (water, dashed line) (b), total energy (c), kinetic 
energy (d), potential energy (c), and artificial dissipation (d) versus time for FC2 simulations (viscous flow); using algebraic VOF (open symbols), and geometric VOF 
(filled symbols) with MAC scheme (purple line), TVD scheme (yellow line) and HYB scheme (green line). Reference results obtained with the Basilisk solver are shown 
with black lines.

of the total energy. The geometric VOF, being able to preserve the sharpness of the density jump and thus the separation between 
the two fluids, predicts in all cases the lighter fluid lying at the top, thus allowing an additional amount of potential energy to be 
converted into kinetic energy. However, even using the MAC scheme, this extra amount is lost due to numerical dissipation. The 
numerical dissipation is much higher when the HYB or TVD schemes are used.

5. Flow Case 2: viscous two-phase flow with surface tension

The FC2 simulations address the full set of the Navier-Stokes equations, including viscous terms and surface tension effects. The 
associated time histories of the mass-conservation error, total energy, kinetic energy, potential energy and artificial dissipation are 
presented in Fig. 5. The physical parameters used in the simulations are provided in Table 1. Concerning with the mass-conservation 
error (Eq. (35)), all cases display relatively small variations. The algebraic VOF method exhibits the largest errors, independently of 
the convective scheme used, whereas the mass-conservation error of the geometric VOF, which is also independent of the convective 
scheme, is in agreement with the results provided by the Basilisk solver. In this case, the mass transfer error between the phases is 
reduced by an order of magnitude in comparison with FC 1. And, again, the geometric VOF displays a smaller error with respect to 
the algebraic VOF.

In terms of total energy, all methods display a decrease until 𝑡 = 3 [𝑠], with the TVD schemes exhibiting the highest decay rate, 
11

slightly higher than Basilisk. After 𝑡 = 3 [𝑠], the total energy gradually approaches a constant value. At the end of the simulations, 
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the solutions obtained with the geometric VOF overlap with the Basilisk solutions, and are characterized by the highest dissipation. 
Among the three simulations based on the algebraic VOF, the highest dissipation is associated with the TVD scheme, the lowest with 
the MAC scheme, with the HYB scheme lying in between. The time histories of kinetic energy (Fig. 5d) are characterized by an initial 
rise up to a first peak value. Once the lighter fluid reaches the upper part of the box, it bounces back and then accelerates again 
attaining a second peak value. At that time instant the different methods display the largest differences, with highest kinetic energy 
reached by the simulations performed with the algebraic VOF in combination with the MAC scheme, followed by that obtained by 
the HYB scheme. Due to the presence of viscosity, the fluid motion gradually ceases, and all solutions converge towards the same 
value, close to zero, at the end of the simulations. The potential energy (Fig. 5e) shows no significant changes in the results obtained 
from different convective schemes for the geometric VOF. However, it is noteworthy that the algebraic VOF method slightly deviates 
from the results obtained from the geometric method. This discrepancy may be due to the mass transfer error between the two phases 
highlighted previously in the algebraic VOF method.

When performing simulations of the Navier-Stokes equations, accurate reproduction of viscous effects with low artificial dissipa-

tion is essential for a good numerical scheme. The artificial dissipation of the numerical scheme, referred to as 𝐸𝑎(𝑡), is estimated 
from equation (41), and reported in Fig. 5f. The results clearly indicate that the TVD scheme introduces the highest artificial dissi-

pation, whereas the MAC schemes yield the least. The HYB scheme lies in between, offering a satisfactory compromise among mass 
conservation, stability, and limited artificial dissipation. Both the MAC and the HYB schemes perform better than Basilisk solver in 
this respect, regardless of the scheme used for the transport of the VOF function.

In Fig. 6 and Fig. 7, the 𝐶 = 0.5 iso-surfaces and volume fractions obtained by using different advection schemes and interface 
approaches at times 𝑡 = 1.5 [𝑠] and 𝑡 = 8.0 [𝑠], respectively, are depicted. The corresponding solutions obtained by using the Basilisk 
solver are also provided for comparison. When analyzing the solutions shown in Fig. 6, one will note that the density distribution 
provided by the algebraic VOF is much sharper than for FC1 at the same time, which confirms that the surface tension acts by 
forcing the immiscibility of the two fluids. The shapes of the interface obtained by the algebraic VOF when using the MAC and the 
HYB schemes are quite similar, matching the general features of the Basilisk solution. Instead, the use of the TVD scheme introduces 
additional dissipation, resulting in a noticeable difference in the upper part of the interface compared to the other solutions. As a 
consequence of the introduction of surface tension, much closer agreement between the algebraic and geometric VOF is observed. 
The immiscibility of the two fluids, which is now forced by the introduction of surface tension effects, make the use of the VOF 
approach more appropriate and consistent with the physics.

The effect of the immiscibility of the two fluids becomes even more evident in the solutions at time 𝑡 = 8.0 [𝑠]. By comparing the 
results shown in Fig. 7b-d with the corresponding solutions in Fig. 4b-d, it is evident that the algebraic VOF now exhibits an interface 
shape that is in perfect agreement with all other solutions. At this time, the solution is approaching a stationary state with the lighter 
fluid located within a layer occupying the upper part of the box. As a result, no substantial differences are found when varying the 
VOF algorithm or the convective scheme.

The above results show that in the case of immiscible fluids the VOF model works appropriately, regardless of the interface 
transport model. More important, the presence of surface tension allows the algebraic VOF to overcome some of its limitations, thus 
matching the results of geometric VOF. This is also a confirmation of the effectiveness and correctness of the surface tension model.

6. Grid sensitivity analysis

The results in the previous sections were obtained by using a rather coarse discretization. In order to examine the convergence 
properties of the numerical schemes, the results of numerical simulations of FC2 with grid sizes of 𝑁 = 323, 643, 1283 using the 
HYB scheme are presented. Corresponding results obtained with the Basilisk solver are also shown for comparison. In Fig. 8, the time 
histories of the energy, viscous dissipation and artificial dissipation are shown at various grid resolutions. The total and kinetic energy 
plots indicate that differences diminish with grid refinement. As the grid resolution increases, the viscous dissipation, displayed in 
Fig. 8.c, also increases, especially the first peak. This is because the finer grids can resolve better the smallest scales governing the 
dissipative processes.

The artificial dissipation, estimated as in equation (41), is shown in Fig. 8.d and, as expected, it decreases with increasing the grid 
resolution. Notably, the use of the interface sensor confines the dissipation associated with the use of TVD schemes within a narrow 
region, whereas the energy-preserving MAC scheme is applied to the rest of the fluid domain. As a result, it exhibits significantly 
lower artificial dissipation compared to the benchmark Basilisk solver. These findings demonstrate the importance of grid resolution 
in accurately capturing dissipative processes and reducing artificial dissipation. The use of the interface sensor with the HYB scheme 
offers a favorable compromise between accuracy and computational efficiency, resulting in improved performance compared to the 
reference solver.

A comparison of the computed interface shapes at 𝑡 = 2 [𝑠] is provided in Fig. 9. The figures suggest that changes in the interface 
shape are mainly related to the smaller structures, such as bubbles and ligaments, highlighting difficulties encountered in achieving 
grid convergence. In fact, grid refinement does not necessarily yield precise convergence, as the finest details are inherently different 
from mesh to mesh. This is due to two reasons. First, in highly nonlinear problems as the one under scrutiny, grid convergence can 
only be achieved in statistical sense, as the complex interactions between different scales and the nonlinear nature of multiphase 
flows make it challenging to achieve perfect convergence on a single grid resolution. Second, multiphase flows are characterized by 
a wide range of scales, from macroscopic to microscopic, which make it impossible, at least with current computational resources, to 
resolve all scales at the level of the surface microlayer. As a result, some details are always lost or misrepresented, even at extremely 
12

fine grid resolutions.
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Fig. 6. Flow Case 2: numerical results at 𝑡 = 1.5 [𝑠], obtained by using algebraic (b, c, d) and geometric (e, f, g) VOF with different discretization schemes of convective 
terms: MAC (b, e), HYB (c, f), TVD (d, g), and Basilisk solver (a). Colored contours of the volume fraction (𝐶) are shown in the coordinate planes, and the 𝐶 = 0.5
iso-surface is shown in grey.

7. Surface tension contribution to the energy balance

In the above discussions, the work done by surface tension forces has been neglected, as in the reference study of Estivalezes 
et al. [12]. However, it is known that the contribution of surface tension to the energy balance can be not negligible, particularly 
when a significant fragmentation of the interface occurs.

The work done by surface tension (𝐸𝑠) can be estimated in two different ways. One way is to compute the energy content 
associated with surface tension as the product of the surface tension coefficient by the area of the 𝐶 = 0.5 iso-surface, namely

𝐸𝑠𝑆 (𝑡) = 𝜎𝑆, (42)

where 𝑆 is the surface area of the interface. Another way is to integrate in time the power exerted by the surface tension forces 
starting from ts contribution in the momentum equation, upon scalar multiplication by 𝐮, i.e.

𝐸𝑠 (𝑡) = 𝜎 d𝑡 𝐮 ⋅ 𝐟𝜎d𝑉 , (43)
13
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Fig. 7. Flow Case 2: numerical results at 𝑡 = 8 [𝑠], obtained by using algebraic (b, c, d) and geometric (e, f, g) VOF with different discretization schemes of convective 
terms: MAC (b, e), HYB (c, f), TVD (d, g), and Basilisk solver (a). Colored contours of the volume fraction (𝐶) are shown in the coordinate planes, and the 𝐶 = 0.5
iso-surface is shown in grey.

where 𝐟𝜎 is the local surface tension force. The two different estimates are reported in Fig. 10, for various grid resolutions, exhibiting 
remarkably different behaviors. The time histories shown in Fig. 10.a seem coherent with the interface configuration as the initial and 
final values are proportional to the different the interface area at the beginning and at the end of the simulation. In the early stages all 
meshes yield the same trend whereas, when the interface fragmentation starts, the simulation with lower resolution underestimates 
the maximum of the energy. Nevertheless, all resolutions approach the same value at the end of the simulation. The surface tension 
energy estimated from the integration in time of the power of surface tension (Fig. 10.b) is rather similar to that estimated from 
the interface area at the beginning, but it deviates substantially after the peak energy is attained. The reason for such a deviation is 
clarified in the following.

The above results indicate that neglecting the surface tension contribution in the analysis of the energy budget might lead to 
wrong estimates of the artificial dissipation of the different schemes, particularly during the phases when significant fragmentation 
of the interface takes place. This is particularly evident in Fig. 10.c, where artificial dissipation is estimated from the interface area. 
In order to highlight changes, the distributions obtained without accounting for surface tension are also shown. The comparison 
14

clearly indicates that accounting for the surface tension contribution, the estimated artificial dissipation is reduced.
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Fig. 8. Grid sensitivity study: comparison of total energy (a), kinetic energy (b), viscous dissipation (c), and artificial dissipation (d) versus time for FC2 simulations; 
using interface sensor (HYB) with algebraic VOF (open symbols), geometric VOF (solid symbol) and Basilisk (solid/dashed black line). Various grid resolutions are 
reported: 𝑁 = 323 (purple), 𝑁 = 643 (green), 𝑁 = 1283 (yellow).

Even more significant for the quantification of artificial dissipation is the comparison outlined in Fig. 10.d, where the surface 
tension energy is derived from the integral of the power exerted by surface tension forces in the momentum equation. In this case the 
reduction of the artificial dissipation is even more significant. This result does not necessarily imply that the surface tension energy 
evaluated as the time integral of the power of surface tension forces is more accurate. Rather, it suggests that a significant portion of 
the error in the energy balance arises from the numerical model used for surface tension. In this respect, it is argued that the estimate 
of the surface tension energy based on the time integral of the surface tension power is not always able to account for the positive 
work done by surface tension when small bubbles shrink or disappear, releasing their associated energy.

In order to prove this conjecture, in Fig. 11 the surface tension energy evaluated from the area of the interface and the time 
integral of the power exerted by surface tension forces as computed on the finest mesh, is shown for both geometric and algebraic 
VOF. The time histories of the number of bubbles are also reported.

The two estimates are nearly overlapping in the early stages when the area of the interface, and thus the surface tension energy 
based on Eq. (42), increases. After the peak, when the area of the interface diminishes, the differences between the two estimates 
become rather large. In particular, the estimate based on the time integral of the power of surface tension forces does not decrease 
as it should. It seems like the model is not able to capture the positive work done by surface tension when the small bubbles shrink 
and progressively disappear, merging with the main interface. This is particularly evident in the case of the algebraic model, shown 
in Fig. 11.b, where the two estimates are nearly parallel starting from time 𝑡 = 3 [𝑠] when most bubbles disappear. In order to better 
highlight this aspect, the time history of the estimate based on the time integral of the power is shifted vertically, displaying, for both 
the geometric and algebraic VOF, very good overlapping with the estimate based on the area of the interface. Similar considerations 
hold for the geometric VOF, shown in Fig. 11.a, although the number of bubbles is much higher and the reduction rate is much 
more gentle compared to the algebraic VOF. As shown in Fig. 11.c.d, even at the end of the simulation, the final configuration of the 
interface in the case of geometric VOF displays many tiny bubbles that have not yet merged with the main interface, not visible in 
the solution obtained with the algebraic VOF.

The above results indicate that the numerical model used for surface tension, whereas modelling accurately the action on the 
fluid preventing the mixing of the two fluids, had some limitations in correctly modelling the positive work done by surface tension 
when the smaller bubbles shrink. This is an important aspect to be accounted for when estimating the artificial dissipation of the 
numerical model. The results also indicate that the estimate of the surface tension energy based on the area of the interface is clearly 
more reliable in the analysis of the energy balance.

In order to investigate possible limitations of the surface tension model in correctly predicting the positive work done by the 
shrinking of the smaller bubbles, a simple two-dimensional test is conducted, in which a circular bubble is forced by an artificial 
velocity field to expand and to contract radially. Simulations are conducted using three meshes, with 𝑁 = 322, 642, 1282 grid points in 
15

a [−1, 1] ×[−1, 1] domain, with an initial bubble radius 𝑟0 = 0.25. Tests have been conducted by using the algebraic VOF. Additionally, 
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Fig. 9. Flow Case 2, 𝑡 = 2.0: comparison of numerical results obtained with the using the HYB scheme with algebraic (d, e, f) and geometric (g, h, i) VOF, with the 
Basilisk solver (a, b, c), at various grid resolutions. Colored contours of the volume fraction (𝐶) are shown in the coordinate planes, and the 𝐶 = 0.5 iso-surface is 
shown in grey.

two different approaches to model surface tension have been employed, i.e. the CSF/HF, the same used for FC1 and FC2, and the 
continuous surface stress method (CSS), but no noticeable differences have been found in the results, despite the fact that CSS is 
rarely used with the VOF method because it is affected by a high generation of spurious currents [35]. The estimated surface tension 
energy is shown in Fig. 12, where negative values indicate that surface tension returns energy to the fluid. Whereas the estimate 
based on the interface area is independent of the grid resolution, the estimate based on the integral of the power of the surface 
tension forces appears to underestimate the energy returned to the fluid when the bubble shrinks if the grid is too coarse compared 
to the bubble size. These results further support the hypothesis that limitations in the numerical model used for surface tension are 
responsible for a non-negligible portion of the unbalance in the energy budget, and thus contribute to the artificial dissipation of the 
numerical model.

8. Conclusions

In this study a careful validation and verification of numerical schemes and models used for the simulation of complex multiphase 
16

flows has been conducted, putting particular emphasis on the dynamics of the interface between two fluids. To this aim, a test case 
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Fig. 10. Time histories of the surface tension energy estimated from Eq. (42), 𝐸𝑠𝑆 (a), and eq. (43), 𝐸𝑠𝐼 (b); the two dash-dotted lines in (a) and (b) represent the 
surface tension energy corresponding to the initial and final values of the area of the fluid interface. Time histories of the artificial dissipation computed starting from 
𝐸𝑠𝑆 (c), and from 𝐸𝑠𝐼 (d). Solutions computed by using the hybrid approach (HYB) with algebraic VOF are identified by open symbols, whereas the filled symbols 
are used for the geometric VOF. The results are reported for different mesh resolutions, i.e. 𝑁 = 323 (purple), 𝑁 = 643 (green) and 𝑁 = 1283 (yellow).

Fig. 11. Comparison of surface tension energy estimated from eq. (42) (dashed line) and eq. (43) (solid line) for the simulations with geometric (a) and algebraic 
(b) VOF, on a 𝑁 = 1283 mesh. The time histories of the number of bubbles are also shown in each graph. In order to highlight the agreement of the two different 
estimates of surface tension energy in the last part of the simulations, a vertical shift is applied to the surface tension energy computed as integral of the power exerted 
by surface tension forces (dotted lines). In (c) and (d) the 𝐶 = 0.5 iso-surfaces are shown in order to highlight the different number of bubbles/droplets characterizing 
17

the final solution of the geometric and algebraic VOF.
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Fig. 12. Time histories of the surface tension energy of a two-dimensional bubble in periodic expansion and contraction, for different grid resolution: 𝑁 = 322
(purple), 𝑁 = 642 (green), 𝑁 = 1282 (yellow). The surface tension energy is estimated from the time integral of the surface tension power (eq. (43)) and the results 
obtained with the CSF/HF method are shown with solid lines while the results from CSS method are shown with dashed lines. The reference curve (dashed black line) 
is obtained from the analytical value of the area of the interface.

involving the motion of an oil box lying at the bottom corner of a wider cube filled with water has been considered, as proposed by 
Estivalezes et al. [12].

The study has been focused at the analysis of the role played by the models adopted for the VOF interface tracking and for the 
discretization of the convective terms in the momentum equation. In order to distinguish the effects connected with the interface 
transport from those associated with viscosity and surface tension, two flow configurations have been considered, the first one 
assuming inviscid fluids and no surface tension, the second one including viscosity and surface tension. The first case, although not 
realistic, has allowed to highlight the impact of the discretization of convective terms on the numerical dissipation, whereas the 
second flow case has been used to investigate deeper the role played by the surface tension model and the interface dynamics.

It has been found that the energy-preserving, centered scheme, MAC combined with the algebraic VOF model is the best in terms 
of energy conservation. The geometric VOF, even if used in combination with the MAC scheme, improves the sharpness of the density 
jump, however at the cost of introducing some artificial dissipation. On the other hand, the MAC scheme has some limitation in terms 
of robustness, particularly near the interface. For this reason, a hybrid scheme (HYB) has been proposed here which make use of 
TVD schemes only in a narrow region about the interface, and the MAC scheme elsewhere. As such, the model is much more robust 
but limits the region where artificial dissipation is introduced.

Particular attention has been paid to the verification of the surface tension model and to the estimate of its contribution to the 
energy balance. By comparing the results obtained for the two flow configurations, it is found that, when the algebraic VOF is used 
in combination with the MAC or with the HYB schemes, the introduction of surface tension is able to correct some limitations of the 
numerical model and to enforce correctly the immiscibility of the two fluids. Furthermore, a detailed analysis of the contribution 
of the surface tension to the energy balance has been conducted. Aside from its specific amount, accounting for the surface tension 
energy yields a more accurate estimate of the artificial dissipation of the different schemes. It is found that the most accurate way 
to determine the effect of surface tension is through the area of the interface. By comparing this estimate with that derived from 
the time integral of the power exerted on the momentum equation it is observed that the surface tension model is unable to capture 
correctly the positive work done by surface tension forces when the poorly resolved bubbles shrinks or disappear. The positive work 
which is not resolved then contributes to overestimating the artificial dissipation of the numerical model.
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