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Abstract 

Some of the secondary metabolites produced by Alternaria species have been recognized 

potentially harmful for human health due to their toxicity and occurrence in food commodities. 

Currently, there are no regulations worldwide for these mycotoxins with the exception of Bavarian 

health and food safety authority who decided to limit at 500 µg/kg the tenuazonic acid content in 

sorghum/millet-based infant food.  The European Food Safety Authority (EFSA) performed a risk 

assessment for four of the known Alternaria mycotoxins  (alternariol, alternariol monomethyl ether, 

tenuazonic acid and tentoxin) and established the threshold for toxicological concern (TTC) for 

these mycotoxins.  

In this review recent data on the biological activity, toxicokinetics, human exposure, modified 

forms and reduction strategies of the prevalent Alternaria mycotoxins are reported. 

 

Introduction 

Within the Alternaria genus, A. alternata, A. tenuissima, A. arborescens and relevant species-group, 

A. infectoria sp.-grp and A. japonica have been reported to occur in food products and to produce 

several toxic secondary metabolites [1]. In 2011, the European Food Safety Authority (EFSA) 

provided a scientific opinion on the risks for public health related to the presence of Alternaria 

mycotoxins in feed and food [2]. Currently there are no regulations for Alternaria toxins worldwide 

and the EFSA scientific opinion represents the first risk assessment of these mycotoxins. The EFSA 

Panel on Contaminants in the Food Chain considered the toxins that have been reported to occur in 

food and feed i.e. alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), 

iso-tenuazonic acid (iso-TeA), altertoxins (ATXs), tentoxin (TEN), altenuene (ALT) and AAL-

toxins (Alternaria alternata f. sp. lycopersici toxins) [2]. Successively an EFSA scientific report 

assessed the dietary exposure to AOH, AME, TeA and TEN of the European population [3]. 

Considering the very limited toxicity data available for these toxins it was decided to use the 

threshold of toxicological concern (TTC) approach to assess the relative level of concern of these 

mycotoxins for human health. The value of TTC is 2.5 ng/kg bw per day for AOH and AME, and 

1500 ng/kg bw per day for TeA and TEN [3]. 

In this review recent data on the biological activity, toxicokinetics, human exposure, modified 

forms and reduction strategies of prevalent Alternaria toxins are reported.  

 

Biological activity and toxicokinetics 

In the last decade several papers have been published on the in vitro toxicity of Alternaria 

mycotoxins. The in vitro mutagenicity of altertoxins is well known as well as the genotoxicity of 

AOH and AME, while no mutagenic activity has been reported for TEN and TeA [2]. The in vitro 

and in vivo studies on mechanisms of action and toxicity of AOH has been recently reviewed [4]. 

The authors concluded that the available mechanistic information obtained from in vitro studies is 

consistent with DNA damage caused by indirect mechanisms, implying that there is a threshold of 

effect. It was suggested to perform additional in vivo genotoxicity studies with focus on 

gastrointestinal tract [4]. The toxicity of other emerging Alternaria mycotoxins has also been 

recently reviewed [5]. The high in vitro mutagenicity of stemphyltoxin III, a perylene chinone with 



a chemical structure very similar to ATX II, has been recently demonstrated [6]. However, no data 

on the natural occurrence of this toxin have been reported [2, 5].  

The chemical synthesis of phase I metabolites of AOH and AME i.e. 4-OH-AOH and 4-OH-AME, 

has been reported and their toxicity was compared to the toxicity of AOH and AME. The four 

compounds were tested for oxidative stress, DNA damage, topoisomerase inhibition, cellular uptake 

and metabolism. The effects of 4-OH-AOH and 4-OH-AME were lower as compared to the 

respective parent compounds AOH and AME [7].  

Mixtures of mycotoxins can occur in food products, therefore the in vitro toxicity of different 

mycotoxin mixtures is continuously explored by several authors. AOH and ATX II were tested in 

constant ratio combination of 1:10 i.e. ATX II in the range of 1-10 µM and AOH in the range of 10-

100 µM, or 1:1, i.e. both in the range of 1-10 µM, or 1:1,  i.e. both in the range of 1-10 µM, and 

showed additive cytotoxic effects in HepG2, HT29 and HCEC-1CT cells for the majority of tested 

combinations [8]. The cytotoxic effects of binary combinations of Fusarium toxins (enniatin B, 

aurofusarin, deoxynivalenol, nivalenol and zearalenone) with TeA was evaluated by the WST-1 

assay in the colorectal carcinoma cell-line Caco-2 after 24 h incubation. Unexpectedly, TeA in 

combination with Fusarium toxins reduced the cytotoxicity of these mycotoxins, compared to 

expected combinatory effects [9]. In particular, a significant reduction of cytotoxicity was observed 

for the combination of TeA with deoxynivalenol. On the contrary, synergistic estrogenic effects 

were observed in vitro when binary combinations of AOH with zearalenone or α–zearalenol were 

tested [10].  

Toxicokinetic studies are important to assess the metabolism of ingested toxins, the rate of 

absorption and excretion. These studies are important for risk assessment purpose and for the 

identification of possible biomarkers of exposure. The results of the toxicokinetics of AOH in 

NMRI mice were reported in an EFSA supporting publication [11]. The study, conducted with 

radiolabelled AOH, showed low systemic absorption, with about 90 % of the total dose 

(radioactive) excreted via faeces and up to 9 % excreted via urine. The blood levels did not exceed 

0.06 % of the administered dose (radioactive). In NMRI mice administered with non-radiolabelled 

AOH four hydroxy-metabolites of AOH were identified in blood and urine. The total urinary 

excretion of AOH and of the four metabolites during the 72 h collection period accounted for 0.1 to 

0.6 % of the administered dose (200 mg/kg BW). This is in contrast with the results obtained with 

radiolabelled AOH, which suggested that up to 9 % of the applied (radioactive) dose was excreted 

via urine. A plausible explanation for this discrepancy could be that other metabolites, such as 

glucuronides and sulfates of AOH or breakdown products, contributed to the radioactivity 

recovered in urine of mice administered with radiolabelled AOH [11].  

 

 

Human exposure 

A dietary exposure assessment to AOH, AME, TeA and TEN in the European population has been 

recently estimated by using 15,563 analytical results obtained from 4,249 selected samples collected 

from 2010-2015 [3]. The report estimated the mean exposure to each mycotoxin for 7 age classes 

(infants, toddlers, other children, adolescents, adults, elderly, very elderly). The highest exposures 

to these toxins were estimated for infants and toddlers whereas fruit and fruit products, vegetable 

oil, cereal-based foods, tomatoes and tomato-based products were the most important contributors 

to the dietary exposure to these mycotoxins. The report concluded that for AOH and AME the 

estimated mean chronic dietary exposures at the upper bound and 95th percentile dietary exposures 

exceeded the TTC value whereas for TeA and TEN the exposure estimates were unlikely to be a 

human health concern. Vegetarians seem to have higher dietary exposure to the toxins than the 

general population [3].  A study conducted in Germany roughly estimated the daily exposure to 

AOH, AME, TeA and TEN from the consumption data and results of the analysis of 96 samples of 

tomato products, bakery products, sunflower seeds, fruit juices and vegetable oils [12]. The total 

exposure (µg/day) of each toxin was calculated and compared to their TTC values. Based on mean 



consumption data of the analysed samples the percentage of the TTC reached by the average daily 

exposure were 1400%, 280%, 30% and 1.4% for AOH, AME, TeA and TEN, respectively [12]. 

Human exposure to AOH and AME and other 46 mycotoxins was assessed in a mycotoxin-

dedicated total diet study (mTDS) performed in 2013 in the Netherlands. AOH and AME were 

detected at levels of 1.0-8.9 μg/kg in a number of composite samples, including tomato products, 

nuts, cereal products, chocolate and wine [13]. The exposure values were within the ranges 

estimated by EFSA in 2011 [2] and the high level of exposure (95th percentile) exceeded the TTC 

for AOH and AME in the two examined populations (2-6 years and 7-69 years) [14]. These results 

indicate a need for additional toxicity data for the genotoxic AOH and AME and a new risk 

assessment.  

Following the EFSA suggestion to continue to generate more analytical data on the occurrence of 

Alternaria toxins, several papers have been recently published on this topic. AOH was found in all 

44 commercial beers available in Germany with a median concentration of 0.45 µg/L [15]. TeA, 

AOH and AME were measured in mouldy samples of sweet pepper produced in Argentina at 

median levels of 96, 26 and 14 µg/kg, respectively with positives samples of 50%, 26% and 14%, 

respectively [16].  AOH, AME, TeA and TEN were found to occur regularly in cereals, tomato 

sauces, figs, wine and sunflower seeds in the Netherlands, whereas ALT was not detected in any of 

the 95 samples analysed [17]. A focused survey on 3 food categories (figs, sunflower products and 

tomato products) confirmed the high incidence of samples positive to TeA (>60%), whereas AOH 

and AME occurred in 26 and 7% of analysed samples, respectively [18]. Despite the occurring of 

high levels of TeA in sunflower seeds (up to 1350 µg/kg) and figs (up to 1728 µg/kg), the authors 

concluded it is unlikely that the population in the Netherlands is exposed to levels of concern. 

However, it was also reported that in the worst case situation, consumption of these products may 

result in exposure at levels above the TTC of 2.5 ng/kg body weight/day for AOH [18]. 

Within the 370 wheat samples collected in 2015 in Anhui province of China, TeA (100% positives, 

median 150 µg/kg) was the predominant toxin detected followed by TEN (77% positives, median 

77 µg/kg), AOH (47% positives, median 7.9 µg/kg) and AME (15% positives, median 4.2 µg/kg). 

Moreover, 95% of the wheat samples were positive for more than one type of Alternaria 

mycotoxins. Authors indicated the need to set tolerance limits for these mycotoxins in China, and to 

produce more data on their occurrence also in other agro-products [19]. 

It is known that TeA is produced by Alternaria spp. as well as Phoma sorghina. The natural 

occurrence of TeA in 100 Brazilian sorghum samples collected at four grain maturity stages was 

found strictly associated with the presence of P. sorghinia that was the only Phoma specie isolated. 

TeA was detected in 100% of samples, from 20 to 1234 µg/kg,  with the exception of those 

collected at milk stage (36% positive) [20]. High levels of TeA have been recently confirmed in 

sorghum/millet-based infant food consumed in Germany, therefore the Bavarian health and food 

safety authority decided to limit at 500 µg/kg the TeA content in these foods. This is the first 

official decision of an authority regarding Alternaria mycotoxins worldwide [21]. The occurrence 

of AOH, AME and TEN was evaluated in strawberries samples stored at different temperatures 

ranges and periods. AOH and AME but not TEN were detected in stored samples and no difference 

in levels and incidence of mycotoxins production was observed among both ranges of temperatures 

studied [22].  

An alternative way to measure human exposure to mycotoxins at individual level is the 

measurement of the mycotoxin or its metabolite in biological fluids, mainly urine. It was previously 

reported that about 90% of the ingested TeA (30 µg) was excreted in 24 h urine by two volunteers 

[23]. Human exposure to TeA was determined in 48 adults in Germany by measuring urinary 

concentration of this mycotoxin. TeA was detected in all samples and its urinary concentrations 

were used to estimate the provisional mean daily intake (PDI) that was 183 ng/kg body weight. This 

value is about 8 times lower the TTC value established by EFSA for this mycotoxin (1500  ng/kg 

body weight). However, for one individual the PDI (1583 ng/kg body weight) exceeded the TTC 

value of this mycotoxin [24].  



 

Modified forms 

Mycotoxins can be partially conjugated, mainly with glucose or sulfate, either by living plants or 

their producing fungi. The conjugated mycotoxins can be found in foods together with 

unconjugated (free) mycotoxins. These compounds are currently referred as “modified mycotoxins” 

and are potentially toxic because they may be hydrolysed in the digestive tract to form the native 

mycotoxin [25]. Hildebrand et al., [26] demonstrated that AOH and AME are efficiently 

conjugated, mainly with glucose, in cultured tobacco BY-2 cells [26]. Successively, the same group 

demonstrated that sulfate conjugates of AOH and AME were produced by the fungus A. alternata 

together with unconjugated AOH and AME [27]. They also demonstrated that the fungus, in 

addition to sulfate conjugates, produces a mixed sulfate/glucoside diconjugate of AOH and AME 

when cultured on tomato [27]. 

Modified forms of AOH (AOH-3-glucoside (AOH-3G), AOH-3-sulfate (AOH-3S)) and AME  

(AME-3-glucoside (AME-3G), AME-3-sulfate (AME-3S)) were chemically synthesized and used 

as standards for method development and occurrence studies. The natural occurrence of AOH-3S 

and AME-3S was investigated in 83 commercially available tomato products and 11-26% of 

samples were found positives for AOH-3S and 32-78% were positives for AME-3S. All 

investigated samples were negative for AOH-3G and AME-3G [28]. In a previous study  involving 

31 rice and 16 oat flakes samples commercially available in Belgium none of AOH and AME 

conjugates (AOH-3G, AOH-3S, AME-3G, AME-3S) were detected [29]. AME-3G was analysed 

and not found in 159 samples of South African sunflower seeds although overall, over 80% of the 

samples were positive for one or more analytes. Interestingly, the most occurring toxin was TEN 

followed by TeA, AME and AOH [30]. No modified forms of AOH and AME were detected in 

selected food categories (dried figs, sunflower products and tomato products) commercially 

available in the Netherlands [18]. These data suggest further studies on the natural occurrence of 

modified Alternaria mycotoxins and on the identification and chemical characterization of 

conjugated forms of other Alternaria mycotoxins such as TeA and TEN. 

 

Reduction of exposure and toxicity 

There is a continuous need of effective prevention measures and reduction strategies to reduce the 

levels and toxicity of mycotoxins in agricultural products in order to minimize human and animal 

exposure to these important natural contaminants. 

Extracts of Eucalyptus globulus and Calendula officinalis showed fungistatic activity against A. 

alternata and A. arborescens and a good reduction of mycotoxins (TeA, AOH, AME) biosynthesis 

when tested on tomato fruits. Before their practical application the authors suggested to evaluate the 

impact of these plant extracts on flavour of tomatoes and the residual level of volatiles after storage 

[31]. 

The levels of mycotoxins during food processing can be affected depending of the specific process 

and the stability of the mycotoxin. Clarification process of pomegranate juice naturally 

contaminated with TeA, AOH and AME produced a significant increase of mycotoxin 

concentrations in the clarified juice. The increase was explained by the possible presence of 

modified forms of TeA, AOH and AME in pomegranate juice that were cleaved to form free 

mycotoxins by the proteolytic enzymes that are used during clarification. The stability of the three 

toxins was also evaluated during pasteurization of juices. As expected, no change of mycotoxin 

concentrations was observed [32].  

Extrusion process can reduce mycotoxin levels in treated products and the processing conditions 

can be optimized to maximize mycotoxin reduction. Under the optimal extrusion conditions a 

reduction of 65.6%, 87.9% and 94.5%, for TeA, AOH and AME, respectively, was achieved in 

naturally contaminated whole wheat flour [33]. 

It was reported that the polyphenols genistein and delphinidin antagonize the genotoxic effects of 

AOH in human colon carcinoma cells and might aid to protect against genotoxic damages caused 



by AOH [34]. On the other hand, the polyphenol quercetin showed no protective effect on the 

cytotoxicity of AOH and AME when they were tested simultaneously in Caco-2 cells [34]. 

A review on possible strategies that can be applied in post-harvest to reduce mycotoxin biosynthesis 

in fruits and vegetables has been recently published [36]. Arginine and urea, a metabolite of 

Arginine catabolism, inhibit the biosynthesis of TeA, AOH and AME in cultures of A. alternata on 

PDA and wheat medium. Although these results cannot be generalized, the Authors emphasized 

that Arginine has a great potential to control the biosynthesis of several mycotoxins under certain 

conditions [37]. 
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