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Efficient molecule discrimination in electron microscopy through an optimized
orbital angular momentum sorter
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We reformulate the single-molecule analysis in an electron microscope in terms of a quantum-state discrimi-
nation problem, and discuss its implementation through electron-beam shaping. Our approach relies on the use
of new electron-optical elements to efficiently extract the “which-molecule” information from the state of each
electron. The optimal observables are formally derived, and subsequently implemented by suitably designed
phase elements in a generalized orbital angular momentum sorter. As a representative example, we simulate the
discrimination between model proteins and benchmark the performance of the sorter against that of the best
known real-space approach.
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I. INTRODUCTION

The quest for extreme sensitivities in the investigation of
atomic and molecular systems naturally leads to the use of
single particles as quantum probes. The state of such probes
supposedly displays a strong dependence on the system under
investigation, and can thus lead to an efficient inference on the
system of interest. However, the use of single-particle probes
also implies inherent limitations, resulting from fundamental
quantum features, such as decoherence and the measurement
postulate [1]. Decoherence tends to smear out the information
encoded in the particle state, while the measurement postulate
implies the impossibility of discriminating two nonorthogonal
states [2]. A full account of these quantum aspects is thus
required in order to identify the optimal measurement strategy.

In electron microscopy the quantum probe is represented
by the electron [3]. The measurement process implies the
“collapse” of its wave function, which reduces to a pixel on
a detector. A full image of the sample is obtained by using
a large number of electrons, whose distribution on the detec-
tor represents the measurement statistics [4,5]. However, in
order to limit the damage induced in the investigated system,
the number of electrons used in the imaging process should
be minimized [6], especially in beam-sensitive objects such
as proteins. This has fueled the development of novel tech-
niques such as cryomicroscopy and single-particle analysis
[3]. However, these techniques require the imaging of many
supposedly identical proteins, while the accurate imaging of
a single protein remains largely prohibitive. The recent in-
troduction of beam shaping techniques [7,8] has allowed the
application to electron microscopy of concepts originally de-
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veloped in quantum optics. In particular, through the use of
appropriate electrostatic elements [9–11] or holograms [12],
one can implement the measurement of different observables.
The most considerable case is the recently demonstrated or-
bital angular momentum (OAM) sorter [13,14], which permits
a direct measurement of the orbital angular momentum. The
large flexibility that this approach allows in the choice of the
measured observable represents a key resource for maximiz-
ing, in a system-specific fashion, the amount of information
that can be extracted from the electron wave function, thus
reducing the number of probes that are required to achieve a
given degree of confidence in the final inference.

In the present article, we consider the problem of discrim-
inating between two molecules by means of an OAM sorter.
We formalize the problem within the general framework of
quantum-state discrimination [15,16]. This enables the deriva-
tion of the optimal measurement strategy, both in the ideal
case of a full knowledge of the alternative molecule states and
of a coherent electron dynamics, and in the more general case
where the state of the molecule is partially unknown and/or
the electron dynamics is affected by decoherence [17]. We
identify the optimal strategy with a correlated measurement of
the radial and angular degrees of freedom of the electron wave
function, which maximizes the “which-molecule” information
extracted from the electron. In particular, we show that the
OAM sorter implements the optimal measurement strategy in
the representative cases of decoherence in the angular degrees
of freedom or of a complete lack of knowledge of the protein
in-plane orientation. The lack of knowledge concerning the in-
plane orientation of the molecule is common in experiments,
and its effect can be accounted for by the use of mixed electron
states. Decoherence in these experiments can typically result
from the presence of specific inelastic channels, such as those
represented by “azimuthal” plasmon modes [18]. Here we
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FIG. 1. Schematic view of the generalized OAM sorter. A trans-
mission electron microscope (TEM) projection system is modified
as for an OAM sorter; in addition, a third phase element is included
to produce a generalized OAM sorter. The structure of such third
element is adapted to the radial structure of the eigenstates χ0,m and
χ1,m corresponding to the angular momentum component m.

show that, also in these cases, the optimal measurement can
be implemented by including in the OAM sorter additional
electron-optical elements, which lead to the measurement of
the radial degree of freedom. We refer to such device as the
generalized OAM sorter (Fig. 1).

The paper is organized as follows. In Sec. II we introduce
the general formalism and main figure of merit, derive its ex-
pression in the cases of complete and incomplete knowledge
of the state of the molecules to be discriminated, and then
focus on the discrimination by means of an OAM sorter, by
means of one or more electrons. In Sec. III we simulate the
discrimination between protein models, which we consider
as representative examples. Finally, in Sec. IV we draw the
conclusions.

II. DISCRIMINATION BETWEEN TWO MOLECULES

In this section, we first formalize the process by which the
information on the molecule identity and state is encoded in
the state of each individual electron. We then introduce the
figure of merit that is used to rate the measurement strategy,
namely, the discrimination probability, and recall (derive) its
expression in the case of a pure (mixed) electron state.

A. Encoding the information on the molecule
state on the electron state

The prototypical problem of discriminating between two
molecules can be formalized as follows [16,19]. One con-
siders two hypotheses Ik (k = 0, 1); each one specifies the
molecule identity (Xk) and orientation, and is assigned an a
priori probability pk . After the interaction with the molecule,
the electron that is used as a probe is left either in the state
|ψ0〉 or in |ψ1〉, depending on which of the two hypotheses
applies. A measurement is eventually performed in order to
identify the electron state and thus to infer the correct Ik .

For the sake of the following discussion, it is convenient
to expand the two alternative electron states in terms of the
normalized projections |m, χk,m〉 on the eigenspaces of the
OAM, namely, Lz = −ih̄ ∂

∂ϕ
(here z is the electron-propagation

direction, ϕ is the azimuthal angle in the plane orthogonal to
z, h̄ is the reduced Planck constant, and m is the integer OAM

quantum number):

|ψk〉 =
∑

m

√
qk,m|m, χk,m〉, (1)

where qm (
∑

qm = 1) is the probability associated with each
value m of Lz. The symbols χk,m denote the radial wave func-
tions associated with a certain molecule (specified by k) and
with a given value of m (in general these functions do not form
a complete basis and do not need to be mutually orthogonal).

The association of a pure electron state with each of the
two hypotheses is based on the assumption that the electron
dynamics is not affected by decoherence and that the molecule
state is perfectly defined within each Ik . If the molecule state is
partially unknown and/or the electron is affected by decoher-
ence, the state vectors |ψk〉 are replaced by density operators
ρk . In particular, if the molecule is centered at the optical
axis and its orientation around the z axis is undefined, the
density operators are obtained by an incoherent averaging of
the pure-state density matrix over the different orientations:

ρk =
∑

m

qk,m|m, χk,m〉〈m, χk,m|, (2)

where all the information that was contained in the rela-
tive phases between |m, χk,m〉 components has been erased
(the methods and limitations in experimentally centering the
molecule at the optical axis are described in Sec. III). We note
in passing that the same effect can be produced by the elec-
tron decoherence, if this affects the phase coherence between
different eigenstates of Lz.

In the following, we simulate the electron dynamics within
the microscope in order to derive the expressions of the pure
(mixed) states |ψk〉 (ρk) that correspond to a few representa-
tive protein models.

B. Expression of the discrimination probability

The discrimination between the two electron states is
performed on the basis of the measurement outcome. In par-
ticular, one identifies two outcomes whose occurrence makes
more likely either one hypothesis or the other. Formally, each
outcome is associated with a probability operator �k , whose
expectation value gives the probability that the kth outcome
occurs. The probability of identifying the correct hypothesis
on the basis of a single-electron measurement is thus given by
[14,15]

p = p0tr(ρ0�0) + p1tr(ρ1�1), (3)

where the first (second) term represents the probability that
the first (second) hypothesis is true and that the measurement
provides the corresponding outcome k = 0 (k = 1). The prob-
ability p is the figure of merit we use in the following to rate
the measurement strategy, and can be maximized by a suitable
choice of the observables. The optimal observables are the
ones that, for a given pair of molecules and (thus) of states
of the electron, maximize p.

There is, however, a fundamental limitation related to the
quantum nature of the probe: If the two electron states are
not orthogonal, there is no quantum measurement that can
perfectly discriminate them [2]. In fact, in the case of two pure
states, the probability p cannot exceed the Helstrom bound
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[15],

pψ
max = 1

2 + 1
2 [1 − 4p0 p1|〈ψ0|ψ1〉|2]

1
2 , (4)

which ranges from 1
2 to 1 as the overlap between the two

states varies from 1 to 0. The value of 1
2 corresponds to the

blind guess case, where there is no a priori information on the
molecule identity (p0 = p1 = 1

2 ) and the electron state carries
no which-molecule information (the states |ψ0〉 and |ψ1〉 co-
incide). In general, the lower the which-molecule information
encoded in the molecule state, the larger the overlap between
the two electron states, and the smaller the upper bound pψ

max

of the discrimination probability. For a given pair of electron
states, the optimal measurement strategy is the one that leads
to a discrimination probability p = pψ

max.
In passing from pure (|ψk〉) to mixed (pk), the electron

states tend to become less distinguishable and the probability
of discriminating between the two hypotheses thus tends to
decrease. The upper bound is thus given by [16]

pρ
max =1

2
+ 1

2

∑
m

[(p0q0,m + p1q1,m)2

−4p0 p1q0,mq1,m|〈χ0,m|χ1,m〉|2]
1
2 � pψ

max. (5)

The above limits can be achieved by identifying and imple-
menting the quantum measurement that is optimal, given the
electron states pk and the a priori probabilities pk . Therefore,
the value of the upper bound quantifies the amount of which-
molecule information encoded in the electron states, while the
ratio between the discrimination probability p and the upper
bound quantifies the capability of a particular measurement to
extract such information from the electron state.

C. Discrimination probability with the generalized OAM

For a given measurement, the discrimination probability p
can be maximized by assigning each outcome to one of the
two hypotheses, according to a maximum likelihood criterion
[15]. Within our approach, the electron is sorted on the basis
of the OAM value m; a measurement of the radial degrees
of freedom is then performed, on a basis that can in general
be different for each m. This corresponds to a correlated
measurement of the radial and angular degrees of freedom,
which can be formalized through the probability operators
πk,m(k = 0, 1), each corresponding to a specific outcome. The
resulting expression of the discrimination probability reads

pρ
OAM = pψ

OAM =
∑

m

max{p0q0,m〈χ0,m|π0,m|χ0,m〉,

p1q1,m〈χ1,m|π1,m|χ1,m〉} ≡ pOAM. (6)

As pointed out in the first equality, the discrimination prob-
ability is unaffected by the loss of phase coherence between
the different angular momentum components. This reflects the
fact that, within this approach, the which-molecule informa-
tion is encoded in degrees of freedom that are unaffected by
the considered dephasing process. This measurement strategy
can always be made optimal by identifying the proper elec-
trostatic elements in our generalization of the OAM sorter
(see the detailed description below and in the Appendix).
For a given pair of molecules, the optimal elements can

be deduced from the calculated expression of the optimal
observables π0,m and π1,m, which correspond to the projectors
on eigenstates λ1,2 of σm ≡ ∑

j=0,1 (−1) j p jq j,m|χ j,m〉〈χ j,m|
with positive and negative eigenvalues, respectively. (Coun-
terintuitively, the optimal discrimination between two states
with a large overlap is achieved by projectors on states that
do not coincide with χ0,m and χ1,m, but on highly mixed
combinations of these two states.) The optimal observables
are implemented by suitable combinations of phase elements,
which we derive in our simulations.

D. Discrimination based on multiple electron measurements

So far we have considered the limiting case where the
discrimination between the hypotheses I0 and I1 is performed
on the basis of a single-electron measurement. The probability
p of identifying the correct hypothesis can be increased by
repeating such measurement N times, one on each of the
electrons that has interacted with the molecule.

If a two-outcome measurement is repeated N times, the
overall measurement presents 2N possible outcomes. We con-
sider as equivalent sequences that correspond to the same
numbers, n0 and n1 (where n0 + n1 = N), of outcomes 0 and
1, independently of the order in which these have occurred.
Therefore, the probability that the outcome 0 occurs n0 times,
if the hypothesis Ik applies, is given by the binomial distribu-
tion

Sk (n0, n1)
def=

(
N
n0

)
[tr(ρk�0)]n0 [tr(ρk�1)]N−n0 . (7)

According to a maximum likelihood criterion and along
the lines of what has been done above for the single-electron
case, the occurrence of n0 outcomes 0 is related to either I0 or
I1, depending on whether S0(n0, n1) is larger or smaller than
S1(n0, n1). After summing over all the possible values of n0,
from 0 to N, one obtains the expression of the discrimination
probability for the N-electron case, which is given by

P(N ) =
N∑

n0=0

(
N
n0

)
max

{
p0sn0

0 (1 − s0)N−n0 ,

p1sn1
1 (1 − s1)N−n1

}
. (8)

Here, the success probabilities are s0 or s1, depending
on whether I0 and I1 apply, with sk ≡ tr(ρk�k ). From this
expression of p(N) one can derive the minimum number of
electrons that are required in order to exceed a given threshold
x : p(N ) > x for N � Nmin(x).

III. TEST CASE: DISCRIMINATION BETWEEN
TWO PROTEINS

Hereafter, we apply the above approach to the discrimina-
tion of two proteins. In particular, we simulate the electron
states (|ψk〉 or ρk) in the presence of each protein, derive the
optimal phase plate elements, and compute the corresponding
discrimination probability. The measurement performed by
means of the generalized OAM sorter is schematically rep-
resented in Fig. 1. The electron is prepared in a plane-wave
state (that propagates along the z direction), before interacting
with the protein. An appropriate cutoff (a circular aperture
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25–50 nm in diameter) is added to the plane wave in order
to illuminate only the specific protein but large enough so as
to not interfere with the recognition process. Typically we can
use the condenser system to concentrate the beam down to
a few tens of nanometers with negligible convergence. Such
interaction perturbs the electron state in a way that depends
on the protein identity and state. Suitably engineered phase
elements then direct state components corresponding to dif-
ferent values of Lz to different regions of the detector, thus
implementing a measurement of the orbital angular momen-
tum. The phase elements induce a conformal transformation
from Cartesian to log-polar coordinates; a further diffraction
permits one to measure the conjugated quantities OAM and
logarithmic radial momentum. The OAM and radial momenta
are always defined with respect to a center (i.e., the optical
axis of the microscope) and it is therefore necessary to make
sure that the molecule is correctly positioned. This can be
done with low magnification imaging that requires a very
limited dose or with the correlative use of techniques as with
correlative light electron microscopy (CLEM [20,21]).

Here, additional phase elements beyond the standard OAM
sorter are introduced, which further sort each angular mo-
mentum component on the basis of its radial state through a
phase-flattening technique. The phase elements are adapted
in order to match and conjugate the phase along the radial
degree of freedom. A cylindrical lens (produced in elec-
tron microscopy by the combination of stigmators and round
lenses) can then be used to obtain a further diffraction of the
sole radial degree of freedom, while the OAM channels are
unaffected and remain well separated. A similar configuration
(without the third phase element) is used to sort on an OAM
Bessel representation of the wave function [22]. After phase
flattening, the radial wave function for each OAM channel has
a constant (flattened) phase, which diffracts a specific OAM
channel state to a relatively narrow spot [23]. If the matching
is not perfect, the resulting phase of the wave function oscil-
lates and the diffraction is much more diffuse. The procedure
could in principle be further improved by manipulating and
flattening the amplitude of the wave function, but this is ex-
perimentally much more challenging.

In the standard OAM sorter, the radial diffraction produces
a very sparse representation of the electron wave function
for a given target molecule. These additional phase elements
are therefore specific to each discrimination problem and
implement the optimal projectors [see Eq. (6) and related
discussion]. As discussed above, such optimization is specific
to the pair of molecules, rather than to an individual molecule.
Therefore, the “phase-flattening” process is not tuned on one
of the two proteins to be discriminated, but on a specific
combination λ1 (or λ2) [obtained in Eq. (6)] that maximizes
the discrimination probability.

In an alternative strategy, both the matching of the phase on
λ1 or on λ2 can be chosen. As a result the diffraction will be
peaked for one protein and diffuse for the other or vice versa.

It is worth mentioning that the role of the additional third
element is to make the representation of the protein sparse,
ideally to a single point. This is of practical use to overcome
camera shot noise and simplify the overall experiment.

The electron wave function, and in particular its trans-
verse (x, y) component ψk , is affected by the interac-

tion with the protein Xk , and becomes [3,24]: ψk (x, y) =
Ak (x, y)exp[iCVk (x, y)]. Here, Vk is the atomic electrostatic
potential induced by the protein, which modulates the phase
and, to a minor extent, the amplitude of the electron wave
function, and C = 2πm0γ λ/h̄2 (where m0 is the electron
rest mass, γ the relativistic factor, λ the wavelength, and h̄
the Planck constant). Since the proteins consist of light ele-
ments, the phase modulation is typically small (CV � π ). We
compute the protein-specific potentials Vk , the corresponding
electron states (ψk or ρk), and, from these, all the relevant
quantities that appear in the above equations (1)–(6).

As a representative example, we consider the two-by-two
discrimination between three model proteins, all referring to
the EspB protein of Mycobacterium tuberculosis. The first
two models, hereafter labeled Pa and Pb, are characterized
by the same (sevenfold) rotational symmetry [25,26], which
differs from that (sixfold) of the third model (Pc). These
examples are significant because these models are hardly dis-
tinguishable from one another experimentally. Besides, the
discrimination between Pc and the other two models is qual-
itatively different from that between Pa and Pb, since it relies
also on the azimuthal—rather than on the radial—degree of
freedom.

The simulation of the spectra that are relevant for the
protein discrimination, based on the use of the optimal ob-
servables, is reported in Fig. 2 for the case of Pa and Pb. The
simulations refer to the case of limited doses (2 and 0.2 e/Å2)
and low acceleration voltages (60 kV), and are performed
by double-extraction Monte Carlo methods. As expected for
the case of strongly overlapping (electron) states ρ0 and ρ1,
the optimal radial observables give rise to overlapping out-
come probability distributions [19]. This is particularly clear
for the m = 0 subspace [panels (c) and (f)], where the largest
component of the electron wave functions is concentrated.
Here, following a maximum likelihood criterion, each mea-
surement outcome is assigned to the hypothesis I0 (protein Pa)
if the outcome probability in the presence of Pa (green curve)
is larger than that in the presence of Pb (red curve), and to
the hypothesis I1 (protein Pb) otherwise. (We have highlighted
in a binary histogram which region should be assigned to
the first or second hypothesis.) If the discrimination is based
on more than one electron detection, the decision is based
on the approach outlined in Sec. II D. We note that, unlike
what happens in a real-space case, the spectra obtained by
means of the OAM sorter coincide for the pure and mixed
electron states, and are thus unaffected by undefined protein
orientation or decoherence [17].

The effect of the observable optimization is not im-
mediately evident by looking at the spectra, but can be
quantitatively appreciated by deriving the discrimination
probability from the simulated measurement outcomes (Ta-
ble I). We start by quantifying the which-protein information
encoded in the electron state. This is quantified by the overlap
|〈ψ0|ψ1〉| between the electron wave functions corresponding
to the two hypotheses, which is close to 1 for all pairs of
proteins (columns 2–4). A single-electron probe thus carries
a very limited amount of which-protein information, which
leads to a maximal discrimination probability (pψ

max) that is a
few cents above the “blind-guess” value of 1

2 , and is further
reduced (pρ

max) by decoherence.
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FIG. 2. Simulated spectra with phase elements optimized for discriminating between the proteins Pa and Pb. The upper and the lower
panels correspond, respectively, to doses of 2 and 0.2 e−/Å2. The proteins Pa (a), (d) and Pb (b), (e) give rise to different distributions of the
electrons in the angular momentum (horizontal axis) and radial (vertical axis) bases. (c), (f) Detail corresponding to the radial observable for
the m = 0 subspace, where the electron states are mainly concentrated. The black histogram below the plots specifies the outcomes for which
the presence of the protein Pa is more likely than that of Pb.

We then quantify the suitability of the different measure-
ments to access such which-protein information, by means of
the corresponding probabilities p (columns 5 and 6). For the
imaging in real-space (RS), we considered an ideal Zernike
phase plate [27,28].

An ideal Zernike phase plate introduces a π/2 phase
shift at the center of the diffracted image, thus generating
constructive interference between scattered and background
electrons and enhancing the image contrast. Its effect can be
simulated by shifting by π/2 the central pixel of the Fourier
transform of the wave function and then transforming back
to real-space. We note that such phase shift has never been
exactly realized in practice [29], so that the reported values
should be regarded as upper bounds for this approach. Even
in such ideal case, the values of the discrimination probabil-
ities for the mixed states (pρ

RS) fall below the corresponding
theoretical maxima. The optimal observables implemented
through the OAM sorter lead to values of the discrimination

probabilities (pOAM, calculated using the maximum likelihood
criterion described above) that are comparable and in most
cases significantly larger than those achieved with the ideal
Zernike phase plate. The small difference between pOAM and
the theoretical maximum pρ

max is possibly due to imperfections
in the phase-flattening-based implementation of the optimal
projectors πk,m.

The maximal suitability of the implemented values of
N (x), all of the order of 102, correspond to doses of much
less than 0.1 e/Å2 (columns 7–9). This number is quite small
and typically at least 50% better than in the case of the ideal
Zernike phase plate. A limited amplification of the phase mod-
ulation (obtained, e.g., by using thicker proteins or multipass
approaches [30]) would further highlight the advantage result-
ing from the use of optimal observables. Moreover, with a
typical affordable dose of a few e/Å2, something like 100 tests
between different pairs of model proteins could be carried
out simply by changing the phase of the final sorting element

TABLE I. Discrimination probabilities based on the use of a single-electron probe and corresponding to different pairs of proteins (X0,
X1). The probabilities with superscript ψ and ρ correspond to the case of pure and mixed electron states, respectively; the subscripts max, RS,
and OAM identify the theoretical maxima, measurements performed in real-space (with an ideal Zernike phase plate), and with the optimized
OAM approach. In all the considered cases, the a priori probabilities are assumed equal (p0 = p1 = 1

2 ). The values of NRS and NOAM are the
number of electrons that are necessary to achieve a discrimination probability p higher than x = 0.9 with the two approaches. The last column
indicated the corresponding dose for the OAM.

X0, X1 |〈ψ0|ψ1〉| pψ
max pρ

max pρ

RS pOAM NRS(x) NOAM(x) Dose (1/Å2)

Pa, Pb 0.987 0.582 0.580 0.531 0.541 346 224 0.007
Pa, Pc 0.981 0.598 0.596 0.540 0.564 257 98 0.003
Pb, Pc 0.975 0.612 0.610 0.552 0.559 143 108 0.003
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in a programmable way [31]. This implies a high degree of
flexibility in the implementation of the OAM-based approach,
and suggests the possibility to use adaptive learning in cases
where the possible identities of the protein (molecules) are not
limited to two options.

IV. CONCLUSIONS

In conclusion, we have investigated the problem of opti-
mizing the discrimination between two molecules by means of
electron microscopy. The discrimination procedure has been
investigated within the framework of quantum-state discrim-
ination, which allows one to fully account for the quantum
nature of the electron. The discrimination process based on
the use of the angular momentum sorter is robust with respect
to decoherence affecting the electron and to the uncertainty on
the protein orientation. We have shown that the generalized
OAM sorter, which implements a correlated measurement of
the radial and angular degrees of freedom, can in principle
realize an optimal discrimination strategy, and have discussed,
as a representative example, the case of the discrimination be-
tween model proteins. The observable optimization represents
a fundamental means for minimizing the number of electrons
that are required for the discrimination, and thus for limiting
the induced damage.

The implementation of the protein recognition strategy will
potentially bring advantage to cryomicroscopy, as an alterna-
tive or complementary method. We also suggest it could work
in synergy with CLEM, where light and electron microscopies
are used, respectively, to localize specific proteins of interest
and to visualize all kinds of proteins with high resolution, in
isolation or in their cellular context.
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APPENDIX A: EFFECT OF DECOHERENCE AND/OR OF
THE UNDEFINED PROTEIN ORIENTATION

The state of the electron, in the case where the hypothesis
Ik applies, is |ψk〉. We expand it in terms of the normal-
ized projections |m, χk,m〉 on the eigenspaces of the angular
momentum Lz:

|ψk〉 =
∑

m

√
qk,m|m, χk,m〉,

where 0 � qm � 1 is the probability associated with each
value m of the angular momentum and χk,m accounts for the
radial degree of freedom. The above state can be expanded on
a complete and orthonormal basis |m, p〉 as follows,

|ψk〉 =
∑
m,p

cm,p|m, p〉,

where cm,p are complex coefficients. The correspondence be-
tween the two representations is given by the equation

|χk,m〉 = 1√∑
p |cm,p|2

∑
p

cm,p|p〉.

The initial electron state |ψprobe〉 corresponds to a plane
wave, traveling along the z axis. The anisotropic dependence
of the states |ψk〉 on the azimuthal angle ϕ thus results from
the interaction with the protein. A rotation of the protein with
respect to a reference orientation by an angle δ induces a
change mδ in the phase of |m, χk,m〉. If the orientation of the
protein around the z axis is completely undefined (i.e., any
value of the angle δ in the range [0,2π ] is equally probable),
the state of the electron is given by the statistical mixture

ρk =
∑
m,m′

√
qk,mqk,m′ |m, χk,m〉〈m, χk,m| 1

2π

∫
dδei(m−m′ )δ

=
∑

m

qk,m|m, χk,m〉〈m, χk,m|.

The loss of the information encoded in the phases tends to
make the two alternative electron states less distinguishable.
This can be verified by comparing the fidelities of the two
pure states with that of the mixed ones:

F(|ψ0〉, |ψ1〉) =
∣∣∣∣∣
∑

m

√
q1,mq0,m〈χ1,m|χ0,m〉

∣∣∣∣∣
�

∑
m

√
q1,mq0,m|〈χ1,m|χ0,m〉| = F (ρ0, ρ1),

the fidelity by definition, being F (ρ, σ ) = tr
√

ρ1/2σρ1/2.

APPENDIX B: THEORETICAL MAXIMUM OF THE
DISCRIMINATION PROBABILITY

The theoretical maximum for the probability p in the case
of the above states ρ0 and ρ1 is obtained as a weighted
average of those corresponding to the different eigenspaces
of the angular momentum. In fact, for each value of m, the
electron states are pure, |χ0,m〉 and |χ1,m〉, and define a two-
level system, within which one can apply the expression of
the Helstrom bound. The probabilities that weight the aver-
age and normalize the probabilities within each subspace m
are the occupation probabilities of each subspace, namely,
p0q0,m + p1q01,m. Therefore,

pρ
max =

∑
m

(p0q0,m + p1q01,m)pψ

max|m = 1

2
+ 1

2

∑
m

(p0q0,m + p1q01,m)

[
1 − 4p0 p1q0,mq1,m

(p0q0,m + p1q1,m)2 |〈χ0,m|χ1,m〉|2
] 1

2

= 1

2
+ 1

2

∑
m

[
(p0q0,m + p1q1,m)2 − 4p0 p1q0,mq1,m|〈χ0,m|χ1,m〉|2] 1

2 .
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FIG. 3. Example decomposition on special vortex states where the radial part is fitted on the specific protein wave. The initial protein (here
we chose the side view as the decomposition does not require the n-fold symmetry) (a) is transformed in log-polar Fourier transform (b) and a
single OAM value is selected (c). If the inverse process is done for each OAM we find the single vortex wave (d)–(g).

The probability operators πk,m that one can associate with
the generalized OAM sorter are diagonal on the basis of the
angular momentum eigenstates. Therefore, the probabilities
that correspond to each outcome are independent of the phases
αk,m, and only depend on the amplitudes qk,m. From this it
follows that, as shown in Eq. (6), also the discrimination
probability obtained with the sorter is the same in the pure-
and in the mixed electron-state cases.

The optimal observable is obtained by applying the re-
sults that are known for the pure-state case to each value
of m. In fact, within each subspace, one has to discriminate
two pure states, namely, |χ0,m〉 and |χ1,m〉. The absence of
(accessible) coherences between subspaces corresponding to
different values of m allows one to treat each subspace inde-
pendently. The optimal observable is a two-valued observable,
whose eigenstates coincide with the eigenstates |λ1,m〉 and
|λ2,m〉 of σm ≡ ∑

j=0,1 (−1) j p jq j,m|χ j,m〉〈χ j,m|. In practice,
the application of phase elements allows one to implement
an equivalent measurement for the radial degree of freedom,
where one of the eigenstates actually coincides with, e.g.,
|λ1,m〉, while the complementary subspace is spanned by a
finite number of other eigenstates. Hence the presence of a
single, dominant peak in the case of one protein, and of a more
distributed spectrum in the case of the other (Fig. 2).

APPENDIX C: DECOMPOSITION OF A WAVE IN
CORRELATED OAM RADIAL STATES

In this Appendix we report the detail and example of the
mathematical decomposition in OAM radial-correlated states.
The OAM sorters uses a conformal transformation to lead to
the angular basis formed by OAM, indicated by the integer
quantum number m, and log-radial momentum here simply
indicated as P�. As a consequence, it transforms a vortex beam
into a narrow line that projects to a peak in the OAM subspace.

The elongated shape in the orthogonal direction is the effect
of the radial distribution for each OAM subspace.

The protein states that we want to decompose must have
the form as in Eq. (1). In each OAM subspace the wave is
ψm = χm(ρ) exp(imϕ).

Here, χm(ρ) = ∫
ψew(ρ, ϕ)exp(−imϕ)dϕ and ψew is the

overall wave function after interacting with the protein. In
practice, each ψew is a vortex in the azimuthal part but it
has a radial function that is fitted to the protein or state to be
projected on. We want to show here explicitly the functional
shape of the states ψm. To do this the target state [Fig. 3(a)] is
transformed into log-polar coordinates and then Fourier trans-
posed [Fig. 3(b)]. For this example, we are using a side view
of protein Pb. Every vertical stripe corresponds to a single
OAM component; it can be isolated [Fig. 3(c)] to produce the
special vortex ψm and back transformed to Cartesian direct
coordinates to show how the single vortex mode looks. Fig-
ures 3(d)–3(g) show the ψm corresponding to m = 1, 2, 3, 4.
It should be noted that these vortices are, by construction,
orthogonal to each other and to the vacuum.

APPENDIX D: FURTHER EXAMPLES

In this Appendix we report further details on the evolution
of the electron wave function after the interaction with the
molecule. This induces a phase modulation in the xy plane,
which is displayed in Cartesian [Fig. 4(a)] and log-polar
coordinates [Fig. 4(b)]. The latter one gives the probability
distribution after the interaction with the first element of the
OAM sorter. Due to the following propagation, the electron
wave function is decomposed into different contributions,
corresponding to different values m of Lz [Fig. 4(c)]. Here, ad-
ditional phase elements, beyond the standard OAM sorter, are
introduced in order to perform the phase flattening. Finally, a
cylindrical lens (produced by the combination of stigmators
and round lenses) can be used to obtain a further diffraction
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FIG. 4. Series of unitary transformation that the different electrostatic elements apply to the electron wave function in the case of the
protein Pa. In particular, we show the phase modulation of the electron wave function in (a) Cartesian and (b) log-polar coordinates. Intensity
of the diffraction to the OAM sorter in (c) the radial momentum space and (d) after optimal radial sorting.

FIG. 5. Discrimination between the proteins Pa and Pb, where the third sorter element implements an optimal measurement. The upper and
the lower panels correspond, respectively, to the positive and negative eigenstate. The proteins Pa (a), (d) and Pd (b), (e) give rise to different
distributions of the detected electrons in the correlated angular-radial basis. (c), (f) Statistics of the radial observable corresponding to the
m = 0 subspace, where the electron states are mainly concentrated.
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FIG. 6. Discrimination between the proteins Pa and Pd, where the third sorter element implements an optimal measurement. The upper and
the lower panels correspond, respectively, to the positive and negative eigenstate. The proteins Pa (a), (d) and Pd (b), (e) give rise to different
distributions of the detected electrons in the correlated angular-radial basis. (c), (f) Statistics of the radial observable corresponding to the
m = 0 subspace, where the electron states are mainly concentrated.

of the radial degree of freedom, while the angular distribution
remains unaffected [Fig. 4(d)].

The optimal measurement consists in projecting over
the positive or on the negative eigenstate of σm ≡∑

j=0,1 (−1) j p jq j,m|χ j,m〉〈χ j,m|. It is worth noticing that the
discrimination strategy is independent of the choice of the pre-
ferred eigenstate as both of them are capable of distinguishing
between the two proteins, as demonstrated in Fig. 5.

So far we have tested the optimal discrimination strategy
on a precise class of proteins, namely, different configuration
of the same molecule. However, the validity of this method is
general and can be applied to distinguish between any couple
of proteins. As a proof, we reported in Fig. 6 the discrimina-
tion between the EspB protein of Mycobacterium tuberculosis
(labeled as Pa as in the main text) and the Ynal channel of
Escherichia coli [32] (hereafter labeled as Pd).
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