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Abstract—Synthetic aperture radar (SAR) sensors, such as 

Advanced Land Observing Satellite-2 (ALOS-2) and Sentinel-1, 

provide significant opportunities for soil moisture content (SMC) 

retrieval with relatively high spatial resolutions (10~30 m). In this 

work, an artificial neural network (ANN) SMC retrieval algorithm 

combined with water cloud model, advanced integral equation 

model and Oh model database were proposed. The SAR co-

polarization backscatter, the local incidence angle, and the 

normalized difference vegetation index were used in input vectors 

for the ANN algorithm for the retrieval and mapping of the ALOS-

2 and Sentinel-1 SMC at a 30 m resolution. The results of the 

comparison between the SMC retrievals and the measured SMC 

show that Sentinel-1 and ALOS-2 SMC retrievals with high 

accuracy correspond to low vegetation areas (crop, grass and 

shrub), with a root mean square error (RMSE) of 0.021 and 0.033 

cm3/cm3, respectively. ALOS-2 SMC retrievals provide higher 

accuracy (RMSE=0.076 cm3/cm3) than Sentinel-1 SMC retrievals 

at high vegetation (e.g., forest). However, it remains challenging 

for soil moisture retrieval in forest land. The C-band and L-band 

SMC retrievals have higher RMSE (up to 0.047cm3/cm3) at low 

incidence angle (<20°) and high incidence angle (>50°). In addition, 

by considering the impact of rainfall on the SMC, it appears that 

the Sentinel-1 and ALOS-2 SMC have a good response to the 

rainfall events. Finally, the results of the comparison between the 

SMC retrievals and the Soil Moisture Active Passive (SMAP) L2 

SMC product show that the correlation coefficients between 

Sentinel-1, ALOS-2 and SMAP are higher in September when the 

vegetation is drying than in July when the vegetation is growing. 

Index Terms—Agro-forestry area, Advanced Land Observing 

Satellite-2 (ALOS-2), Artificial Neural Network (ANN), Sentinel-

1, soil moisture content (SMC).  
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I. INTRODUCTION 

OIL moisture content (SMC) is one of the most active

parameters in the process of energy and water interchange 

between the land surface and atmosphere, and it is also a key 

variable for several applications in hydrological processes, 

bioecological processes, and biogeochemical processes [1]. 

High spatial resolution measurements of SMC have widespread 

applications in agricultural irrigation, hydrological modeling 

and meteorological climate forecasting [2]. Remote sensing 

techniques, with the launch of new sensors with improved 

performances in terms of accuracy and spatial resolution, 

provide a flexible alternative to capturing the SMC at regional 

and global scales, in particular using optical/thermal infrared 

and microwave sensors [3, 4]. Optical/thermal infrared sensors 

are affected by weather conditions (e.g., cloud, and rainfall), 

which makes them encounter difficulties in estimating the SMC 

continuously over space and time. Passive microwave satellites 

can provide a long-term series of SMC datasets for large areas. 

However, the satellites, which include FengYun-3B/C/D (FY-

3B/C/D), Advanced Microwave Scanning Radiometer-2 

(AMSR2), Soil Moisture and Ocean Salinity (SMOS), and Soil 

Moisture Active Passive (SMAP), have a coarse spatial 

resolution (25 ~36 km), which is limiting for many applications 

that require high spatial resolution. Active microwave remote 

sensing instruments, such as synthetic aperture radar (SAR) 

sensors, can provide observations at higher spatial resolutions 

and show rather high sensitivity to vegetation biomass and 

SMC, especially at low microwave frequencies (i.e., the C and 

L bands) [1, 5].  

Microwave sensors that operate from the P to L band are 

more sensitive to variations in the SMC of bare and vegetated 
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soils, which provides information for consistent soil layers [6-

8]. However, most radar systems operate mainly at the C band 

(e.g., RADARSAT and ENVISAT) and X band (e.g., COSMO-

SkyMed and TerraSAR-X). Although some preliminary studies 

have indicated some sensitivity of X-band signals to the SMC 

[9], this frequency does not represent the optimal option for 

SMC retrieval. The current satellite missions of Sentinel-1 with 

C-band SAR and Advanced Land Observing Satellite-2 

(ALOS-2) with L-band SAR provide more opportunities for 

SMC retrieval at a high spatial resolution. At present, there are 

many studies that focus on SMC retrieval using Sentinel-1 data 

[10-14], but there is limited research on SMC retrieval using 

ALOS-2 [15, 16], which is mainly due to the scarce worldwide 

coverage and lack of image availability. Thus, the performance 

of ALOS-2 SAR to retrieve SMC requires further validation. At 

the same time, to obtain the highest accuracy and spatial 

resolution of the SMC product in the future, the potential of 

Sentinel-1 (C-band SAR) and ALOS-2 (L-band SAR) to 

retrieve SMC under different land surface conditions should be 

compared and investigated with a more in-depth approach. 

In the process of SMC retrieval, both the surface roughness 

and vegetation cover have a significant effect on the radar signal, 

and therefore, they are the key issues to be considered. Some 

backscattering models have been developed to describe the 

scattering mechanisms of bare soil and vegetation surfaces. For 

bare soil, the most commonly adopted models are the integral 

equation model (IEM) [17], advanced IEM (AIEM) [18], and 

Oh model [19]. These models allow for simulation of the radar 

signals, SMC and soil roughness under specific soil conditions. 

Most studies use mainly vegetation models combined with bare 

soil models to simulate the backscattering in the vegetation-

covered areas. The most popular models are the water cloud 

model (WCM) [20] and Michigan Microwave Canopy 

Scattering model (MIMICS) [21]. The input parameters of the 

MIMICS model are complex and sometimes difficult to obtain, 

which limits the widespread application of this model. WCM 

requires a few input parameters, and it is also simpler in 

implementation; as a result, it is more widely used in SMC 

retrieval [15, 22, 23]. 

Based on SAR images and these models, many SMC 

retrieval algorithms have been widely implemented for 

different land surfaces in the past [9, 15, 16, 24], which mainly 

include change detection approaches [10, 14, 25, 26], physical 

models [1, 5, 27, 28] and statistical methods [11, 30-32]. 

However, these retrieval algorithms are mainly applied to bare 

soil, sparsely vegetated surfaces, cropland and grassland, 

whereas limited studies have been conducted for dense 

vegetation areas, especially in agro-forestry areas. Agro-

forestry areas are the typical pattern of shelterbelts and cropland 

in China’s Three-North Shelter Forest Program [32]. A high 

spatial resolution SMC estimation is important for estimating 

carbon emissions and carbon storage and identifying the 

influence of water circulation in agro-forestry areas [3].  

Over the last two decades, among the statistical approaches 

for retrieving SMC, artificial neural networks (ANNs) [23, 24, 

33, 34] have been widely used, since they have the power to 

retrieve the complex, dynamic and non-linear patterns from the 

data, and therefore, they are widely applied in many land 

surface parameter retrieval studies that use remote sensing data 

[35-37]. In SMC retrieval, the ANN algorithm gives a better 

compromise in terms of the accuracy, computational time and 

criticality, compared with statistical algorithms based on Bayes’ 

theorem, iteration algorithms based on the Nelder–Mead 

minimization method, and linear regression algorithms [24]. 

Subsequently, the potential of machine learning methods for 

SMC retrieval was investigated [22-24, 37], and the 

effectiveness of these methods in solving SMC retrieval 

problems has been proved, mainly using C-band or X-band 

SAR images of bare soil, grassland and cropland.  

Therefore, due to the complexity of the land surface in the 

agro-forestry area and considering the ease of implementation 

of ANNs in retrieving SMC, this paper describes an algorithm 

based on ANNs to retrieve SMC from C-band and L-band SAR. 

Since it is well-known that one of the critical points of ANNs is 

the training phase, in this algorithm, we used a training set 

derived from model backscattering coefficient simulations 

obtained from the WCM, AIEM and Oh models that account 

for different land surface types and radar characteristics. 

This work aims at investigating the potential of Sentinel-1 

and ALOS-2 SAR data for the estimation of SMC and 

developing an SMC retrieval algorithm at high spatial 

resolution over agro-forestry areas. Currently, the SMC 

validation is mainly based on measured ground data [10, 22, 23, 

38]. However, the spatial representation of the measured sites 

is limited. To better validate the retrieval results, in addition to 

the ground measured data, the remote sensing product SMAP 

L2 radiometer/radar SMC are used to intercompare the 

Sentinel-1 and ALOS-2 SMC estimates. The proposed 

approach for the retrieval of SMC in agro-forestry areas is based 

on an ANN algorithm trained by using WCM combined with 

AIEM and Oh model simulations. First, we generated a 

simulated database based on the calibrated WCM combined 

with AIEM and the Oh model. Half of the total data of the 

simulated parameters was used for training the ANN, and the 

other half of the simulated data was used for the validation of 

the algorithm. Second, Sentinel-1 and ALOS-2 SAR 

backscattering coefficient, local incidence angle, and 

normalized difference vegetation index (NDVI, derived from 

Sentinel-2 and Landsat 8) are input to the ANN to retrieve the 

SMC. Finally, Sentinel-1 and ALOS-2 SMC retrievals were 

validated based on the ground measurements and compared 

with SMAP L2 SMC product. This paper is organized as 

follows: section II presents the study area and database. Section 

III describes the data analysis and proposed methodology. 

Section IV presents and discusses the result of algorithm 

validation and SMC maps. Finally, the conclusions are 

summarized in section V. 

II. STUDY AREA AND DATASET 

The study was conducted in the Genhe watershed of China, 

which is mainly an area of agricultural and forestry ecotones. In 

the following, only a brief description of this study area is given 

because it is described in detail in other papers [3, 39]. The data 

used in this paper are mainly composed of in situ observations 
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of SMC, soil temperature, surface roughness and soil texture, 

Sentinel-1 and ALOS-2 SAR data, GlobeLand30 land cover 

information and NDVI. Considering the Genhe watershed with 

frequent cloud weather and the quality of the optical data, two 

optical satellites, namely, Sentinel-2 and Landsat 8, are selected 

to derive the NDVI and complement each other under cloudless 

conditions. To maintain the consistency of the spatial resolution, 

the Sentinel-1, ALOS-2, and Sentinel-2 observations in this 

paper were all sampled at 30m (by taking the average value of 

10 m pixels, inside each 30 m pixel).  

A. In situ data 

The Genhe watershed is the northernmost and coldest area in 

Inner Mongolia, and it is mainly a zone of interspersed 

agriculture, grassland and forestry. As shown in Fig. 1, the 

SMC and soil temperature observation network was deployed 

on both sides of the Genhe watershed (50.16°-50.66° N, 120.5°-

121.0° E), and the detailed information on the sites is shown in 

Table 1. The SMC and soil temperature were continuously 

measured via the Em50 data collection system with EC-5TM 

probes (Decagon Devices, Inc., Washington, USA) from 

October 2013 to September 2019. Considering the penetrability 

of the C band and L band in complex land surfaces over the 

Genhe watershed, the average SMC and soil temperature 

observations from top 3-cm and 5-cm layers were selected to be 

used in this work. Soil surface roughness was measured by a 

pin profiler at each site. The surface roughness measurements 

of the root mean square height and correlation length in the 

study area were approximately 0.8~1.5 cm and 5~15 cm, 

respectively. Vegetation height was derived from in situ 

measurements at complicate observations and multi-parameter 

land information constructions on allied telemetry experiment 

(COMPLICATE) [40] and Genhe watershed observation 

network [39]. Soil texture was measured in the laboratory with 

soil samples by the cutting ring method in the field. The topsoil 

texture of this area is mainly composed of silt (50%~54%), sand 

(6%~9%), and clay (39% ~ 44%).  
TABLE 1. INFORMATION ON THE SITES IN THE STUDY AREA 

Site 

name 

Lon. 

(deg.) 

Lat. 

(deg.) 

Alt. 

(m) 

Land 

cover 

Time(Day/ 

Month/Year) 

Site 1 120.522  50.505  705 Grass 07/10/2013- 

Site 2 120.711  50.451  699 
Larix 

gmelinii 
10/10/2013- 

Site 3 120.840  50.450  628 
Shrub, 

Birches 
06/10/2013- 

Site 5 120.531  50.413  628 
Grass, 
Shrub 

07/10/2013- 

Site 6 120.533  50.412  673 Grass 
07/10/2013-

09/10/2015 

Site 7 120.539  50.415  792 Grass 
07/10/2013-

19/09/2015 

Site 9 120.876  50.565  705 
Birch 
forest 

21/04/2015- 

Site 10 120.954  50.555  728 
Larix 

gmelinii 

21/04/2015-

02/10/2015 

Site 11 120.836  50.300  724 
Shrub, 

Birches 
10/10/2015- 

Site 12 120.883  50.367  651 Shrub 10/10/2015- 

Site 13 120.761  50.364  754 
Birch 

forest 

10/10/2015-

10/05/2017 

Site 14 120.581 50.511 731 Birch 
forest 

09/10/2015- 

 
Fig. 1. Land cover map in the Genhe watershed (from GlobeLand30, http://www.globallandcover.com/) 

 

 

B. SAR data 

The local overpass time and temporal resolution of the 

Sentinel-1 and ALOS-2 SAR sensors are different. To better 

compare the retrieval results of the Sentinel-1 and ALOS-2 

SAR sensors, data with similar overpass times of the two 

satellites are screened out within the period from 2015 to 2016 

(Table 2). Cui et al [3] have shown that the soil surface in the 

Genhe watershed is frozen at the beginning of November and 

thawed at the beginning of April. The state of the SMC is 

complicated under frozen conditions, due to low dielectric 

constant values of frozen soils, and thus, this work was 

conducted for the unfrozen season only, by removing data that 

corresponded to frozen dates from the analysis. The satellite 

passes that correspond to unfrozen conditions are shown in 

Table 2 with the mark *. 

1) Sentinel-1 

 The Sentinel-1 mission is the European Radar Observatory 

for the Copernicus joint initiative of the European Commission 

and the European Space Agency. A C-band (5.405 GHz) SAR 

is aboard Sentinel-1, and it provides dual polarization capability. 

Sentinel-1 comprises a constellation of two polar-orbiting 

satellites, Sentinel-1A (launched on April 3, 2014) and 

Sentinel-1B (launched on April 25, 2016), which share the same 

orbital plane, and the repeat cycle at the equator with one 
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satellite is 12 days [41]. It operates in four exclusive acquisition 

modes: strip map, interferometric wide swath, extrawide swath, 

and wave mode with different resolutions (down to 5 m) and 

coverages (up to 400 km). This study used ground range 

detected high-resolution standard products with vertical-

vertical (VV) and vertical-horizontal (VH) polarization in the 

interferometric wide swath mode (Level 1, 

https://scihub.copernicus.eu/dhus/#/home). All Sentinel-1 data 

were preprocessed using the Sentinel Application Platform 

(SNAP), as follows: updating orbits, thermal noise removal, 

radiometric calibration, speckle filtering, terrain correction 

(using Shuttle Radar Topography Mission digital elevation 

model at 30 m), and linear to dB conversion. Considering the 

spatial resolution of other satellite data, the last step is 

resampled at 30 m. The local incidence angle of Sentinel-1 in 

Genhe watershed is mainly range between 20° and 60°. The 

images collected on July 18 and 28 September 28, 2015, July 

12 and September 22, 2016 were selected for this research 

during unfrozen seasons (in Table 2). Information about the 

satellite data are shown in Table 3. 

2) ALOS-2 

 ALOS-2 is follow-on mission from the "DAICHI", which 

was developed by Mitsubishi Electric Corporation under 

contract to Japan Aerospace and Exploration Agency (JAXA). 

ALOS-2 was launched on May 24, 2014, with a revisit time of 

14 days. The state-of-the-art Phased Array type L-band 

Synthetic Aperture Radar-2 (PALSAR-2) aboard ALOS-2 uses 

the 1.2 GHz frequency range [42]. ALOS-2 has three main 

observation modes: spotlight mode (1 to 3 m), strip map mode 

(3 to 10 m) and scanSAR mode (100 m/60 m) [43]. This study 

used strip map mode with horizontal-horizontal (HH) and 

horizontal-vertical (HV) polarizations products (Level 1.5, fine 

mode, https://satpf.jp/spf/?lang=en). The local incidence angle 

of ALOS-2 in Genhe watershed is mainly range between 10° 

and 50°.The dates of the selected ALOS-2 images correspond 

to the Sentinel-1 ones, and they are July 17 and September 25, 

2015, July 15 and September 23, 2016 (in Table 2), details of 

the data are shown in Table 3. All of the ALOS-2 data were 

preprocessed using the ENVI and SNAP Toolboxes, as with 

Sentinel-1. 
TABLE 2. SAR DATA WITH SIMILAR OVERPASS TIME (*UNFROZEN 

CONDITIONS) 

Sensor Date Sensor Date 

Sentinel-1A  

Sentinel-1A  

Sentinel-1A  

Sentinel-1A  

Sentinel-1A  

Sentinel-1A 

Sentinel-1A 

Sentinel-1B 

Feb 17, 2015  

Jul 18, 2015* 

Sep 28, 2015*  

Dec 9, 2015 

Feb 7, 2016  

Jul 12, 2016* 

Sep 22, 2016* 

Dec 9, 2016 

ALOS-2 

ALOS-2 

ALOS-2 

ALOS-2 

ALOS-2 

ALOS-2 

ALOS-2 

ALOS-2 

Feb. 13, 2015  

Jul. 17, 2015* 

Sep. 25, 2015* 

Dec. 4, 2015  

Feb. 12, 2016  

Jul. 15, 2016* 

Sep. 23, 2016* 

Dec. 2, 2016 

C. Optical data 

The free access to both the Sentinel-2 and Landsat 8 data, the 

similar wavelengths, and the same geographic coordinate 

system provide an excellent opportunity to use these two types 

of data [44]. Therefore, we chose Landsat 8 to calculate NDVI 

for 2015 instead of Sentinel-2 because Sentinel-2 had no 

released observations from the official website in the Genhe 

watershed area for 2015. Moreover, Sentinel-2 was used to 

calculate the NDVI for 2016 due to the large number of clouds 

present in the Landsat 8 images. If Sentinel-2 and Landsat 8 

images that are closest to the SAR images are cloudy, then the 

optical images were acquired two weeks before or after the SAR 

acquisitions could be used because vegetation is assumed to not 

change significantly within one or two weeks [23]. Details of 

the data are shown in Table 3. 

1) Sentinel-2 

 The Copernicus Sentinel-2 mission comprises a constellation 

of two polar-orbiting satellites placed in the same sun-

synchronous orbit, namely, Sentinel-2A (launched on June 23, 

2015) and Sentinel-2B (launched on March 7, 2017). Each of 

the satellites in the Sentinel-2 mission hosted a single payload 

multispectral instrument (MSI) with 10-day repeat cycle, which 

covered from the visible and near infrared to the shortwave 

infrared spectral range [45]. This work used Sentinel-2A MSI 

data Level 1C (https://scihub.copernicus.eu/dhus/#/home) 

under cloud-free conditions to calculate the NDVI ((Band8-

Band4)/(Band8+Band4), 10 m). It should be noted that all of 

the Sentinel-2A data were preprocessed with radiometric 

correction, atmospheric correction and resampling at 30 m 

using the Sentinel-2 Toolbox. Details of the data are shown in 

Table 3. 

2) Landsat 8 

 Landsat 8 was developed in collaboration between National 

Aeronautics and Space Administration (NASA) and the U.S. 

Geological Survey (USGS), and it was launched on February 

11, 2013. The satellite carries the Operational Land Imager 

(OLI) and the Thermal Infrared Sensor (TIRS), and it has a 16-

day repeat cycle [46]. This work used Landsat 8 OLI/TIRS C1 

Level 2 data (https://earthexplorer.usgs.gov/) under cloud-free 

conditions to calculate NDVI ((Band5-Band4)/(Band5+Band4), 

30 m); details of the data are shown in Table 3. 
TABLE 3. DATASETS INFORMATION (SR: SPATIAL RESOLUTION; RES: 

RESAMPLING RESOLUTION) 

Datasets Acquisition 

date 

Parameter SR 

(m) 

RES 

(m) 

Sentinel-1 Jul 18, 2015 

Sep 28, 2015 

Jul 12, 2016 

Sep 22, 2016 

backscattering 

coefficient 

(VV, VH) 

 

10 30 

ALOS-2 Jul 17, 2015 

Sep 25, 2015 

Jul 15, 2016 

Sep 23, 2016 

backscattering 

coefficient 

(HH, HV) 

10 30 

Landsat 8 

 

Jul 5, 2015 

Sep 7, 2015 

band5, band4 30 30 

Sentinel-2 

 

Jul 19, 2016 

Sep 30. 2016 

band8, band4 10 30 

Globe-

Land30 

2010 classes 30 30 

D. Land cover information 

The land cover map used in this paper is GlobeLand30-2010 

with a 30-m resolution in the baseline year of 2010, and it was 

produced by the National Geomatics Center of China 

(http://www.globallandcover.com/home_en.html?type=data). 

The GlobeLand30 classification system includes 10 land cover 
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types, and the images utilized for classification are 

multispectral images with 30 m resolution, including the 

Landsat TM5 and ETM+, China Environmental Disaster 

Alleviation Satellite HJ-1, and other auxiliary data [47].  

III. DATA ANALYSIS AND METHODS 

A. Data analysis 

1) Sensitivity analysis between backscattering coefficients at 

C and L bands and SMC 

 Parameters sensitivity analysis will help us to select the 

appropriate configuration that is more sensitive to SMC. This 

section analyzes the sensitivity of the SAR signal to the SMC 

in the VV and VH polarizations from Sentinel-1, and in the HH 

and HV polarizations from ALOS-2, respectively, as shown in 

Fig. 2 and Table 4. In this study area, the land cover is mainly 

characterized by crops, grass, shrubs, and forest. Furthermore, 

the forestland is mainly composed of artificial forest farms, and 

the percentage of virgin forest is not very high. The observation 

sites in the forest are mainly located close to the boundary of 

the forestland and not in the center. According to the vegetation 

type and vegetation height measurement of sites in the study 

area, the observation sites were subdivided into two categories 

of vegetation: low vegetation (crop, grass and shrub, height 

approximately≤  2 m), and high vegetation (forest, height 

approximately > 2 m) to better evaluate the sensitivity of the 

backscattering coefficients in SMC. It should be noted that 2 m 

is an empirical value applicable to the Genhe study area. 

  

      

Fig. 2. SAR backscattering coefficient vs. measured SMC for low (asterisks) 

and high (points) vegetated soil. 

Fig. 2 shows the relationship of the SAR backscattering 

coefficient at C (top) and L (bottom) bands and the measured 

SMC for low and high vegetated areas. The backscattering 

coefficient usually increases with increasing SMC at VV, VH, 

and HH polarizations (in Fig. 2, a-c). The SAR signal at the HV 

polarization is less sensitive to SMC in the high vegetation area 

(in Fig. 2d). The threshold of NDVI is 0.3~0.7 for low 

vegetation and 0.4~0.85 for high vegetation. As expected, there 

is a significant decrease in the sensitivity of the radar signals to 

SMC with the increase in the NDVI. This result is clearly 

produced by the strong scattering from the high vegetation and 

the attenuation of soil signals due to high vegetation [15, 23]. A 

summary of the linear relationships between the backscattering 

coefficient and SMC at the C and L bands in all of the available 

polarizations is shown In Table 4. The highest sensitivity to 

SMC is shown at the VV and HH polarization (in Fig. 2a and 

2c), and correlation coefficient R2 of logarithm fit are 0.45 and 

0.43, respectively, whereas there is a significant decrease in the 

sensitivity of the VH and HV polarizations to SMC (in Fig. 2b 

and 2d, Table 4). For both of these two frequencies, cross-

polarization (VH and HV) is less sensitive to SMC than co-

polarization (VV and HH) due to its high sensitivity to volume 

scattering, which is caused by the strong scattering contribution 

of the vegetation [10, 15, 48]. The HV polarization data at the 

L-band show much lower sensitivity to SMC than VH 

polarization data at the C-band, which may be related to longer 

wavelength SAR is more sensitive to surface roughness than 

shorter wavelength SAR. The correlation coefficient R2 

between ALOS-2 HV and roughness, Sentinel-1 VH and 

roughness are 0.594 and 0.159, respectively. It means that 

ALOS-2 HV is more sensitive to surface roughness than the 

Sentinel-1 VH in Genhe area. In addition to the influence of 

frequency on backscattering, the correlation coefficient (R2) 

values between ALOS-2 HH and local incidence angle 

(18°~38°) and Sentinel-1 VV and local incidence angle (34~48°) 

are 0.231 and 0.304, respectively. It means that Sentinel-1 VV 

is more affected by the local incidence angle than the ALOS-2 

HH. 
TABLE 4. THE RESULT OF BACKSCATTER COEFFICIENT AND SMC FITTING IN 

DIFFERENT CONDITIONS 

Land 

surface 

Relationship Linear fit Logarithm fit 

Low 

Vegetation 

(grass, 

shrub, crop) 

VV vs. SMC y=23.16*x-17.80, 

R2=0.40 

y=2.24 ln(x)-9.84, 

R2=0.45 

VH vs. SMC y=19.32*x-22.84, 

R2=0.26 

y=1.94 ln(x)-

16.03, R2=0.32 

High 

vegetation 

(forest) 

VV vs. SMC y=12.88*x-14.16, 

R2=0.25 

y=2.01 ln(x)-8.16, 

R2=0.17 

VH vs. SMC y=10.82*x-19.30, 

R2=0.13 

- 

Low 

Vegetation 

(grass, 

shrub, crop) 

HH vs. SMC y=29.65*x-12.81, 

R2=0.42 

y=2.78 ln(x)-2.96, 

R2=0.43 

HV vs. SMC - - 

High 

vegetation 

(forest) 

HH vs. SMC y=16.66*x-15.22, 

R2=0.27 

y=3.58 ln(x)-5.58, 

R2=0.36 

HV vs. SMC - - 

(x=SMC, y= backscatter coefficient with different polarizations and 

frequencies, R2 is the square of the correlation coefficient, “-” means that the 

fitting result is poor and R2<0.1; VV and VH: Sentinel-1 polarization mode, HH 

and HV: ALOS-2 polarization mode) 

Compared with the result of the linear fit in Table 4, the 

logarithmic fitting shows higher determination coefficients for 

Sentinel-1 and ALOS-2, except for the Sentinel-1 VH and VV 

radar signal in high vegetated soil. This finding could be due to 

the influence of the vegetation and surface roughness and to the 

complex mechanisms between the radar signal and SMC in 
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vegetated soil, which are not simply linear [1]. 

2) Spatial pattern of SAR backscattering coefficient 

characteristics in the study area 

 Based on the above analysis, co-polarizations (VV, HH) are 

demonstrated to be more sensitive to SMC than cross-

polarizations (VH, HV). To better understand the co-

polarization scattering characteristics of Sentinel-1 and ALOS-

2, this section presents the spatial distribution of Sentinel-1 

SAR backscatter-VV and ALOS-2 SAR backscatter-HH at a 

30-m resolution, as shown in Figs. 3 and 4. 

Fig. 3 shows the spatial distribution of the SAR backscatter-

VV from Sentinel-1, and it is apparent that the backscatter-VV 

in July (Fig. 3a and 3c) is mostly higher than that in September 

(Fig. 3b and 3d). This because July is the thickest time of the 

year for vegetation, and NDVI is approximately at its maximum, 

with 0.85 in a high vegetation area over Genhe watershed. 

Moreover, the backscattering coefficient increases due to the 

increase in the direct scattering from the upper canopy [49]. 

Vegetation began to wither in September (NDVI < 0.7), and the 

backscattering coefficient decreased due to the decrease in the 

canopy attenuation [50]. Corresponding to the land 

classification map (Fig. 1), the backscatter-VV in the high 

vegetation area is higher than that in the low vegetation area. 

Compared with other land cover types, the backscatter of 

cultivated land is the lowest. This finding could be related to the 

scattering mechanism of canopy types.  

  
(a) Sentinel-1 VV on July 18, 2015 (b) Sentinel-1 VV on September 28, 2015 

  
(c) Sentinel-1 VV on July 12, 2016 (d) Sentinel-1 VV on September 22, 2016 

Fig. 3. Spatial distribution of the Sentinel-1 SAR backscattering coefficient 

for VV on (a) July 18, 2015; (b) September 28, 2015; (c) July 12, 2016; and 

(d) September 22, 2016 

In Fig. 4, the distribution of backscatter-HH from ALOS-2 

SAR is consistent with Sentinel-1 backscatter-VV, and the 

ALOS-2 backscatter-HH in low vegetation areas is lower than 

that in the high vegetation areas (NDVI approximately 0.85). 

The backscatter of cultivated land is lower than that of other 

land cover (grass, forest). The spatial distribution of 

backscatter-HH in high vegetation areas is similar on July 18 

and September 28 2015 (Fig. 4a and 4b), July 12 and September 

22 2016 (Fig. 4c and 4d). The ALOS-2 SAR backscattering 

coefficient seems higher in September than in July, which could 

be due to the strong penetration capacity of the L band [51], and 

it is less affected by the scattering of the canopy. Moreover, 

SMC measurements are wetter in September than in July [3]. 

  
(a) ALOS-2 HH on July 17, 2015    (b) ALOS-2 HH on September 25, 2015 

  
(c) ALOS-2 HH on July 15, 2016    (d) ALOS-2 HH on September 23, 2016 

Fig. 4. Spatial distribution of the ALOS-2 SAR backscattering coefficient for 

HH on (a) July 17, 2015; (b) September 25, 2015; (c) July 15, 2016; and (d) 

September 23, 2016 

 

  
 

(a) Sentinel-1 LIA                             (b) ALOS-2 LIA 

Fig. 5. Spatial distribution of the SAR local incidence angle (LIA) in Genhe 

area 

The spatial distribution of the Sentinel-1 SAR incidence 

angle and ALOS-2 SAR incidence angle is shown in Fig. 5. The 

incidence angles of Sentinel-1 and ALOS-2 are mainly between 

20° and 60° (Fig. 5a) and 10° and 50° (Fig. 5b), respectively. 

Corresponding to the land classification map (Fig. 1), the 

incidence angle of Sentinel-1 is approximately 10° higher than 

that of ALOS-2 in grassland, shrubland, cropland and 

forestland. From the comparison of the spatial distribution of 

Sentinel-1 backscatter-VV with the ALOS-2 backscatter-HH, 

the ALOS-2 backscatter is higher than Sentinel-1 backscatter in 

the high vegetation areas, especially on September 23, 2016 

(Fig. 3d and Fig. 4d). This because the ALOS-2 incidence angle 

is usually lower than the Sentinel-1 incidence angle (Fig. 5a and 

5b) and that the backscattering coefficient decreases with 

increasing incidence angle [52]. Moreover, HH backscatter is 

higher than VV backscatter at incidence angles of >20°, and HH 

backscatter is lower than VV backscatter at incidence angles of 

<20° in vegetated soil [52, 53].  

B. Methods 

The influence of vegetation, surface roughness, and the 

complex mechanisms that regulate radar signals and SMC in 

vegetated soil are not simple to describe [1, 22]. ANN methods 

provide an alternative to traditional numerical modeling 

techniques [54], because they can describe the complex 

relationships between the input and output parameters. During 

the prediction phase, if a sufficiently robust and representative 

set of samples were provided during the training phase, the 

ANN would significantly reduce the computational time [55] 
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and would be able to estimate and map the SMC from Sentinel-

1 and ALOS-2 SAR data with reasonable accuracy. The 

training set used in the ANN derives from a synthetic database 

for the C band and L band obtained through the calibrated 

WCM combined with the AIEM and Oh model. The flowchart 

of the SMC retrieval method is shown in Fig. 6. 

 
Fig. 6. Flowchart of the SMC retrieval methodology 

1) Land surface synthetic database based on electromagnetic 

model simulations 

WCM was developed first by Attema and Ulaby in 1978 [20]. 

In the WCM, the total backscatter (
0

pq ) is expressed as the 

incoherent sum of direct backscattering of the vegetation layer 

( _pq Veg ) and backscatter from the underlying surface 

(
0

_pq Soil ) which is attenuated by the vegetation layer through 

the two way attenuation factor (
2 ), and multiple scattering in 

soil-vegetation is generally neglected. The original model was 

subsequently modified or extended by various authors [25, 56-

58]. In this work, WCM was simplified to [58]: 
0 0 2 0

pq _ pq _= +pq Veg soil                                  (1) 

0 2

_ = eg cos (1 )pq Veg A V                         (2) 

2 =exp( 2 eg )B V Sec    
                 (3) 

where pq is polarization.  is the incidence angle. Parameters 

A and B are parameters that depend on the canopy descriptors 

and radar configurations. Veg is the vegetation’s descriptor 

(such as vegetation water content (VWC), Leaf Area Index 

(LAI), and NDVI, etc.). In this work, NDVI was used as 

vegetation parameter in WCM because it can be easily derived 

from optical images with resolution 30m.  

Some studies have shown that WCM, AIEM and Oh model 

have high potentials for soil moisture retrieval [22, 58-60]. 

Therefore, WCM, AIEM (HH, VV) [18], Oh (VH or HV) [61] 

was used in this work. In the WCM, the radar backscatter of the 

bare soil were simulated by the AIEM (HH, VV) and Oh model 

(VH or HV) at the C band and L band. Parameters A and B are 

estimated empirically, by fitting the ground observations and 

models with Nelder–Mead minimization method [62]. To better 

characterize the backscattering in the presence of different land 

cover, the vegetation surface is subdivided into low vegetation 

surfaces (grass, crop and shrub) and high vegetation (forest) 

surfaces. In Table 5, the fitting and validation of the A and B 

parameters in the WCM are shown for the C band (VV, VH) 

and L band (HH, HV) with the different vegetation covers. The 

validation of the parameters between the calibrated model and 

the observed data shows that the accuracy of the co-polarization 

(VV, HH) is better than for the cross-polarization (VH, HV) and 

the fitting result in the presence of low vegetation is better than 

in the high vegetation areas. Moreover, some studies have 

shown that co-polarization (VV, HH) provides higher accuracy 

on the SMC retrieval than cross-polarization (HV, VH) [22, 23]. 

Based on these findings, the considered SMC retrieval 

configuration is limited to VV and HH polarization. 
TABLE 5. FITTING AND VALIDATION OF THE A AND B PARAMETERS IN THE 

WCM FOR EACH POLARIZATION USING SATELLITE DATA AND IN SITU DATA 

Band Land 

cover 

Pol A B R RMSE 

(dB) 

Bias 

(dB) 

C 

band 

Low 

vegetation 

VV 

VH 

0.004 

0.387 

0.125 

0.055 

0.97 

0.89 

0.87 

1.61 

0.40 

0.60 

 High 

vegetation 

VV 

VH 

0.250 

0.086 

0.155 

0.020 

0.94 

0.69 

0.88 

1.76 

0.07 

0.05 

L 

band 

Low 

vegetation 

HH 

HV 

0.145 

0.278 

0.204 

0.023 

0.96 

0.72 

0.74 

2.34 

0.07 

-0.17 

 High 

vegetation 

HH 

HV 

0.061 

0.213 

0.065 

0.024 

0.95 

0.91 

1.10 

2.34 

0.37 

1.80 

(Pol: Polarization mode, R is the correlation coefficient, RMSE is the root mean 

square error, Bias is the mean bias) 

With the A and B parameters (Table 5), the land surface 

synthetic databases are built by the WCM combined with AIEM 

and the Oh model for the C and L bands, respectively. The input 

parameters for the C and L bands have the same ranges of 

values, and the details of input parameters are as follows: (1) 

SMC, random between 0.02 and 0.42 cm3/cm3, (2) incidence 

angle, random between 10° and 60°, (3) root mean square 

height s, random between 0.6 and 6 cm, (4) correlation length l, 

random between 2 and 20 cm, 0<s/l<0.4, exponential 

autocorrelation function was used in this work, and (5) NDVI, 

random between 0 and 0.85.  

2) ANN algorithm 

 The SMC retrieval algorithm is based on the feed-forward 

multilayer perceptron ANN proposed in [22], which consists of 

numbers of hidden layers of neurons between the input and the 

output. The training of the ANN follows the back-propagation 

learning rule, which can minimize the error between the desired 

target parameters and the actual output parameters. At the same 

time, to obtain the optimal ANN architecture with the terms for 

the neurons and hidden layers, the ANN configuration often 

starts with a simple combination of hidden layers and neurons, 

and there is an addition of neurons and hidden layers to increase 

the ANN configuration. There is repeated training and testing 
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with error comparisons, until the optimal ANN configuration is 

found to have a negligible error between the training and testing 

sets. 

According to the above model simulation, the land surface 

synthetic database was composed of parameters that include the 

backscattering coefficient, incidence angle, SMC, roughness 

and vegetation parameters for the C band (database 1) and L 

band (database 2), respectively. In this work, an optimal ANN 

architecture with two hidden layers of eight neurons was 

selected for matching the C band and L band data. In the ANN 

training, database 1 and database 2 are randomly sampled into 

two subsets: 50% of the data was selected as the training data, 

and 50% of the data was used to test the training results. In 

accordance with the acquisition modes of Sentinel-1, the input 

parameters of the ANN are the VV backscattering coefficient, 

incidence angle and NDVI from database 1, and the output 

parameter is the SMC. In accordance with the acquisition 

modes of ALOS-2, the input parameters of the ANN are the HH 

backscattering coefficient, incidence angle and NDVI from 

database 2, and the output parameter is the SMC. 

  
Fig. 7. The training results of the ANN test (a: at the C band, b: at the L band) 

The training results of the ANN test for C-band database 1 

and L-band database 2 are shown in Fig. 7. In the test, the 

number of each parameter in database 1 and database 2 is 

2,000,000. Here, 50% of the data are randomly selected as 

training data, and the remaining 50% of the data are used to test 

the training results. Therefore, database 1 and database 2 are 

subjected to random sampling in two subsets, each of size 

1,000,000. In Fig. 7, the target SMC is derived from C-band 

database 1 and L-band database 2, and the estimated SMC is 

retrieved by the ANN. The estimated SMC and target SMC 

have a significant correlation. The R and RMSE of database 1 

are 0.925 and 0.022cm3/cm3 (Fig. 7a, for database 1), the R and 

RMSE of database 2 are 0.932 and 0.021 cm3/cm3 (Fig. 7b, for 

database 2), respectively. The test results show that the ANN's 

training settings are reliable and they can be used for the 

subsequent SMC retrieval. 

IV. RESULTS AND DISCUSSION 

A. SMC retrieval validation using ground site data 

Based on the above ANN algorithm, the SMC is estimated 

from the Sentinel-1 and ALOS-2 SAR data. The results of the 

SMC retrievals from the Sentinel-1 and ALOS-2 SAR data are 

compared with the in situ SMC for low vegetation and high 

vegetation areas, respectively, as shown in Figs. 8 and 9.  

Sentinel-1 and ALOS-2 SMC retrievals had the highest 

accuracy for the low vegetation covered areas (crop, grass and 

shrub), with an R of 0.945 and 0.879, and an RMSE of 0.021 

and 0.033 cm3/cm3 (Fig. 8a and Fig. 9a), respectively. However, 

with the soil covered with high vegetation (forest), the ALOS-

2 SMC retrievals provide, as expected, higher accuracy (with 

an R of 0.79 and an RMSE of 0.076 cm3/cm3) than the Sentinel-

1 SMC retrievals (R=0.65 and RMSE=0.14 cm3/cm3) in Fig. 8b 

and Fig. 9b, respectively. This finding is due to the strong 

attenuation of the SAR signal by high vegetation when the 

NDVI value was greater than 0.7 [48]. Moreover, the section III 

showed that the sensitivity of the C-band and L-band SAR 

signal to SMC for NDVI 0.3~0.7 (low vegetation) is higher than 

that for an NDVI 0.4~0.85 (high vegetation). 

  
 Fig. 8. Validation of the Sentinel-1SMC retrieval (a: low vegetation, b: high 

vegetation) 

  
Fig. 9. Validation of the ALOS-2 SMC retrieval (a: low vegetation, b: high 

vegetation)  

By comparing Sentinel-1 and ALOS-2 SMC retrievals, we 

can note that the accuracy of the Sentinel-1 retrievals is higher 

than the accuracy of the ALOS-2 retrievals in low vegetation 

areas. For low vegetation areas, the high sensitivity was 

obtained from VV polarization of Sentinel-1 (R2 = 0.45) and 

HH polarization of ALOS-2 (R2 = 0.43) in Table 4. The results 

demonstrated that the potential of Sentinel-1 for SMC 

estimation was higher than ALOS-2 over low vegetation areas. 

This finding corresponds to the results of recent studies [48, 63] 

showing that the SMC estimates from the L-band generally 

exhibited RMSE values greater than those obtained for the C-

band in wheat, grassland and bare soil. For the case without 

vegetation or with low vegetation cover, the contribution of low 

vegetation areas to the total scattering is negligible at L-band 

and C-band. And C-band SAR is more sensitive to soil moisture 

and less sensitive to surface roughness than L-band SAR [64, 

65], which is one of the reason for the accuracy of the Sentinel-

1 retrievals is higher than the accuracy of the ALOS-2 retrievals 

in low vegetation areas. With the soil covered with high 

vegetation, the RMSE of Sentinel-1 SMC retrievals is 0.064 

cm3/cm3 higher than ALOS-2 SMC retrievals. This finding is 

due to the higher frequency (C band), which is less able to 

penetrate the densely vegetated surfaces with respect to the 
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longer wavelength L band, and the negligible SMC contribution 

at the C-band [51]. 

Overall, VV polarization monitors early canopy growth best, 

while HH polarization is better during the later stages of canopy 

development [59, 66]. Moreover, the canopy loss and the 

volume scattering coefficient increase with the frequency [67], 

and will decrease the sensitivity of C band to SMC compared 

with the L band. The accuracy of the ALOS-2 and Sentinel-1 

SMC retrievals is higher in low vegetation areas than in high 

vegetation areas. These results show that both the C band and L 

band can satisfy the accuracy of the SMC retrieval in low 

vegetation areas. The L band HH polarization presented better 

accuracy results than the C band VV polarization in high 

vegetation soils. 

B. Influence of local incidence angle on SMC retrievals 

The sensitivity of backscattering coefficient at L-HH and C-

VV decreases with increasing incidence angle [68]. The 

incidence angles of Sentinel-1 and ALOS-2 are mainly 20° ~ 

60°and 10°~ 50°, respectively. The radar incidence angle has a 

large range of variation, and it is difficult to normalize to a fixed 

angle due to the unavoidable influence of the incidence angle 

on the retrieval of soil moisture. This is the reason for 

accounting for the incidence angle as an input parameter in this 

work, since it is a factor that affects the SMC retrieval. 

Therefore, the influence of incidence angle on the accuracy of 

SMC retrievals is discussed in this part.  

Based on the in situ measurements and SAR data, the 

accuracy of SMC retrievals at different incidence angles was 

calculated, as shown in Table 6. Corresponding to the in situ 

measurements, the incidence angles of Sentinel-1 are mainly 

35° ~ 56°, the incidence angles of ALOS-2 are mainly 20° ~ 37°. 
Sentinel-1 SMC retrievals have higher RMSE at 35°, 37° and 

38°, which are 0.17 cm3/cm3, 0.053 cm3/cm3 and 0.071 cm3/cm3, 

respectively. ALOS-2 SMC retrievals have higher RMSE at 30°, 
32°  and 37° , which are 0.087 cm3/cm3, 0.067 cm3/cm3 and 

0.058 cm3/cm3, respectively. Coincidentally, these SMC 

retrievals with higher errors are mainly in forest areas. 

Moreover, the number of samples is too small at different 

incidence angles, and it is difficult to find out whether the main 

influence factor is the local incidence angle or the surface 

roughness or vegetation. 
TABLE 6. ERROR METRICS FOR SENRINEL-1 AND ALOS-2 SMC RETRIEVAL 

AT DIFFERENT LOCAL INCIDENCE ANGLE (LIA)  

SAR LIA 

(°) 
R RMSE 

(cm3/cm3) 

Bias  

(cm3/cm3) 

No. 

Sentinel-1 35 0.670 0.170 0.126 4 

 37 0.840 0.053 0.024 8 

 38 0.879 0.071 0.054 8 
 43 0.921 0.013 0.003 4 

 46 0.964 0.012 0.001 4 

 56 0.864 0.016 0.004 4 
ALOS-2 20 0.933 0.028 0.012 8 

 24 0.750 0.024 0.011 4 

 30 0.816 0.087 0.046 8 
 31 0.745 0.012 0.010 4 

 32 0.822 0.067 0.038 4 

 37 0.962 0.058 0.057 4 

(No. is the number of samples) 

The land surface synthetic database have sufficient samples, 

therefore, 200 samples were randomly selected at 10°, 20°, 30°, 
40°, 50°, 60° in the C-band and L-band simulated database to 

retrieve and validate SMC and analyze the effect of incidence 

angle on the accuracy of SMC retrievals. The results of the 

SMC retrievals from the C-band and L-band simulated database 

are compared with the simulated SMC at different incidence 

angle, as shown in Fig. 10 and Table 7. 

   
Fig. 10. Validation of SMC estimates from the (a) C-band and (b) L-band 

simulated database at different local incidence angle 

 

TABLE 7. ERROR METRICS FOR C-BAND AND L-BAND SMC ESTIMATES AT 

DIFFERENT LOCAL INCIDENCE ANGLE 

SAR LIA 

(°) 
R RMSE 

(cm3/cm3) 

Bias  

(cm3/cm3) 

No. 

C-band 10 0.666 0.047 -0.008 200 
 20 0.942 0.022 0.003 200 

 30 0.985 0.011 0.009 200 

 40 0.932 0.022 0.006 200 
 50 0.882 0.034 0.002 200 

 60 0.713 0.040 0.002 200 

L-band  10 0.765 0.028 0.004 200 
 20 0.918 0.020 -0.002 200 

 30 0.940 0.019 -0.01 200 

 40 0.953 0.017 0.001 200 
 50 0.852 0.019 0.001 200 

 60 0.783 0.032 0.001 200 

From Fig.10 and Table 7, we can see that C- band and L-band 

SMC retrievals have higher RMSE at low incidence angle 

(<20°) and high incidence angle (>50°). SAR at low angle of 

incidence has shorter path length within vegetation volume, and 

hence, the SAR signal at low incidence angle is able to penetrate 

up to the soil underneath. Therefore, the low incidence angle 

SAR backscatter is affected by the soil surface contribution 

(SMC and roughness) even at vegetated areas [69]. Meanwhile, 

backscattering coefficient are more sensitive to roughness 

conditions at L band compared to C band [70]. However, 

penetration depth could generate some differences and 

limitations in methodologies, the influence of moisture profile 

heterogeneities at L-band is less than that C- band because L-

band penetration depth is approximately 5 cm for medium 

moisture levels [71]. Therefore, the accuracy of L-band soil 

moisture is higher than that of the C-band. Moreover, some 

studies have indicated that higher incidence angle increases the 

path length of SAR signal through the vegetation volume, 

resulting in higher interaction with crop canopy [72]. And SAR 

signal at high incidence angle is more sensitive to surface 

roughness and vegetation than at low incidence angle [64, 73]. 

This is the reason for the accuracy of SMC retrievals is not high 

at large incidence angle. The influence of incidence angle is 

considered in the algorithm. Meanwhile, some studies have 

indicated that the incidence angles from 30° to 50° does not 

have a significant impact on the sensitivity of HH and VV to 

the variation of SMC [1], and the errors of the SMC estimates 

does not significantly depend on the incidence angles (20° ~ 45°) 



 TGRS-2020-01537  

 

10 

[23]. In this work, the incidence angle (20° ~ 50°) has little 

effect on the accuracy of SMC retrievals, and the accuracy of C 

band soil moisture at 30° and L band soil moisture at 40° is 

higher than that of other incidence angles. The precondition of 

the conclusion in the work is that the influence of incidence 

angle has been considered in the soil moisture retrieval 

algorithm. 

C. The response of SMC retrievals to rainfall 

Generally, the occurrence of rainfall will increase the SMC 

suddenly [74]. To examine the reasonableness of SMC 

retrievals further, the daily rainfall data from the China 

Meteorological Data Service Center (0.5°×0.5°, 

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_

PRE_DAY_GRID_0.5.html) were used to investigate the 

response of SMC retrieval to rainfall in this part. Corresponding 

to the local overpass time of the satellite, two weeks of daily 

rainfall are displayed in Fig. 11, the red circle represents the 

ALOS-2 mean SMC estimation during its overpass in the study 

area, and the green circle represents the Sentinel-1 mean SMC 

estimation during its overpass in the study area.  

There are no significant rainfall events, and the cumulative 

rainfall being less than 10 mm in one week before the Sentinel- 

and ALOS-2 satellite overpass during the period of July 11-18, 

2015 (Fig. 11a) and September 16-23, 2016 (Fig. 11d). 

Therefore, the influence of rainfall on the SMC retrieval can be 

ignored during the period July 11-18, 2015 (Fig. 11a) and 

September 16-23, 2016 (Fig. 11d). During September 21-28, 

2015 (Fig. 11b), the cumulative rainfall is 10.3 mm, and there 

are the slight rainfall events on September 24 and 25, 2015 (4.2 

mm, 1.3 mm), which very close to the ALOS-2 overpass. 

However, there are no rainfall events on September 27 and 28, 

2015, which close to the Sentinel-1 overpass. Meanwhile, the 

ALOS-2 SMC on September 25, 2015 is higher than the 

Sentinel-1 SMC on September 28, 2018. The results indicate 

that when the rainfall (<10 mm) arrives one or two days before 

the ALOS-2 overpass time, the ALOS-2 SMC can capture the 

influence of rainfall on soil moisture. During July 5-15, 2016 

(Fig. 11c), the cumulative rainfall is 19.7 mm, and there are the 

moderate rainfall (19.2 mm) events on July 8, 2015 four days 

before the Sentinel-1 overpass, and the slight rainfall (0.5 mm) 

events on July 11, 2015 one day before the Sentinel-1 overpass. 

Moreover, the Sentinel-1 SMC July 12, 2015 is higher than 

ALOS-2 SMC July 15, 2015. The results show that when the 

rainfall (19.7 mm) arrives four days before the Sentinel-1 

overpass time, the Sentinel-1 SMC also can capture the 

influence of rainfall on soil moisture. Therefore, the Sentinel-1 

and ALOS-2 SMC have a good response to rainfall events. 

There is no rainfall events, the Sentinel-1 SMC is 0.035 

cm3/cm3 higher than the ALOS-2 SMC on July 17, 2015 in Fig. 

11(a), while the ALOS-2 SMC is 0.049 cm3/cm3 higher than the 

S1 SMC on September 23, 2016 in Fig.11 (d). These are 

because the Sentinel-1 VV-backscattering coefficient is 1.427 

dB higher than ALOS-2 HH backscattering coefficient on July 

17, 2015 (in Fig. 3a and 4a), and ALOS-2 HH backscattering 

coefficient is 2.168 dB higher than Sentinel-1 VV-

backscattering coefficient on September 23, 2016 (Fig. 3d and 

4d). 

 

   

  
Fig. 11. Daily precipitation in the Genhe watershed area (A2 SMC-red circle: ALOS-2 SMC, S1 SMC-green circle: Sentinel-1 SMC, (a) July 4-18, 2015, (b) 

September 14-28, 2015, (c) July 1-15, 2016, and (d) September 9-23, 2016) 

Overall, when the rainfall is relatively light (<10 mm), the 

surface evapotranspiration and vegetation interception make it 

difficult to store water on the land surface [76, 77], and this fact 

could have an instantaneous effect on the surface SMC, for 

example, September 2015 (Fig. 11b). However, this aspect has 

a small effect on the SMC after a few days, and the effects can 

be neglected, such as July 2015 and September 2016 (Fig. 11a 

and 11d). When the rainfall intensity increases, the moderate 

rain (~19.2 mm) could have a potential impact on the surface 

SMC due to the infiltration of the rainfall, which could have an 

effect on the surface SMC in the next few days [75], especially 

during July 2016 (Fig. 11d). Therefore, in this work, the 
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cumulative rainfall being less than 10 mm in one week or five 

days before the satellite pass, the effect of light rainfall (< 10 

mm) on SMC can be ignored. If the light rainfall (< 10 mm) 

arrives one or two days before the satellite pass, it surely has 

some effects on the soil moisture. And if the moderate rainfall 

(≥ 10mm) arrives four days before the satellite pass, it has a 

significant effect on the SMC. Overall, Sentinel-1 and ALOS-

2 SMC retrievals have a good response to the rainfall events. 

D. SMC mapping 

Based on the ANN method, Sentinel-1 SMC maps with a 30 

m spatial resolution have been generated on July 18 and 

September 28, 2015, and on July 12 and September 22, 2016, 

and they are shown in Fig. 12. ALOS-2 SMC maps with a 30 m 

spatial resolution obtained on July 17 and September 25, 2015 

and on July 15 and September 23, 2016 are shown in Fig. 13. 

Considering the information on the land cover, the SMC could 

not be retrieved under the water bodies and the artificial 

surfaces with the input of land cover information from 

GlobeLand30-2010.  

According to the spatial distribution of the Sentinel-1 SMC 

and the land classification map (in Fig. 12 and Fig. 1), it can be 

seen that the Sentinel-1 SMC is mostly higher in July than in 

September, except for some high vegetation areas. The 

Sentinel-1 SMC retrievals on July 18, 2015 are higher than the 

SMC retrievals on July 12, 2016. Corresponding to the land 

classification map (Fig. 1), the SMC in the high vegetation area 

is higher than that in the low vegetation area, due to the 

presence of high vegetation, which can reduce the evaporation 

and maintain higher levels of water content [78]. ALOS-2 SMC 

maps on July 17 and September 25, 2015, and on July 15 and 

September 23, 2016, are shown in Fig. 13. The spatial 

distribution of the soil wet and dry conditions is consistent with 

the Sentinel-1 retrievals, and the ALOS-2 SMC is lower in low 

vegetation areas than in high vegetation areas. The ALOS-2 

SMC retrievals in September are higher than the SMC retrievals 

in July. In addition, the ALOS-2 and Sentinel-1 SMC retrievals 

show many missing values in the high vegetation area due to 

the decreasing sensitivity to SMC as the canopy height and 

NDVI increases (approximately 0.85), except for the water 

bodies and artificial surfaces. 

  

  
     

Fig. 12. Spatial distribution of Sentinel-1 SMC retrieval 

 

   

   
  

Fig. 13. Spatial distribution of ALOS-2 SMC retrieval 

The spatial distribution of SMC retrieval is correlated with the 

SAR backscattering coefficient, and the backscatter coefficient 

increases with the SMC (in Fig. 3 and Fig. 12 for Sentinel-1, 

Fig. 4 and Fig. 13 for ALOS-2). Sentinel-1 backscatter is lower 

than ALOS-2 backscatter on September 28, 2015 and 

September 22, 2016. This is the reason for the ALOS-2 SMC 

retrievals on September 25, 2015, and September 23, 2016, are 

higher than the SMC retrievals on September 28, 2015, and 

September 22, 2016. Meanwhile, Sentinel-1 backscatter is 

higher than ALOS-2 backscatter on July 18, 2015. This is the 

reason for the Sentinel-1 SMC retrievals on July 18, 2015 are 

higher than the SMC retrievals on July 18, 2015. This finding 

corresponds to the backscattering coefficient usually increases 

with increasing SMC at VV and HH polarizations [63]. 

Although the SAR images have been processed by speckle filter, 

the speckle noise still appeared in Sentinel-1 and ALOS-2 soil 

moisture maps at high vegetation areas. Some studies have 

shown that upscaling the SAR signal or using an effective 

speckle filter operator can reduce the speckle noise [14, 79], 

which is helpful for soil moisture retrieval at high spatial 

resolution by SAR. 

The C-band backscatter SAR signal is less sensitive to SMC 

under dense and high vegetation covers and high incidence 

angle (NDVI > 0.7, LIA > 50 ° ), and SAR data are more 

sensitive to soil roughness at high incidence angles [73]. 

Consequently, the SMC retrievals become unreliable. On the 

other hand, the accuracy of ALOS-2 in SMC retrievals is higher 

than the accuracy provided by Sentinel-1 in the high vegetation 

area (section IV A). Because L-band observations correspond 

to a deeper layer of land surface compared to C-band [48, 63]. 

However, ALOS-2 SMC retrievals have higher RMSE at low 

incidence angle (LIA < 20°) in the high vegetation area (Refer 

to Fig. 5 and section IV-B). 

E. SMC map validation using the SMAP L2 

Radiometer/Radar SMC product 

The validation of SMC retrievals is limited by the lack of 

ground observations. Previous studies have shown that the 

accuracy of SMAP SMC is higher than AMSR2 and SMOS 

SMC in the Genhe watershed area [3]. Moreover, the SMAP 

and Sentinel-1 SMC product (SMAP L2_SM_SP) have a high 

resolution of 1km/3km, which combines the advantages of L 

band radiometer measurements and of C band radar 

measurements [80]. Therefore, in order to understand and 

analyze the reasonability of the spatial distribution of SMC 

retrievals at high resolution from SAR, we selected the 
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currently published SMC product with a high spatial resolution 

(1 km), namely, SMAP L2 active and passive SMC products 

(https://nsidc.org/data/SPL2SMAP_S/versions/3) as SMC 

reference data to intercompare the spatial distribution of the 

ALOS-2 and Sentinel-1 SMC. The SMAP L2 active and 

passive SMC algorithm is based on disaggregated brightness 

temperatures and ancillary data using a single-channel 

algorithm to retrieve the SMC. The disaggregated brightness 

temperature of the SMAP L-band radiometer is obtained by 

using the finer spatial resolution of the Sentinel C-band SAR 

data and parameters derived from a relationship between the 

brightness temperature and the SAR data [80].  

The SMAP L2 radiometer/radar SMC product was validated 

by the in situ measurements before use in this work. The results 

show that SMAP can represent surface soil moisture to some 

extent. The R and bias between SMAP SMC and in situ 

measurements are 0.649 and 0.035 cm3/cm3, respectively The 

RMSE of SMAP L2 SMC product is 0.075cm3/cm3 in the 

Genhe area. It should be noted that the validation of SMAP L2 

SMC retrievals is limited by the lack of ground observations. 

This part mainly analyzes the reliability of the spatial 

distribution of soil moisture. To facilitate intercomparison, the 

spatial resolutions of the ALOS-2 and Sentinel-1 SMC are 

aggregated from 30 m to 1 km. The overpass time of Sentinel-

1 is closer to SMAP L2 than that of ALOS-2. Therefore, the 

comparison between ALOS-2 and SMAP can only be used as a 

reference analysis due to the difference in the overpass times. 

The results of the ALOS-2 and Sentinel-1 SMC estimation 

versus the SMAP SMC are shown in Fig. 14 and Table 8. As 

shown in Table 8, the correlation between Sentinel-1 SMC, 

ALOS-2 SMC and SMAP is higher in September (Fig. 14c, 14d, 

14 g and 14 h) than in July (Fig. 14a, 14b, 14e, and 14f). This 

finding is due to the vegetation growing (0.4 < NDVI < 0.87) 

in July and the vegetation drying (0.3 < NDVI < 0.72) in 

September, and consequently, the effect of vegetation on the 

SMC retrieval is reduced in September. The RMSE of Sentinel-

1 is lower than that of ALOS-2 (Table 8). The main reason is 

that the overpass time of Sentinel-1 is closer to SMAP L2 than 

that of ALOS-2. In fact, the overpass time difference will affect 

the validation results, especially in 1-3 days. In addition, the 

time series variation of in situ SMC shows that SMC 

observations in September are wetter than in July from 2015 to 

2016 [3]. This is because rainfall more frequently in September 

than July (Fig 11). In July, there is less precipitation and soil 

moisture is relatively dry. Therefore, the RMSE is also 

generally lower in July than September in particularly for 

ALOS-2. Sentinel-1 and ALOS have a lot of saturated soil 

moisture at high vegetation areas, which is different with 

SMAP SMC (in Fig 15). SMAP L2 SMC combines the C band 

radar measurements with high-resolution spatial details and the 

advantages of L band radiometer measurements that are 

sensitive to surface SMC [80]. It is the main difference with 

ALOS-2 (L band SAR) and Sentinel-1(C band SAR). Besides, 

vegetation correction methods are different in soil moisture 

retrieval. NDVI was used for vegetation correction in the 

ALOS-2, Sentinel-1, and SMAP SMC retrieval algorithm. The 

main difference is that the vegetation contributions from the 

foliage and stem components are taken into considered in the 

SMAP algorithm [81]. In order to distinguish the different 

effects of the vegetation correction methods, the vegetation 

transmissivity at L-band frequencies (SMAP) was calculated by 

equation (8) in [81] from the vegetation opacity in SMAP L2 

SP soil moisture product, and the vegetation transmissivity at 

C-band and L-band SAR was calculated by equation (3) in this 

work. The range of vegetation transmissivity at SMAP L-band 

(0.25~0.92) is wider than that of Sentinel-1 C-band (0.45~0.84) 

and ALOS-2 L-band (0.52~0.94), which may be the main 

reason for the range of SMAP SMC is wider than Sentinel-1 

and ALOS-2 SMC, and has less saturation value in this work. 
TABLE 8. ERROR METRICS FOR SENTINEL-1 AND ALOS-2 SMC RETRIEVAL 

Parameter Date R RMSE 

(cm3/cm3) 

Bias  

(cm3/cm3) 

Sentinel-1 vs. 

SMAP SMC 

Jul. 18, 2015 

Sep. 28, 2015 

0.29 

0.37 

0.045 

0.053 

0.013 

-0.078 

 Jul. 12, 2016 

Sep. 22, 2016 

0.30 

0.47 

0.064 

0.049 

0.016 

-0.120 

ALOS-2 vs. 

SMAP SMC 

Jul. 17, 2015 

Sep. 25, 2015 

0.33 

0.40 

0.061 

0.078 

0.008 

0.012 

 Jul. 15, 2016 

Sep. 23, 2016 

0.27 

0.52 

0.062 

0.080 

0.007 

-0.033 

From the spatial distributions of the ALOS-2, Sentinel-1 and 

SMAP SMC (in Fig. 15), there are some missing data for the 

SMAP L2 SMC in the studied area (in Fig. 15c) due to the 

difference in swath width between SMAP and Sentinel-1. 

ALOS-2, Sentinel-1, and SMAP SMC are usually higher in 

high vegetation (forest) than in low vegetation (grass, crop and 

shrub) areas, which corresponds to the land classification map. 

Perhaps the presence of well-developed vegetation over the soil 

contributes to keeping more water content due to the reduced 

surface evaporation [82]. The spatial distribution of SMC 

shows that the Sentinel-1 SMC is usually lower than that of the 

SMAP in September (Fig. 15b and 15c), and the ALOS-2 SMC 

value is closer to the SMAP SMC, except for some forest areas 

(Fig. 15a and 15c). SMAP and ALOS-2 SMC are higher in 

September than in July from 2015 to 2016, which is consistent 

with the time series variation of in situ SMC [3]. The land 

surface temperature in July is higher than in September [3], and 

surface evapotranspiration increases with the increase in the 

surface temperature, which leads to the surface drying. 

However, Sentinel-1 SMC is lower in September than in July, 

which indicates that SMAP and ALOS-2 SMC are more 

consistent with the measured SMC than Sentinel-1, and the 

correlation between the ALOS-2 SMC retrievals and SMAP is 

higher than the correlation from Sentinel-1 in September (Fig. 

14 c-d and 14 g-h). Due to the high attenuation effect of the 

dense vegetation cover (NDVI > 0.7), the C band SAR signal 

becomes insensitive to the surface SMC, whereas the L band 

SAR signal is still sensitive to the SMC [51]. 

Overall, the spatial distribution of ALOS-2 SMC is closer to 

the SMAP SMC than Sentinel-1. SMAP L2 active and passive 

SMC product combines the advantages of radiometer 

measurements and radar measurements, showing an accuracy 

of ~0.075 cm3/cm3 in the Genhe area. If users want to use SMC 

products with coarser spatial resolution (i.e., ≥ 1 km), they can 

refer to SMAP L2 active and passive SMC products. If users 

need higher spatial resolution SMC data (i.e., <1 km), L band 

SAR is the better choice for SMC retrieval in an agro-forestry 

area.  
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Fig. 14. 1-km resolution aggregated ALOS-2, Sentinel-1 SMC versus SMAP SMC (a, c, e, and g: Sentinel-1 vs. SMAP; b, d, f, and h: ALOS-2 vs. SMAP) 

 

    

   

   

    
                                     (a) ALOS-2 SMC                                           (b) Sentinel-1 SMC                                          (c) SMAP SMC 

Fig. 15. Spatial distribution of ALOS-2, Sentinel-1 and SMAP SMC with a 1-km resolution ((a) left column: ALOS-2 SMC, (b) middle column: Sentinel-1 SMC, 

and (c) right column: SMAP SMC) 

V. CONCLUSIONS  

In this work, the ANN algorithm was used to investigate the 

potential of Sentinel-1 (C-band) and ALOS-2 (L-band) SAR for 

SMC retrieval in agro-forestry areas. Based on the parameters 

analysis, the co-polarization backscattering coefficient (VV or 

HH), the incidence angle, NDVI and SMC from the simulated 

databases are used for ANN training and testing. According to 
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the result of ANN training and testing, the ALOS-2 and 

Sentinel-1 SMC at 30-m resolution were obtained from the 

ALOS-2 and Sentinel-1 SAR backscatter, LIA and NDVI, 

respectively. Subsequently, both ground measured data and 

SMAP L2 active and passive SMC data were used to 

intercompare the Sentinel-1 and ALOS-2 SMC, respectively. 

The results of the comparison between the Sentinel-1, ALOS-2 

SMC and measured SMC show that Sentinel-1 and ALOS-2 can 

provide SMC estimates with high accuracy over low vegetation 

soils (crop, grass and shrub). The accuracy of the ALOS-2 SMC 

retrieval over high vegetation soils (forest) is higher than that 

of Sentinel-1. This finding occurs because of the higher 

frequency of the C band, which is less able to penetrate the 

densely vegetation surfaces; thus, the backscatter received by 

the SAR contains a negligible SMC contribution under these 

conditions. The results of the intercomparison between the 

ANN SMC retrievals and the SMAP L2 SMC product show that 

the correlations between Sentinel-1, ALOS-2 SMC and SMAP 

SMC when the vegetation is drying in September are higher 

than when the vegetation is growing in July. The RMSE 

between Sentinel-1 SMC and SMAP SMC is lower than that of 

ALOS-2 because the overpass time of SMAP L2 is close to 

Sentinel-1. The influence of local incidence angle on the SMC 

retrieval shows that the incidence angle (20° ~ 50°) has little 

effect on the accuracy of SMC retrievals, C-band and L-band 

SMC retrievals have higher RMSE at low incidence angle (10°) 

and high incidence angle (60°). The influence of rainfall on the 

SMC retrieval shows that the Sentinel-1 and ALOS-2 SMC 

have a good response to the rainfall events.  

ALOS-2 L-band SAR appears to have more potential than 

the Sentinel-1 C-band SAR to estimate SMC in agro-forestry 

areas. The SMC retrieval from the Sentinel-1 C-band SAR in 

high vegetation areas is unreliable, with higher errors (0.14 

cm3/cm3) due to the limited penetration of the C-band and the 

consequent significant effect of vegetation on the SMC 

sensitivity, and the large incidence angles also affect the 

accuracy of SMC retrievals. However, C-band SAR has high 

potential for SMC retrieval in crop, grass and shrub land (low 

vegetation areas). The limitations of ground measured SMC 

data produce more uncertainty for the validation of the 

proposed algorithm. The SMAP L2 SMC product has been used 

as a reference (not a truth value) to intercompare the Sentinel-1 

and ALOS-2 SMC estimates, it cannot completely substitute for 

in situ data, which introduces some errors and affects the 

comparison results.  

ANN has the power to retrieve the complex, dynamic and 

nonlinear patterns from the data, but it is “black boxes”, and the 

user has no control, except providing the input data. This is the 

limitation of the ANN algorithm, which leads to the uncertainty 

of the SMC estimates. Although the soil moisture maps at 30-

m resolution were obtained in this work, it still have a few 

speckles in the soil moisture maps. Therefore, effective removal 

of speckles in SAR images is also an issue that needs to be 

considered in the future soil moisture retrieval at meter scale. 

Meanwhile, semi empirical and electromagnetic vegetation 

models are used to build a synthetic database, while ignoring 

the multiple scattering effects between canopy layers, and 

NDVI as the vegetation’s descriptor in WCM is easily saturated 

in forest areas, which could produce some negative impacts on 

the retrieval results. SMC retrieval in dense and high vegetation 

is always a key but challenging task, and this work represents 

only a beginning. In future work, we will consider the 

previously mentioned factors, by collecting more in situ data 

and SAR images to investigate the potential of the L-band and 

C-band SAR sensors in estimating the SMC. Moreover, it is 

advisable to adopt an optimized vegetation correction method 

to improve the accuracy of the SMC retrievals and obtain high- 

resolution SMC maps. 
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