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I. INTRODUCTION

Collisionless plasma equilibrium structures, even in their simplest unmagnetized, electrostatic

manifestations, generally involve space distributions of the electric field and velocity distribution

functions of charged particles which are inhomogeneous along at least one space coordinate.

A complete understanding of the dynamics of the oscillations within these inhomogeneus

structures is based on the knowledge of the oscillations’ spectrum and eigenfunctions. This

information may be used to determine the ability of the plasma structures to resonantly absorb

external radiation, and to damp or de-stabilize the oscillations [1].

Determining these eigenfunctions must take into account contributions coming from kinetic

effects, proper of spatially-homogeneous, e.g. Maxwellian, plasma equilibria, and those arising

from the inhomogeneous state of the plasma.

A further contribution, pointed out by recent research, is provided by those collisionless

plasma structures having discontinuous particle velocity distributions [2]. These equilibria arise

when the electric potential within the plasma is not endowed with sufficient spatial symmetry

[3] as, e.g., in non monotonic double layers.

For an infinitely extended spatially homogeneous equilibrium based on a Maxwellian electron

distribution and on immobile ions, the linear eigenvalue problem for the whole kinetic operator

was reduced [4] to the eigenvalue problem of van Kampen [1] for the oscillations of the one-

particle electron distribution function governed by the homogeneous Vlasov equation. This

proved that the eigenfunctions of such kinetic system belong to a purely continuous infinite real

spectrum.

Continuous spectra also arise, irrespective of kinetic effects, e.g., in fluids, precisely because

of the above mentioned spatial inhomogeneity of the equilibrium plasma state [5].

One first peculiar outcome of the joint effects of inhomogeneity and kinetics is the appearance

of a discrete spectrum. In physical terms, the eigenfunctions of the discrete spectrum describe

plasma particles confined in the wells which now appear in the space distribution of their in-

homogeneous potential energy. Their corresponding eigenvaluaes are integer multiples of the

bouncing frequencies within the wells’ boundaries

Thus when the kinetic equilibria are inhomogeneous (as in the present paper), the treatment

used in Ref. [4] is inapplicable: it rather leads to a Vlasov equation with spatially inhomogeneous

coefficients for the one-particle distributions.

The analyis may then proceed by first determining the eigenfunctions of a part of the Vlasov
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operator, known as the inhomogeneous free-streaming operator.

The relevance of this method is that the intricate spectral, degeneracy and singular prop-

erties, the orthogonality relations and the completeness of the eigenfunctions of the complete

inhomogeneous Vlasov operator (which are due to inhomogeneity and which are key issues of

the present paper) are already embodied in those of the inhomogeneous free-streaming operator.

Specifically, the remaining part of the Vlasov operator can be treated as a “perturbation”

(in the operatorial sense) of the free-streaming operator: this perturbation leaves the essential

spectrum and the orthogonality properties of the eigenfunctions unchanged [6].

An example of this approach can be found in Ref. [7], where the concomitant contribu-

tions of kinetic effects and of the spatial inhomogeneity of a background magnetic field to the

doubly degenerate eigenfunctions of one species (electron) collisionless oscillations were treated

by an action-angle, integral-equation approach based on the knowledge of the free-streaming

eigenfunctions.

Ref. [8] proposed a normal mode and initial value differential approach and the technique

of the Green’s function, spectrally built on the free-streaming eigenfunctions, to determine the

permittivity to electromagnetic oscillations of a multispecies inhomogeneous plasma.

In Ref. [9], a truncated discrete Bloch electron free-streaming eigenfunction approach was

used to find the structure of one species (electron) electrostatic unstable oscillations about a one-

dimensional spatially inhomogeneous Bernstein Greene Kruskal spatially-periodic equilibrium

neutralized by an immobile ion background.

The works above focussed on the free-streaming eigenfunctions of the electron population

which, being the most mobile plasma component, predominantly contributes to the permittivity

at high frequencies. Ion eigenfunctions (a further issue of the present paper) may however

become important at lower frequencies in the kinetic or in the hybrid plasma regimes.

Also, the equilibrium particle distribution functions had to be well behaved functions of

velocity, in order for certain functional scalar products appearing in the plasma dielectric function

to be well defined.

Finally, being hindered by their singular (distributional) nature [9], the spatial profile of the

free-streaming eigenfunctions could not be developed, nor could the proof of their completeness.

As we shall see, the nature of these so far undeveloped issues much depends on the morphology

of the plasma structure hosting the oscillations. Their analysis requires a careful and extensive

classification of their spectral, degeneracy, singularity and orthogonality properties.

A valuable help in addressing these issues comes from the representation of the particle dis-

tributions in the Fourier transformed velocity space [10–13]. This approach seamlessly provides

functional scalar products in the velocity Fourier conjugate space involving well behaved equi-
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librium distribution functions, irrespective of any possible discontinuity of theirs in the velocity

space. Also, it naturally unfolds the above mentioned δ-shaped spatial eigenfunctions’ profiles

into ordinary functions, thus unveiling their algebraic singularities (a further contribution of our

work). Finally, it allows a thorough proof of their completeness, i.e. of the possibility for a

generic function to be represented as a superposition of those eigenfunctions.

In our study, practical examples of this analysis will be given for three types of morphologically

different, collisionless plasma equilibria of considerable physical relevance. Their equilibrium

electric potential has: (a) a monotonic spatial behaviour, typical of double layers (Section V);

(b) a bell-shaped structure, typical of solitary waves and of phase space holes (Section VI); (c) a

both infinitely and finitely extended periodic structure, typical, e.g., of Bernstein Greene Kruskal

wave equilibria (Section VII).

II. NOTATIONS AND BASIC EQUATIONS

Let

Φ̂ + φ̂, Φ̂ = min Φ̂ + Φ0Φ, φ̂ = Φ0φ̃, (1)

Φ0 = max Φ̂−min Φ̂ (2)

be the electric potential (of which Φ is the scaled, normalized steady state equilibrium part and

φ̃ is the normalized perturbation part) and its scale, e the elementary charge, α = e or α = i a

label denoting the electron and ion quantities,

Qα = Zαe, Zα = Qα/|Qe|, µα = mα/me (3)

the particle charges, charge and mass ratios (of which Ze = −1, µe = 1),

−Ve = ZeΦ, −Vi = Zi(Φ− 1), (4)

the scaled and normalized particle potential energies in the equilibrium potential Φ, n0 a density

scale, and

x̂ = Lx, ŷ = Ly, v̂x = v0vx, v̂y = v0vy, t̂ = ω−1p t, (5)

L =
√

[eΦ0/(4πn0e
2)], v0 =

√
(eΦ0/me), ω

−1
p = L/v0 (6)

the space and velocity coordinates, time and their respective scales.

We direct the coordinate x along the gradient (which we assume to be uni-directional) of the

equilibrium potential Φ and particle velocity distribution F̃α which, together with the perturba-

tion f̃α determine the one particle distribution

f̂α(x̂, ŷ, v̂x, v̂y, t̂) =
n0

v0Zα
[F̃α(x, vx, vy) + f̃α(x, y, vx, vy, t)], (7)
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The equilibrium quantities Φ and F̃α are assumed to be known in the domain

x1 < x < x2, (8)

where x1 and/or x2 may take infinite values. Last, we introduce the Fourier transforms of the

physical quantities

Fα(x, qx, qy) =

∫ ∞
−∞

dvx

∫ ∞
−∞

dvye
i(qxvx+qyvy)F̃α(x, vx, vy), (9)

fαkyω(x, qx, qy) =

∫ ∞
−∞

dy

∫ ∞
−∞

dvx

∫ ∞
−∞

dvy

∫ ∞
−∞

dt×

ei(kyy+qxvx+qyvy−ωt)f̃α(x, y, vx, vy, t), (10)

φkyω(x) =

∫ ∞
−∞

dy

∫ ∞
−∞

dtei(kyy−ωt)φ̃(x, y, t). (11)

In the above notation, the electrostatic oscillations in a collisionless plasma are governed by

the linearised electrostatic Maxwell equations and by the velocity Fourier transformed Vlasov

equations for electrons and ions:

e′xkyω − ikyeykyω = nkyω, (12)

e′ykyω + ikyexkyω = 0, (13)

−ωfαkyω +

[
∂2

∂x∂qx
− iky

∂

∂qy
+ qx

V ′α
µα

]
fαkyω =

−Zα
µα
Fα[qxexkyω + qyeykyω], (14)

where a “′” denotes differentiation with respect to x,

exkyω = −φ′kyω, exkyω = ikyφkyω, (15)

nkyω = (fikyω − fekyω)|qx=qy=0, (16)

are the y- and t-Fourier analyzed perturbations of the x and y components of the electric field

and of the plasma density respectively.

We now cast the electron and ion distributions in the vector valued function

|fkyω〉 = [fekyω(x, qx, qy), fikyω(x, qx, qy)]
T, (17)

introduce the matrix valued free-streaming operator Sky

Sααky =
∂2

∂x∂qx
− iky

∂

∂qy
+ qx

V ′α
µα
, (18)

Sαα′ky = 0 if α′ 6= α, (19)

and rewrite Eqs. (12)-(14) as

∇2exkyω = n′kyω (20)

[Sky |fkyω〉]α − ωfαkyω = −Zα
µα
Fα[qxexkyω + qyeykyω]. (21)
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The vector valued functions

|χekyσ〉 = [χekyσ, 0]T, |χikyσ〉 = [0, χikyσ]T (22)

are eigenfunctions of the operator Sky (Eq. (18)) corresponding to the eigenvalue σ provided

Sααkyχαkyσ = σχαkyσ. (23)

For simplicity, our treatment considers only one ion species. It may be extended to, say, m

ion species by allowing the function vectors |fkyω〉 (Eq. (17)) to have m+ 1 components. In this

case, there would be m + 1 eigenfunction vectors: |χekyσ〉, having m + 1 vanishing components

save the first, and |χijkyσ〉, j = 1 . . .m, having m+ 1 vanishing components, save the (j+ 1)-th.

III. SUPPORT, SINGULARITY, SYMMETRY RELATIONS AND DEGENERACY

OF THE EIGENFUNCTIONS

We seek a solution of Eq. (23) in the form χαkyσ(x, qx, qy) = e−ifα(x)+iqxuα(x)+iqycα , where cα is

an arbitrary real quantity. Substitution into Eq. (23) gives [u2α]′ = 2Vα/µα, f ′α = iu′α/uα + (σ −

kycα)/uα, and

χsααkyσcαγα =
Cα
|uαγα|

e−isα(σ−kycα)ξαγα+isαqx|uαγα |+iqycα , (24)

uαγα(x) = sα
√{2[γα + Vα(x)]/µα}, (25)

sα = ±, (26)

ξαγα(x) =

∫ x

x0αγα

dx′

|uαγα(x′)|
, (27)

where, γα is an integration constant and Cα is a normalization constant; in Eq. (27) the arbitrary

integration bound x0αγα will be referred to as the phase terminal: this quantity is independent

of σ, but it depends on the particle species α and on γα, as specified by the labels; It will be

chosen later according to the potential profile Φ.

For χsααkyσcαγα in Eq. (24) to be bounded for all values of q, uαγα must be real and thus γα+Vα

must be non negative. This implies that γα ≥ −Vα ≥ min(−Vα), i.e. (Eq. (4)), γα ≥ −|Zα|.

Furthermore, if γα is larger than the maximum of the particle equilibrium potential energy, i.e.

if γα > max(−Vα) = 0, then γα + Vα > 0 for all values of x. The corresponding eigenfunctions

describe particles which freely move over the whole x-domain. However, if −|Zα| ≤ γα < 0, then

the eigenfunctions describe particles which experience reflections at points where uα = 0.

An important property of the eigenfunctions arises when x approaches a root of uαγα or,

equivalently, when γα approaches −Vα(x). Basing the phase terminal x0αγα (Eq. (27)) on
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that root and defining dαγα = µα/|2ZαΦ′(x0αγα)|, Eqs. (25), (27) and (24) approximately give

|uαγα| '
√

[|x− x0αγα|/dαγα ], ξαγα ' dαγα |uαγα|,

χsααkyσcαγα '
Cα
|uαγα |

eisα[qx−(σ−kycα)dαγα ]|uαγα |+iqycα . (28)

We thus see that, as x approaches a reflection point, the eigenfunction diverges, however being

integrable there. This behaviour is manifest in the examples considered below.

With the above limitations on the value of γα, the phase of the eigenfunctions χsααkyσcαγα (Eq.

(24)) is real, and the following properties are verified by inspection:

χ̄sααkyσcαγα(x, qx, qy) = χ−sααkyσ(−cα)γα(x, qx, qy) =

χsαα(−ky)(−σ)cαγα(x,−qx,−qy). (29)

Following the above considerations, the species label α (Eq. (22)), the phase sign sα (Eq.

(26)) are discrete degeneracy parameters of the eigenfunctions χsααkyσcαγα ; the real numbers cα

and γα are continuous degeneracy parameters: two eigenfunctions having a different value of any

of these parameters are solutions of Eq. (23) corresponding to the same eigenvalue σ.

IV. ORTHOGONALITY OF THE EIGENFUNCTIONS

The degenerate eigenfunctions of the free-streaming operator (Eqs. (24)-(27)) will now be

shown to be linearly independent and in fact orthogonal. Given the generic vector valued

functions

|g〉 = [ge(x, qx, qy), gi(x, qx, qy)]
T, (30)

|h〉 = [he(x, qx, qy), hi(x, qx, qy)]
T, (31)

defined in some sub-domain of (x1, x2) and for −∞ < qx < ∞, −∞ < qy < ∞, we introduce

their functional scalar product

〈g|h〉 =

∫ b

a

dx

∫ ∞
−∞

dqx

∫ ∞
−∞

dqy(g(x, qx, qy), h(x, qx, qy)), (32)

where

(g(x, qx, qy), h(x, qx, qy)) =

<(ge(x, qx, qy)h̄e(x, qx, qy) + gi(x, qx, qy)h̄i(x, qx, qy)) (33)

is their point-wise scalar product and < and the overbar denote the real part and complex

conjugation.
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In Eq. (32), the x-bounds of the scalar product a and b are to be chosen according to the

shape of the potential Φ. The interval a < x < b, where |g〉 and |h〉 are defined, may be smaller

than the entire domain x1 < x < x2 (Eq. (8)) where the equilibrium quantities are defined.

Next, we observe that, because of the definition of the vectors |χsααkyσcαγα〉 (Eq. (22)) and

of their point-wise scalar product (Eq. (33)), the quantity 〈χsααkyσcαγα |χ
s′
α′
α′kyσ′c′α′γ

′
α′
〉 vanishes if

α′ 6= α. Also, in taking the qx-integration in the scalar product of two eigenfunctions of the

same species, the quantity ∫ ∞
−∞

dqxe
iqx[sα|uαγα (x)|−s′α|uαγ′α (x)|] (34)

vanishes if sα|uαγα(x)| 6= s′α|uαγ′α(x)|, which certainly occurs when the signs sα and s′α (Eq. (26))

are different.

The above considerations are summarized in the relation

〈χsααkyσcαγα |χ
s′
α′
α′kyσ′c′α′γ

′
α′
〉 = 0 if α′ 6= α or if sα 6= s′α. (35)

On the other hand, when α′ = α and s′α = sα, by carrying out the qx and qy integrations, the

scalar product (Eq. (32)) of the eigenfunctions (Eq. (24)) gives

〈χsααkyσcαγα|χ
sα
αkyσ′c′αγ

′
α
〉 =

4π2|Cα|2<
∫ b

a

dx
e−isα[σξαγα (x)−σ

′ξαγ′α
(x)]

|uαγα(x)||uαγ′α(x)|
×

δ(cα − c′α)δ(|uαγα(x)| − |uαγ′α(x)|). (36)

But since, for a given x, |uαγ′α(x)| is a monotonic function of γ′α (Eq. (25)) and thus there is

only one root, γ′α = γα, of Uα(γ′α) = |uαγα | − |uαγ′α | = 0, we may use the identity δ(Uα(γ′α)) =

[|dUα/dγ′α|γ′α=γα ]−1δ(γ′α − γα) and, using also Eq. (25), we rearrange Eq. (36) as

〈χsααkyσcαγα|χ
sα
αkyσ′c′αγ

′
α
〉 = 4π2µα|Cα|2 ×

<
∫ b

a

dx
e−isα(σ−σ

′)ξαγα (x)

|uαγα(x)|
δ(cα − c′α)δ(γα − γ′α). (37)

Now, being the integral of a positive quantity, ξαγα (Eq. (27)) is a monotonic function of x: thus

we may uniquely make the substitutions

t = ξαγα(x) =

∫ x

x0αγα

dx′

|uαγα(x′)|
, (38)

taαγα = ξαγα(a), tbαγα = ξαγα(b), (39)

and write Eq. (37) as

〈χsααkyσcαγα|χ
sα
αkyσ′c′αγ

′
α
〉 = 4π2µα|Cα|2 ×

<
∫ tbαγα

taαγα

dte−isα(σ−σ
′)tδ(cα − c′α)δ(γα − γ′α). (40)
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In the following sections, the eigenfunctions will be made orthonormal by an appropriate choice

of the constant Cα, according to the values of the integration bounds taαγα and tbαγα arising for

several equilibrium potential profiles of practical relevance.

V. EIGENFUNCTIONS OF PARTICLES IN A DOUBLE LAYER

In a double layer, extending for x1 = −∞ < x < ∞ = x2, we assume that the equilibrium

potential monotonucally increases, so that, when γα < 0, there may be at most one reflection

point at which γα +Vα = 0 and the eigenfunctions are defined in the whole semi-infinite interval

lying on one side of that point: thus, one of the scalar product’s bounds (Eq. (32)) will be placed

at that point and the other lies at infinity. It is also convenient to base the phase terminal x0αγα

in Eq. (27) at the reflection point so that

electrons : a = x0eγe = aeγe < x <∞ = b, (41)

ions : a = −∞ < x < aiγi = x0iγi = b. (42)

Inserting these values into Eqs. (39) and (40), we find

taeγe = 0, tbeγe =∞, taiγi = −∞, tbiγi = 0, (43)

〈χsααkyσcαγα |χ
sα
αkyσ′c′αγ

′
α
〉 =

δ(σ − σ′)δ(cα − c′α)δ(γα − γ′α). (44)

Here, orthonormality was ensured by choosing, in Eq. (40),

Cα = eiζ/
√

(4π3µα), (45)

where ζ is an arbitrary phase. There are no limitations on the real eigenvalues and the spectrum

is continuous.

If γα ≥ 0, the phase terminals and the scalar product bounds will be based at their respective

limit values attained as γα → 0−: this “continuity rule” ensures the continuity of the eigenfunc-

tions’ phase and scalar product as γα goes through zero. For the adopted infinitely extended,

increasing potential, the reflection points shift to infinity as γα → 0−: aeγe → −∞, aiγi → ∞.

Inserting these values into Eqs. (41) and (42), and these latter into Eqs. (39) and (40), we

find the same integration bounds taαγα and tbαγα (Eq. (43)), orthogonality relation (Eq. (44)),

normalization constant (Eq. (45)) and continuous nature of the spectrum as for the reflected

particle eigenfunctions.

The eigenfunctions’ reflection points and phases in the double layer equilibrium potential

Φ(x) = [1 + tanh(Kx)]/2 (46)
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are

aαγα = arctanh([|Zα|+ 2 min(γα, 0)]/Zα)/K, (47)

and

ξαγα =
1

2K

[
I+αγα(s) + I−αγα(s)

]s=x
s=x0αγα

, (48)

I±αγα(s) =
1

uαγα(±∞)
ln
|uαγα(s)| ∓ uαγα(±∞)

|uαγα(s)| ± uαγα(±∞)
, (49)

uαγα(±∞) =
√

[(γα + |Zα|) + (γα ∓ Zα)]/
√
µα, (50)

where x0αγα are the phase terminals (Eqs. (41) and (42)) and uαγα was given in Eq. (25).

The corresponding eigenfunctions are presented in Fig. 1. In this figure, the ion eigenfunction

has eigenvalue 1/
√
µi smaller than that of the electron eigenfunction. This choice avoids the fine

scale oscillations of the ion eigenfunction, whose phase ξiγi is proportional to
√
µi � 1 (Eqs. (24)

and (27)).

VI. EIGENFUNCTIONS OF PARTICLES IN A PHASE SPACE HOLE

In a phase space hole, extending for x1 = −∞ < x < ∞ = x2, we position the single

extremum of the equilibrium potential at x = 0. For for γα < 0, reflection and trapping points

at which γα + Vα = 0 now occur in pair: aαγα and bαγα .

In an electron hole, for which that extremum is a maximum, and for γα < 0, ions are reflected

at these points and electrons are trapped between them. In an ion hole, the potential has a

single minimum, ions are trapped and electrons are reflected: a convenient choice of the phase

terminals x0αγα Eq. (27) and of the scalar product bounds a and b (Eq. (32)) is

x < 0 : a = −∞ < x < aαγα = x0αγα = b, (51)

x > 0 : a = x0αγα = bαγα < x <∞ = b (52)

for the reflected particles and

a = x0αγα = aαγα < x < bαγα = b (53)

for the trapped ones. Inserting these values in Eq. (39) gives

x < 0 : taαγα = −∞, tbαγα = 0, (54)

x > 0 : taαγα = 0, tbαγα =∞ (55)

for the reflected particles and

taαγα = 0, tbαγα =

∫ bαγα

aαγα

dx′

|uαγα(x′)|
(56)
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for the trapped ones. Inserting Eqs. (54) and (55) into Eq. (40) gives, for the reflected particle

eigenfunctions, the same orthogonality relation, normalization constant and continuous nature

of the spectrum as for the reflected particle eigenfunctions of the double layer (Eqs. (43)-(45)).

On the other hand, inserting Eq. (56) into Eq. (40), we see that, if the trapped particle

eigenfunctions are to be orthogonal, then, necessarily,

σ = mπ/tαγα , σ
′ = m′π/tαγα , (57)

tαγα = tbαγα − taαγα , (58)

where the mode numbers m,m′ are integers. For both species of trapped particles, Eq. (40) now

reduces to

〈χsααkyσceγα |χ
sα
αkyσ′c′αγ

′
α
〉 =

δ(cα − c′α)δ(γα − γ′α)[tαγαδ(σtαγα/π)(σ′tαγα/π)]. (59)

Here, orthonormality was ensured by choosing Cα as in Eq. (45) and, given the integers m and

m′, δmm′ is Kronecker’s symbol: notice that σtαγα/π and σ′tαγα/π are integers (Eq. (57)).

When γα ≥ 0, we set the values of a, b and x0αγα to their respective limit values attained

as γα → 0−, according to the continuity rule (Section V). For the adopted single-extremum,

infinitely extended potential, the reflection points of the reflected particles approach the position

of that extremum as γα → 0−: aαγα → bαγα → 0; the trapping points of the trapped particles

shift to infinity: aαγα → −∞, bαγα →∞.

Inserting these values into Eqs. (51)-(53), and these latter into Eqs. (39) and (40), we find,

for the eigenfunctions of free particles of both species, the same integration bounds t0αγα and

t1αγα , orthogonality relation, normalization constant and continuous nature of the spectrum as

for the free particles in a double layer (Eqs. (43)-(45)).

The eigenfunctions’ reflection points and phases in the electron phase space hole equilibrium

potential

Φ(x) = sech2(Kx), (60)

are

bαγα = −aαγα = arcsinh(|uαγα(0)/uαγα(∞)|)/K, (61)

ξαγα =
1

Kuαγα(∞)
[Iαγα(s)]s=Kxs=Kx0αγα

, (62)

Iαγα(s) = ln(sinh s+
√{sinh2(s) + [uαγα(0)/uαγα(∞)]2}) (63)

where x0αγα are the phase terminals (Eqs. (41) and (42)) and uαγα was defined in Eq. (25). The

corresponding eigenfunctions are presented in Fig. 2.
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VII. EIGENFUNCTIONS OF PARTICLES IN A PERIODIC POTENTIAL AND

THEIR BLOCH STRUCTURE

The periodic equilibrium potential extends to the domain of Eq. (8)

x1 ≤ x < x2, x2 = x1 +Nλ, (64)

where λ is its period and N ≥ 1 is an integer. Although the potential is unknown outside

this domain, we assume that the profile Φ(x) which models it satisfies the periodic boundary

conditions

Φ(x+ λ) = Φ(x) for x1 ≤ x < x1 +Nλ, (65)

Φ(x) = Φ(x−Nλ) for x ≥ x1 +Nλ, (66)

as usually done for numerical simulations over a finite, periodic numerical mesh.

It is convenient to refer the electron (respectively ion) eigenfunctions to a coordinate scale

in which the origin is translated to the position of the potential’s first minimum (respectively

maximum): both scales extend from 0 to Nλ. These translations multiply the eigenfunctions by

a phase factor (Eqs. (24)-(27)) which may be absorbed into the normalization constant of Eq.

(45), without affecting their eigenvalue and degeneracy parameters. In the following, without

changing their names, we tacitly refer to these eigenfunctions and to these new scales.

Given γα < 0, we define aαγα0 as the root of γα + Vα = 0 closest to the origin. We write the

pairs of contiguous roots aαγα , bαγα > aαγα of γα + Vα = 0 — which we now label by an integer

να — as

aαγανα = aαγα0 + ναλ, bαγανα = bαγα0 + ναλ, (67)

for να = 0, . . . N − 1.

We also extend, again without changing their names, the eigenfunctions χsααkyσcαγα (Eq. (24)) —

which we also label by the integer να — from the potential well Iαγανα , where they are defined,

to the whole coordinate domain by prescribing that

χsααkyσcαγανα(x, qx, qy) = 0 if x /∈ Iαγανα , (68)

Iαγανα = {x|aαγανα < x < bαγανα}, (69)

for να = 0, . . . N − 1.

Given the set ofN these extended “single-well” eigenfunctions χsααkyσcαγανα , να = 0 . . . N−1 and

tαγα (Eqs. (56) and (57)), which, owing to the periodicity of the potential, may be calculated here

13



between any of the trapping point pairs (aαγανα , bαγανα), we construct, by linear superposition,

the function

ηsααkyσcαγα(x, qx, qy) =
1
√
N
×

N−1∑
να=0

e−2isανασtαγα/N ×

χsααkyσcαγανα(x, qx, qy). (70)

Since each of the eigenfunctions χsααkyσcαγανα has the same eigenvalue σ and the same degeneracy

parameters cα, γα, sα, so does ηsααkyσcαγα , which thus is a legitimate “N -well” eigenfunction of

the free-streaming operator.

We now prove that both the single- and the N -well eigenfunctions are orthonormal. For the

former ones, a convenient choice of the phase terminal in Eq. (27) and of the scalar product

bounds in Eq. (32) is

a = x0αγα = aαγανα , b = bαγανα . (71)

The calculation of their scalar product involving the q-integration part (Eq. (34)) still holds and

so does Eq. (35). Also, two eigenfunctions having a different να are non zero only over disjoint

intervals (Eq. (68)) and thus that scalar product vanishes if α 6= α′, or sα 6= s′α, or να 6= ν ′α. On

the other hand, when α = α′, sα = s′α and να = ν ′α, the proof proceeds, in each potential well,

exactly as for the eigenfunctions of the particles moving in the single potential well of a phase

space hole (Section VI). This gives the eigenfunctions’ normalization constant as in Eq. (57)

and the orthonormality condition

〈χsααkyσcαγανα|χ
sα
αkyσ′c′αγ

′
ανα
〉 =

δ(cα − c′α)δ(γα − γ′α)[tαγαδ(σtαγα/π)(σ′tαγα/π)]. (72)

Concerning the normalization of the N -well eigenfunctions, we choose the phase terminal in

Eq. (27) and the scalar product bounds in Eq. (32) as

a = x0αγα = aαγα0, b = bαγα(N−1) (73)

and we observe that, if two of those eigenfunctions have a different α or sα, so do the single-well

eigenfunctions by which they are constructed, whence the orthogonality of both of them. On

the other hand, if they have the same α and sα, then, from Eq. (70),

〈ηsααkyσcαγα|η
sα
αkyσ′c′αγ

′
α
〉 =

1

N

N−1∑
να=0

N−1∑
ν′α=0

e2isα[νασtαγα−ν
′
ασ
′tαγ′α

]/N ×

〈χsααkyσcαγανα , χ
sα
αkyσ′c′αγ

′
αν
′
α
〉 =

δ(cα − c′α)δ(γα − γ′α)[tαγαδ(σtαγα/π)(σ′tαγα/π)], (74)
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where we took into account Eq. (72) and that two single-well eigenfunctions having a different να

are orthogonal. In Eqs. (72) and (74), orthonormality was ensured by choosing, in Eq. (40), the

normalization constant Cα as in Eq. (45), and tαγα (Eqs. (56) and (57)) is calculated between

any of the trapping point pairs (aαγανα , bαγανα).

It is instructive to analyze the behaviour of the N -well eigenfunctions (Eq. (70)) under

discrete modular translations x 7→ [x + λ]mod(Nλ), λ being the period of the background

equilibrium potential (Eqs. (65) and (66)). We first notice the recurrence relation

χsααkyσcαγα([να+1]modN)([x+ λ]mod(Nλ), qx, qy) =

χsααkyσcαγανα(x, qx, qy) (75)

of the extended single-well eigenfunctions (Eq. (68)) calculated according to Eqs. (24)-(27) and

using the phase terminals of Eq. (73).

Now, if x belongs to any of the να = 0 . . . N−1 potential wells, then [x+λ]mod(Nλ) lies in the

([να + 1]modN)-th potential well. According to its definition (Eq. (70)), the sole contributions

to the N -well eigenfunction at those two coordinates are e−2isανασtαγα/N χsααkyσcαγανα(x, qx, qy) and

e−2isα([να+1]modN)σtαγα/N χsααkyσcαγα([να+1]modN)([x + λ]mod(Nλ), qx, qy) respectively and, because

of Eq. (75) and of the integer value of σtαγα/π (Eq. (57)), they are related by

ηsααkyσcαγα([x+ λ]mod(Nλ), qx, qy) =

e−2isασtαγα/Nηsααkyσcαγα(x, qx, qy). (76)

In Eq. (70), we thus constructed an eigenfunction of the free-streaming operator having eigen-

value σ which is also an eigenfunction under discrete modular translations x 7→ [x+λ]mod(Nλ),

with respect to which its eigenvalue is e−2isασtαγα/N . This is sufficient to write the eigenfunction

in Bloch form [14]:

ηsααkyσcαγα(x, qx, qy) =

e−2isασtαγαx/(Nλ)wsααkyσcαγα(x, qx, qy), (77)

where, as it can be directly verified, wsααkyσcαγα is a suitable modular-periodic function of x

having the same period λ of the equilibrium potential: wsααkyσcαγα([x + λ]mod(Nλ), qx, qy) =

wsααkyσcαγα(x, qx, qy).

The N -well eigenfunctions ηsααkyσcαγα , constructed for γα < 0, are immediately extended to

values of γα > 0, by adopting, for the quantities aαγανα and bαγανα , their limit values as γα → 0−,

according to the continuity rule of Section V. In this limit, each of the potential wells Iαγανα

(Eq. (69)) invades the entire να-th period of the equilibrium potential: the domain of the N -well
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eigenfunction thus invades the whole coordinate domain. This is shown by Eq. (67) and by the

relations

lim
γα=0−

(aαγα0, bαγα0, bαγα(N−1)) = (0, λ,Nλ). (78)

The free N -well eigenfunctions inherit the Bloch structure of Eq. (77) and the normalization of

Eq. (74) if α = α′ and sα = s′α, and they are otherwise orthogonal.

The eigenfunctions’s phases for particles in the electron phase-space hole equilibrium potential

Φ(x) = [1− cos(Kx)]/2 (79)

are

ξαγα =

√
µα

K

√
2

√|Zα|
F (arcsin(sin(Kx/2)/κ), κ) , (80)

κ =
√

[(γα + |Zα|)/|Zα|], (81)

where F is the elliptic integral of first kind and κ is its modulus. The particles’ reflection points

are given by Eq. (67), in which

aαγα0 = arccos(1 + 2γα/|Zα|)/K, (82)

bαγα0 = 2π/K − aαγα0. (83)

The corresponding single-well eigenfunctions are presented in Fig. 3.

VIII. GREEN’S FUNCTION OF THE FREE-STREAMING OPERATOR

Given the diagonal nature of the matrix valued free-streaming operator Sky (Eq. (18)), its

matrix valued Green function Gky(x, qx, qy; s, px, py) solves

SααkyGαα′ky = δαα′δ(x− s)δ(qx − px)δ(qy − py). (84)

We see that the Green’s function admits off-diagonal elements if Sααky has non trivial eigen-

functions corresponding to a zero eigenvalue. In fact, these eigenfunctions do exist and they are

recovered from the eigenfunctions given in Eq. (24) by setting σ = 0. Correspondingly, in Eq.

(97), the contributions to fα(x, qx, qy) coming from the off-diagonal elements Gαα′ky belong to

the null space of the free-streaming operator and they are to be accepted or rejected according

to whether they meet the physical boundary and initial conditions at hand.

We now prove that the Green’s function may be given by a spectral representation. We first

treat the case of a purely continuous spectrum and we analyze the contributions of a discrete
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spectrum at the end of this section. Given the coordinate x, we introduce the quantity

ςα = 1 if V ′α(x) ≥ 0, (85)

ςα = −1 if V ′α(x) < 0 (86)

and we write the Green’s function according to the sign of ςα:

Gςα
αα′ky

(x, qx, qy; s, px, py) = δαα′ ×{∑
sα=±

∫ ∞
−∞

dcα

∫ ∞
−Vα(s)

dγα

∫ ∞
−∞

Asαα dσ

σ + isαςα0+
×

χsααkyσcαγα(x, qx, qy)χ̄
sα
αkyσcαγα

(s, px, py)+∑
sα=±

∫ ∞
−∞

dcα

∫ ∞
−Vα(x)

dγα

∫ ∞
−∞

Bsα
α dσ

σ + isαςα0+
×

χ̄sααkyσcαγα(x, qx, qy)χ
sα
αkyσcαγα

(s, px, py)
∑
sα=±

}
. (87)

Here, 0+ stands for an arbitrarily small positive quantity and Asαα and Bsα
α are arbitrary con-

stants.

To understand the structure of the Green’s function, we observe that, in the first term in

the braces on the rigth hand side of Eq. (87), the γα-integration starts at −Vα(s) and thus

γα + Vα(s) ≥ 0: this ensures that the phase of χ̄sααkyσcαγα(s, px, py) is purely imaginary (Eqs.

(24)-(27)) and thus that this eigenfunction does not diverge exponentially |px| → ∞.

Likewise, by writing γα + Vα(x) = γα + Vα(s) + [Vα(x) − Vα(s)] ≥ [Vα(x) − Vα(s)], we see

that, for the phase of χsααkyσcαγα(x, qx, qy) to be also purely imaginary, [Vα(x) − Vα(s)] must be

non negative: taking χsααkyσcαγα from Eq. (24), we see that this is ensured, in the first term in

the braces on the right hand side of Eq. (87), precisely by the factor
∫∞
−∞ dσ/(σ + isαςα0+)

e−isασ[ξαγα (x)−ξαγα (s)]: indeed, taking into account that, being the integral of a positive quantity,

ξαγα is an increasing function (Eq. (27)), that factor gives −iπsαςαθ(ςα[ξαγα(x) − ξαγα(s)]) =

−iπsαςαθ(ςα[x− s]) = −iπsαςαθ(Vα(x)− Vα(s)), where θ denotes the step function

θ(x) = 1 if x ≥ 0, (88)

θ(x) = −1 if x < 0. (89)

Similar arguments holds for the second term in the braces on the right hand side of Eq. (87),

where the γα-integration starts at −Vα(x), and where the the σ-integration results in the factor

−2iπsαςαθ(V (s)− V (x)).

Last, we point out that, through the identity 1/(σ±i0+) = P(1/σ)∓iπδ(σ), the σ-integrations

in Eq. (87) give terms containing the null space eigenfunction χsααky0cαγα corresponding to the
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eigenvalue σ = 0. In this way, an arbitrary function belonging to the null space of Sααky is built

in Eq. (87).

We now prove that Gααky as given by Eq. (87) solves Eq. (84). By definition, χsααkyσcαγα is

an eigenfunction of Sααky with eigenvalue σ: substituting its expression from Eq. (24) into Eq.

(87), and operating by Sααky on the first term in the braces on the right hand side Eq. (87) gives

δαα′
∑
sα=±

∫ ∞
−Vα(s)

dγα|Cα|2
eisα[qx|uαγα (x)|−px|uαγα (s)|]

|uαγα(x)||uαγα(s)|
×∫ ∞

−∞
dcαe

icα{(qy−py)+sαky [ξαγα (x)−ξαγα (s)]} ×∫ ∞
−∞

Asαα σdσ

σ + isαςα0+
e−isασ[ξαγα (x)−ξαγα (s)]. (90)

Here, we carry out first the σ-integration by means of the identity
∫∞
−∞ σdσ/(σ + isαςα0+)

e−isασ[ξαγα (x)−ξαγα (s)] = 2πδ(ξαγα(x) − ξαγα(s)) = 2π|uαγα(x)|δ(x − s) and then we perform the

straightforward cα-integration to get

4π2δαα′δ(x− s)δ(qy − py)
∑
sα=±

Asαα ×∫ ∞
−Vα(s)

dγα|Cα|2
eisα|uαγα (s)|(qx−px)

|uαγα(s)|
. (91)

Finally, changing the integration variable from γα to u = |uαγα(s)| (Eq. (25)), taking the

normalization constant Cα from Eq. (45) and using the identity
∫∞
0

due±iut = πδ(t) ± iP/(2t),

reduces Eq. (91) to

δαα′δ(x− s)δ(qx − px)δ(qy − py)×[
(A+

α + A−α )δ(qx − px)− (A+
α − A−α )

1

2iπ

P

qx − px

]
. (92)

To operate by Sααky on the second term in the braces on the right hand side of Eq. (87), we

split the γα-integration there in a part running from −Vα(x) to 0 and in a part running from 0 to

∞. In the latter part, the operator ∂2/∂x∂qx obviously commutes with the γα-integration and so

does the whole free-streaming operator Sααky (Eq. (18)). In the former part, we first regularize

the fractional γα-integral by adding and subtracting, in the numerator of its integrand, the value

of that numerator at γα = −Vα(x): that value turns out to be independent of qx (Eq. (28)) and

thus, again, the operator ∂2/∂x∂qx commutes with the γα-integration.

In this way, a contribution analogous to Eq. (92) (with x, qx, qy interchanged respectively

with s, px, py and Bsα
α replacing Asαα ) results from the action of Sααky on the second term in the

braces on the right hand side of Eq. (87) and its action on the whole right hand side of that

equation thus gives the sought Eq. (84), provided we choose

A+
α + A−α +B+

α +B−α = 1, (93)

A+
α − A−α − (B+

α −B−α ) = 0. (94)
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When, for γα < 0, the spectrum contains a discrete part (Eq. (57)), each of the γα-integrals

on the right hand side of Eq. (87) will be split in a term running from 0 to infinity and in a

term running from −Vα to 0. The contribution of the former term to the Green’s function only

involves the continuous part of the spectrum and it can be treated as above. In the contribution

of the latter term, the σ-integration in Eq. (87) are replaced by a series over the mode number

of the eigenfunctions.

The proof that this latter contribution complies with Eq. (84) closely follows the one used

for the continuous spectrum and it needs not be given here. That proof basically relied on the

spectral representations of the Heaviside and Dirac delta functions in terms of certain singular

Fourier integrals over a continuous variable. In the case of a discrete spectrum, those spectral

representations are given in terms infinite trigonometric series over a discrete variable [6].

IX. RESOLVENT OF THE FREE-STREAMING OPERATOR

The procedure developed in Section VIII may be employed to find resolvent of the free-

streaming operator, i.e. the matrix valued Green’s function Gkyω (x, qx, qy; s, px, py) of the op-

erator Sky − ω. This operator obviously has the same eigenfunctions of Sky , but corresponding

to the eigenvalues σ − ω. Therefore, denoting by Asαα and Bsα
α constants obeying Eqs. (93) and

(94), we may write Gαα′kyω as in Eq. (87)

Gςα
αα′kyω

(x, qx, qy; s, px, py) = δαα′ ×{∑
sα=±

∫ ∞
−∞

dcα

∫ ∞
−Vα(s)

dγα

∫ ∞
−∞

Asαα dσ

(σ − ω) + isαςα0+
×

χsααkyσcαγα(x, qx, qy)χ̄
sα
αkyσcαγα

(s, px, py)+∑
sα=±

∫ ∞
−∞

dcα

∫ ∞
−Vα(x)

dγα

∫ ∞
−∞

Bsα
α dσ

(σ − ω) + isαςα0+
×

χ̄sααkyσcαγα(x, qx, qy)χ
sα
αkyσcαγα

(s, px, py)
∑
sα=±

}
. (95)

Now consider the inhomogeneous problem

(Sky − ω)|gω〉 = |h〉 (96)

for the vector valued function |gω〉 over the domain a < x < b, where a and b are the scalar

product bounds introduced in Eq. (33) and given in Sections V-VII for several shapes of the

equilibrium electric potential. In terms of the resolvent, the solution of Eq. (96) is

gαω(x, qx, qy) =

∫ b

a

ds

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy ×

Gααkyω(x, qx, qy; s, px, py)hα(s, px, py). (97)
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The contribution to Eq. (97) of the second term in the braces on the right hand side of

Eq. (95) can afford a straightforward interchange of the order of the s- and γα-integration. The

contribution of the first term also relies on such interchange, which however needs to be performed

separately, by Fubini’s rule, in each sub-domain of a < x < b where Vα(s) is monotonic: when

this is done, the lower bound for the γα-integratione becomes −Vα(x). Taking into account the

symmetry relations of the eigenfunctions (Eq. (29)), the two contributions add to

gαω(x, qx, qy) =∑
sα=±

∫ ∞
−∞

dcα

∫ ∞
−Vα(x)

dγα ×
∫ ∞
−∞

dσ

(σ − ω) + isαςα0+
×

(Asαα +B−sαα )Hsα
αkyσcαγα

χsααkyσcαγα(x, qx, qy), (98)

where

Hsα
αkyσcαγα

=

∫ b

a

ds

∫ ∞
−∞

dpx

∫ ∞
−∞

dpy ×

χ̄sααkyσcαγα(s, px, py)hα(s, px, py). (99)

X. COMPLETENESS OF THE EIGENFUNCTIONS OF THE FREE-STREAMING

OPERATOR

The resolvent of the free-streaming operator found in Section IX will now be used to prove

the completeness of its eigenfunctions. To do so we adapt a technique developed Ref. [15] based

on the solutions of the initial value problem

(i∂/∂t+ Sky)|f〉 = 0, (100)

fα(x, qx, qy, 0) = −ihα(x, qx, qy), (101)

|hα(x, qx, qy)| <∞. (102)

In terms of the unilateral Fourier transform

gαω(x, qx, qy) =

∫ ∞
0

dte−iωtfα(x, qx, qy, t), (103)

Eqs. (100) and (101) reduce to an inhomogeneous problem for gαω of the type of Eq. (96) and

its solution is given in Eq. (98).

This solution is now used to calculate, by the initial value theorem,

fα(x, qx, qy, 0
+) = lim

ω→−i∞
iωgαω(x, qx, qy), (104)
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where ω approaches infinity along the negative imaginary axis. Taking into account that, by

Eqs. (101) and (102), fα is continuous and finite at t = 0 and that its value there is −ihα, Eqs.

(98) and (104) give

hα(x, qx, qy) =∑
sα=±

∫ ∞
−∞

dcα

∫ ∞
−Vα(x)

dγα ×
∫ ∞
−∞

dσ ×

(Asαα +B−sαα )Hsα
αkyσcαγα

χsααkyσcαγα(x, qx, qy). (105)

Eq. (105) provides a means to express an arbitrary initial condition hα as a superposition

of the eigenfunctions χsααkyσcαγα of the free-streaming operator. The superposition coefficient

Hsα
αkyσcαγα

is given in terms of hα in Eq. (99). The superposition is taken over the whole

spectrum of the operator and for all of the allowed values of the degeneracy paramentes of the

eigenfunctions. We conclude that those eigenfunctions are complete.

XI. SUMMARY AND DISCUSSION

In this work, we determined the spectrum, singularities, degeneracies and orthogonality re-

lations of the eigenfunctions of free-streaming electrostatic oscillations of electrons and mobile

ions in several, physically relevant, inhomogeneous collisionless plasma equilibria.

We found that the eigenfunctions of particles which move over an infinite or semi-infinite

spatial coordinate domain (Sections V and VI) belong to an infinite real continuous spectrum.

The eigenfunctions of particles which are trapped in the troughs of their respective equilibrium

potential energy wells (Section VI and VII) belong to a infinite real discrete spectrum.

We analyzed in detail the degeneracy structure of the eigenfunctions. All of them have

two finite discrete degeneracies and two infinite, continuous degeneracies. A further infinite

discrete degeneracy arises for periodic equilibria. We showed that all types of eigenfunctions form

orthonormal sets and we determined the values of the corresponding eigenfunction normalization

constants.

For periodic equilibria, we also analyzed the properties of the eigenfunctions under discrete

modular space coordinate translations: we found that the eigenfunctions of both the continuous

and discrete spectrum are also eigenfunctions under these translations. Their Bloch form was

worked out accordingly.

Besides spatially-periodic equilibria, eigenfunctions were also given for two other types of

physically relevant equilibria in which the electric potential is bell-shaped (as in a solitary wave

or in a phase-space hole) or monotonic (as in a double layer).
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A valuable contribution of our work is the proof of completeness of the eigenfunctions of

the free-streaming operator. This rather elaborated proof required a judicious generalization to

our three-variable, vector-valued, degenerate and singular eigenfunctions of the matrix-valued,

partial differential free-streaming operator of a technique developed in Ref. [15] for the single-

variable, scalar-valued, non-degenerate continuous eigenfunctions of a scalar-valued ordinary

differential operator.

One further methodological contribution of our treatment is its development in the Fourier

transformed velocity space where the eigenfunctions are ordinary functions, rather than dis-

tributions. Without any further complication, this treatment can be applied also when the

equilibrium background is based on distribution functions which are discontinuous in velocity,

but which are well behaved in such space.

The velocity Fourier representation allows focus on the space coordinate dependence of the

eigenfunctions. This unveiled that, near the walls of the potential wells, the eigenfunctions of

all trapped species pertaining to all kinds of equilibria have an algebraic singularity.

Singularity — partly mitigated by its integrability — should be taken into account in the

numerical reproduction of the eigenfunctions by those algorithms working in the Fourier trans-

formed velocity space. The simple analytical expressions of the singular eigenfunctions afforded

by our treatment should help investigations in this direction.
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Figure 3. Same as in Fig. 1 for particles moving over a single period of the finitely extended periodic

potential Φ(x) = [1 − cos(Kx)]/2. In panels (a) and (b), the mode number for the trapped particle

eigenfunctions is m = 1 for both species. Parameters are as in Fig. 1, but γα = −0.2 in panels (a) and

(b), and γα = 0.2 in panels (c) and (d).
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Figure 2. Same as for Fig. 1, but for particles moving in the electron phase space hole potential

Φ(x) = sech2(Kx). In panel (a) the mode number for the trapped electron eigenfunction is m = 1.

Parameters as in Fig. 1, but γα = −0.2 in panels (a) and (b).
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Figure 1. The real (solid bold lines) and imaginary (dashed bold lines) parts of the eigenfunctions

χseekyσceγe and χsiikyσciγi vs. coordinate x for reflected electrons (panel (a)), reflected ions (panel (b)),

free electrons (panel (c)) and free ions (panel (d)) moving in a double layer potential Φ(x) = [1 +

tanh(Kx)]/2. In panels (a) and (b), the equilibrium potential energy profile for each species (right axis

scale) is superimposed by a thin solid line; also, near the reflection points aeγe and aiγi the real part of

the eigenfunction diverges, whereas its imaginary part remains finite (Eq. (28)); the shaded areas are

unreachable by particles. The potential wavenumber is K = 1. The ion mass and charge are µi = 1836

and Zi = 1. The eigenvalue σ is chosen so that, for both species, σ
√
µα = 4. The other parameters in

Eqs. (24)-(27) are, for both species, qx = 4, qy = 0, cα = 0, sα = 1, and γα = −0.25 in panels (a) and

(b), and γα = 0.1 in panels (c) and (d).
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