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I. INTRODUCTION

Collisionless plasma equilibrium structures, even in their simplest unmagnetized, electrostatic
manifestations, generally involve space distributions of the electric field and velocity distribution
functions of charged particles which are inhomogeneous along at least one space coordinate.

A complete understanding of the dynamics of the oscillations within these inhomogeneus
structures is based on the knowledge of the oscillations’ spectrum and eigenfunctions. This
information may be used to determine the ability of the plasma structures to resonantly absorb
external radiation, and to damp or de-stabilize the oscillations [1].

Determining these eigenfunctions must take into account contributions coming from kinetic
effects, proper of spatially-homogeneous, e.g. Maxwellian, plasma equilibria, and those arising
from the inhomogeneous state of the plasma.

A further contribution, pointed out by recent research, is provided by those collisionless
plasma structures having discontinuous particle velocity distributions [2]. These equilibria arise
when the electric potential within the plasma is not endowed with sufficient spatial symmetry
[3] as, e.g., in non monotonic double layers.

For an infinitely extended spatially homogeneous equilibrium based on a Maxwellian electron
distribution and on immobile ions, the linear eigenvalue problem for the whole kinetic operator
was reduced [1] to the eigenvalue problem of van Kampen [!] for the oscillations of the one-
particle electron distribution function governed by the homogeneous Vlasov equation. This
proved that the eigenfunctions of such kinetic system belong to a purely continuous infinite real
spectrum.

Continuous spectra also arise, irrespective of kinetic effects, e.g., in fluids, precisely because
of the above mentioned spatial inhomogeneity of the equilibrium plasma state [5].

One first peculiar outcome of the joint effects of inhomogeneity and kinetics is the appearance
of a discrete spectrum. In physical terms, the eigenfunctions of the discrete spectrum describe
plasma particles confined in the wells which now appear in the space distribution of their in-
homogeneous potential energy. Their corresponding eigenvaluaes are integer multiples of the
bouncing frequencies within the wells’ boundaries

Thus when the kinetic equilibria are inhomogeneous (as in the present paper), the treatment
used in Ref. [1] is inapplicable: it rather leads to a Vlasov equation with spatially inhomogeneous
coefficients for the one-particle distributions.

The analyis may then proceed by first determining the eigenfunctions of a part of the Vlasov



operator, known as the inhomogeneous free-streaming operator.

The relevance of this method is that the intricate spectral, degeneracy and singular prop-
erties, the orthogonality relations and the completeness of the eigenfunctions of the complete
inhomogeneous Vlasov operator (which are due to inhomogeneity and which are key issues of
the present paper) are already embodied in those of the inhomogeneous free-streaming operator.

Specifically, the remaining part of the Vlasov operator can be treated as a “perturbation”
(in the operatorial sense) of the free-streaming operator: this perturbation leaves the essential
spectrum and the orthogonality properties of the eigenfunctions unchanged [6].

An example of this approach can be found in Ref. [7], where the concomitant contribu-
tions of kinetic effects and of the spatial inhomogeneity of a background magnetic field to the
doubly degenerate eigenfunctions of one species (electron) collisionless oscillations were treated
by an action-angle, integral-equation approach based on the knowledge of the free-streaming
eigenfunctions.

Ref. [8] proposed a normal mode and initial value differential approach and the technique
of the Green’s function, spectrally built on the free-streaming eigenfunctions, to determine the
permittivity to electromagnetic oscillations of a multispecies inhomogeneous plasma.

In Ref. [9], a truncated discrete Bloch electron free-streaming eigenfunction approach was
used to find the structure of one species (electron) electrostatic unstable oscillations about a one-
dimensional spatially inhomogeneous Bernstein Greene Kruskal spatially-periodic equilibrium
neutralized by an immobile ion background.

The works above focussed on the free-streaming eigenfunctions of the electron population
which, being the most mobile plasma component, predominantly contributes to the permittivity
at high frequencies. Ton eigenfunctions (a further issue of the present paper) may however
become important at lower frequencies in the kinetic or in the hybrid plasma regimes.

Also, the equilibrium particle distribution functions had to be well behaved functions of
velocity, in order for certain functional scalar products appearing in the plasma dielectric function
to be well defined.

Finally, being hindered by their singular (distributional) nature [9], the spatial profile of the
free-streaming eigenfunctions could not be developed, nor could the proof of their completeness.

As we shall see, the nature of these so far undeveloped issues much depends on the morphology
of the plasma structure hosting the oscillations. Their analysis requires a careful and extensive
classification of their spectral, degeneracy, singularity and orthogonality properties.

A valuable help in addressing these issues comes from the representation of the particle dis-
tributions in the Fourier transformed velocity space [10—13]. This approach seamlessly provides

functional scalar products in the velocity Fourier conjugate space involving well behaved equi-
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librium distribution functions, irrespective of any possible discontinuity of theirs in the velocity
space. Also, it naturally unfolds the above mentioned d-shaped spatial eigenfunctions’ profiles
into ordinary functions, thus unveiling their algebraic singularities (a further contribution of our
work). Finally, it allows a thorough proof of their completeness, i.e. of the possibility for a
generic function to be represented as a superposition of those eigenfunctions.

In our study, practical examples of this analysis will be given for three types of morphologically
different, collisionless plasma equilibria of considerable physical relevance. Their equilibrium
electric potential has: (@) a monotonic spatial behaviour, typical of double layers (Section V);
(b) a bell-shaped structure, typical of solitary waves and of phase space holes (Section VI); (¢) a
both infinitely and finitely extended periodic structure, typical, e.g., of Bernstein Greene Kruskal

wave equilibria (Section VII).

II. NOTATIONS AND BASIC EQUATIONS

Let
O+, &=mind+ P®, ¢ = Dy, (1)
®y = max d — min ¢ (2)

be the electric potential (of which @ is the scaled, normalized steady state equilibrium part and

¢ is the normalized perturbation part) and its scale, e the elementary charge, « = e or « =1 a

label denoting the electron and ion quantities,

Qa = Za, Lo = Qa/l@e|a Mo, = ma/me (3>
the particle charges, charge and mass ratios (of which Z, = —1, . = 1),
_V:e = Ze(I)a _‘/i = Zl<q) - 1)7 (4)

the scaled and normalized particle potential energies in the equilibrium potential ®, ny a density

scale, and

&=L, § = Ly, 0, = vyv,, 0, = vovy, t = wglt, (5)
L= \/[6(130/(477'71062)], vy = \/(eq)(]/me), w;l = L/uvg (6)

the space and velocity coordinates, time and their respective scales.

We direct the coordinate x along the gradient (which we assume to be uni-directional) of the
equilibrium potential ® and particle velocity distribution F,, which, together with the perturba-
tion fa determine the one particle distribution

A~ N R R N A ’)’LO ~ ~
fOt(I?yaUIJUy?t) = [Fa(x7vm7vy)+foz(~r7y7vxavyat)]a (7)

UOZa



The equilibrium quantities ® and F,, are assumed to be known in the domain
T < T < To, (8)

where z; and/or xs may take infinite values. Last, we introduce the Fourier transforms of the

physical quantities

Fulw, 4sray) = / dv, / du, @0 B (2, 0y, 0,), (9)
Jokyo (T, Qes Qy) =/ dy/ dvx/ dvy/ dt x
(kyy+q:zvz+quy ) foz(x y>vx7vy7t)7 (10)

e / dy / dtei =D 3(z . 1) (1)

In the above notation, the electrostatic oscillations in a collisionless plasma are governed by
the linearised electrostatic Maxwell equations and by the velocity Fourier transformed Vlasov

equations for electrons and ions:

e;kyw — 1kyeyryw = Ny, (12)
Cyteye T RyCaiyw =0, (13)
0? 0 V!
—W/akyw T —iky— x_a akyw —
wf, kyw T dx0q, 1 yaqy +4q Lo I ky
Lo
__Fa [Qzewkyw + deykyw]7 (14)

(67

where a “/” denotes differentiation with respect to x,

Cakyw = _¢;cyw7 Caxkyw = iky¢kywa (15>

nkyw == (fikyw - fekyw)‘qz:qy:()? (16)

are the y- and t-Fourier analyzed perturbations of the z and y components of the electric field
and of the plasma density respectively.

We now cast the electron and ion distributions in the vector valued function

|fkyw> = [fekyw(xa 4z, qy)7 fikyw($a qz, Qy)]Ta (17>

introduce the matrix valued free-streaming operator S,

0? 0 V!

Suaky = o — iky— + g2, 18

ky axaqr 1 yaqy +q Lo ( )

Saark, = 01if o # a, (19)

and rewrite Eqgs. (12)-(14) as
V2€xkzyw = n;yw (20>
Zo
[Skylfkyw”a - wfakyw = __Fa[qgvexkyw + deykyw]- (21)
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The vector valued functions

|Xekya> = [XekyUaO]Ty |Xikya> = [O;Xikya]T (22>

are eigenfunctions of the operator S, (Eq. (18)) corresponding to the eigenvalue o provided

SocakyXockya = 0 Xakyo- (23)

For simplicity, our treatment considers only one ion species. It may be extended to, say, m
ion species by allowing the function vectors |fy,.) (Eq. (17)) to have m +1 components. In this
case, there would be m + 1 eigenfunction vectors: |Xe,o), having m 4 1 vanishing components

save the first, and |xi,x,0), j = 1...m, having m 41 vanishing components, save the (j+ 1)-th.

III. SUPPORT, SINGULARITY, SYMMETRY RELATIONS AND DEGENERACY
OF THE EIGENFUNCTIONS

We seek a solution of Eq. (23) in the form yak,o (2, ¢z, gy) = e~ fo@Hiara@Huce  where ¢, is
an arbitrary real quantity. Substitution into Eq. (23) gives [u2]' = 2V, /lta, [, = it /uq + (0 —

kycq)/tq, and

Ca

Sa _ —isa(0—kyca)€ara TiSadr|Uayq | +Hidyca 24
XO&]CyO'Ca’Ya |ua7a | € ) ( )
Ugry, (T) = Sa\/{Qh/a + Va()]/ 1o}, (25)
S = £, (26)

T dx’
Eara(T) = / _ 27

D= T @) 20

where, 7, is an integration constant and C,, is a normalization constant; in Eq. (27) the arbitrary
integration bound zg.,, Will be referred to as the phase terminal: this quantity is independent
of o, but it depends on the particle species a and on 7,, as specified by the labels; It will be
chosen later according to the potential profile ®.

For Xi;;;yac& .. in Eq. (24) to be bounded for all values of ¢, u4,, must be real and thus v, +Vj,
must be non negative. This implies that v, > —V, > min(—V,), i.e. (Eq. (4)), Ya > —|Zal.
Furthermore, if 7, is larger than the maximum of the particle equilibrium potential energy, i.e.
if v, > max(—V,) = 0, then ~, + V,, > 0 for all values of z. The corresponding eigenfunctions
describe particles which freely move over the whole z-domain. However, if —|Z,| < v, < 0, then
the eigenfunctions describe particles which experience reflections at points where u, = 0.

An important property of the eigenfunctions arises when x approaches a root of w,,, or,

equivalently, when ~, approaches —V,(z). Basing the phase terminal zg,,, (Eq. (27)) on
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that root and defining do., = pa/]2Z2a® (Toar, )|, Eqs. (25), (27) and (24) approximately give
|uowa| = \/Hl‘ - x0a7a|/dam}a SOC'Ya = dam |u04'70¢|7

Ca

~ % cisaldz—(o—kyca)day, lluara [ Hgyca (28)
|tarya |

Sa
Xaky OCaYa

We thus see that, as x approaches a reflection point, the eigenfunction diverges, however being
integrable there. This behaviour is manifest in the examples considered below.
With the above limitations on the value of v,, the phase of the eigenfunctions x5 (Eq.

akyocaya

(24)) is real, and the following properties are verified by inspection:

—Sa

Xi(?’v'yo'ca')/a (x7 va qy) = Xak;yo-(fca)»ya ('I’ q¢7 Qy) =

X(S;E_ky)(—a)ca'ya (x7 —Qx, _Qy) (29)

Following the above considerations, the species label a (Eq. (22)), the phase sign s, (Eq.

Sa : the real numbers ¢,

(26)) are discrete degeneracy parameters of the eigenfunctions Xakyocara’

and 7, are continuous degeneracy parameters: two eigenfunctions having a different value of any

of these parameters are solutions of Eq. (23) corresponding to the same eigenvalue o.

IV. ORTHOGONALITY OF THE EIGENFUNCTIONS

The degenerate eigenfunctions of the free-streaming operator (Eqs. (24)-(27)) will now be
shown to be linearly independent and in fact orthogonal. Given the generic vector valued

functions

19) = [9¢(%, @ @), 9i(2, Gy 3] (30)
by = [he(z, qu, ay), i(2, 42, qy)] (31)

defined in some sub-domain of (z1,23) and for —oco < ¢, < 00, —o0 < ¢, < 00, we introduce

their functional scalar product

o= [ [ aa [ a0t 1) (32)

where

(9(, 4z, 4y), M, G2y qy)) =

R(ge (T, @y @y)Pe(T, @y ay) + Gi(T, @uy ) i (T, @, @) (33)

is their point-wise scalar product and R and the overbar denote the real part and complex

conjugation.



In Eq. (32), the x-bounds of the scalar product a and b are to be chosen according to the
shape of the potential ®. The interval a < < b, where |g) and |h) are defined, may be smaller
than the entire domain x; < x < 25 (Eq. (8)) where the equilibrium quantities are defined.

Next, we observe that, because of the definition of the vectors \Xakygcwa) (Eq. (22)) and

of their point-wise scalar product (Eq. (33)), the quantity ( ) vanishes if

Xoﬁcyacava |Xa/k’ya’c;,'y;,
o # a. Also, in taking the ¢,-integration in the scalar product of two eigenfunctions of the

same species, the quantity

/ g, €19 5alvara @)1 =5lary @] (34)

vanishes if sq|taq, ()| # Sh|uay, ()], which certainly occurs when the signs s, and s/, (Eq. (26))
are different.

The above considerations are summarized in the relation

s’ . :
<XZC;€yO'Ca'Ya|Xo;/Y;€yU/C/ /’Y’,> = 0 lf O/ ?é « or lf Sa % S,a' (35>
o Ta

On the other hand, when o/ = a and s, = s,, by carrying out the ¢, and g, integrations, the

scalar product (Eq. (32)) of the eigenfunctions (Eq. (24)) gives

<Xaoigyo'ca’ya |chky0' ‘el vl >
b e —isa[0€arya (m)_alfam’l ()]
4#2]Ca|2§)%/ dx X
a |taye (%) ||ty ()]
0(ca = €g)0([uay, (@) = [tay, (2)]). (36)

But since, for a given x, |uq. ()| is a monotonic function of v/, (Eq. (25)) and thus there is
only one root, 7., = Ya, of Ua(V,) = |[tay.| = [tay,| = 0, we may use the identity d(Ua(7,)) =
[|dU /A, | =4e ] 710 (Yh, — 7a) and, using also Eq. (25), we rearrange Eq. (36) as

Xakyaca’ya|xak o'ch L, > - 47T2Ma’0&|2 X

_15a o—0 )ga’)’a( )
R / do’ 5(ca — )8(a — 7). (37)

‘uava ()]

Now, being the integral of a positive quantity, &, (Eq. (27)) is a monotonic function of z: thus

we may uniquely make the substitutions

F= (1) = / A (38)

Oaya |ua7a (',”E )|

aorya gorya( )a tba’ya = ga'ya (b), (39)

and write Eq. (37) as

<th7cyaca'ya|xz7cya’cg’y&> = 47T2IU’Oé|CC¥|2 X

tba'ya . ,
3‘%/ dte 55 (e — )0 (e — 1) (40)
¢

acya



In the following sections, the eigenfunctions will be made orthonormal by an appropriate choice
of the constant (), according to the values of the integration bounds t,,-, and t.-, arising for

several equilibrium potential profiles of practical relevance.

V. EIGENFUNCTIONS OF PARTICLES IN A DOUBLE LAYER

In a double layer, extending for 1 = —00 < x < 00 = 9, we assume that the equilibrium
potential monotonucally increases, so that, when 7, < 0, there may be at most one reflection
point at which v, + V, = 0 and the eigenfunctions are defined in the whole semi-infinite interval
lying on one side of that point: thus, one of the scalar product’s bounds (Eq. (32)) will be placed
at that point and the other lies at infinity. It is also convenient to base the phase terminal g,

in Eq. (27) at the reflection point so that

electrons : a = Zpey, = Aoy, < T < 00 =D, (41)

ions : a = —00 < = < Giy, = Toiy, = D. (42)
Inserting these values into Egs. (39) and (40), we find

taeve =0, tbeye = 00, tai’yi = —00, tbi’yi =0, (43)

<Xiollgyaca'ya ’XZDI;yoJC:x’Y{l>

(0 = 0')0(ca — €4)0(7a — 70)- (44)

Here, orthonormality was ensured by choosing, in Eq. (40),

Co = €/ (47%112), (45)

where ( is an arbitrary phase. There are no limitations on the real eigenvalues and the spectrum
Is continuous.

If v, > 0, the phase terminals and the scalar product bounds will be based at their respective
limit values attained as vy, — 07: this “continuity rule” ensures the continuity of the eigenfunc-
tions’ phase and scalar product as 7, goes through zero. For the adopted infinitely extended,
increasing potential, the reflection points shift to infinity as v, — 07: @e,, = —00, @iy, — 00.
Inserting these values into Eqs. (41) and (42), and these latter into Eqs. (39) and (40), we
find the same integration bounds tun, and tp.., (Eq. (43)), orthogonality relation (Eq. (44)),
normalization constant (Eq. (45)) and continuous nature of the spectrum as for the reflected
particle eigenfunctions.

The eigenfunctions’ reflection points and phases in the double layer equilibrium potential
O(z) = [1 + tanh(Kx)]/2 (46)
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are

Qary, = arctanh([|Z,] + 2min(vys,0)]/Z.)/ K, (47)
and
Loy
ga’Yoc K [I :|s ZToare | (48)
+ _ 1 0 |ucwa( )| F oy, (£0)
o) = 00 ™ o () o (200)' 9
Uaya (£00) = \/[(Ya +1Zal) + (Va F Za)]/\/tas (50)

where z(,,, are the phase terminals (Egs. (41) and (42)) and u,, was given in Eq. (25).

The corresponding eigenfunctions are presented in Fig. 1. In this figure, the ion eigenfunction
has eigenvalue 1/ VM smaller than that of the electron eigenfunction. This choice avoids the fine
scale oscillations of the ion eigenfunction, whose phase &, is proportional to Vi > 1 (Egs. (24)
and (27)).

VI. EIGENFUNCTIONS OF PARTICLES IN A PHASE SPACE HOLE

In a phase space hole, extending for xr1 = —00 < = < 0o = x9, we position the single
extremum of the equilibrium potential at = 0. For for v, < 0, reflection and trapping points
at which 7, + V,, = 0 now occur in pair: aq-, and by, .

In an electron hole, for which that extremum is a maximum, and for v, < 0, ions are reflected
at these points and electrons are trapped between them. In an ion hole, the potential has a
single minimum, ions are trapped and electrons are reflected: a convenient choice of the phase

terminals Zoq+, Eq. (27) and of the scalar product bounds a and b (Eq. (32)) is
r<0:a=—-00<2x< Guy, = Loay, = b, (51)
x>0:0a=2Toay, =bay, <T<00=0b (52)
for the reflected particles and
a4 = ooy, = Ooyy < T < boy, =0 (53)

for the trapped ones. Inserting these values in Eq. (39) gives

<0 :tgay, = —00, tpay, =0, (54)
x>0 taar, =0, thay, = 0 (55)
for the reflected particles and
b /
Yo dx
taaa_oatbaa_/ 56
o =0t = i @) 0
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for the trapped ones. Inserting Eqgs. (54) and (55) into Eq. (40) gives, for the reflected particle
eigenfunctions, the same orthogonality relation, normalization constant and continuous nature
of the spectrum as for the reflected particle eigenfunctions of the double layer (Eqs. (43)-(45)).

On the other hand, inserting Eq. (56) into Eq. (40), we see that, if the trapped particle

eigenfunctions are to be orthogonal, then, necessarily,

o =mu[toy,, o = m/ﬂ/ta%, (57)
tafya = tba'ya - taOl'Ya7 (58)

where the mode numbers m, m’ are integers. For both species of trapped particles, Eq. (40) now

reduces to

<Xzbly~cyacefya |X210;6y o’cl L >
0(Ca = €,)0 (Vo = Vo) [tara O(tane /7) (0" tane /7)) - (59)

Here, orthonormality was ensured by choosing C,, as in Eq. (45) and, given the integers m and
M/, Oy is Kronecker’s symbol: notice that ot,,, /7 and o't,,, /m are integers (Eq. (57)).

When 7, > 0, we set the values of a, b and zy,,, to their respective limit values attained
as 7, — 07, according to the continuity rule (Section V). For the adopted single-extremum,
infinitely extended potential, the reflection points of the reflected particles approach the position
of that extremum as v, — 07: aq,, — bay, — 0; the trapping points of the trapped particles
shift to infinity: aqs,, — —00, basy, — 00.

Inserting these values into Eqgs. (51)-(53), and these latter into Eqgs. (39) and (40), we find,
for the eigenfunctions of free particles of both species, the same integration bounds #y,,, and
t1av., Orthogonality relation, normalization constant and continuous nature of the spectrum as
for the free particles in a double layer (Eqgs. (43)-(45)).

The eigenfunctions’ reflection points and phases in the electron phase space hole equilibrium

potential
®(z) = sech®(Kx), (60)
barve = —Qary, = arcsinh(|tuaq, (0)/tary, (00)])/ K, (61)
I (62)
Lo () = In(sinh s + /{sinh?(5) + [tar, (0) /tas, (00)]%}) (63)

where Zgq, are the phase terminals (Egs. (41) and (42)) and ug., was defined in Eq. (25). The

corresponding eigenfunctions are presented in Fig. 2.
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VII. EIGENFUNCTIONS OF PARTICLES IN A PERIODIC POTENTIAL AND
THEIR BLOCH STRUCTURE

The periodic equilibrium potential extends to the domain of Eq. (8)
11 < < Xo, Tg =11 + N, (64)

where A is its period and N > 1 is an integer. Although the potential is unknown outside
this domain, we assume that the profile ®(z) which models it satisfies the periodic boundary

conditions

O(x+ A =P(z) forx; <o <axy+ NA, (65)
O(z) = P(x — NA) for z > x1 + N, (66)

as usually done for numerical simulations over a finite, periodic numerical mesh.

It is convenient to refer the electron (respectively ion) eigenfunctions to a coordinate scale
in which the origin is translated to the position of the potential’s first minimum (respectively
maximum): both scales extend from 0 to NA. These translations multiply the eigenfunctions by
a phase factor (Eqs. (24)-(27)) which may be absorbed into the normalization constant of Eq.
(45), without affecting their eigenvalue and degeneracy parameters. In the following, without
changing their names, we tacitly refer to these eigenfunctions and to these new scales.

Given v, < 0, we define aq-,0 as the root of v, + V,, = 0 closest to the origin. We write the

pairs of contiguous roots aa, , bay, > @ary, Of Vo + Vo = 0 — which we now label by an integer

Vo — as
Gayorve = Aarys0 + Va>\7 boz'ml/a = ba’yao + Va)\a (67)
forv,=0,...N — 1.

We also extend, again without changing their names, the eigenfunctions Xfﬁcyaca o (Eq. (24)) —

which we also label by the integer v, — from the potential well I,,,,,, where they are defined,

to the whole coordinate domain by prescribing that

Xzolécyaca'yaya (ZE, 4z, qy) = 0 1f T ¢ ]CY’YaVa7 (68>
Tomvove = {%]aryave, < T < bayava }s (69)

forv,=0,...N — 1.

Given the set of IV these extended “single-well” eigenfunctions ch%yacwauav Vo =0...N—1and

tav. (Egs. (56) and (57)), which, owing to the periodicity of the potential, may be calculated here
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between any of the trapping point pairs (day,ue, layars ), We construct, by linear superposition,

the function

1
n(i%ya'ca'ya ([L‘, 4z, Qy) = —=X

VN

N—-1

Z o~ 2savactay /N o

Va=0

Xotkyoearava Lr Qas Qy)- (70)
Since each of the eigenfunctions XZ{% searave 1188 the same eigenvalue o and the same degeneracy
parameters cu, Vo, Sa, SO0 does %k e Which thus is a legitimate “N-well” eigenfunction of
the free-streaming operator.

We now prove that both the single- and the N-well eigenfunctions are orthonormal. For the
former ones, a convenient choice of the phase terminal in Eq. (27) and of the scalar product
bounds in Eq. (32) is

A = Toaye = Garyaves 0 = bayave- (71)
The calculation of their scalar product involving the g-integration part (Eq. (34)) still holds and
so does Eq. (35). Also, two eigenfunctions having a different v, are non zero only over disjoint
intervals (Eq. (68)) and thus that scalar product vanishes if a # o/, or s, # ., or v, # v/,. On
the other hand, when o = o/, s, = s/, and v, = v/, the proof proceeds, in each potential well,
exactly as for the eigenfunctions of the particles moving in the single potential well of a phase
space hole (Section VI). This gives the eigenfunctions’ normalization constant as in Eq. (57)

and the orthonormality condition

<Xakyaca'yaya |Xakya ca’yaya> -
5(Ca - C/a)(s(’ya - 'Ya)[towa5(atam/7r)(a’tam/7r)]- (72)
Concerning the normalization of the N-well eigenfunctions, we choose the phase terminal in

Eq. (27) and the scalar product bounds in Eq. (32) as

a4 = Toar, = Gaya0r b= bary(v-1) (73)

and we observe that, if two of those eigenfunctions have a different « or s,, so do the single-well
eigenfunctions by which they are constructed, whence the orthogonality of both of them. On

the other hand, if they have the same « and s,, then, from Eq. (70),

<na‘?€yoca'ya|nakycf ‘el vl > -
N—-1 N-1

_§ : z : 2is0 [VaOtay, —Vao't,, /]/N><

va=0v!,=0
> =

6<Ca - C;)(S(’ya - 7a>[tav’a5(Uta~,a/7r)(0’ta7a/7r)]7 (74)

<Xakyaca'yaua ) onkya c

Cl'yOz Ot
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where we took into account Eq. (72) and that two single-well eigenfunctions having a different v,
are orthogonal. In Eqgs. (72) and (74), orthonormality was ensured by choosing, in Eq. (40), the
normalization constant C, as in Eq. (45), and t,, (Egs. (56) and (57)) is calculated between
any of the trapping point pairs (Ga, v, s barvare )-

It is instructive to analyze the behaviour of the N-well eigenfunctions (Eq. (70)) under
discrete modular translations z +— [z + AJlmod(NX), A being the period of the background
equilibrium potential (Egs. (65) and (66)). We first notice the recurrence relation

s ([x + Nmod (NA), ¢, ¢,) =

onkyaca'ya ([va+1]mod N)

X(S)z(icyGCQWQVa (:C7 qil?? qy) (75)

of the extended single-well eigenfunctions (Eq. (68)) calculated according to Eqs. (24)-(27) and
using the phase terminals of Eq. (73).

Now, if z belongs to any of the v, = 0... N—1 potential wells, then [z+A]Jmod (N ) lies in the
([Va + 1Jmod N)-th potential well. According to its definition (Eq. (70)), the sole contributions

to the N-well eigenfunction at those two coordinates are e~2i$evaotara/N Xokyocarava (Ts dzs @y) and

—2isq ([Va+1]mod N)otaye /N - Sa

€ onkycrcaya([uaJrl]modN)

([ + Ajmod (NA), ¢, g,) respectively and, because
of Eq. (75) and of the integer value of ot,,, /7 (Eq. (57)), they are related by

([x + Amod (NX), ¢z, qy) =

—2iSa0ta~g /N 8

naclycycfca'ya (337 qm? qy) (76)

Sa
nakyaca’ya

e

In Eq. (70), we thus constructed an eigenfunction of the free-streaming operator having eigen-
value o which is also an eigenfunction under discrete modular translations x — [z + AJmod (N A),
with respect to which its eigenvalue is e~ %7t /N  This is sufficient to write the eigenfunction

in Bloch form [14]:

nz%yaca'y& ('I’ 4z, Qy) =

e Hisadtenat (NN yse (T 0, ), (77)
where, as it can be directly verified, wi‘;cygcwa is a suitable modular-periodic function of x
having the same period A of the equilibrium potential: wi‘;cyocﬂa([:x + AJmod (NA), ¢z, qy) =

Sa

wakyaca')/a (.I', Az qy) :

The N-well eigenfunctions niﬁgym& constructed for v, < 0, are immediately extended to

Ya?
values of 7, > 0, by adopting, for the quantities aq,,, and ba,., , their limit values as vy, — 07,
according to the continuity rule of Section V. In this limit, each of the potential wells /4.,

(Eq. (69)) invades the entire v,-th period of the equilibrium potential: the domain of the N-well
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eigenfunction thus invades the whole coordinate domain. This is shown by Eq. (67) and by the
relations
1111&7 (ao%o, bcwao, boz'ya(N—l)) = (0, /\7 N)\) (78)
Ya=
The free N-well eigenfunctions inherit the Bloch structure of Eq. (77) and the normalization of
Eq. (74) if @ = o/ and s, = s/, and they are otherwise orthogonal.

The eigenfunctions’s phases for particles in the electron phase-space hole equilibrium potential

O(z) = [1 — cos(Kx)]/2 (79)

= ﬂ \/2 arcsin(sin( Kz K), K
b = Vg 7 (ancsinloin(Kn/2)/), ), (50)
k= /[(Va + 1Zal)/|Zal], (81)

where F' is the elliptic integral of first kind and & is its modulus. The particles’ reflection points

are given by Eq. (67), in which

Aaryg0 = arccos(l + 27,/|Za|)/ K, (82)
ba,mo = 27T/K — Gy, 0- (83)

The corresponding single-well eigenfunctions are presented in Fig. 3.

VIII. GREEN’S FUNCTION OF THE FREE-STREAMING OPERATOR

Given the diagonal nature of the matrix valued free-streaming operator Sy, (Eq. (18)), its

matrix valued Green function Gy, (2, ¢z, qy; 8, P, Py) solves
SaakyGaa’ky = 5o¢a’5(x - 3)5((]1‘ - px)(s(qy - py) (84>

We see that the Green’s function admits off-diagonal elements if S,qr, has non trivial eigen-
functions corresponding to a zero eigenvalue. In fact, these eigenfunctions do exist and they are
recovered from the eigenfunctions given in Eq. (24) by setting ¢ = 0. Correspondingly, in Eq.
(97), the contributions to fo(,q.,q,) coming from the off-diagonal elements Gnq, belong to
the null space of the free-streaming operator and they are to be accepted or rejected according
to whether they meet the physical boundary and initial conditions at hand.

We now prove that the Green’s function may be given by a spectral representation. We first

treat the case of a purely continuous spectrum and we analyze the contributions of a discrete
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spectrum at the end of this section. Given the coordinate x, we introduce the quantity

So = 1if V/(2) >0, (85)
Go = —1if VI(2) <0 (86)

and we write the Green’s function according to the sign of ¢,:

Gzaa’ky (ZL‘, qzy Gy 37pac>py) — 5@()/ X

0o 0o s Ased
> / dcq / dYa / S
ooy 00 —Va(s) oo O F 184,6,07

Xio;cyaca'ya (‘T7 4z, qy)iiﬁcyaca'ya (87 Dz, py>+

00 00 00 Bsad
S e [ PR
soit ) o0 ~Va(@) o0 0 180607

Xicicyoca'ya (‘CB’ 4z, ‘Jy)XZC;cyoca% (S’ Pz py) } : (87>

Here, 0% stands for an arbitrarily small positive quantity and A~ and B~ are arbitrary con-
stants.

To understand the structure of the Green’s function, we observe that, in the first term in
the braces on the rigth hand side of Eq. (87), the ~,-integration starts at —V,(s) and thus
Yo + Va(s) > 0: this ensures that the phase of Xokoyocanra (8, Dz, py) is purely imaginary (Egs.
(24)-(27)) and thus that this eigenfunction does not diverge exponentially |p,| — co.

Likewise, by writing 74 + Va(2) = Yo + Va(s) + [Va(x) — Va(s)] > [Va(z) — Va(s)], we see

Sa
akyocaya

that, for the phase of y (%, 4z, qy) to be also purely imaginary, [V,(z) — V,(s)] must be

Sa

oy Carta from Eq. (24), we see that this is ensured, in the first term in

non negative: taking
the braces on the right hand side of Eq. (87), precisely by the factor [~ do/(0 + isac.07)
e 1sa0ltana (#)=fara ()]: indeed, taking into account that, being the integral of a positive quantity,

ary, 18 an increasing function (Eq. (27)), that factor gives —ims,5a0(Sa[lara (T) — &ara (5)]) =

—imSaSal(Salr — 5]) = —imsasal(Va(z) — Vo(s)), where 8 denotes the step function
O(z)=1if z >0, (88)
O(z) =—-1if z <O0. (89)

Similar arguments holds for the second term in the braces on the right hand side of Eq. (87),
where the v,-integration starts at —V,(z), and where the the o-integration results in the factor
—2im805a0(V (s) — V(x)).

Last, we point out that, through the identity 1/(0+i0") = P(1/0)Find (o), the o-integrations

in Eq. (87) give terms containing the null space eigenfunction XZ(Zyoca ., corresponding to the
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eigenvalue o = 0. In this way, an arbitrary function belonging to the null space of Syax, is built
in Eq. (87).

We now prove that Gaag, as given by Eq. (87) solves Eq. (84). By definition, XZO;@UCMQ is
an eigenfunction of Syqr, With eigenvalue o: substituting its expression from Eq. (24) into Eq.

(87), and operating by Sar, on the first term in the braces on the right hand side Eq. (87) gives

isa[gz|uaya ()| =Pz |vaya (5)]]

e
aa d’}/a C 2 X
2 / oo T ]

/oo dcaeica{(Qy —py)tsakylava (®)—Eavq ()]} %

[e.9]

o0 Asa .
/ ?—"d”eﬂsaakm (@)=Eara ()] (90)
o0 Ot 154507

Here, we carry out first the o-integration by means of the identity [*° odo /(0 + isasa0T)
emisa0lara () =010 (] = 27§(Ey, (2) — €nno(8)) = 27|tay, (7)]0(z — 5) and then we perform the

straightforward c,-integration to get

A% 6o 0(x — 8)0(qy — py) Z Ale x

Sa==*
o) isa‘uawa (5)|(q$_p90)
e
dYa|Cal? . (91)
/—Va(s) ‘uoﬂa (S)’

Finally, changing the integration variable from v, to u = |ua,,(s)| (Eq. (25)), taking the
normalization constant C, from Eq. (45) and using the identity [ due™™* = 7d(t) £iP/(2t),
reduces Eq. (91) to

6040/6(1: - 3)6((]1’ - pm)é(Qy - py) X

1 P
+ — _ _ + —\_—
(Aa + Aa>5(QI pﬂv) (Aa AQ)QiTr Qo — D

To operate by Saak, on the second term in the braces on the right hand side of Eq. (87), we

(92)

split the v,-integration there in a part running from —V,(z) to 0 and in a part running from 0 to
oo. In the latter part, the operator 9*/9xdq, obviously commutes with the v,-integration and so
does the whole free-streaming operator Syax, (Eq. (18)). In the former part, we first regularize
the fractional v,-integral by adding and subtracting, in the numerator of its integrand, the value
of that numerator at 7, = —V,(z): that value turns out to be independent of ¢, (Eq. (28)) and
thus, again, the operator 9%/0x0q, commutes with the ~,-integration.

In this way, a contribution analogous to Eq. (92) (with z,¢,, ¢, interchanged respectively
with s, p,,p, and BZ* replacing A%*) results from the action of Syar, on the second term in the
braces on the right hand side of Eq. (87) and its action on the whole right hand side of that

equation thus gives the sought Eq. (84), provided we choose
A+ A+ B+ B, =1, (93)
Ay — A, = (By = B;) =0 (94)
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When, for 7, < 0, the spectrum contains a discrete part (Eq. (57)), each of the v,-integrals
on the right hand side of Eq. (87) will be split in a term running from 0 to infinity and in a
term running from —V,, to 0. The contribution of the former term to the Green’s function only
involves the continuous part of the spectrum and it can be treated as above. In the contribution
of the latter term, the o-integration in Eq. (87) are replaced by a series over the mode number
of the eigenfunctions.

The proof that this latter contribution complies with Eq. (84) closely follows the one used
for the continuous spectrum and it needs not be given here. That proof basically relied on the
spectral representations of the Heaviside and Dirac delta functions in terms of certain singular
Fourier integrals over a continuous variable. In the case of a discrete spectrum, those spectral

representations are given in terms infinite trigonometric series over a discrete variable [0].

IX. RESOLVENT OF THE FREE-STREAMING OPERATOR

The procedure developed in Section VIII may be employed to find resolvent of the free-
streaming operator, i.e. the matrix valued Green’s function Gy . (2, qs, @y; S, P, Py) Of the op-
erator S, — w. This operator obviously has the same eigenfunctions of Sy , but corresponding
to the eigenvalues o — w. Therefore, denoting by Af~ and B2* constants obeying Eqs. (93) and
(94), we may write Goark,w as in Eq. (87)

G;aa’kyw(x7qS67Qy; Supz;py) = (5(1&/ X

o0 [o¢] o0 ASad
> / de, / dva / o’ 40 o
oo o0 ~Va(s) oo (00— W) +1806,07F

X‘Z};yocava (x7 4z, qy)xf;;fycrca'ya (87 Dz, py)“‘

o0 o0 o0 Bsﬂtd
> / de, / dVa / o0 «
oo o0 V() oo (00— W) 4+ 1546,0F

—Sa

Xakyaca'ya (:E? Az, qy)Xioléfyacafya (87 Dz, py) } . (95>

Now consider the inhomogeneous problem

(Sk, — w)lgw) = |h) (96)

for the vector valued function |g,) over the domain a < x < b, where a and b are the scalar
product bounds introduced in Eq. (33) and given in Sections V-VII for several shapes of the

equilibrium electric potential. In terms of the resolvent, the solution of Eq. (96) is

b [e%e) oo
Gow (T, Gz, Gy) =/ dS/ dpx/ dp, x

Goaakyw (T Qzs @y S5 Day Py) ha (S, Doy Dy)- (97)
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The contribution to Eq. (97) of the second term in the braces on the right hand side of
Eq. (95) can afford a straightforward interchange of the order of the s- and 7,-integration. The
contribution of the first term also relies on such interchange, which however needs to be performed
separately, by Fubini’s rule, in each sub-domain of a < x < b where V,,(s) is monotonic: when
this is done, the lower bound for the 7,-integratione becomes —V,,(z). Taking into account the

symmetry relations of the eigenfunctions (Eq. (29)), the two contributions add to

gaw X Q$7qy =
do
d o d « - X
Z / ¢ /va(x) ! / (0 —w) +1505,0"
(Aza + B(;S&)H;zyaca'yaxakyaca'ya (,I, qv’C’ qz;): (98>
where
b ) [es)
Hcsyzyaca'ya :/ dS/ dpx/ dpy X
Xodeyocara (81 Pas Py) o (S, s Dy).- (99)

X. COMPLETENESS OF THE EIGENFUNCTIONS OF THE FREE-STREAMING
OPERATOR

The resolvent of the free-streaming operator found in Section X will now be used to prove
the completeness of its eigenfunctions. To do so we adapt a technique developed Ref. [15] based

on the solutions of the initial value problem

(100t + S, )| f) = O, (100)
fa(maqqu?;ao) = _iha(xacha%/)a (101)
|ha(, gz, qy)| < 0. (102)

In terms of the unilateral Fourier transform

G (o, 0y) = / dte™ fo (2, 4rs 4y, 1), (103)
0

Egs. (100) and (101) reduce to an inhomogeneous problem for g,,, of the type of Eq. (96) and
its solution is given in Eq. (98).

This solution is now used to calculate, by the initial value theorem,

fa(x>QxaanO+): lim inO&W(%QﬂcaQy)a (104)

w—r—100
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where w approaches infinity along the negative imaginary axis. Taking into account that, by
Egs. (101) and (102), f, is continuous and finite at ¢ = 0 and that its value there is —ih,, Eqgs.
(98) and (104) give

(z %%Iy =
Z/ dca/ dy, X / do x
Val(z —00
Asa +B SQ)HZ(éyacavaXakyaca'ya<x qﬁ?qy) (105)

Eq. (105) provides a means to express an arbitrary initial condition h, as a superposition
of the eigenfunctions Xak seare OF the free-streaming operator. The superposition coefficient
H;Z seare 1S glVEN in terms of hy in Eq. (99). The superposition is taken over the whole

spectrum of the operator and for all of the allowed values of the degeneracy paramentes of the

eigenfunctions. We conclude that those eigenfunctions are complete.

XI. SUMMARY AND DISCUSSION

In this work, we determined the spectrum, singularities, degeneracies and orthogonality re-
lations of the eigenfunctions of free-streaming electrostatic oscillations of electrons and mobile
ions in several, physically relevant, inhomogeneous collisionless plasma equilibria.

We found that the eigenfunctions of particles which move over an infinite or semi-infinite
spatial coordinate domain (Sections V and VI) belong to an infinite real continuous spectrum.
The eigenfunctions of particles which are trapped in the troughs of their respective equilibrium
potential energy wells (Section VI and VII) belong to a infinite real discrete spectrum.

We analyzed in detail the degeneracy structure of the eigenfunctions. All of them have
two finite discrete degeneracies and two infinite, continuous degeneracies. A further infinite
discrete degeneracy arises for periodic equilibria. We showed that all types of eigenfunctions form
orthonormal sets and we determined the values of the corresponding eigenfunction normalization
constants.

For periodic equilibria, we also analyzed the properties of the eigenfunctions under discrete
modular space coordinate translations: we found that the eigenfunctions of both the continuous
and discrete spectrum are also eigenfunctions under these translations. Their Bloch form was
worked out accordingly.

Besides spatially-periodic equilibria, eigenfunctions were also given for two other types of
physically relevant equilibria in which the electric potential is bell-shaped (as in a solitary wave

or in a phase-space hole) or monotonic (as in a double layer).
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A valuable contribution of our work is the proof of completeness of the eigenfunctions of
the free-streaming operator. This rather elaborated proof required a judicious generalization to
our three-variable, vector-valued, degenerate and singular eigenfunctions of the matrix-valued,
partial differential free-streaming operator of a technique developed in Ref. [15] for the single-
variable, scalar-valued, non-degenerate continuous eigenfunctions of a scalar-valued ordinary
differential operator.

One further methodological contribution of our treatment is its development in the Fourier
transformed velocity space where the eigenfunctions are ordinary functions, rather than dis-
tributions. Without any further complication, this treatment can be applied also when the
equilibrium background is based on distribution functions which are discontinuous in velocity,
but which are well behaved in such space.

The velocity Fourier representation allows focus on the space coordinate dependence of the
eigenfunctions. This unveiled that, near the walls of the potential wells, the eigenfunctions of
all trapped species pertaining to all kinds of equilibria have an algebraic singularity.

Singularity — partly mitigated by its integrability — should be taken into account in the
numerical reproduction of the eigenfunctions by those algorithms working in the Fourier trans-
formed velocity space. The simple analytical expressions of the singular eigenfunctions afforded

by our treatment should help investigations in this direction.
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Figure 3. Same as in Fig. 1 for particles moving over a single period of the finitely extended periodic
potential ®(z) = [1 — cos(Kx)]/2. In panels (a) 2auéld (b), the mode number for the trapped particle

eigenfunctions is m = 1 for both species. Parameters are as in Fig. 1, but 7, = —0.2 in panels (a) and
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Figure 2. Same as for Fig. 1, but for particles moving in the electron phase space hole potential
®(z) = sech?(Kz). In panel (a) the mode number for the trapped electron eigenfunction is m = 1.

Parameters as in Fig. 1, but 7, = —0.2 in panels (@) and (b).
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Figure 1. The real (solid bold lines) and imaginary (dashed bold lines) parts of the eigenfunctions

Si

Xiiyace% and Xj ;.. VS coordinate x for reflected electrons (panel (a)), reflected ions (panel (b)),

free electrons (panel (c)) and free ions (panel (d)) moving in a double layer potential ®(x) = [1 +
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