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Abstract. We introduce a new formulation for the finite element immersed

boundary method which makes use of a distributed Lagrange multiplier. We
prove that a full discretization of our model, based on a semi-implicit time

advancing scheme, is unconditionally stable with respect to the time step size.

1. Introduction

The Immersed Boundary Method (ibm) is an effective method for the approxi-
mation of fluid-structure interaction problems. After its introduction (see [18] and
the references therein), which was based on a finite difference approximation of
the fluid equations, several attempts have been made in order to consider a finite
element version of the IBM; interesting results have been obtained for various for-
mulations (see, in particular [6, 19, 20, 7, 8, 17, 15, 9, 5, 16]). We shall refer to the
model introduced in [6] as the fe-ibm formulation.

An important issue when dealing with fluid-structure interactions consists in
the choice of the time advancing scheme. For instance, it is well-known that the
Arbitrary Lagrangian Eulerian formulation (ALE), which is one of the most popular
strategies for dealing with partial differential equations defined on moving domains,
suffers from instabilities when approximating biological models (same or similar
densities for fluid and solid) unless fully implicit schemes are used for the time
evolution. This issue has been explained in [11] with the help of a one dimensional
model problem. On the other hand, the fe-ibm method allows for a semi-implicit
strategy at the price of a cfl condition which can be more or less severe depending
of the fluid and solid dimensions (see [5] for more details).

In the original fe-ibm formulation the evolution of the solid is governed by an
ordinary differential equation which reads

∂X

∂t
(s, t) = u(X(s, t), t),

where X denotes the position of the solid and u the fluid velocity (see Problem 1
for more details). In this paper we propose a modification to this approach with the
introduction of a suitable Lagrange multiplier. More precisely, the new equation
reads

c1(µ,u(X(·, t), t))− c2

(
µ,
∂X

∂t
(·, t)

)
= 0 ∀µ ∈ Λ,

where c1(·, ·) and c2(·, ·) are bilinear forms such that c1(µ,v(X)) − c2(µ,Y) = 0
for all µ ∈ Λ implies v(X) = Y.
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With this modification, the analogies between the fe-ibm and some versions of
the fictitious domain approach become more apparent. In particular, our formu-
lation, which is presented in Problem 2, can be considered as a specific case of a
fictitious domain approach with distributed Lagrange multiplier (see [12, 13, 14]
for an introduction to this subject). For this reason we shall refer to this new
formulation as the dlm-ibm approach. The dlm-ibm share some analogies with
a variational formulation presented in [16]. One of the main differences consists
in the fact that we are introducing a Lagrange multiplier, thus giving some more
flexibility to the resulting numerical scheme.

In this paper we study our new formulation and show that it can be successfully
applied to the problem under consideration. More precisely, we prove that a semi-
implicit scheme for the time evolution of the dlm-ibm method is unconditionally
stable (no restriction at all on the time step). Several numerical examples fully
confirm our theoretical findings.

Some additional preliminary studies have been performed in [1, 10], showing
that, for some simplified formulation, the dlm-ibm approach is inf-sup stable.

Another important issue for the approximation of incompressible fluids is the
discretization of the divergence free constraint on the fluid velocity. This problem
is related to the mass conservation properties of the scheme and has been analyzed,
in the framework of the fe-ibm, in [3, 4]. Surprisingly enough, it turns out that
the dlm-ibm formulation enjoys better mass conservation properties than the orig-
inal fe-ibm. For the moment, we do not have a theoretical explanation for this
phenomenon, which is clearly confirmed by our numerical experiments in Section 6.

The structure of our paper is as follows: in Section 2 we recall the formulation
of the fe-ibm, in Section 3 we introduce our dlm-ibm formulation, which is then
approximated in time and space in Sections 4 and 5, respectively. Finally, Section 6
reports our numerical experiments.

2. Problem setting

In this section we recall the variational formulation of the ibm for fluid-structure
interaction problems presented in [9, 5]. Our formulation covers both the cases of
thick and thin structures. In the latter case the region occupied by the structure can
be represented as a domain of codimension 1 with respect to the dimension of the
fluid region. In the following subsections we introduce the problem corresponding
to the two cases.

2.1. Thick structures. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with Lipschitz
continuous boundary. We assume that Ω is subdivided into two connected time

dependent subregions Ωft and Ωst , which denote the domains occupied by the fluid
and the solid material, respectively. We introduce a Lagrangian framework to deal
with the motion of the solid; hence we assume that Ωst can be obtained as the
image of a reference domain B ⊂ Rd. We denote by s the position of a point in
B and by X : B → Ωst the mapping which associates to each s ∈ B, the point
x = X(s, t) ∈ Ωst . The deformation gradient is defined as F = ∇sX, the notation
|F| indicates the determinant of the Jacobian matrix F.
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The constitutive equations governing the behavior of fluids and solids are the
mass balance equation and the conservation of momenta, which in absence of ex-
ternal forces can be written in strong form as follows:

(1)

dρ

dt
+ ρdivu = 0

ρu̇ = ρ
Du

dt
= ρ

(
∂u

∂t
+ u ·∇u

)
= divσ

where u represents the velocity, σ the Cauchy stress-tensor and ρ the mass density.
We assume that both the fluid and the solid material are incompressible. This is

equivalent to impose divu = 0 in Ω. As a consequence, |F| is constant in time and
equals the corresponding value at time t = 0. In particular, |F| = 1 if the reference
domain coincides with the initial configuration of Ωst , that is B = Ωs0.

Assuming that the fluid and the solid material have mass densities ρf and ρs,
respectively, with 0 < ρf ≤ ρs, we set

(2) ρ =

{
ρf in Ωft
ρs in Ωst .

We consider a Newtonian fluid characterized by the usual Navier–Stokes stress
tensor

σf = −pI + ν
(
∇u + (∇u)>

)
,

while the structure is composed by an incompressible viscous hyperelastic material
so that the Cauchy stress tensor can be separated into a fluid-like part and an
elastic part. Hence we set

(3) σ =

{
σf in Ωft
σf + σs in Ωst .

In the following we shall deal with the quantities related to the structure using
Lagrangian variables, hence we express the elastic part of the Cauchy stress tensor
in term of the first Piola-Kirchhoff stress tensor P defined as

(4) P(s, t) = |F(s, t)|σs(x, t)F−>(s, t) for x = X(s, t).

From the principle of virtual works, taking into account (2) and (3), we have the
following problem in weak form (we refer to [5] for a detailed derivation).

Problem 1. Given u0 ∈ (H1
0 (Ω))d and X0 ∈ W 1,∞(B)d, find (u(t), p(t)) ∈

(H1
0 (Ω))d × L2

0(Ω) and X(t) ∈ (H1(B))d, such that for almost every t ∈]0, T [ it
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holds

ρf
d

dt
(u(t),v) + b(u(t),u(t),v) + a(u(t),v)

− (divv, p(t)) = 〈d(t),v〉+ 〈F(t),v〉 ∀v ∈ (H1
0 (Ω))d(5a)

(divu(t), q) = 0 ∀q ∈ L2
0(Ω)(5b)

〈d(t),v〉 = −δρ
∫
B

∂2X

∂t2
v(X(s, t)) ds ∀v ∈ (H1

0 (Ω))d(5c)

〈F(t),v〉 = −
∫
B
P(F(s, t)) : ∇sv(X(s, t)) ds ∀v ∈ (H1

0 (Ω))d(5d)

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ B(5e)

u(0) = u0 in Ω, X(0) = X0 in B.(5f)

Here δρ = ρs − ρf , (·, ·) stands for the scalar product in L2(Ω), D : E =∑d
α,i=1 DαiEαi for all tensors D and E and

a(u,v) = µ(∇sym u,∇sym v) with ∇sym u = ∇u + (∇u)>,

b(u,v,w) =
ρf
2

((u ·∇v,w)− (u ·∇w,v)) .

2.2. Thin structures. Let us now consider the case of a thin structure with con-
stant thickness ts very small. Therefore we can assume that the physical quantities
depend only on variables along the middle section of the structure and are constant
in the orthogonal direction and we consider mathematically the region occupied by
the structure as a curve immersed in a two dimensional fluid or a surface in a three
dimensional one. Hence we have that Ωst ⊂ Rd, B ⊂ Rm with m = d−1, X : B → Ω
and the deformation gradient F : B → Rd×m is such that

|F| =
∣∣∣∣∂X∂s

∣∣∣∣ if m = 1, |F| =
∣∣∣∣∂X∂s1

× ∂X

∂s2

∣∣∣∣ if m = 2,

s, s1 and s2 being the parametric variables in B.
In [5] we have shown that the variational formulation of the fluid-structure in-

teraction problem has the same form as Problem 1 if we set δρ = (ρs − ρf )ts and

P = tsP̃ where P̃ is obtained with the due modifications from (4). Notice that P is
a tensor with the same dimensions as F.

2.3. Stability estimate. We end this section by recalling an energy estimate
which follows from the assumptions on the elastic properties of hyperelastic ma-
terial which we are considering in this paper. The results of this section can be
found in more detail in [15, 9, 5]. The hyperelastic materials are characterized by
a positive energy density W (F) which depends only on the deformation gradient.
The energy density is related to the first Piola–Kirchhoff stress tensor by means of
the following relation:

(6) (P(F(s, t))αi =
∂W

∂Fαi
(F(s, t)) =

(
∂W

∂F
(F(s, t))

)
αi

,

where i = 1, . . . ,m and α = 1, . . . , d.
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At the end, the elastic potential energy of the body is given by:

(7) E (X(t)) =

∫
B
W (F(s, t))ds.

We make the following assumption on the potential energy density W which will
be useful in the following sections.

Assumption 1. We assume that W is a C1 convex function over the set of second
order tensors.

Remark. Even though in general elasticity problems the potential energy should
assumed polyconvex, Assumption 1 makes sense in this context since our material
is incompressible, so that |F| is constant in time.

In the following proposition, we recall the stability estimate proved in [5].

Proposition 1. Let us assume that for almost every t ∈ [0, T ], u(t) ∈ (H1
0 (Ω))d

and X(t) ∈ (W 1,∞(B))d solve Problem 1, then the following bound holds true

(8)
ρf
2

d

dt
||u(t)||20 + ν||∇sym u(t)||20 +

δρ

2

d

dt

∥∥∥∥∂X∂t
∥∥∥∥2

0,B
+
d

dt
E(X(t)) = 0,

where ‖ · ‖0 and ‖ · ‖0,B denote the norms in L2(Ω) and L2(B), respectively.

The above a priori estimate states that a solution of Problem 1, if exists, enjoys
the following regularity properties

u ∈ C0([0, T ]; (H1
0 (Ω))d) ∩H1(0, T ; (L2(Ω))d)

p ∈ L2(0, T ;H1(Ω))

X ∈W 1,∞(0, T ;L2(B)d)

E (X(t)) ∈ L∞(0, T ).

3. Fictitious domain formulation with distributed Lagrange
multiplier

Proposition 1 is fundamental in the treatment of the numerical approximation
of the problem; in particular, one would like to have the same property for the
discrete version of Problem 1. However, it was shown in previous papers on the
finite element discretization of the problem that the space semi-discrete version of
Problem 1 enjoys the same stability properties, while the time-space discretization
requires a cfl condition which limits the time step in terms of the size of the meshes
unless a fully implicit formulation is considered (see [8, 7, 15, 5]). Here we present
a new formulation of Problem 1 based on the introduction of a Lagrange multiplier
to enforce the motion condition (5e) which turns out to be unconditionally stable
after time discretization. We present separately such formulation for the case of
structures of codimension zero and one.

We consider three functional spaces Λ, M1 and M2, and two bilinear forms
c1 : Λ×M1 → R and c2 : Λ×M2 → R such that the equation

c1(µ,v(X))− c2(µ,Y) = 0 ∀µ ∈ Λ

implies that v(X) = Y for a given X ∈W 1,∞(B).
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3.1. Thick structures. Let us set m = d and assume that for almost every t ∈
]0, T [ we have that X(t) ∈W 1,∞(B)d, so that u(X(·, t), t) ∈ (H1(B))d.

In this case, we setM1 = (H1
0 (Ω))d, M2 = (H1(B))d and we consider two possible

choices for the bilinear forms c1, c2 and the space Λ. The most natural one is to let
Λ be the dual space of (H1(B))d, that is Λ = ((H1(B))d)′, then c2 is given by the
duality pairing between ((H1(B))d)′ and (H1(B))d, and c1 is defined accordingly
for a given X ∈W 1,∞(B)d, namely

(9)
c1(λ,v(X)) = 〈λ,v(X)〉 λ ∈ Λ = ((H1(B))d)′, v ∈ (H1

0 (Ω))d

c2(λ,Y) = 〈λ,Y〉 λ ∈ Λ = ((H1(B))d)′, Y ∈ (H1(B))d.

Alternatively, we can associate to any λ ∈ ((H1(B))d)′ an element ϕ ∈ (H1(B))d

solution to the following variational equation:

(10)

∫
B

(∇sϕ ·∇sY +ϕ ·Y) ds = 〈λ,Y〉, ∀Y ∈ (H1(B))d.

We observe that the integral on the left hand side is the scalar product in (H1(B))d

and that it is easy to show that there exists a unique ϕ ∈ (H1(B))d satisfying (10)
with the following relation

‖ϕ‖(H1(B))d = ‖λ‖((H1(B))d)′ .

Hence we can also define c1 and c2 as follows. We set Λ = (H1(B))d, and
(11)

c1(λ,v(X)) =

∫
B

(∇s λ ·∇s v(X) + λ · v(X)) ds λ ∈ Λ, v ∈ (H1
0 (Ω))d

c2(λ,Y) =

∫
B

(∇s λ ·∇sY + λ ·Y) ds λ ∈ Λ = (H1(B))d, Y ∈ (H1(B))d.

Using either definition (9) or (11), equation (5e) can be written variationally as

(12) c1(µ,u(X(·, t), t))− c2

(
µ,
∂X

∂t
(t)

)
= 0 ∀µ ∈ Λ.

Let us introduce a Lagrange multiplier λ(t) ∈ Λ associated to the constraint (12)
and split equation (5a) as follows:
(13)

ρf
d

dt
(u(t),v) + b(u(t),u(t),v) + a(u(t),v) + c1(λ(t),v(X(t))) = 0 ∀v ∈ (H1

0 (Ω))d

δρ

(
∂2X

∂t2
(t),Y

)
B

+ (P(F(t)),∇sY)B − c2(λ(t),Y) = 0 ∀Y ∈ (H1(B))d,

where we have denoted by (·, ·)B the scalar product in L2(B)d. Then Problem 1
can be written as follows.

Problem 2. Given u0 ∈ (H1
0 (Ω))d and X0 ∈W 1,∞(B), find (u(t), p(t)) ∈ (H1

0 (Ω))d×
L2

0(Ω), X(t) ∈ (H1(B))d, and λ(t) ∈ Λ, such that for almost every t ∈]0, T [ it holds
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ρf
d

dt
(u(t),v) + b(u(t),u(t),v) + a(u(t),v)

− (divv, p(t)) + c1(λ(t),v(X(t))) = 0 ∀v ∈ (H1
0 (Ω))d(14a)

(divu(t), q) = 0 ∀q ∈ L2
0(Ω)(14b)

δρ

(
∂2X

∂t2
(t),Y

)
B

+ (P(F(t)),∇sY)B − c2(λ(t),Y) = 0 ∀Y ∈ (H1(B))d(14c)

c1(µ,u(X(·, t), t))− c2

(
µ,
∂X

∂t
(t)

)
= 0 ∀µ ∈ Λ(14d)

u(0) = u0 in Ω, X(0) = X0 in B.(14e)

It is easy to check that Problems 1 and 2 are equivalent if X(t) ∈ (W 1,∞(B))d.
Moreover, we have the following energy estimate.

Proposition 2. For almost every t ∈]0, T [, let u(t) ∈ (H1
0 (Ω))d and X(t) ∈

(H1(B))d be solution of Problem 2 with ∂X(t)/∂t ∈ (L2(B))d then the following
energy estimate holds true

(15)
ρf
2

d

dt
||u(t)||20 + ν||∇u(t)||20 +

δρ

2

d

dt

∥∥∥∥∂X∂t
∥∥∥∥2

0,B
+
d

dt
E(X(t)) = 0.

Proof. Taking v = u(t) in (14a) and q = p(t) in (14b), and recalling that b(u,u,u) =
0 by definition, we get

ρf
2

d

dt
‖u(t)‖20 + ν‖∇sym u‖20 + c1(λ(t),u(X(·, t), t)) = 0.

Next we consider (14c) and take Y = ∂X(t)/∂t, obtaining

δρ

2

d

dt

∥∥∥∥∂X∂t (t)

∥∥∥∥2

0,B
+

(
P(F(t)),∇s

(
∂X

∂t
(t)

))
B
− c2

(
λ(t),

∂X

∂t
(t)

)
= 0.

Recalling the definition of the energy density and of the elastic potential energy (6)-
(7), we have(

P(F(t)),∇s

(
∂X

∂t
(t)

))
B

=

∫
B

∂W

∂F
(F(s, t))

∂

∂t
∇sX(s, t)ds

=

∫
B

∂W

∂F
(F(s, t))

∂F

∂t
(s, t)ds

=
d

dt

∫
B
W (F(s, t))ds =

d

dt
(E (X(t))) .

Combining the last equations and taking into account (14d) we arrive at (15). �

3.2. Thin structures. Let us now set m = d−1; we observe that equation (5e) has
to be intended in the sense of traces of functions in (H1

0 (Ω))d. Assuming that, for
a.e. t ∈]0, T [, X(t) ∈ (W 1,∞(B))d, the trace of u(t) along Bt belongs to (H1/2(Bt))d
or equivalently u(X(·, t), t) ∈ (H1/2(B))d. Hence we can set M1 = (H1

0 (Ω))d,
M2 = (H1(B))d, and Λ = (H1/2(B)d)′. Then a natural definition for the forms c1

and c2 can be

c1(λ,v(X)) = 〈λ,v(X)〉 λ ∈ Λ, v ∈ (H1
0 (Ω))d

c2(λ,Y) = 〈λ,Y〉 λ ∈ Λ, Y ∈ (H1(B))d.



8 DANIELE BOFFI, NICOLA CAVALLINI, AND LUCIA GASTALDI

Then working as in the previous subsection we can write Problem 1 in the equivalent
form given by Problem 2 provided we use the correct bilinear forms c1 and c2.
Proposition 2 holds true without any modifications.

4. Time advancing scheme

In this section we introduce a semi-discretization in time of Problem 2. Let us
subdivide the time interval [0, T ] into N equal parts and let ∆t be the corresponding
time step. For n = 0, . . . , N let tn = n∆t; by the superscript n we indicate the value
of an unknown function at time tn. Then a fully implicit scheme reads: given u0 ∈
(H1

0 (Ω))d and X0 ∈ W 1,∞(B), for n = 1, . . . , N find (un, pn) ∈ (H1
0 (Ω))d × L2

0(Ω),
Xn ∈ (H1(B))d, and λn ∈ Λ, such that

ρf

(
un+1 − un

∆t
,v

)
+ b(un+1,un+1, v) + a(un+1,v)

− (divv, pn+1) + c1(λn+1, v(Xn+1)) = 0 ∀v ∈ (H1
0 (Ω))d

(divun+1, q) = 0 ∀q ∈ L2
0(Ω)

δρ

(
Xn+1 − 2Xn + Xn−1

∆t2
,Y

)
B

+ (P(Fn+1),∇sY)B

− c2(λn+1,Y) = 0 ∀Y ∈ (H1(B))d

c1(µ,un+1(Xn+1))− c2

(
µ,

Xn+1 −Xn

∆t

)
= 0 ∀µ ∈ Λ.

The main trouble in the above system consists in the computation of the terms
involving functions belonging to H1

0 (Ω) evaluated along the structure through the
mapping Xn+1. We then choose to evaluate these terms using the mapping at the
previous time step. Analogously, the convective term is linearized by computing
the transport velocity at the previous step. The scheme is then modified as follows.

Problem 3. Given u0 ∈ (H1
0 (Ω))d and X0 ∈ W 1,∞(B), for n = 1, . . . , N find

(un, pn) ∈ (H1
0 (Ω))d × L2

0(Ω), Xn ∈ (H1(B))d, and λn ∈ ((H1(B))d)′, such that

ρf

(
un+1 − un

∆t
,v

)
+ b(un,un+1, v) + a(un+1,v)

− (divv, pn+1) + c1(λn+1, v(Xn)) = 0∀v ∈ (H1
0 (Ω))d(16a)

(divun+1, q) = 0 ∀q ∈ L2
0(Ω)(16b)

δρ

(
Xn+1 − 2Xn + Xn−1

∆t2
,Y

)
B

+ (P(Fn+1),∇sY)B

− c2(λn+1,Y) = 0 ∀Y ∈ (H1(B))d(16c)

c1(µ,un+1(Xn))− c2

(
µ,

Xn+1 −Xn

∆t

)
= 0 ∀µ ∈ Λ.(16d)

In the previous problem, X1 can be computed, for instance, by assuming formally
X−1 = 0.

In the next proposition we prove an energy estimate similar to (15) when the
potential energy density W is convex (see Assumption 1).
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Proposition 3. Let Assumption 1 hold and let un ∈ (H1
0 (Ω))d and Xn ∈ (H1(B))d

for n = 0, . . . , N satisfy Problem 3 with Xn ∈ (W 1,∞(B))d, then the following
estimate holds true for all n = 0, . . . , N − 1

(17)

ρf
2∆t

(
‖un+1‖20 − ‖un‖20

)
+ ν‖∇sym un+1‖20

+
δρ

2∆t

(∥∥∥∥Xn+1 −Xn

∆t

∥∥∥∥2

0,B
−
∥∥∥∥Xn −Xn−1

∆t

∥∥∥∥2

0,B

)
+
E(Xn+1)− E(Xn)

∆t
≤ 0

Proof. Working similarly as in the continuous case, we take v = un+1 in (16a),
using (16b) and the fact that b(un,un+1,un+1) = 0 by definition, we have

ρf

(
un+1 − un

∆t
,un+1

)
+ a(un+1,un+1) + c1(λn+1,un+1(Xn)) = 0.

The well-known identity 2(x − y)x = x2 + (x − y)2 − y2 and the definition of the
bilinear form a imply

(18)
ρf

2∆t

(
‖un+1‖20 − ‖un‖20

)
+ ν‖∇sym un+1‖20 + c1(λn+1,un+1(Xn)) ≤ 0.

Let us now take Y = (Xn+1 −Xn)/∆t in (16c) and recall that ∇sX = F so that

(19)

δρ

∆t

(
Xn+1 −Xn

∆t
− Xn −Xn−1

∆t
,
Xn+1 −Xn

∆t

)
B

+

(
P(Fn+1),

Fn+1 − Fn

∆t

)
B
− c2

(
λn+1,

Xn+1 −Xn

∆t

)
= 0.

Let us discuss in detail the second nonlinear term. We want to show its relation
with the elastic potential energy (7). We define W : [0, 1]→ R as

W(t) := W (Fn + t(Fn+1 − Fn)),

hence by chain rule we have thanks to (6)

W ′(t) = P(Fn + t(Fn+1 − Fn)) : (Fn+1 − Fn).

Thanks to Assumption 1,W is convex, therefore we have thatW ′(1) ≥ W(1)−W(0)
from which we obtain(

P(Fn+1),
Fn+1 − Fn

∆t

)
B

=
1

∆t

∫
B
W ′(1)ds

≥ 1

∆t

∫
B

(W(1)−W(0))ds =
1

∆t
(E(Xn+1)− E(Xn)).

Inserting the last inequality in (19) with standard computations, we arrive at

(20)

δρ

2∆t

(∥∥∥∥Xn+1 −Xn

∆t

∥∥∥∥2

0,B
−
∥∥∥∥Xn −Xn−1

∆t

∥∥∥∥2

0,B

)

+
1

∆t
(E(Xn+1)− E(Xn))− c2

(
λn+1,

Xn+1 −Xn

∆t

)
≤ 0.

Summing up (18) and (20) and taking into account (16d), we arrive at (17). �

We observe that the energy estimate reported in Proposition 3 does not require
any limitation on the time step.
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5. Finite element discretization

In this section we introduce the finite element discretization of Problem 3. For
this we consider a family Th of regular meshes in Ω and a family Sh of regular
meshes in B. We denote by hx and hs the meshsize of Th and Sh, respectively. Let
Vh ⊆ (H1

0 (Ω))d and Qh ⊆ L2
0(Ω) be finite element spaces which satisfy the usual

discrete ellipticity on the kernel and the discrete inf-sup conditions for the Stokes
problem [2]. Moreover, we consider finite dimensional subspaces Sh ⊆ (H1(B))d

and Λh ⊆ Λ. Then the finite element counterpart of Problem 3 reads.

Problem 4. Given u0h ∈ Vh and X0 ∈ W 1,∞(B), for n = 1, . . . , N find unh, p
n
h ∈

Vh ×Qh, Xn
h ∈ Sh, and λnh ∈ Λh, such that

ρf

(
un+1
h − unh

∆t
,v

)
+ b(unh,u

n+1
h , v) + a(un+1

h ,v)

− (divv, pn+1
h ) + c1(λn+1

h , v(Xn
h)) = 0 ∀v ∈ Vh(21a)

(divun+1
h , q) = 0 ∀q ∈ Qh(21b)

δρ

(
Xn+1
h − 2Xn

h + Xn−1
h

∆t2
,Y

)
B

+ (P(Fn+1
h ),∇sY)B

− c2(λn+1
h ,Y) = 0 ∀Y ∈ Sh(21c)

c1(µ,un+1
h (Xn

h))− c2

(
µ,

Xn+1
h −Xn

h

∆t

)
= 0 ∀µ ∈ Λh.(21d)

where Fn+1
h = ∇sX

n+1
h .

With the same proof of Proposition 3, it can be shown that the solution unh ∈ Vh
and Xn

h ∈ Sh satisfies an energy estimate analogous to (17).

Proposition 4. Let Assumption 1 hold and let unh ∈ Vh and Xn
h ∈ Sh for n =

0, . . . , N satisfy Problem 4. Then the following estimate holds true for all n =
0, . . . , N − 1

(22)

ρf
2∆t

(
‖un+1

h ‖20 − ‖unh‖20
)

+ µ‖∇sym un+1
h ‖20

+
δρ

2∆t

(∥∥∥∥Xn+1
h −Xn

h

∆t

∥∥∥∥2

0,B
−
∥∥∥∥Xn

h −Xn−1
h

∆t

∥∥∥∥2

0,B

)
+
E(Xn+1

h )− E(Xn
h)

∆t
≤ 0.

In the next section we shall present some numerical results obtained using the
scheme given by (21a)–(21d) where the term related to the Piola–Kirchhoff tensor
is linear. From now on, P(F) will be defined as follows

(23) P(F) = κF = κ∇sX,

so that Problem 4 can be written in matrix form as follows:

(24)


A B> 0 Lf (Xn

h)>

B 0 0 0

0 0 As −L>s
Lf (Xn

h) 0 −Ls 0




un+1
h

pn+1
h

Xn+1
h

λn+1
h

 =


f
0

g

d
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where, denoting by ϕ, ψ, χ and ζ the basis functions respectively in Vh, Qh, Sh
and Λh, we have used the following notation:

A =
ρf
∆t

Mf + Kf with (Mf )ij = (ϕj , ϕi), (Kf )ij = a(ϕj , ϕi) + b(unh, ϕj , ϕi)

Bki = −(divϕi, ψk)

As =
δρ

∆t2
Ms + Ks with (Ms)ij = (χj , χi)B, (Ks)ij = κ(∇s χj ,∇s χi)B

(Lf (Xn
h))lj = c1(ζl, ϕj(X

n
h))

(Ls)lj = c2(ζl, χj)

fi =
ρf
∆t

(Mfu
n
h)i

gi =
δρ

∆t2
(
Ms(2X

n
h −Xn−1

h )
)
i

dl = − 1

∆t
(LsX

n
h)l.

6. Numerical Experiments

In this section we perform a wide set of tests that numerically explore the scheme
characteristics. In all simulations reported in this section the velocity and pressure
spaces are discretized using the enhanced Bercovier–Pironneau element introduced
in [3], that is P1isoP2/(P1 + P0) element. For k > 0, Pk stands for the space of
continuous piecewise polynomials of degree not greater than k and P0 is the space
of piecewise constants. Performances of the dlm-ibm scheme will be compared to
the classical pointwise fe-ibm.

In order to make the presentation clearer, let us recall the fe-ibm scheme when
the Piola–Kirchhoff tensor is defined as in (23).

For n = 0, . . . , N − 1 we perform the following three steps.

Step 1: Compute the fluid-structure interaction force vector Fn+1 as

Fn+1
i = −κ(∇sX

n
h, ϕi(X

n
h))B

Step 2: Solve the Navier–Stokes equations(
A + δρ

∆tMB B>

B 0

)(
un+1
h

pn+1
h

)
=

(
f + Fn+1 + δρ

∆tMBu
n
h

0

)
.

Here (MB)ij = (ϕj(X
n
h), ϕi(X

n
h))B.

Step 3: Update pointwise the structure position. For M structure points,
compute for the i-th point position:

(25)
Xn+1
hi −Xn

hi

∆t
= un+1

h (Xn
hi) ∀i = 1, . . . ,M.

The first goal of our numerical experiments is to confirm the better behavior
of dlm-ibm with respect to fe-ibm for what the cfl condition is concerned. To
this aim, we start recalling the cfl condition that has been proved in [5]. In two
space dimensions, when the solid has codimension one, the time step ∆t should be
smaller than a multiple of hxhs, while when the solid has codimension zero, then
∆t has to be bounded by a multiple of hx. On the other hand, in Proposition 3 we
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(a) t = 0.1. (b) t = 2.

Figure 1. Codimension one structure position snapshots. The
pictures represent the velocity streamlines and the structure posi-
tion for the first and final time steps. The streamline color pictures
the velocity magnitude, red is the higher value.

(a) t = 0.1. (b) t = 2.

Figure 2. Codimension one pressure snapshots. The pictures rep-
resent the resulting pressure map for the first and final time steps.

proved that the dlm-ibm is unconditionally stable, that is no restriction on ∆t is
required for its stability.

A series of tests will be performed, using the classical benchmark problem of an
ellipsoidal structure that evolves to a circular equilibrium position. The ellipsoid is
centered at the midpoint of our (square) physical domain and the initial fluid is at
rest, so that we can reduce the computational domain to a quarter of the physical
one by symmetry conditions. Figure 1 reports the initial and final configurations of
our test (codimension one) as a result of a computation performed with dlm-ibm.
The corresponding pressure is plotted in Figure 2. Analogue plots are reported in
Figures 3 and 4, respectively, in the case of codimension zero structure. The x
and y thicks on the pressure plot correspond to the initial and final position of the
structure.
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(a) t = 0.1. (b) t = 2.

Figure 3. Codimension zero structure position snapshots. The
pictures represent the velocity streamlines and the structure posi-
tion for the first and final time steps. The streamline color pictures
the velocity magnitude, red is the higher value.

(a) t = 0.1. (b) t = 2.

Figure 4. Codimension zero pressure snapshots. The pictures
represent the resulting pressure map for the first and final time
steps.

In order to check the stability with respect to the time step, we consider the
fluid and structure kinematic and elastic energy:

(26) Π(Xn
h,u

n
h) =

ρf
2
‖unh‖20 +

δρ

2

∥∥∥∥Xn
h −Xn−1

h

∆t

∥∥∥∥2

0,B
+ E(Xn

h).

We compute the energy ratio: Π(Xn
h,u

n
h)/Π(X0

h,u
0
h) for different parameter defini-

tions as a function of time for both fe-ibm and dlm-ibm computations. Figures 5
and 6 show the results in the case of the codimension one structure when δρ = 0 and
δρ = 0.3, respectively. Figure 7 reports on the case of codimension zero structure
when δρ = 0.3.
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(a) ∆t = 10−1, hs = 1/8. (b) ∆t = 10−1, hs = 1/16. (c) ∆t = 10−1, hs = 1/32.

(d) ∆t = 5 · 10−2, hs = 1/8. (e) ∆t = 5 · 10−2, hs = 1/16. (f) ∆t = 5 · 10−2, hs = 1/32.

Figure 5. Energy ratio for codimension one structure. The struc-
ture elastic constant κ = 5, hx = 1/32, the fluid viscosity ν = 1,
δρ = 0. The solid line correspond to the dlm-ibm scheme, while
the dashed line marks the energy for the fe-ibm scheme.

More precisely, Figures 5 and 6 show the energy ratio for a fixed hx = 1/32, and
varying hs (row-wise) and ∆t (column-wise). It is clear that the fe-ibm (dashed
curve) has a blowing-up energy if hs is too small compared to ∆t.

Figure 7 shows the energy ratio for a fixed hs = 1/8, and varying hx (row-wise)
and ∆t (column-wise). It can be seen that the energy computed with the fe-ibm
(dashed curve) blows up if ∆t is not small enough with respect to hx.

On the other hand, in all cases it can be appreciated that the dlm-ibm does not
need any constraint on ∆t in order to be stable,

Since the fluid considered in our experiments is incompressible, an important
physical property that has to be preserved is the mass conservation of the coupled
scheme (see [3, 4] for related work in this framework). It turns out that, unexpect-
edly, the dlm-ibm scheme enjoys better conservation properties than the fe-ibm.
We do not have a theoretical explanation for this phenomenon yet; in Figure 8 we
report the comparison between the two cases (structure of codimension one). In
Figures 8(a) and 8(b) we report the evolution of the structure position during the
simulation. Here it is already clear how better is the mass preservation for the
dlm-ibm scheme. To make this result even clearer, in Figure 8(c) we present the
final structure position for both schemes.

This phenomenon is more evident when higher order schemes are used. For
instance, in Figure 9 we show the results of the same simulation when the enhanced
Hood–Taylor Stokes element P3− (P c2 +P1) is used. The justification of this effect
is currently under investigation.

We conclude this section with some algorithmic comments which might be useful
in order to have a more accurate solution. The solution of system (24) can be
interpreted as a semi-implicit discretization of the original fluid-structure problem.
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(a) ∆t = 10−1, hs = 1/8. (b) ∆t = 10−1, hs = 1/16. (c) ∆t = 10−1, hs = 1/32.

(d) ∆t = 5 · 10−2, hs = 1/8. (e) ∆t = 5 · 10−2, hs = 1/16. (f) ∆t = 5 · 10−2, hs = 1/32.

Figure 6. Energy ratio for codimension one structure. The struc-
ture elastic constant κ = 5, hx = 1/32, the fluid viscosity ν = 1,
δρ = 0.3. The solid line correspond to the dlm-ibm scheme, while
the dashed line marks the energy for the fe-ibm scheme.

(a) ∆t = 10−1, hx = 1/4. (b) ∆t = 10−1, hx = 1/8. (c) ∆t = 10−1, hx = 1/16.

(d) ∆t = 5 · 10−2, hx = 1/4. (e) ∆t = 5 · 10−2, hx = 1/8. (f) ∆t = 5 · 10−2, hx = 1/16.

Figure 7. Energy ratio for codimension zero structure. The
structure elastic constant κ = 1, hs = 1/8, the fluid viscosity
ν = 0.05, δρ = 0.3. The solid line correspond to the dlm-ibm
scheme, while the dashed line marks the energy for the fe-ibm
scheme.
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(a) dlm-ibm. (b) fe-ibm.

(c) Final position for the two schemes.

Figure 8. Comparison of mass conservation for the dlm-ibm
(left) and fe-ibm (right) schemes
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Figure 9. Mass conservation of the dlm-ibm (left) and fe-ibm
(right) with higher order fluid element.

The strategy we are going to describe represents a first investigation towards the
approximation of a fully implicit scheme.

The resulting algorithm (based on a fixed point iteration) is pretty simple: in
the following the discretization index h will be omitted for the sake of clearness.
Consider the n-th time step and the k-th iteration and denote X0 = Xn. For k ≥ 1
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we solve: 
A B> 0 Lf (Xk−1)>

B 0 0 0

0 0 As −L>s
Lf (Xk−1) 0 −Ls 0




uk
pk

Xk

λk

 =


f
0

g

d

 .

We consider the fluid-structure coupling residual as

(27) r (uk,Xk) =

∥∥∥∥Lf (Xk)uk −
LsXk − LsX

n

∆t

∥∥∥∥
0,B

.

If r (uk,Xk) ≤ ε we set (un+1, pn+1,λn+1,Xn+1) = (uk, pk,λk,Xk), otherwise
continue iterating. The residual values for ten iterations, (corresponding to ten
consecutive time steps) are represented in Figure 10. Both codimension one and
zero are considered. The simulation parameters are specified in the figure caption.
Different lines correspond to different time steps (generally, the top lines correspond
to the first time step, and so on monotonically down to the bottom line correspond-
ing to the tenth time step). It is interesting to notice that the residual decreases
as the structure approaches a stationary state. Moreover, and most importantly,
within the same time step, the algorithm converges with approximately first order.
This property is important in view of designing multigrid type algorithms in order
to reduce the computational cost of the implicit scheme.

Finally, in Figure 11 we present some snapshots of the simulation of a codimen-
sion zero solid which is a square at its equilibrium configuration. In the initial
configuration the solid is stretched and has a rectangular shape. At the beginning
of the simulation, Figure 11(a), the corner of the structure imposes a singularity
to velocity field and a vortex arises. In snapshot 11(b) the structure is bouncing
along the x axis. In Figure 11(c) the structure interacts again with the fluid, as
it is heading to the equilibrium position, a second vortex arises as a consequence
of the structure motion. In Figure 11(d) the structure has almost approached its
equilibrium position.

7. Conclusions

In this paper we presented a new formulation for the finite element approxi-
mation of fluid-structure interaction problems within the setting of the Immersed
Boundary Method. With this formulation the coupling between the fluid and the
structure is modeled with the help of a distributed Lagrange multiplier, so that a
fully variational problem is obtained. The main feature of the fully discrete scheme
associated with this formulation, is that its stability does not require any restriction
on the time step size.

Numerical experiments confirm the theoretical energy estimates.
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