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Abstract

We study the relationship between the performance of firms and their technological portfo-

lios using tools borrowed from complexity science. In particular, we ask whether the accu-

mulation of knowledge and capabilities associated with a coherent set of technologies leads

firms to experience advantages in terms of productive efficiency. To this end, we analyze

both the balance sheets and the patenting activity of about 70 thousand firms that have filed

at least one patent over the period 2004-2013. We define a measure of corporate coherent

diversification, based on the bipartite network linking companies with the technological fields

in which they patent, and relate it to firm performance in terms of labor productivity. Our

measure favors technological portfolios that can be decomposed into large blocks of closely

related fields over portfolios with the same breadth of scope, but a more scattered diversifi-

cation structure. We find that the coherent diversification of firms is quantitatively related

with their economic performance and captures relevant information about their productive

structure. In particular, we prove on a statistical basis that a naive definition of technological

diversification can explain labor productivity only as a proxy of size and coherent diversifica-

tion. This approach can be used to investigate possible synergies within firms and to recom-

mend viable partners for mergers and acquisitions.

Introduction

Innovation and technological change are driven by an intricate web of capabilities that evolve

thanks to the continuous cross-fertilization between fields of knowledge. For instance, the

importance of heterogeneous inputs in knowledge creation has been widely recognized in

recent methodological contributions [1] as well as empirical studies concerning the nexus

between interdisciplinarity and innovativeness e.g. in R&D teams [2]. Relatedly, recent investi-

gations have focused on the effect of technological recombination in driving innovative impact

[3] and the spill-overs generated by inventions based on similar vis à vis relatively unrelated

technologies [4]. Though there is consensus around the fact that successful diversification

strategies cannot be based on randomly assembling different technologies, it is far from trivial
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to measure the degree of coherence that goes into the technological portfolios of innovating

firms and its association with some measure of their performance. Establishing this connection

is useful to advance our understanding of the importance of generating technological know-

how for economic agents. In fact, it is known that firms, in a sense, can know more than they

make [5–7]; however, uncovering the structure of such knowledge is another important piece

of the same puzzle. In this view, it is intuitively appealing to think that innovators’ efforts to

diversify their knowledge base should focus on adding domains that are functionally adjacent

to their current knowledge stock rather than on taking blind leaps through the technology

space. We show that benefits for patenting companies accrue not so much from the number of

technologies in which they perform R&D, but rather from the overall coherence of the fields in

which their research activities concentrate. To this aim, we adopt the Economic Complexity

approach [8–10], an innovative methodology that leverages tools taken from complexity sci-

ence [11, 12] to investigate economic development which has recently started addressing the

interplay of technological, scientific, and industrial production [13]. In this paper, we propose

a network-based measure of coherence that allows us to decompose corporate patent baskets

into clusters of functionally related technological fields. We thus measure not only the number

of such knowledge blocks, but more importantly their average size. In this sense, our proposed

measure—Coherent Technological Diversification (CTD)—is an intensive measure of diversi-

fication. We further show that the benefits of a more coherent assembly of corporate technol-

ogy portfolios are reflected in a higher productive efficiency. This finding is consistent with a

representation of production in which coherent knowledge blocks map to internally consistent

production processes (or perhaps, product lines). CTD significantly differs from a simple

(extensive) measure of technological diversification (TD): while the latter simply counts the

number of technological fields in which a company is active, the former allows, given the same

breadth of scope, to tell apart companies with a diversification structure comprising blocks of

closely related fields from companies with more scattered technological portfolios. Our metric

is designed to test the hypothesis that a broader knowledge stock can be leveraged more effec-

tively by (or within) a productive business unit the higher the internal consistency. We claim

that CTD is particularly suited to study firms or small geographic aggregations which are natu-

rally constrained by their size in the total amount of capabilities they can acquire. In fact, while

countries are large to always benefit from a more diversified product basket and always absorb

new capabilities [8, 14], firms are by necessity far more specialized and face a trade-off between

the opportunity of increasing their scope and the need to maintain a cohesive core business.

To draw a naturalistic analogy, the fact that an ecosystem becomes richer through diversity

does not imply that all the species it hosts will occupy all the available niches, since each species

takes a different path to strike a balance between adaptability and specialization in order to

maximize survival probability.

Our contribution builds on a capabilities-based view of the firm [15], which allows to

model the potential returns to scope associated with pursuing innovation in complementary

fields of technology. In this view, capabilities are intangible assets relating to the necessary

know-how for the effective development of production and other internal organizational pro-

cesses [16]. For our purposes, a capability-based model of the firm can be seen as a network

connecting specific technological or organizational capabilities to one or more products, thus

highlighting heterogeneous and non trivial interactions between specific technological fields.

Starting with [17], many studies have tried to take advantage of firm- or product-level data to

understand the possible synergies between different products. A different perspective on the

same problem has been championed in recent years by the literature on economic complexity,

which has modeled capabilities as an invisible layer linking economic agents with the outcome

of their activities [18, 19]. This approach has also successfully extended the notion outside the
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corporate domain by applying it to nations and geographical regions in general [8, 9]. In a

way, the present work lies in-between the traditional interpretation of capabilities and the

complexity view, in that it models capabilities as a hidden layer and at the same time interprets

them as mediators between firms and their productive efforts. However, differently from both

the above approaches, our analysis focuses on the production of technological innovation (and

its relation with performance), thus applying a notion of capabilities that is close in spirit to

the technological competencies proposed by [20].

This paper is organized as follows. First, we review the relevant literature on the topic of

corporate diversification, presenting an overview of prominent diversification measures, and

then we discuss the contribution of this work with respect to the existing economic complexity

approach. We then briefly describe the data employed for the study. At this point we introduce

our metric of coherent diversification, discuss its economical meaning and relevance also with

respect to the existing literature as well as the originality of the findings it yields.

Literature review

This paper aims to build a bridge between two seemingly distant fields by applying a method-

ology inspired by the Economic Complexity approach to the study corporate technological

diversification and its link to innovation. In a way, the innovation-diversification nexus is

well established in the economic and managerial literature. This is particularly the case for

the recombinant perspective on innovation, according to which innovations emerge from

piecing together existing knowledge. This view, which can be traced back to [21], has been

embraced by many notable scholars over the years [22–24]. As pointed out by [25], a large

body of empirical studies has uncovered abundant evidence of knowledge recombination in

several manufacturing industries (e.g. biotech, semiconductors, automotive) as well as cul-

tural and creative industries; moreover, novelty through recombination can arise through a

variety of mechanisms that are still not fully understood. For instance, serendipity can play

an important role in discoveries [26]. Nevertheless, only a small role in successful innovation

are ascribable to chance. Furthermore, the sheer size of the landscape would rule out any pos-

sibility for organizations to take a brute force approach toward recombination. For this rea-

son, the search process leading to discoveries is crucially hinges on the ability of firms and

organizations to accumulate knowledge and on exploit it via their combinative capabilities
[27]. Though a clear understanding of the dynamics underlying an effective search process

remains an open question, the strategic management literature has identified several poten-

tial avenues for knowledge-enhancement within the firm [25]. Some such mechanisms (e.g.

building social capital, promoting social relations among co-workers, and mixing work

groups) take place within the boundaries of the firm; other mechanisms instead rely on tech-

nological cross-fertilization following the targeted acquisition of external technologies [28,

29] and interaction with the external environment in the form of e.g. partnerships or alliances

[30–33]. Parallel to the above organizational perspective on recombinant innovation, a fur-

ther stream of literature exists which has gained relevance in recent years thanks to the

increasing availability of comprehensive collections of patent data [34–36]. On one hand, the

firm-centered and the patent-based literatures share the theoretical basis and the hypothesis

that combining new and existing technological capabilities plays a central role in generating

novelty. On the other hand, the latter takes a more data-driven approach to the empirical

analysis and concentrates on the patterns of technological combinations that characterize the

global landscape of patented inventions. The success of patent data in large-scale empirical

analyses has certainly benefitted from its comprehensive geographical and longitudinal cov-

erage as well as the rich information that it provides about inventions (e.g. bibliographic
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data, citations, claims, technological fields impacted by the patents) [37, 38]. Of course, pat-

ent data also has limitations. In particular, not all inventions are eligible for protection under

current intellectual property legislation and not all industries have the same incentive to bear

the cost of patenting. Consequently, any patent data set will present a partial view of innova-

tion as a whole. Nevertheless, for our purposes the advantages of using patents as a source of

data outweigh the drawbacks. The present paper lies in-between the firm-centered and the

patent-centered views on recombinant innovation by taking firms as units of analysis and

evaluating their innovative efforts based on information derived by the entire technological

landscape. In fact, by decomposing corporate patent portfolios into their constituent technol-

ogies, we are able to construct a network of technological knowledge in which the proximity

between fields grows with the number of times they co-occur in the same firm. This way, we

can analyze corporate technological portfolios against the background of the global network

and ask whether having a more diverse technological portfolio (and thus more elements for

potential new combinations) is always better or whether some connections can be predicted

to be more valuble. Before getting into the details of our proposed methodology, we briefly

review how the standard economic approach and the tools of Economic Complexity have

been applied to the study of diversification in the past.

The standard economic approach

Technology has come to prominence in the economic literature more recently than produc-

tion, so it is not surprising that the tools developed over time to study the latter have inspired

the later effort addressing the former. For this reason, though this paper is concerned with

technologies, it makes sense to start our discussion about previous measures of diversification

by first addressing corporate productive scope before moving on to the literature about tech-

nological diversification. Moreover, though the technological and productive dimensions are

very different, they are also strongly interconnected and complement each other in driving the

evolution of firms. An exhaustive review of the literature, would be beyond the scope of the

paper (but see e.g. [39] for a comprehensive review of the diversification measures adopted in

the economics and management literature); here, we provide a concise overview of some of

the indexes of diversification that have been proposed over time and use them as the starting

point to trace the path in the literature connecting diversification to the concepts of relatedness

and coherence, the building blocks of our proposed approach to measuring technological

diversification and its meaning for innovative firms.

Diversification. The drivers and implications of firm diversification have interested

scholars at least since [40], which has pioneered the idea that the “firm is not confined to

‘given’ products, but the kind of activity it moves into is usually related in some way to its exist-

ing resources [and] pools of unused productive services [which,] together with the changing

knowledge of management, create a productive opportunity which is unique for each firm.”

[41]. Several scholars [42, 43] have built upon this intuition and re-framed the general problem

in quantitative terms, extending the analysis to collected data about firms across different

industries. In particular, early quantitative studies concerning diversification, which have

attempted to explain the rise of industrial conglomerates in manufacturing [42, 44] have con-

centrated mainly on the productive scope of manufacturing firms as measured the number of

sectors encompassed by their activities. In addition to the wealth of theoretical contributions

spurred by the widespread interest in understanding the determinants of corporate product

diversification (for an interesting discussion, see e.g. [45]), a great deal of empirical work has

also been devoted to understanding the relation between the performance of firms and the

number of activities or markets in which they engage e.g. [46–48].

Coherent diversification in corporate technological portfolios
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However, products are not the only area in which companies diversify and it has not

escaped scholarly attention that the drivers of corporate technological scope are a meaningful

area of investigation. This line of inquiry has gained prominence especially in the last decades

of the twentieth century, which have witnessed the emergence of rising complexity in products

and production processes [49, 50]; increasing specialization in knowledge production [51];

and an accelerated pace of innovation in many industries. All of the above have contributed to

making “diversity particularly across technologies . . . no longer a choice” [52].

Relatedness. Early attempts to tie diversification with relatedness [43, 53] have aimed to

establish a link between corporate strategy and profitability. Including relatedness in the pic-

ture implies changing the perspective from measuring simply the observed breadth in scope of

business activities and requires new tools capable of measuring the distance between the activi-

ties in which firms diversify. For instance, [53] has tested the hypothesis, formulated based on

anecdotal evidence from US manufacturing that amidst diversified firms “the highest levels of

profitability were exhibited by those having a strategy of diversifying primarily into those areas

that drew on some common core skill or resource”. This was accomplished by developing a

classification (not an index) of diversification strategies based on the share of revenues due to

single product lines in a sample of large US firms. In this view, relatedness between business

units—i.e. the “existence of shared facilities [and of] attempts to exploit common factors of

production”—is a function of both product diversification and the contribution to the com-

pany’s revenues of the largest group of closely related products. The intuition behind [43] has

been expanded upon by [17], which has embraced the view according to which the implica-

tions of scope for the evolution of companies and industrial structure can be better understood

by including in the analysis an assessment of the overall coherence of corporate activities. This

approach reflects the idea that the strategic motives behind diversification should be accounted

for in order to build a taxonomy of corporate types which, in turn, can be usefully incorpo-

rated in a theory of their evolution. To this end, and because of their reliance on a much larger

data sample than the ones available to its predecessors, the measure of relatedness of [17] is

based on the survivor principle, i.e. the assumption that economic competition eventually

drives inefficient organizational forms out of the market, thus promoting the co-occurrence

of activities that are well integrated with one another through the reliance on complementary

technological capabilities. In virtue of the survivor principle, the data can be trusted to reveal

efficient combinations of activities to occur with a significantly higher frequency than one

would expect as a consequence of sheer randomness. Consequently, it is possible to summarize

the activity portfolios of firms in a binary matrix and use it to derive a matrix of co-occur-

rences between products; statistically significant combinations of activities can be uncovered

through a statistic (τ) based on a standard t-test comparing the values of the cells of the empiri-

cal co-occurrences matrix to their expected value under the null hypothesis of random diversi-

fication. This leads to different measures of coherence whose dynamics in time show that as

firm scope increases the average distance between all the activities grows with diversification,

while the link between more highly related activities grows stronger.

Even though the study of corporate coherence has originally found application in the prod-

uct domain, it has been shown to be extremely meaningful also to understand the technological
performance and evolution of firms [54–58]. Of course, coherence in the realm of technologies

is not the same thing as coherence in the product domain and arguably has different implica-

tions. Nevertheless, the concepts are complementary in understanding firm evolution, so it is

not surprising that scholars interested in technological coherence have drawn from the exist-

ing analytical toolbox. For instance, Breschi et al. [59] have built on the methodology proposed

by [17] to investigate whether firms patent in fields that share a common knowledge base with

those in which they innovated in the past; the analysis of the technological diversification of
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firms employs a matrix of co-occurrences between technological fields and rejected the null

hypothesis of random diversification. In a similar vein, Nesta et al. [60] have studied corporate

knowledge coherence in the US pharmaceutical industry and showed that both the scope and

the coherence of the knowledge base “contribute positively and significantly to the firm’s inno-

vative performance”, as measured by the number of patents it produces weighted by the num-

ber of citations received. Balland et al. [61] have investigated the possibility to build smart

specialization strategies by using technological portfolios at regional level. An interesting dis-

cussion about the statistical properties of these approaches can be found in [62]. Napolitano

et al. [63] have shown how these relatedness-based approaches can be used to investigate inno-

vation dynamics.

The economic complexity approach

The intuition behind the survivor principle is also central in the literature on economic com-

plexity, which in recent years has focused on explaining the composition and evolution of the

export baskets of nations engaging in international trade (e.g. the product space [64] the taxon-

omy network [9]) as well as predicting their future growth trajectories [8, 64]. The assumption

underlying economic complexity is that the patterns of competitive advantage observed in

national export baskets are the result of intangible country-specific endowments called capa-

bilities (see Fig 1), which countries must acquire and combine effectively in order to thrive in

global competition [9, 65, 66].

On one hand, this implies that it is possible to build a network in which products are closer

the greater the overlap between the capabilities needed to produce them. On the other hand, if

a nation alone has a competitive advantage in exporting a given good, we can infer that it pos-

sesses an adequate combination of capabilities. Practically, we can define a binary matrix in

which the generic element Mcp takes value one if country c has a Revealed Comparative Advan-

tage [67] in exporting product p. Thus defined, M is the key ingredient to define product

proximity within the product space [64] by counting the co-occurrences of products and nor-

malizing them using the ubiquity of products, i.e the number of countries which export them.

In turn, proximity represents the empirical counterpart of a kind of symmetrized conditioned

probability to export a product, given the export of another product.

In a similar fashion, M enters the definition of the taxonomy network proposed by [9], the

adjacency matrix of which is B 2 RP�P

Bpp0 ¼
1

max ðup; up0 Þ

X

c

McpMcp0

dc
; ð1Þ

where dc� ∑p Mcp is the diversification of country c, i.e the number of products it exports,

and up� ∑c Mcp is the ubiquity of product p. Differently from the product space approach,

in Eq 1, the frequency of a product is not only conditioned to the presence of another prod-

uct but also evaluated with respect to a random binomial case; the latter would imply an

expected frequency of dc/P (the constant factor P is usually neglected). Following [68], Eq 1

can be also interpreted in terms of the probability to go from a product to the other perform-

ing a random walk defined on the tripartite product-country-product network. A similar

approach has been also used in [13] with the aim of building a network of human activities

spanning from technological innovation, to scientific research to industrial production. That

paper introduces two noteworthy methodological additions with respect to the previous

approaches: the presence of a statistical validation for each link of the resulting network,

and an explicit time dependence that takes into account the diffusion of innovation in the

various countries. The same methodology has been also applied to a novel database to build

Coherent diversification in corporate technological portfolios
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a Product Progression Network that considers the time evolution of countries in a space

defined by both products and services [69].

Data

Firm data

We aim to investigate the relation between the structure of the technological portfolios of

firms and their productive efficiency, which we measure with a simple labor productivity met-

ric. To extract this information, as in [70], we rely on AMADEUS, a commercial database

maintained by Bureau van Dijk Electronic Publishing (BvD), which specializes in providing

financial, administrative, and balance sheet information about (generally private) companies

based in Europe. The database accounts for over 20 million companies for which public data is

collected and harmonized sourced from several providers using a multitude of data typically

collected by public institutions [71]. A notable advantage of AMADEUS is its straightforward

connection with the Worldwide Patent Statistical Database (PATSTAT) of the European Pat-

ent Office (EPO), which we describe below. Joining the two databases leaves us with detailed

information about almost 70 thousand firms that have filed at least one patent over the period

covered by our AMADEUS edition (2004-2013) and for which the balance sheet information

is available firm size and productivity. Note that the focus of AMADEUS on Europe warrants

a caveat about the representativity of our sample for non-European firms since only their

European subsidiaries are considered. It is possible that the data is a bit skewed towards rela-

tively large non-European corporate entities. Nevertheless, the quality of the data and the ease

of cleanly merging it with PATSTAT is worth the trade off. Moreover, potential biases are mit-

igated by the fact the larger companies have much higher probability of being active in patent-

ing with respect to small firms.

Patents and technology codes

Following an established tradition in the economic literature on innovation [35, 37, 38], we

proxy innovative activity with patents, a rich and growing source of information, which over

the past years has benefited from cumulative data collection efforts of scholars as well as public

agencies. Though it is well-known that patents are not a perfect tool to study all aspects of

innovation [37] and that indeed there are valuable alternative methodological approaches like

e.g. surveys [72, 73], patents have desirable properties for the kind of large-scale analysis we

perform about the combinations of technological fields in which firms innovate. In particular,

we concentrate on information concerning the set of technological fields to which inventions

pertain; each field is represented by a standard code defined within the International Patent

Classification (IPC), an internationally recognized hierarchical classification system main-

tained and constantly updated by the World International Patent Organization (WIPO). The

Fig 1. Relationship between countries, capabilities, and products. Left: Capabilities mediate between countries and

their export baskets Right: Since capabilities are not observable, their role must be inferred from the bipartite network

connecting countries to products.

https://doi.org/10.1371/journal.pone.0223403.g001
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IPC codes are organized in different aggregation levels. For instance the most aggregated class

counts 8 sections, while we will compute our measures at a very disaggregated level, that com-

prises about 7000 groups. Apart from the obvious practical advantages of relying on standard-

ized definitions, decomposing patents into their constituent technologies allows us to consider

inventions as the product of a successful recombination of variously related preexisting tech-

nologies and knowledge. The heart of patent applications are the claims, i.e. the part of the

patent document that describes the novel aspects of the invention with respect to the relevant

prior art and justifies the request for intellectual property protection and exclusive commercial

rights. Claims undergo individual examination by patent office experts and, if approved, are

assigned one or more IPC codes relating to the technologies touched upon by the correspond-

ing claim.

As mentioned above, our source of data about patents and the technologies embedded

therein is PATSTAT, which aggregates data collected from national and regional patent

offices; among other things, it also collects applications that have been filed at different times

or in different countries but refer to the same invention into so-called patent families [74].

Since institutional and procedural differences between patent offices could introduce a bias in

the sample, we take into account only so-called triadic patent families [75], i.e. families includ-

ing at least one application filed at the EPO, one filed at the Japanese Patent Office (JPO), and

one granted by the United States Patent Office (USPTO). This way, we select high-value inter-

national inventions, but we also ensure that the patented inventions we consider have under-

gone similar scrutiny processes.

For each year of data, we start by decomposing the patent families with at least one applica-

tion into the set of associated IPC codes and attributing the codes to patenting firms. We then

assign each active family one unit of weight and divide it into equal shares between all the

observed (company, technology) pairs excluding double counts. Every such pair maps to a cell

of a matrix, the value of which is the sum of the shares that point to that pair; the above matrix

is binarized to obtain M (the procedure is fully described in the S1 File). To summarize, M
defines the technological portfolio embedded in the patents filed by all active firms in a specific

year; it thus allows to look into the structure of such portfolios and investigate its relation to

firm efficiency.

Coherent diversification

The contribution of this paper lies at the intersection between the literature on corporate

coherence [60] and the contributions to the economic complexity literature. In particular, our

aim is to transpose the definition of relatedness proposed in [9] at the firm level and apply this

measure (Eq 1) to corporate patent portfolios in order to uncover the structure of the underly-

ing network of technologies. This serves as a stepping stone to define a measure of the coherent

technological diversification and examine its relation to firm performance.

Fig 2 illustrates our view of what defines a coherent technological portfolio; each tree repre-

sents a firm (circle) that branches out into its products (squares) via the embedded technolo-

gies (triangles). Analogously to Fig 1, where the hidden layer of capabilities enable countries

to export products in a competitive way [65, 76], here technologies act as mediators between

companies and their production lines. Following the idea that the more capabilities are needed

for a product, the more complex it is [9, 66], we assume that a single production line that bene-

fits from a large set of dedicated technologies will be more efficient. Since many companies

have more than one production line, we will need i) to identify clusters of technological blocks

as proxy for products, and ii) to measure the average number of technologies a company has

for each cluster. This will be our measure of Coherent Technological Diversification (CTD), to
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be introduced in this section using the stylized example depicted in Fig 2. The company on the

left, labeled x, produces computers and smartphones. The technologies that are specific to a

single product are colored either in solid orange or light blue. However, since the two products

are highly related from a technological point of view, we can assume that some of the capabili-

ties needed to manufacture both products overlap and, consequently, some technologies are

shared; this is illustrated by the striped triangles. In a sense, the coherent company par excel-
lence is the firm in the center, labeled y in Fig 2, which is specialized in a single product and

thus needs to master only the capabilities (and the technological fields) related with its business

activity. On the contrary, firm z produces unrelated products and this results in an incoherent

technological portfolio.

In what follows, we test the hypothesis that the performance of a firm is related not only

with its technological diversification (i.e. the number of technology codes in its patent portfo-

lio), but also with the coherence of its technological capabilities. Comparing Fig 2 with Fig 1

shows that modeling technological portfolios to get a glimpse of the structure underlying prod-

uct baskets is operationally similar to attempting to understand the relevance of intangible

capabilities from the composition of the output mix produced by agents. Conceptually, how-

ever, the two endeavors are quite different. While in Fig 1 capabilities are the actual mediators

between economic agents and their output, Fig 2 depicts products as the hidden layer. How-

ever, it would be wrong to deduce from the latter picture that products mediate between agents

and technological fields, because it would be like assuming that production is instrumental to

R&D, while it seems more plausible to assume that the relation flows in the opposite direction.

The basic data we need to define Coherent Diversification in corporate technological port-

folios is the matrix M defined in the Data section. This matrix represents a bipartite network

linking companies to the technological fields in which they actively innovate. For the sake of

exposition, the results presented below refer to the data for 2011, the most recent year for

which we trust the data coverage to be reasonably complete; the results are however robust and

hold also for previous time periods. A stylized graphical representation of the bipartite compa-

nies-technologies network, whose adjacency matrix is M, is depicted in Fig 3 (left). In order to

Fig 2. Corporate technological portfolios conceal information about feasible output baskets. Technological portfolios can be used to infer the

coherence of companies’ production lines. With respect to Fig 1, where capabilities are the actual, but hidden mediators between economic

agents and their output, here the (known) technologies can be seen as enablers for more efficient (but hidden) products.

https://doi.org/10.1371/journal.pone.0223403.g002
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define the coherent diversification we first need a measure of technological relatedness. To this

end, we redefine the matrix B of Eq 1 as follows to account for firms and technological fields

(instead of products)

Btt0 ¼
1

max ðut; ut0 Þ

X

f

MftMft0

df
: ð2Þ

where df is the diversification of firm f and ut is the ubiquity of technology t. B can be

interpreted as the adjacency matrix of a monopartite network of technologies like the one

represented in Fig 3 (right). Each of the triangular nodes in the figure corresponds to a techno-

logical field and is colored to highlight its proximity to the more frequently co-occurring (thus

more related) technologies to which it is linked. The figure shows that B embeds the notion

that specific combinations of technologies concur to generate products, even though it is not

possible to establish the correspondence between the technology and the production domains.

We point out that this representation is purely illustrative and does not represent the applica-

tion of Eq 1 to the matrix M defined in Fig 3 (left). Indeed, in this case the orange technologies

would have been linked to the black ones thanks to the co-occurrence in company z. The net-

work B represented in Fig 3 (right), on the contrary, can be seen as a filtered one, in which the

links are computed by considering more companies, and in which only the heavier links are

kept. In this case, it is reasonable to expect to find the technologies related to cars to form a sin-

gle disconnected component, and the technologies related to computers and smartphones to

be relatively closer.

Fig 4 shows a filtered representation of the network of technologies at a high level of aggre-

gation. We use the previously introduced empirical data to compute B and then we filter the

adjacency matrix employing the minimal spanning forest algorithm [9, 77]. By construction,

each node represents a technological field and it is connected with the field with which it

shares the heaviest link. The nodes in the graph represent IPC subsections, a highly aggregated

level of classification in which all technological codes are grouped in 23 subsections; for the

analysis we consider a much more detailed classification, that counts about 7000 technological

sectors. The nodes are colored according to the class corresponding to the immediate higher

Fig 3. Matrices m and B. Left: the circles represent firms and the triangles represent the technological fields included in their technological

portfolios; this is our starting database. Right: the triangular nodes in the graph correspond to a technological fields and are colored to highlight

proximity between more frequently co-occurring (and thus more related) technologies.

https://doi.org/10.1371/journal.pone.0223403.g003

Coherent diversification in corporate technological portfolios

PLOS ONE | https://doi.org/10.1371/journal.pone.0223403 October 10, 2019 10 / 22

https://doi.org/10.1371/journal.pone.0223403.g003
https://doi.org/10.1371/journal.pone.0223403


aggregation: each subsection, defined by a letter and a number, is colored according to the sec-
tion it belongs to (see legend). Quite remarkably, the color pattern of the graph suggests that

the hierarchical structure of the IPC classification does not play a role in identifying the stron-

gest connections between technological fields. If this were the case, we would observe nodes of

the same color attached to one another; instead, nodes of the same color are generally not adja-

cent. This is at odds with what one usually observes e.g. in similar representations of co-occur-

ring products brought to market by countries [9, 69]. This lack of proximity among similar

technological codes points out that co-occurrences of technologies are driven not by technolo-

gies themselves, but by what technologies are for: products. As depicted in Fig 2, products are

in our case a hidden layer between companies and the technologies they need for their produc-

tion lines.

In order to combine the general structure of technology relatedness with firm-specific

information, we first need to measure, for each company, the coherence between all of the

technologies in which it holds patents. Fig 5 qualitatively illustrates such measure for a generic

technology t1 and two toy companies—1 and 2—depicted respectively in the left and right pan-

els. In both panels, the network structure connecting the triangles in the background repre-

sents a simplified (binary) illustration of B; the opaque triangles stand for technological fields

contained in the patent portfolio of each firm, while the transparent triangles represent tech-

nological fields in which the firm has not filed patents. Notice that both firms are equally diver-

sified, having patents covering the same number (eight) of technological fields. The glaring

difference between firm 1 and firm 2 resides in their diversification structure. In particular, the

Fig 4. Minimal spanning forest of B. The nodes in the graph represent IPC subsections and are colored according to the section they belong to.

Each node is connected to the technological field which is linked to it with the highest weight. The color pattern shows that the driver for the co-

occurrence of technologies is not technologies themselves, but a hidden layer (products).

https://doi.org/10.1371/journal.pone.0223403.g004
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technological fields of the first company are all connected within B and form a connected

block, whereas the technologies of the second are scattered throughout the network. As a con-

sequence, technology t1, which is owned by both firms, has a high intra-firm coherence within

firm 1, but attains a low score in firm 2. In reality, the linkages we measure at each step of the

analysis between companies and technology fields are not binary but, rather, weighted and it

is important to keep this into account in our analytical definition of the coherence. We thus

define the intra-firm Coherence of the technological field t with respect to the technological

basket of firm f

gft ¼
X

t0
Btt0Mft0 : ð3Þ

The rectangular matrix g 2 RF�T
, whose elements are defined above, represents the analyti-

cal counterpart of Fig 5. The intuition behind Eq 3 is the following. For each technological

field t and for each firm f we count how many of the technologies t0 owned by f are connected

with t, using Btt0 as a weight. If the technological portfolio of f is such that t is sorrounded by

a large number of strongly connected technologies f owns, then t will be very coherent with

respect to f, i.e. γft will be high. On the contrary, if t belongs to a portion of the network of tech-

nologies far from the patenting activity of f, γft will be low.

Finally, we can the derive the corporate coherent diversification of technologies by

aggregating, within each firm, the information about the intra-firm Coherence of all the tech-

nological fields in which it holds patents. This can be interpreted as a reweighing of the diversi-

fication structure of firms, which highlights the connected technologies and in principle has

a correspondence with the corporate product basket, though the the explicit map connecting

what a firm knows with what it produces remains hidden beneath the surface. We define firm-

specific Coherent Technological Diversification (CTD) G 2 RF
as

Gf ¼

P
tMftgft
df

; ð4Þ

where df� ∑t Mft is the Technological Diversification (TD) of firm f. In practice, Γ computes

Fig 5. Illustration of γ for a generic technology t1 and two firms (1 and 2), depicted respectively in the left and right panels. In both panels,

the graph represents the binary B of Fig 3 (right): the opaque triangles stand for technological fields in which the associated firm holds patents.

Both firms are diversified in the same number of technological fields. However, those of firm 1 are connected within B forming a unique block;

on the contrary, those of firm 2 are scattered through the graph. As a consequence, technology t1 is highly coherent in firm 1 but not in firm 2.

https://doi.org/10.1371/journal.pone.0223403.g005
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the average coherence γ of the technologies in which f is patenting. In the limit in which B is a

binary matrix, γft simply counts how many technologies of f are connected with t and, as a con-

sequence, Γf will be equal to the average size of the clusters owned by f. This means that the

CTD computes the average number of technological fields included in coherent blocks within

the technological portfolio of each company. Since our idea is that each one of these coherent

blocks corresponds to a production line, Γ will be a proxy of the number of technologies each

firms adopts for each product.

In the following section we discuss two simple to models that help clarify the features of

both Coherence γ and CTD Γ and their interpretation.

Toy examples

Example 1. Let us first focus on how our framework rewards diversification only if it

defines a coherent portfolio. Suppose that company f owns in total two technologies (t and t0),
which implies that Mft = Mft0 = 1, and that these technologies are connected in B, i.e. Btt0 =

1 8(t, t0) = 1, 2 (note that by definition any technology is connected to itself in B, so that Btt =

1 8t). A straightforward application of Eq 3 yields γft = BttMft + Btt0Mft0 = 1 + 1 = 2 and, by the

same argument, γft0 = 2. Plugging the above values for γft and γft0 into Eq 4 yields Gf ¼
2þ2

2
¼ 2,

so that in this case the CTD of firm f is equal to its TD, because the closeness of the two tech-

nologies in B suggests that they could be employed by firm f to develop the same product line.

Consider instead what happens to the CTD of firm f if we assume that t and t0 are not con-

nected in B. Notice that, since the number of technological fields contained in the portfolio of

f has not changed, its TD is still 2. However, now Btt0 = 0 8t 6¼ t0, which implies that the intra-

firm coherence of both the technologies owned by f is lower than before. In particular, γft�
BttMft + Btt0Mft0 = 1 + 0 = 1. The same is necessarily true for γft0, because t and t0 are the only

two technological fields in which we are assuming f to be active, therefore this basic example

is symmetric by construction. Plugging the values of γft and γft0 into Eq 4 yields Gf ¼
1þ1

2
¼ 1,

less than the TD of f. In this case, the composition of the firm’s technological portfolio suggests

that its knowledge stock is structured around two smaller subsets of non-complementary capa-

bilities (e.g. two distinct product lines) rather than around one larger, more homogeneous, set

of capabilities.

Example 2. In order to further clarify the economic interpretation behind CTD and its

relation with production lines, we now take one step forward and proceed to a slightly more

involved calculation based on Fig 2. Consider three companies: the first one (company x) has

two product lines (computers and smartphones) and its portfolio contains eight technological

fields, of which three are purely related with computers, three are necessary for smart-phones,

and two are useful for both products; the second company, y, is instead specialized in cars and

controls three technological fields related with this single product line; and finally, the third

company, z, has two unrelated production lines, computers and cars, relying respectively on

groups of three and two technological fields. The associated M matrix is depicted at the center

of Fig 6. In order to compute the coherence of these technological portfolios, we need a mea-

sure of distance between technological fields, B (note that for ease of exposition, in this exam-

ple we do not compute B from M like we do for the real data; on the contrary, we suppose that

the three companies operate within the technological space defined by a larger set of compa-

nies that are not individually considered in the example). In particular, we take the technologi-

cal network depicted in Fig 3 (right), whose adjacency matrix B is represented in the top left

of Fig 6. The technologies related with cars (black squares) are homogeneous (i.e., fully con-

nected) and independent of the technologies used for their product lines (i.e., there are no off

diagonal elements connecting them to other technologies), forming a single unitary block. On
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the contrary, computer and smartphone technologies are homogeneous but mildly related

through two off-diagonal technologies (the fourth and the fifth rows of B). Note that for sim-

plicity in this example we still assume that B is a binary matrix, meaning that technological

fields are either related or totally unrelated, but in general the elements of B can take any con-

tinuous value.

Let us now compute the intra-firm Coherence of technologies, i.e. the enhancement that

technology t gets by belonging to the portfolio of company f. Applying Eq 3 we obtain the bot-

tom matrix γ of Fig 6. In this simple case, the matrix just counts the neighbors of a technology

that are owned by the company. Notice that the block of car technologies is more coherent in

firm y than in firm z, since they own 3 and 2 technologies in that block, respectively. Finally,

using Eq 4, we can compute the CTD of the three companies. For company y we obtain Γ = 3.

Under the simplifying assumptions we introduced for this toy model, the CTD is simply the

average number of technologies used for each production line. Such interpretation is a zero

order approximation, which turns to be exact only for independent and homogeneous produc-

tion lines. Let us now consider company x. In this case, the enhancement due to the close tech-

nologies is stronger, as one can notice looking at the first row of the γmatrix; averaging over

the owned technologies, one obtains Γ = 3.5. Finally, company z has Γ = 2.6, which can be

interpreted as a weighted average over the production lines: the first production line (comput-

ers) has three technologies, all with an intra-firm coherence equal to three, while the second

production line (cars) can use only two technologies, and this implies a lower coherence, equal

to two. To compute Γ we employ Eq 4: we weigh the Coherence value of each technological

field within the firm with the relative number of technologies used for each product, yielding
1

5
3þ 3þ 3þ 2þ 2ð Þ ¼ 2:6. Notice that some of the values of the last row appearing of matrix

γ of Fig 6 are contained in cells with lighter background color (fourth, fifth and last column).

Fig 6. Example 2. A graphical representation of two stylized B and M matrices alongside the Coherent Diversification of the associated firms. See

text for a detailed calculations.

https://doi.org/10.1371/journal.pone.0223403.g006
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These technologies would contribute to Γz if firm z had them in its technological portfolio, i.e.

if the corresponding cells in matrix M were colored.

Results

This section tests the measure of firm coherence Γ by correlating it with an index of firm effi-

ciency. If our hypothesis that innovating in related technological fields is conducive to the

development of an effective mix of firm-level capabilities, which is in turn reflected in produc-

tion, CTD should correlate with firm performance. The first test is illustrated in Fig 7, which

plots the binned values of Γ against the intra-bin quantiles of labor productivity (measured as

value added over employees) for the firms in our sample. The plot shows a clear positive asso-

ciation, providing preliminary evidence that our measure of the coherence of technological

portfolios captures relevant information about the productive structure of the firms.

As a further test of the ability of Γ to capture a relevant aspect of corporate productive effi-

ciency, we regress it against labor productivity. The results of the least squares regressions,

which are summarized in Table 1, further confirm the intuition conveyed by Fig 7.

The coefficient associated to CTD remains positive and significant in all regressions, even

when we add firm size (measured by total assets) and TD as controls. Moreover, though TD is

statistically significant if used alone, it loses explanatory power when used in the same model

as CTD. This is particularly interesting, because it suggests that the number of connected tech-

nologies within the technological knowledge portfolio of a company, as quantified by our mea-

sure of coherence, is more relevant than the raw number of technological fields in which the

company innovates. In particular, the fact that the statistical significance of TD (the number

Fig 7. Coherent diversification VS labor productivity. The graph plots the binned values of Coherent Diversification

(Γ) of the firms in our sample against the intra-bin quantiles of labor productivity. The clear positive association

between Γ and labor productivity suggests that the Coherent Diversification of technological portfolios captures

relevant information about the corporate productive structure.

https://doi.org/10.1371/journal.pone.0223403.g007
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of technologies comprising corporate technological portfolios) vanishes once CTD is added to

the set of regressors suggests that the former can be considered a proxy for the latter. Our find-

ings thus suggest that what firms know is relevant to what they produce and that the internal

consistency of their knowledge stock is even more relevant than its the sheer scope. Notice that

we did not include any control, as we are only looking at correlations here, without any claim

of causation. We are not claiming that a firm increasing the coherence of its patent portfolio

will increase their labor productivity. We are only noticing that a firm efficiency is correlated

with its CTD, while any correlation with between firm efficiency and TD is due to the correla-

tion of both with CTD. One could think that the vanishing significance of the coefficient of

TD is due to the instability of the estimate related to the possible collinearity between TD and

CTD. To make it more evident to the reader the relationship between the three variables we

can visualize it by means of a three dimensional plot, in which we consider labor productivity

as a function of both TD and CTD. In Fig 8 we use the two variables to aggregate the firms

into areas colored on the basis of their ranking in terms of labor productivity.

As expected, there is a strong correlation between coherent and not coherent diversifica-

tion, which leads to the presence of white (empty) spaces away from the main diagonal (see the

S1 File for the empirical distribution of these quantities).

Regarding the relationship between these two measures of diversification and labor produc-

tivity, it is clear from the picture that CTD has more explanatory power with respect to TD.

In fact, on average, moving horizontally from left to right the colored area of the plot shows a

strong gradient in labor productivity that cannot instead be observed moving vertically from

the bottom towards the top. Interestingly, labor productivity does not vary randomly along the

vertical direction, but rather it tends to be negative. This lends itself to a stronger interpreta-

tion of the regression results presented in Table 1, according to which, if CTD is kept fixed (i.e.

if one scrolls vertically through the plot), labor productivity and TD are often negatively associ-

ated. In this view, the significantly positive effect of TD in the regressions that do not include

CTD among the explanatory variables is mostly due to its strong correlation with the latter.

Notice in fact that the colored feather-shaped area in Fig 8 is concentrated along the diagonal

and that labor productivity clearly increases moving from the bottom left to the top right.

The Supporting Information contains a comparative analysis of the structure of the techno-

logical space when countries, and not firms, are considered as patenting entities showing that

the level of aggregation at which the analysis is performed plays a relevant role in shaping the

empirical results. In particular, we find that the explanatory power of Coherent Technological

Diversification on firm performance is higher if significant co-occurrences between technolog-

ical fields are observed at the firm level, which therefore represents a more representative scale

Table 1. Statistical significance of the Coherent Technological Diversification.

Regressors Model 1 Model 2 Model 3 Model 4

Size 0.079���

(0.023)

0.079���

(0.008)

0.081���

(0.008)

TD 0.010

(0.045)

0.074���

(0.009)

CTD 0.136���

(0.045)

0.154���

(0.017)

0.200���

(0.016)

R2 0.063 0.062 0.040 0.060

Regressions of labor productivity against Coherent Technological Diversification (CTD), Technological Diversification (TD), and Size. CTD is always statistically

significant.

��� = 1% p-value threshold

https://doi.org/10.1371/journal.pone.0223403.t001
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for this kind of studies. This is in line with the evidence that firms are naturally more special-

ized than the geographical regions in which they operate and with the conjecture that the co-

occurrence of technologies in firms or regions have different implications.

Conclusions

In this work we have presented a quantitative assessment of the coherence of the patenting

activity of firms and a study of its relationship with performance. The idea is that successful

companies shape their technological portfolios on the basis of well defined production lines,

and that this strategic behavior can be understood by looking at the technologies to which

their patents belong. In particular, we introduce a methodology to reconstruct an estimate of

both the size and number of the coherent blocks of knowledge a firm owns, and we show that

their average size is correlated with firms performance.

From a practical point of view, we use a database of about 70 thousand firms and followed

their patenting activity in about 7000 technological sectors for ten years. This activity defines a

bipartite companies-technologies network in which a link is present if a firm patents in a given

technological field, as reported by the IPC codes in their submitted patents. We have then built

a monopartite network of technologies by adapting a measure of relatedness originally con-

ceived to uncover the common capabilities that countries should have to export specific prod-

uct pairs. In this network the nodes are technologies, and they are connected by links whose

weight is given by the (suitably normalized) co-occurrences in different firms. The idea is that

the resulting clusters of technologies should correspond to the respective production lines. We

Fig 8. Labor productivity as a function of diversification and coherent diversification. Technological

Diversification loses its explanatory power in favor of Coherent Technological Diversification when both are

considered, in agreement with the regressions shown in Table 1. Notice that, given a fixed value of Technological

Diversification, labor productivity tends to increase with Coherent Technological Diversification (i.e., from left to

right, considering horizontal slices), while the opposite does not hold.

https://doi.org/10.1371/journal.pone.0223403.g008

Coherent diversification in corporate technological portfolios

PLOS ONE | https://doi.org/10.1371/journal.pone.0223403 October 10, 2019 17 / 22

https://doi.org/10.1371/journal.pone.0223403.g008
https://doi.org/10.1371/journal.pone.0223403


are checking the correctness of this intuition in a quantitative way, and this will be the subject

of a future publication. In this work we used this network to assess the relative integration of

technological activities within firms. In particular, we define the Coherence of each technology

with respect to each firm’s portfolio as the number of related technologies the firm owns, and

we weight them using the network. By considering the mean of these coherence values over

each firm, we obtain the Coherent Technological Diversification (CTD), a weighted average of

the relatedness of the technological fields included in the portfolio of a firm. According to our

interpretation, that is illustrated using two toy models, the CTD can be seen as a proxy of the

average size of the coherent blocks of technological knowledge controlled by a company. We

have then compared our measure of the coherence of technological portfolios with firm per-

formance. We have empirically found that the CTD explains labor productivity, in a statisti-

cally significant way, and even after controlling for simple technological diversification (TD)

and firm size. In particular we have found that when both CTD and TD are used as regressors

TD loses its explanatory power. This finding has remarkable practical consequences; for

instance, it points out that CTD, and not TD, should be taken into account in concrete applica-

tions such as the evaluation of firms’ techological portfolios or in the analyses of merger and

acquisitions between companies.

This work opens up a number of possible further studies. For instance, in our analysis prod-

uct lines represent a hidden layer that can be proxied by pinpointing coherent blocks in corpo-

rate technological portfolios. When one analyzes products directly, these blocks should clearly

emerge, giving rise to well defined clusters possibly in agreement with the standard classifica-

tion—while we expect this to be not true for technological sectors. The study of the different

clustering behavior of product and technologies will be the subject of a future paper.

Supporting information

S1 File. In the Supplementary Information pdf file we discuss a number of issues, namely:

• In Section 1, we describe in detail the database and how the technological portfolios of firms

are defined

• In Section 2, we discuss our measure of Coherent Diversification in comparison with the

simple diversification

• In Section 3, we show that the scale (i.e. if we perform our exercise at firm or country level)

plays a major role

• In Section 4, we discuss the role of firms’ size

(PDF)
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