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In this work we provide a first principles description of the electronic and optical properties of
bilayers C3N, with different stacking motifs AB, AB′ and AA′. Starting from quasi-particle electronic
band-structures, we solve the Bethe Salpeter Equation (BSE) to access the excitonic properties of
these bilayers. For all stacking sequences, we see strong optical absorption at energies lower than
but close to that of the monolayer. Most relevant, we predict a strong quenching of the low-energy
optical absorption, with negligible oscillator strength of low-lying bound excitons. This is a unique
phenomenology that does not arise in the monolayer case, nor in other common homo-bilayers.
We explain these findings in terms of the small interband dipole matrix elements associated to the
valence-conduction transitions involved in these excitons, and discuss them in view of the different
stacking motifs.

I. INTRODUCTION

Many recent experimental and theoretical works have
focused on a detailed understanding of the electronic and
optical properties of two-dimensional (2D) materials, due
to their potential use in the design of innovative opto-
electronic devices which could combine atomic-size di-
mensions with improved performance.1–11 Great atten-
tion has been reserved to the study of Van der Waals
structures, where atomically-thin 2D materials are verti-
cally stacked and held together by weak and long range
dispersive interactions, strongly affecting both the opti-
cal12,13 and the electronic properties of the isolated single
layers.14 A promising material for such novel applications
is graphene-like 2D polyaniline (also known as monolayer
C3N), which has been recently synthesized through differ-
ent approaches:15,16 its electronic and optical properties
have been extensively studied from a theoretical point of
view,17–20 revealing a quasi-particle band structure with
indirect band-gap and intense optical absorption for pho-
tons in a narrow spectral range around 2 eV.

Vertical stacking of two layers of C3N is a possible
approach to tune its electronic and optical properties.
Few theoretical works have analysed the stability of bi-
layers C3N (BL-C3N) as a function of the possible stack-
ing patterns.17,21 Following the notation of Ref. [21], all
these calculations have obtained negative formation en-
ergies for AB and AB′ (displaced-like), as well as AA′

(sandwich-like stacking) arrangements. Furthermore,
BL-C3N with AA′ and AB′ stackings have also been ex-
perimentally synthesized, as described in Ref. [21], where
a detailed investigation of the electronic properties us-
ing scanning tunnelling spectroscopy (STS) has been
provided. The results indicate a strong change of the
electronic-transport band gap passing from monolayer to
bilayer, together with relevant modifications of the elec-
tronic properties as a function of the stacking sequence.

Motivated by these experimental advances, in this
work we discuss the optical properties of BL-C3N via
first principles methods, properly including excitonic ef-
fects which are known to play a fundamental role in the
description of optical absorption in 2D-materials.12,22,23

As a first result, we find for all systems a strong opti-
cal absorption in an energy region around 1.7 eV which
is sightly lower than the absorption peak of the isolated
monolayer,18 despite the consistent reduction of the elec-
tronic gap. This feature, combined with the energy band
structure associated to these absorption peaks, is promis-
ing for photovoltaics. Moreover, our results indicate that,
for all the considered stackings, the optical response does
not present other bright excitonic states at lower ener-
gies. Such behaviour is not observed in other common
semiconducting bilayer homo-structures, e.g. BL-hBN,13

BL-MoS2
1,11 or BL-phosphorene.9 Finally, the origin of

this low energy absorption quenching is explained and
rationalized, focusing on the properties of the single par-
ticle states involved in the formation of the lowest-energy
excitons.

The article is organized as follows. In Section II, we
summarize the computational methods used within this
work, while in Section III we present quasi-particle band
structures for the AB and AB′ displaced-like stacking
patterns. In Section IV we discuss the optical properties
of these bilayers and in Section V we provide a ratio-
nale for the negligible oscillator strength observed for the
low-lying excitons. Finally, in Section VI, we discuss the
optical properties of bilayer C3N with AA′ sandwich-like
stacking, predicting a strong optical absorption quench-
ing starting from the symmetry properties of this poly-
type and confirming such interpretation with an approx-
imate solution of the Bethe Salpeter equation.
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II. COMPUTATIONAL METHODS

Ground state structural and electronic properties
have been investigated using density functional the-
ory (DFT), as implemented in the plane-wave-basis-set
package Quantum ESPRESSO.24,25 In these calcula-
tions, we have used norm-conserving ONCV pseudopo-
tentials,26 within the GGA-PBE approximation27 for the
exchange-correlation potential. Van der Waals interac-
tions between layers have been taken into account by
adding the dispersion correction proposed by Grimme28

to the exchange-correlation energy (PBE-D2). Equilib-
rium structural properties have been obtained by relax-
ing both the in-plane unit cell and the atomic positions
up to when the components of the forces acting on each
atom were smaller than 5·10−4 Ry/Bohr. In all ground
state calculations we used a 12×12×1 Monkhorst-Pack29

k-grid to sample the Brillouin Zone (BZ) and a kinetic
energy cutoff of 90 Ry for the plane wave basis set used
to represent single particle wavefunctions.

In the case of AB and AB′ stacking motifs, Kohn-
Sham wavefunctions and eigenvalues, computed from the
equilibrium ground state charge density, have been used
to evaluate quasi-particle (QP) corrections to DFT en-
ergies within the GW approximation30,31 for the elec-
tron self energy. QP corrections εKS

nk have been com-
puted using the single shot G0W0 approach, evaluat-
ing the expectation value of the operator Σ − vKS on
the Kohn-Sham states |ψnk〉, being Σ the electron self-
energy operator and vKS the exchange-correlation po-
tential. When solding the Dyson equation we linearized

the frequency dependence of the self-energy, Σ(EQP
nk ) ≈

Σ(εKS
nk ) + ∂Σ

∂ε

∣∣
εKS
nk

(EQP
nk − εKS

nk ), as proposed in Ref. [32].

The electron-electron screened interaction W has
been computed using the Random Phase Approxima-
tion (RPA), as implemented in the Yambo code.33,34 Con-
verged QP gaps within a 10 meV threshold required the
inclusion of 700 bands and a G-vector cutoff of 16 Ry
in the construction of the screening matrix at the RPA
level. The frequency dependence ofW has been described
using the Godby-Needs plasmon-pole model,35 and 1000
bands have been included in the sum-over-states appear-
ing in the correlation part of the self energy. To reduce
spurious interactions among different cells in the stack-
ing direction, we have used a supercell length along z of
23.5 Å, together with a 2D cutoff36,37 for the Coulomb
potential. Finally, to speed-up the convergence of QP
gaps w.r.t. the k-point mesh, we have adopted the ap-
proach recently proposed by Guandalini et al.38 In this
work we have verified that, with this method, a 18×18×1
Monkhorst-Pack k-grid already provides converged gaps
within the chosen threshold of 10 meV.

Starting from QP corrected electronic energies, we
have obtained excitonic properties by solving the Bethe-
Salpeter equation (BSE)39,40 in the resonant (Tamm-
Dancoff) approximation, i.e. via diagonalization of the

excitonic Hamiltonian

Hexc

(
vck, v′c′k′

)
=
(
EQP
ck − E

QP
vk

)
δcc′δvv′

+Kd
(
vck, v′c′k′

)
+Kx

(
vck, v′c′k′

)
(1)

where Kd (Kx) is the direct (exchange) part of the BSE
kernel, (v, v′) and (c, c′) are the valence and conduc-

tion bands included in the BSE and EQP(v,c)k are the QP

corrected electron energies. Converged exciton energies
have been obtained including the two highest-occupied
valence and the four lowest unoccupied conduction bands
in the construction of Hexc

(
vck, v′c′k′

)
, and using a

48×48×1 Monkhorst-Pack k-grid to sample the BZ. We
point out that, in the solution of the BSE, QP corrections
have been approximated via a scissor-stretching operator
(see Supplemental Material41 for a detailed description
about the fitting procedure), while the electron-electron
screened interaction has been computed at the RPA level,
in the static approximation, using the same converged pa-
rameters adopted for the calculation of QP corrections.

Finally, by diagonalization of Hexc

(
vck, v′c′k′

)
∑
v′c′k′

Hexc

(
vck, v′c′k′

)
Aλ
(
v′c′k′

)
= EλAλ

(
vck
)

(2)

we obtained the energies Eλ and the envelope functions
Aλ
(
vck
)

for each exciton λ. Optical absorption is finally
computed as the imaginary part of the macroscopic di-
electric function,

εM (E) = 1− 8π

V

∑
λ

Dλ

E − Eλ + iη
(3)

In the above expression, V is the unit cell volume and
Dλ the oscillator strength of exciton λ defined as

Dλ =

∣∣∣∣ε̂ ·∑
vck

dvckAλ(vck)

∣∣∣∣2, (4)

where ε̂ is the in-plane polarization direction of the in-
coming light, and dvck = 〈ϕvk|r|ϕck〉 the single-particle
interband dipole matrix element.

III. STRUCTURAL AND ELECTRONIC
PROPERTIES OF BILAYER C3N WITH AB AND

AB′ STACKINGS

In Figure 1 we present the crystal structures of BL-
C3N with AB (upper panel) and AB′ (lower panel) stack-
ings: yellow (light blue) spheres denote Carbon (Nitro-
gen) atoms and small (large) atoms are located on the
upper (lower) layer, denoted from now on as L1 (L2).
For both stacking motifs, we have obtained an in-plane
lattice parameter of 4.849 Å, slightly smaller than that
of the isolated monolayer (4.857 Å); the interlayer dis-



3

FIG. 1: Crystal structures for bilayer C3N with AB (upper
panel) and AB′ (lower panel) stackings. Yellow (light blue)
spheres indicate Carbon (Nitrogen) atoms, while small (large)
radius spheres denote atoms located on the upper (lower)
layer. The red dot indicates the in-plane position of the inver-
sion symmetry center, while dashed red lines represent mirror
symmetry planes parallel to the stacking direction. Finally,
the green dot in the AB bilayer denotes the in-plane position
of the two three-fold rotation axes parallel to the stacking
direction, while the dashed green line in the AB′ bilayer cor-
responds to an in-plane C2 rotation axis.

tance (evaluated as the separation along z between Car-
bon atoms with the same in-plane coordinates) has been
found equal to 3.22 Å for the AB and 3.21 Å for the
AB′ stacking. These values are in agreement with those
obtained with PBE-D2 calculations in Ref. [21], while
slightly smaller than the interlayer distances computed
with VdW-functionals in Ref. [17].

We now briefly discuss the crystal symmetries of the
two stackings. The point group of AB-C3N is D3d, and
also includes non-symmorphic operations. This stacking
possesses a spatial inversion center (red dot in the upper
panel of Fig. 1) together with a three-fold C3 rotation axis
along z-direction, whose in-plane position is denoted by
a green dot in Fig. 1. Furthermore, this stacking motif
is invariant under mirror reflections σ w.r.t. planes par-
allel to the stacking direction and represented by dashed
red lines in Fig. 1: These planes are respectively denoted

as σ̂ΓM, σ̂ΓM′ , and σ̂ΓM′′ as they are aligned to these
high symmetry directions in the BZ. AB′-C3N has lower
symmetry: Its point group is C2h, that includes the in-
version symmetry, a two-fold in-plane rotation axis lying
between the two C3N planes (represented by the green
dashed line in the lower panel of Fig. 1 and denoted as
ĈΓK

2 ), and a mirror symmetry plane σ̂ΓM′′ parallel to the
ΓM′′ direction in the BZ.

In Figure 2 we present the electronic band structure
of AB-C3N (panel a) and AB′-C3N (panel b), computed
first within DFT-PBE (dashed green lines) and then in-
cluding QP corrections at the G0W0 level (solid black
lines). We note that the two stackings are character-
ized by an indirect band gap, both at the DFT and GW
level. In the case of AB stacking, the electronic band dis-
persion along ΓM and ΓM′′ coincide, as a consequence
of the three-fold rotational symmetry. Therefore, the
highest-energy valence band has six equivalent maxima,
while the bottom of the conduction band is located at
the Γ point. We also note that the presence of doubly
degenerate bands at Γ is consistent with irreducible rep-
resentations of dimension 2 in the D3d point group. The
calculated indirect gap at PBE level is 0.108 eV, which
is increased to 0.72 eV once QP corrections are taken
into account. Finally, the direct band gap is found along
the ΓM direction, at k located approximately at half the
Γ → M path: the G0W0 gap is 1.85 eV, 0.73 eV larger
than the value obtained at the PBE level (1.12 eV).

In the AB′ stacking, the maximum of the valence band
is found at the M′′ point, while the lowest unoccupied
conduction state is at Γ, as in the case of the AB stack-
ing motif. Our calculations give an indirect gap of 0.136
eV at the DFT-PBE level, which is increased to 0.73 eV
with the inclusion of QP corrections. The obtained in-
direct gap for AB′-C3N is slightly smaller than the one
measured experimentally with STS on SiO2-Si substrates
in Ref. [21] (0.85±0.03 eV), but in better agreement
than other GW calculations17 where the Hybertsen-Louie
plasmon-pole model was used.32 Because of the lack of
three-fold rotational symmetry around the z axis, the
directions ΓM and ΓM′′ are no longer equivalent. As a
result, the minimum direct gap is found approximately at
half the Γ→ M′′ path, with a value around 1.79 eV (1.09
eV within DFT) while the indirect gap between the con-
duction at Γ and the top-valence at M is slightly larger
than the one between Γ and M′′. We obtain a Γc −Mv

gap of 0.87 eV (0.249 eV) at the G0W0 (DFT-PBE) level.
Electronic gaps computed within the G0W0 approxima-
tion for both stacking motifs at high symmetry points
are summarized in Table I.

Comparing the band dispersions for AB and AB′ stack-
ings, we notice that, for k along the ΓM direction, the
lowest pair of conduction bands are almost degenerate
(splitting of about 1 meV) in the AB′ stacking, while
well separated in the AB case (splitting larger than 0.2
eV). In the Supplemental Material,41 we provide a quali-
tative explanation of this peculiar lack of splitting among
the two lowest conduction bands in AB′-C3N, analysing
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FIG. 2: Electronic band structure computed at the DFT-PBE (green-dashed lines) and with G0W0 approximation (continuous
black lines), for AB-C3N (a) and AB′-C3N (b). The insets represent the hexagonal Brillouin zone, together with the high
symmetry points defining the paths where bands are computed. The parity of the topmost valence and the lowest conduction
bands along ΓM′′ direction w.r.t. mirror symmetry σ̂ΓM′′ are indicated: the notation npi indicates that band ni has parity p,
being p = +(−) for even (odd) states and n = {v, c}. In both images, the top valence band energy is shifted to 0 eV.

the quasi-symmetries of the sublattice where conduction
states are localized once k is taken along ΓM direction.
A similar behaviour is also observed for the two topmost
valence states, where the splitting is, however, not negli-
gible also in the AB′ stacking (splitting of about 50 meV).
Overall, the obtained gaps for the AB and AB′ stacking
are similar (in agreement with the hybrid-DFT results of
Ref. [21]), while the electronic dispersions differ because
of the different symmetry properties of the two stack-
ings. We point out that there are clear differences with
the monolayer case, as we observe a strong reduction in
both the indirect and direct electronic gaps (see Table. I
for a comparison).

We complete our analysis by recalling that both stack-
ing configurations are invariant under mirror reflection
σ̂ΓM′′ , therefore electronic states for k along this direc-
tion can be classified in terms of their parity w.r.t. such
symmetry. We have numerically found that, in both
stackings, the two highest occupied valence bands are
even w.r.t. σ̂ΓM′′ , (here denoted as v+

i in Fig. 2, with
i = 1, 2). On the other hand, if k has modulus in

the range [ |ΓM|
3 , |ΓM|] the two lowest unoccupied con-

duction bands are σ̂ΓM′′ -odd (c−i ). Instead, for k close
to Γ, the second and the third conduction bands are
even w.r.t σ̂ΓM′′ and exhibit a stronger dispersion with
k, if compared with odd conduction states. We point
out that a similar analysis can be carried out also for
electronic states along this direction in monolayer C3N.
In that case, the highest valence (lowest conduction) is
even (odd) w.r.t. the mirror symmetry along ΓM′′ direc-
tion, while the second conduction is even. In the case of
AB stacking, the same parity analysis can be presented
for the bands along the direction ΓM, as the crystal is
invariant w.r.t. σ̂ΓM mirror symmetry. Such symmetry
classification will be exploited to understand bilayer op-

Gaps ML Ref. [18] AB AB′

Γc − Γv 2.96 2.36 2.39

Mc −Mv 2.67 2.02 2.40

M′′c −M′′v 2.02 2.03

Γc −Mv 1.42 0.72 0.87

Γc −M′′v 0.72 0.73

Min. direct gap 2.62 1.85 1.79

TABLE I: Direct and indirect gaps (in eV) at high symmetry
points for AB and AB′ BL-C3N, obtained at the G0W0 level,
compared with monolayer (ML) data (G0W0 on top of DFT-
PBE) from Ref. [18]. The last row indicates the minimum
direct electronic gap evaluated along ΓM′′ direction.

tical properties in the following.

IV. OPTICAL ABSORPTION IN BILAYER C3N
WITH AB AND AB′ STACKINGS

We now turn to the discussion of the optical prop-
erties of bilayer C3N. In Figure 3 we show the absorp-
tion spectra computed for AB (panel a) and AB′ bilayer
C3N (panel b), at the independent particle level (dot-
ted black lines), and with the inclusion of electron-hole
interaction by solving the BSE as detailed in Section II.
Green dashed (solid red) lines have been obtained assum-

ing light polarized along the ΓK (ΓM
′′
) direction. For

clarity, polarization versors ε̂ are shown together with
the crystal structures in the insets.

The AB spectrum is dominated by an intense peak (de-
noted as C) at energy E ≈ 1.70 eV, whose spectral posi-
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FIG. 3: Optical absorption spectra for AB-C3N (a) and AB′-C3N (b). Solid red (dashed green) lines correspond to spectra
computed with light polarization along the ΓM′′ (ΓK) direction, while dotted lines are the independent particle spectra evaluated
for polarization along ΓM′′. The polarization directions are indicated on top of the crystal structures for clarity. The insets
highlight low energy quasi-dark peaks labelled as P1 and P2, while the vertical black dashed lines indicate the position of the
direct QP band gap obtained within G0W0. The band structure at the G0W0 level of AB-C3N is shown in (c), with red arrows
indicating the transitions mainly responsible for the C absorption peak in (a). Similarly, the single particle bands of AB′-C3N
are displayed in (d): green (red) arrows emphasize the transitions mostly involved in C1 (C2) peaks labelled in b.

tion and intensity are not dependent on the polarization
direction. Such peak is due to a set of almost degenerate
eigenstates of Hexc, characterized by relevant contribu-
tions from single particle transitions between the valence
band v+

1 and the conduction state c−1 along ΓM equiva-
lent directions. Among these, transitions with the high-
est weights are denoted by arrows on the band structure
shown in Fig. 3(c). We point out that transitions between
v+

2 and c−2 for k along the same direction also contribute
to this absorption peak, though with a smaller weight
than v+

1 → c−1 , and are omitted for clarity in Fig. 3(c).
The situation is slightly different in the case of AB′ C3N.
Indeed, also for this stacking motif the absorption spec-
trum is dominated by a single intense peak, but its po-
sition in energy and its strength depend on the in-plane
light polarization direction. In Fig. 3(b), we have labelled
as C1 the main peak at 1.71 eV obtained for light polar-
ization along ΓK and as C2 the absorption maximum at
1.73 eV found for ΓM

′′
-polarized light. The C1 peak is

mainly due to v+
1 → c−1 for k along ΓM

′′
direction, as

shown schematically by green arrows in Fig. 3(d), again
with a smaller contribution coming from v+

2 to c−2 tran-
sitions for the same k points (not shown in Fig. 3d). On
the other hand, the C2 absorption peak comes from tran-
sitions between the two highest occupied valence states
and the two lowest (quasi-degenerate) conduction bands
along ΓM and ΓM′ directions (see red arrows in Fig. 3d).

First, we note that the energy window found for strong
optical absorption in both stackings is still in a good
range for solar energy conversion, not much lower than
that found for monolayer C3N of 1.82 eV in Ref. [18].
Furthermore, the associated transitions are still in region
favourable to electron-hole splitting, as in the monolayer.
This can be particularly interesting, since one can expect
the bilayer to have a more stable structure, compared to
a monolayer, when deposited on a suitable electrode.

Second, and central to this work, the striking feature
of bilayer C3N optical spectra is the apparent absence
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FIG. 4: Contributions of single particle transitions between
the highest occupied valence and the lowest unoccupied con-
duction in the BZ to excitons P1 and P2 in AB-C3N (a and
c) and in AB′-C3N (b and d), as defined by Eq. (5).

of intense absorption peaks due to strongly bound ex-
citonic states formed by single particle transitions close
to the electronic direct gap. As shown in the insets of
Fig. 3(a,b), within the energy range between 1.25 and 1.5
eV, two absorption structures (labelled in both cases as
P1 and P2) are present, but they exhibit optical strengths
which are almost two orders of magnitude smaller than
the most intense peaks.

In AB-C3N, both P1 and P2 peaks are due to a pair of
degenerate excitons, respectively at energies EP1

= 1.35
eV and EP2

= 1.47 eV, with oscillator strengths not de-
pendent on the polarization direction. For completeness,
we point out that diagonalization of the excitonic Hamil-
tonian also provides other excitonic resonances (the low-
est with energy of 1.34 eV) which are characterized by
null oscillator strength within numerical accuracy. Such
excitons, dark by strict symmetry reasons, will not be
considered further in the following. P1 and P2 excitons
are almost totally composed by electron-hole transitions
between the highest occupied valence v+

2 and the low-
est unoccupied conduction c−1 states, with wave-vectors
k along ΓM and equivalent directions in the BZ. This is
better clarified in Fig. 4(a,c), where we show plots of the
quantity

Avc(k) =
∑
λ

∣∣Aλ(vck)
∣∣2 (5)

for the P1 and P2 excitons, respectively. In Eq. (5), the
index v (c) is fixed to the last valence (first conduction)
band and the sum over λ is performed over the pair of
degenerate states responsible for the P1 and P2 peaks.
We notice that single particle transitions forming the ex-

citons P1 are mainly localized in the central region of
ΓM and equivalent directions, with Avc(k) having non-
negligible values for |k| mainly in the interval [ 1

3 ,
2
3 ]|ΓM|.

On the other hand, excitons P2 (Fig. 4c) are still local-
ized along ΓM directions, but the corresponding function
Avc(k) has intense contributions from transitions slightly
closer to the M point and exhibits a node for k points
along this direction.

In the case of the AB′ stacking, P1 and P2 peaks are
related each to a single-nondegenerate exciton at energies
EP1

= 1.30 eV and EP2
= 1.42 eV, respectively. Differ-

ently from the AB case, the oscillator strength of these
excitations is polarization dependent as shown in the in-
set of Fig. 3(b), where we notice that both resonances are
dark for light polarization along the ΓM′′ direction while
they exhibit a small but non-zero optical activity for in-
coming light polarized along ΓK. As in the AB stacking,
such excitons are mainly formed by transitions between
the highest occupied valence and the lowest conduction
band. In Fig. 4(b,d) we show the functions Avc(k) com-
puted for exciton P1 and P2, respectively. We see that, in
both cases, the transitions involved in these excitations
are strongly localized along the single ΓM′′ direction of
the BZ (see e.g. Fig. 2), with the P1 exciton having
the main contributions coming from the middle of ΓM′′,
where the minimum direct electronic band gap is located,
and the P2 resonance characterized by a node along this
BZ-line.

The observed polarization dependence in the optical
absorption of AB′-C3N can be rationalized via symmetry
arguments, similarly to the analysis proposed in Ref. [13]
for bilayer hBN. The point group of AB′-C3N is C2h,
so the in-plane exciton dipole operator projected along
ΓM′′ (DΓM′′) transforms as the Bu irreducible represen-
tation of C2h, while DΓK as Au. In fact, DΓM′′ is invari-
ant under the mirror symmetry σ̂ΓM′′ (as oriented along

ΓM′′), but it changes sign under inversion and ĈΓK
2 ro-

tation (see Fig. 1). Differently, DΓK is even w.r.t. ĈΓK
2

and odd under σ̂ΓM′′ and inversion, therefore behaving as
the Au(C2h) irreducible representation. Therefore, the
eigenstates |λ〉 of Hexc such that 〈0|D|λ〉 6= 0 (|0〉 being
the excitonic vacuum transforming as the fully symmet-
ric representation Ag) transform as Au or Bu if D is
projected along ΓK or ΓM′′, respectively. Considering
for example Au states, these will have null optical activ-
ity by symmetry, once incoming light is polarized along
ΓM′′. Therefore, we can explain the presence of absorp-
tion peaks in AB′-C3N which turn on and off according
to the chosen polarization direction. Furthermore, fol-
lowing the presented analysis, we can assign P1 and P2

excitons to the Au representation, exactly as the eigen-
states of Hexc responsible for the C1 peak, while C2 is
expected to be due to excitations transforming as Bu.

The situation is different for AB stacked C3N. For sim-
plicity, we discuss the brightness of excitonic eigenstates
using the subgroup C3v of D3d, formed by the mirror
planes σ along ΓM directions together with the two 3-
fold rotations depicted in the upper panel of Fig. 1. The
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FIG. 5: Wavefunctions for exciton P1 computed in real space
for AB (left) and AB′ (right) stackings. In each panel, the
upper (lower) wavefunction has been computed assuming the
hole localized on a Nitrogen atom on layer L1 (L2). The hole
position along the stacking direction is indicated by the red
circle.

in-plane exciton dipole operator D transforms as the two-
dimensional irreducible representation E of C3v. As a
consequence, all bright excitons behave as E of C3v, so
that they are expected to be double-degenerate and char-
acterized by an isotropic oscillator strength, in agreement
with the numerical results obtained from ab initio calcu-
lations.

We now turn our attention to the quasi-dark nature
of the low-lying bound excitons P1 and P2 in both the
considered stackings. We point out that such small opti-
cal activity cannot be related to an interlayer nature of
these excitons, i.e. it is not due to a negligible spatial
overlap between electron and hole wavefunctions. This
point is better clarified by looking, for example, at the
real space wavefunctions of exciton P1, as shown in Fig. 5,
with AB (AB′) results reported in the left (right) panel.
For each stacking, the upper (lower) wavefunction has
been obtained assuming the hole (represented by the red
dot) fixed on layer L1 (L2) and located in the plane close
to a nitrogen atom. The wavefunctions clearly indicate
the intralayer nature of such excitons: In fact, looking
at the excitonic wavefunction isosurfaces, we notice that
the electron has a high probability to be found on the
same layer on which the hole is localized.

Therefore, the negligible dipole strength of these low-
lying excitons is a consequence of the small interband
dipole associated to the electron-hole single particle tran-
sitions involved in these excitations. This can be un-
derstood from the independent particle (IP) absorption
spectrum shown in Fig. 3(a,b) as dotted lines, where,
in both cases, the optical signal is negligible for ener-
gies close to the direct QP gap, with the IP absorption
onset located at higher photon energies. In the follow-
ing section we discuss in greater detail the single particle
states involved in these low-lying excitons and we pro-
pose a possible rationale for the observed IP absorption
quenching.

V. RATIONALE FOR QUENCHING OF LOW
ENERGY ABSORPTION IN AB AND AB′

BL-C3N

In this Section we develop a model for the electronic
bands in proximity of the direct gap to rationalize the
small oscillator strength of the single particle transitions
close to the direct electronic gap. As the following anal-
ysis is valid for both stackings, here we focus on the case
of AB′-C3N (results for AB motif are presented in the
Supplemental Material41). We will restrict our analysis
to k along ΓM′′, in the region where valence to conduc-
tion transitions giving the highest contribution to the
low-energy quasi-dark excitons are located.

As already discussed in the literature,17,21 the lowest
lying conduction bands and the highest valence states
have a π character. therefore, we can analyse them using
a tight-binding (TB) Hamiltonian, obtained considering
one 2pz orbital for each atom. In the following we will
denote as τα the position of both the atom α and the 2pz
orbital localized on it. In practice, we construct a TB
Hamiltonian as

H2L
α,β(k) =

∑
R

eik·R t(α0, βR), (6)

where R is a lattice vector and t(α0, βR) = 〈α0|H|βR〉
are the hopping matrix elements between two 2pz or-
bitals, localized at sites τα and τβ + R, respectively.
These matrix elements have been computed fully ab
initio by Wannierization42,43 of DFT bands using the
Wannier9044–46 code. Details about the procedure are
provided in the Supplemental Material.41

As there are 16 atoms in the unit cell, at a general k
the TB Hamiltonian can be written as a 16×16 Hermitian
matrix, in a block-like form as

H2L(k) =

[
HL1(k) HIL(k)
HIL(k)† HL2(k)

]
, (7)

where HL1 , HL2 , and HIL are 8×8 matrices correspond-
ing to the different layers and their coupling. Indeed,
to obtain this separation, we have grouped together the
orbitals localized on L1 and on L2, associating to each
orbital α1 localized at τα1

on layer L1 an orbital α2 at

τα2
on layer L2, such that τα2

= Îτα2
, Î being the inver-

sion symmetry operator. Then HL1 (HL2) is the block
of H2L which contains the intralayer hopping within
layer L1 (L2), while HIL depends on the hopping inte-
grals between orbitals on different layers. We can now
write H2L(k) = hIN(k) + hIL(k), where hIN(k) is block-
diagonal while hIL(k) is purely off-diagonal. We note
that the subscripts ”IN” and ”IL” stand for intralayer
and interlayer, respectively. Using spatial (̂I) and time

(T̂) inversion symmetries, in Appendix A we show that,
for each k, hIN(k) has a spectrum of eigenvalues ε0

nk
which are degenerate in pairs. Furthermore, we also show
that the eigenspace associated to each eigenvalue ε0

nk is
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spanned by two Bloch states |φL1

nk〉 and |φL2

nk〉 such that

|φL2

nk〉 = −Î · T̂|φL1

nk〉 and with |φLi
nk〉 localized on layer Li.

Before proceeding, we clarify the physical meaning of
the splitting of H2L into hIN and hIL. In particular, hIN

can be thought as an intralayer Hamiltonian, describing
the two layers as not interacting with each other. Note
however that the presence of the other layer is implic-
itly considered as the intralayer matrix elements in HL1

(HL2) are affected by the presence of opposite layer L2

(L1). On the other hand, hIL describes the interlayer
interaction and acts as a perturbation of hIN since in-
terlayer hopping integrals are typically smaller than the
intralayer ones. With this interpretation, the states |φL1

nk〉
and |φL2

nk〉 can be thought as Bloch states with the same
energy ε0

nk localized on one of the two monolayers, if the
coupling hIL is set to zero. We now define ε0

vk (ε0
ck) as

the energy of the highest occupied valence (lowest un-
occupied conduction) band on these two non-interacting
layers. The effect of the interlayer coupling will be to
mix these layer-localized wavefunctions, in order to give
the electronic states of the bilayer.

While the discussion presented so far is general and
valid for each k-point of the BZ, we now specialize to k-
vectors along the ΓM′′ direction. For these wavevectors,
H2L commutes with σ̂ΓM′′ and the same is valid for hIN

and hIL separately. Therefore,

σ̂ΓM′′ |φLi
vk〉 = |φLi

vk〉,
σ̂ΓM′′ |φLi

ck〉 = −|φLi
ck〉,

(8)

with i = 1, 2 (we have also numerically verified these
relations by computing the eigenstates of hIN). We
now include the effect of hIL using first order de-
generate perturbation theory, separately diagonalizing
the matrix representation of hIL on the two subspaces
{|φL1

vk〉, |φ
L2

vk〉} and {|φL1

ck〉, |φ
L2

ck〉}. With this procedure,
we obtain the two highest-energy (σ̂ΓM′′ -even) valence
bands {|ϕv1k〉, |ϕv2k〉} and the two lowest-energy (σ̂ΓM′′-
odd) conduction states {|ϕc1k〉, |ϕc2k〉} in the bilayer.
Such states have been labelled as (v+

1 ,v+
2 ) and (c−1 ,c−2 ),

respectively, in Fig. 2(b). They can be compactly written
as

|ϕnjk〉 =
1√
2

[
|φ̃L1

nk〉+ sj |φ̃L2

nk〉
]

(9)

Enjk = ε0
n,k + sj |∆nk|. (10)

In Eqs. (9)-(10), n = v, c, j = 1, 2, sj = −1 (+1) for

j = 1 (j = 2), ∆nk = 〈φL1

nk|hIL|φL2

nk〉, and

|φ̃L1

nk〉 = e+i
γnk
2 |φL1

nk〉,

|φ̃L2

nk〉 = e−i
γnk
2 |φL2

nk〉,
(11)

where γnk = Arg[∆nk] guarantees that the relative phase
between the projections cα(njk) = 〈αk|ϕnjk〉 of a Bloch
state |ϕnjk〉 on 2pz orbitals localized on different layers is

gauge invariant, i.e. it does not change under the trans-
formation cα1

(nk) → eiηcα1
(nk), η being an arbitrary

phase. See App. A for further details.
We point out that the zero-order expression given by

Eq. (9) is a good approximation for the two lowest σ̂ΓM′′ -
odd conduction bands and the two highest-energy σ̂ΓM′′ -
even valence bands, for the considered k vectors along
ΓM′′ direction. In principle one should also consider
other terms in the expression of the eigenstates,47 coming
from higher orders of the perturbative series, describing
the coupling between |φLi

nk〉 and the eigenstates of hIN

with different eigenvalues. For k points around the mid-
dle of the ΓM′′ direction, these terms can be neglected in
first approximation, as the other eigenstates of hIN with
the same σ̂ΓM′′-parity of |φLi

nk〉 have energies far from ε0
nk

(w.r.t. to the interlayer coupling strength), so that the
hybridization is negligible. Our numerical results (not
shown) indicate that these neglected terms become more
relevant for k along the same direction, but closer to
the Γ point. Therefore, looking at Eq. (9), we can under-
stand that the lowest odd-conduction band and the high-
est even-valence can be seen, respectively, as antibonding
and bonding combinations of the conduction and the va-
lence states localized on the two monolayers. We recall
that the states defined in Eq. (11) are still eigenstates of

the intralayer Hamiltonian ĥIN, with |φ̃L2

nk〉 = −Î ·T̂|φ̃L1

nk〉.
Starting from Eq. (9), we can evaluate the interband

matrix element between the last occupied valence |ϕv2k〉
and the lowest unoccupied conduction |ϕc1k〉 as

dεv2c1k =
1

2

[
〈φ̃L1

vk|ε̂ · r|φ̃
L1

ck〉 − 〈φ̃
L2

vk|ε̂ · r|φ̃
L2

ck〉

+〈φ̃L2

vk|ε̂ · r|φ̃
L1

ck〉 − 〈φ̃
L1

vk|ε̂ · r|φ̃
L2

ck〉
]
, (12)

where ε̂ is the light polarization. To make the treatment
simpler, in the following we neglect the last two terms
in Eq. (12), as they involve states localized on different
layers, so that their value is generally small as a result
of the reduced overlap among the wavefunctions. In this
way, we obtain that the interband dipole is the difference
between intralayer-interband dipoles:

dεLi(k) = 〈φ̃Li
v,k|ε̂ · r|φ̃

Li
c,k〉. (13)

The approach adopted to compute these matrix elements
starting from the proposed tight binding model is dis-
cussed in the Supplemental Material.41

If ε̂ is chosen along the ΓM′′ direction, we immediately
find that dεL1

(k) = dεL2
(k) = 0, because of the parity

of layer-resolved states, given by Eq. (8). However, if ε̂
is taken along the direction ΓK, orthogonal to ΓM′′, we
cannot explain the quenching by straightforward sym-
metry arguments. To clarify this point, in Fig. 6(a)
we show the modulus (upper panel) of the intralayer-
interband dipoles dΓK

L1
(k) and dΓK

L2
(k), together with their

relative phase (lower panel) ∆ϕd(k) = Arg[dΓK
L1

(k)] −
Arg[dΓK

L2
(k)]. Our results indicate that the obtained in-
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FIG. 6: Interband dipole matrix elements for k along ΓM′′ direction, in the interval [ |ΓM′′|
3

, |ΓM′′|]. In the upper panel of
(a) we show the moduli of dεLi for light polarization along ΓK for the two layers i = 1, 2, while in the lower panel the phase
difference among dεL1

and dεL2
is presented. In (b) the red continuous (blue dashed) line corresponds to the interband dipole

between |ϕv2k〉 (|ϕv1k〉) and |ϕc1k〉 computed using the TB model. Dots and triangles represent the same quantities computed
fully ab initio using Yambo code. Light polarization versor is assumed aligned along ΓK direction.

tralayer dipole matrix elements are equal in modulus and
they exhibit a relative phase close to zero in the range of

k points here considered, i.e. |k| in [ |ΓM′′|
3 , |ΓM′′|]. As the

total interband dipole is the difference among intralayer
contributions – see Eq. (12) –, it will be almost zero, as
a consequence of the destructive interference of the two
layer-resolved components. In other words, the transi-
tion probability from |ϕv2k〉 to |ϕc1k〉 due to ΓK-polarized
light can be interpreted as the quantum superposition of
the interband scattering processes occurring on the two
layers separately, whose probability amplitudes are out-
of-phase, giving an overall negligible interband oscillator
strength.

In Fig. 6(b), the continuous red line indicates the inter-
band dipole between |ϕv2k〉 and |ϕc1k〉, computed using
the perturbative solution of the TB model (see Supple-
mental Material41 for details), while the red dots are the
same quantities obtained ab initio using Yambo, to check
the validity of our approximate treatment. We notice
that, as this cancellation is not symmetry-constrained,
the interband dipole is small, but not exactly zero. Such
cancellation is exact at M′′ point, because of symmetry
reasons. In fact, as M′′ is invariant under spatial inver-
sion Î, we can assign inversion-parity labels to the states
at this point. Ab initio results indicate that both |ϕv2k〉
and |ϕc1k〉 are odd under Î exactly as dΓK, therefore the
overall matrix element is zero.

We point out that the interband dipole is non-zero once
the transition between a pair of bonding or antibond-
ing combinations is considered. For example, taking into
account the scattering |ϕv1k〉 → |ϕc1k〉, the intralayer-
interband transition amplitudes sum constructively giv-
ing an intense overall interband dipole. The intense opti-
cal activity of these transitions is responsible for the main
absorption peak denoted as C1 in Fig. 3. Such prediction

is confirmed by data in Fig. 6(b), where this quantity is
shown as computed using the model (dashed blue line)
and fully ab initio using Yambo (blue triangles). We no-
tice that the reasonable agreement between the model
and the ab initio results is an a posteriori confirmation
of the validity of Eq. (9) to describe single particle states
along ΓM′′.

VI. THE CASE OF AA′ STACKING

As discussed in the Introduction, together with AB and
AB′ stackings, another stable bilayer C3N motif is AA′.
Previous DFT calculations have effectively shown that
these three stackings exhibit similar energies and coexis-
tence of these motifs is expected at room temperature.17

The crystal structure of AA′-C3N is shown in Fig. 7(a).
This stacking has an inversion symmetry center (shown
by the red dot in the figure), two mirror symmetry planes,
represented by red dashed lines, and a two-fold rotation
axis parallel to the stacking direction (indicated by the
green dot). Interestingly, this stacking-motif is also in-
variant w.r.t. the non-symmorphic symmetry operation
{σxy|τ}, corresponding to z → −z mirror symmetry fol-
lowed by fractional translation of the vector τ , repre-
sented by the red arrow.

Structural optimization performed within PBE-D2
provides an in-plane lattice parameter a = 4.849 Å, while
the interlayer distance is equal to 3.22 Å, similarly to
the other two stackings. For this relaxed atomic struc-
ture, the electronic structure at the DFT level is shown
in Fig. 7(b). We notice that the highest valence state
(found at the M′ point) has a higher energy than the low-
est conduction state, occurring at the Γ point, in agree-
ment with the DFT results of Ref. [17] (our results give
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FIG. 7: Crystal structure for bilayer C3N with AA′ stacking
is shown in (a). The red dot indicates the in-plane position of
the inversion symmetry center, the dashed red lines represent
mirror symmetry planes parallel to the stacking direction and
the green dot denotes the in-plane position of the two-fold
rotation axis parallel to the stacking direction. Finally, the
red arrow represents the fractional translation ~τ discussed in
the main test. The DFT-PBE electronic structure is shown in
(b) along the direction ΓM′ the highest valence and the lowest
conduction bands are labelled according to their parity w.r.t.
{σxy|τ} symmetry operation.

a negative ”gap” Γc - M′v = -0.31 eV). Such metallicity
is a problem related to the use of the PBE functional
within the Kohn-Sham DFT scheme, since, experimen-
tally, AA′-C3N has been shown to have a finite gap of
about 0.4 eV21 and hybrid DFT calculations21 provide a
semiconducting ground state.

The use of such metallic ground state to compute both
QP corrections and optical properties is problematic, as
it would induce a fictitious over-screening effect once the
electron-electron screened interaction is evaluated using
RPA approximation, providing inaccurate values for elec-
tronic gaps and exciton binding energies. Nevertheless,
in the following, we will assume that the Kohn-Sham
states computed at the PBE level are anyhow a good
approximation for electronic wavefunctions, despite the
problems of the associated Kohn-Sham energies.

Figure 7(b) indicates that the lowest direct band gap
occurs almost in the middle of the ΓM′ direction. As
a consequence, it is reasonable to expect that the low
energy transitions which contribute to the lowest energy
excitons also come from this portion of the BZ. Notably,
k points along this direction are invariant both under the
σ̂ΓM′ mirror symmetry and {σxy|τ}, therefore the elec-

tronic states can be properly labelled according to how
they transform under these operations. Our DFT re-
sults indicate that the highest valence band is even under
{σxy|τ}, while the lowest conduction is odd. In Fig. 7(b)
these two states are indicated as v+

2 and c−1 , respectively.
As the dipole operator dε is invariant under {σxy|τ} (as-
suming, as usual, incoming light with polarization direc-
tion ε̂ orthogonal to the stacking direction z), the ma-
trix element 〈ϕv2k|ε̂ ·r|ϕc1k〉 is zero, independently of the
direction of the polarization versor ε̂. Therefore, we ex-
pect light-induced scattering between these bands to be
forbidden by symmetry and consequently the low-energy
excitons composed by these transitions to be optically
dark.

To confirm this symmetry-based analysis, we solve
BSE computing the static electron-electron interaction
in the direct kernel using PBE single particle wavefunc-
tions and applying a rigid scissor sW0 to all the unoccu-
pied bands, to manually remove DFT-spurious metallic-
ity. Such scissor parameter has been chosen so that the
minimum gap Γc - M′v of the resulting band-structure
was positive but smaller than the one found experimen-
tally, to avoid under-screening effects. Furthermore, in
the independent-particle part of the excitonic Hamilto-
nian, Eq. (1), we mimic quasi-particle corrections via a
scissor operator applied to the DFT bands, manually cho-
sen to obtain a minimum indirect band gap Γc - M′v equal
to the experimental one (0.4 eV). We underline that such
scissor is therefore larger than the one introduced in the
calculation of electronic screening.

The results of these calculations are shown in Fig. 8,
where we have chosen sW0 = 0.35 eV , which fulfills the
above-mentioned requirement to induce a small, positive
band gap. The obtained spectra confirm the symmetry-
based discussion just outlined. In fact, in both cases, low
energy excitons (whose positions are indicated by black
vertical bars in the inset) are optically dark indepen-
dently of the polarization direction, and no absorption
structure is observed in the low-energy region between
0.75 eV and 1.25 eV, where low-lying discrete excitons
are found. The dark bound excitons are due to single
particle transitions between bands v+

2 and c−1 along the
Γ-M′ direction. This point is further clarified in the Sup-
plemental Material,41 where, for completeness, we report
the exciton wavefunctions of the low-lying excitons in re-
ciprocal space. We point out that the observed optical
quenching is stable with respect to small variations of
the sW0 scissor parameter. In the Supplemental Mate-
rial41 this is further confirmed by solving BSE using a
RPA screening obtained with sW0 =0.45 eV.

We emphasize that a more complete analysis of the
optical properties of AA′ stacking would require a bet-
ter starting point for G0W0 and BSE calculations (i.e.
a semiconducting electronic ground state). This is
presently beyond the scope of this work and is left for
future investigations.
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FIG. 8: Absorption spectra for AA′-C3N, computed using
rigid shift parameter sW0 equal to 0.35 eV. Polarization di-
rections are shown on top of the crystal structure, while the
vertical dashed line indicates the energy of the minimum di-
rect gap. Finally, the black dotted line represents the inde-
pendent particle absorption spectra. The inset underlines the
dark nature of low-lying excitons, whose spectral positions are
represented by vertical black bars.

VII. CONCLUSIONS

In this work we discuss electronic and optical proper-
ties of bilayer C3N using state-of-the-art ab initio cal-
culations. As a first point, we find that optical absorp-
tion around 1.7 eV is favoured for all stacking structures
studied. Furthermore, our results suggest a particular
behaviour of BL-C3N, i.e. the absence of low energy
absorption peaks due to strongly bound excitons com-
posed by electron-hole transitions with energies close to
the minimum electronic direct gap.

These findings are explained in terms of independent
particle effects as due to the negligible interband dipole
between the lowest conduction and the topmost valence
bands involved in the formation of the involved excitons.
In the case of AB and AB′ stackings, we develop a model
for the single particle states of interest, to demonstrate
that the overall interband dipole assumes negligible val-
ues because of the destructive interference of the contri-
butions coming from the two layers. Furthermore, we
also justify the quenching of low-energy absorption in
AA′-C3N stacking, exploiting the symmetry properties
of the crystal.

This work paves the way to future theoretical and ex-
perimental investigations on multilayer C3N. On the one
hand, it could be fascinating to investigate how optical
properties of C3N can be tuned varying the number of
stacked monolayers or changing the twist angle between
them. On the other hand, the abundant presence of dark
or quasi-dark low-energy excitons in BL-C3N could have
important effects on exciton lifetimes and dynamics.
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Appendix A: Properties of intralayer Hamiltonian

We consider the block diagonal Hamiltonian hIN de-
fined in Section V. For each 2pz orbital on layer L1

at position τα1
there is an analogous state localized at

τα2 = Îτα1 on layer L2, because of the inversion sym-
metry of the bilayer (with both AB and AB′ stacking).
Thus, the diagonal blocks can be related to each other,
i.e.

HL1

α1,β1
(k) =

∑
R

eik·R t(α10, β1R)

=
∑
R

e−ik·R t(α20, β2R)

= HL2

α2,β2
(k)∗

(A1)

where we have used the fact that the Hamiltonian of the
system H is invariant under spatial inversion symmetry
and the hopping integrals are real because of time rever-
sal and Î|β1R〉 = −|β2ÎR〉. Equation (A1) indicates that
the matrix HL1 is the complex conjugate of HL2 , there-
fore these matrices have the same eigenvalues. As the
spectrum of hIN is the union of the spectra of HL1 and
HL2 , each eigenvalue ε0

nk of hIN will be twofold degener-
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ate, for each k.
Furthermore, as HL1 = HL2∗, we can associate to each

eigenvalue ε0
nk the pair of eigenstates

|φL1

nk〉 =
∑
α1

cα1
(nk)|α1k〉,

|φL2

nk〉 =
∑
α2

cα2(nk)|α2k〉,
(A2)

where |αk〉 = 1√
N

∑
R e

ik·R|αR〉 and cα2(nk) =

cα1
(nk)∗, being∑

β1

HL1

α1β1
(k)cβ1(nk) = ε0

nkcα1(nk). (A3)

We notice that |φL1

nk〉 (|φL2

nk〉) is a Bloch function localized

on layer L1 (L2) as it only involves 2pz orbitals localized
on that layer. Further, defining the time inversion opera-
tor T̂ = K̂, i.e. equal to the complex conjugate operator,
one can show that |φL2

nk〉 = −Î · T̂|φL1

nk〉. In fact,

− Î · T̂ |φL1

nk〉 = −
∑
α1

cα1
(nk)∗Î · T̂ |α1k〉 (A4)

By using the reality of 2pz orbitals together with the
relation: Î|α1R〉 = −|α2ÎR〉 we find

Î · T̂ |α1k〉 = − 1√
N

∑
R

eik·R|α2R〉. (A5)

Combining Eq. (A4) and Eq. (A5) and reminding

cα2
(nk) = cα1

(nk)∗ we finally obtain |φL2

nk〉 = −Î·T̂|φL1

nk〉.
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