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Abstract. Multiple-Phased Systems, whose operational life can be partitioned in a set of

disjoint periods, called “phases”, include several classes of systems such as Phased Mission

Systems and Scheduled Maintenance Systems. Because of their deployment in critical

applications, the dependability modeling and analysis of Multiple-Phased Systems is a task of

primary relevance. However, the phased behavior makes the analysis of Multiple-Phased

Systems extremely complex. This paper describes DEEM, a dependability modeling and

evaluation tool specifically tailored for Multiple Phased Systems, and its use for the solution of

representative MPS problems. DEEM supports the methodology proposed in [28, 29] although

not yet completely. When compared to general purpose DSPN tools [17], DEEM offers

advantages on the modeling side (PhN and SN sub-models neatly model the phase-dependent

behaviors of MPS), and on the evaluation side (a specialized algorithm allows a relevant

reduction of the solution cost and time). Thus, DEEM is able to deal with all the scenarios of

MPS that have been analytically treated in the literature, at a cost which is comparable with that

of the cheapest ones [7, 26, 27, 34], completely solving the issues posed by the phased-behavior

of MPS. DEEM is freely available to the academic world, for information see

http://bonda.cnuce.cnr.it/DEEM.

Categories and Subject Descriptors: C4 [Performance of Systems]: Reliability, availability,
survivability; C4 [Performance of Systems]: Fault Tolerance; C4 [Performance of Systems]:
Modeling Techniques; D.2.4 [Software/Program Verification] : Reliability, Validation; D.2.8
[Metrics]: Performance measures; I.6 [Simulation and Modeling]: Model validation and
analysis.
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1 Introduction

Many embedded systems devoted to the control and management of critical activities have to

perform a series of tasks that must be accomplished in sequence. Their operational life consists

of a sequence of non-overlapping periods, called phases. These systems are often called

Multiple-Phased Systems (MPS). MPS are very general, since their phases can be

distinguished along a wide variety of differentiating features.

(1) During a specific phase, an MPS is devoted to the execution of a particular set of tasks,

which may be different from the activities performed within other phases.

(2) The performance and dependability requirements of an MPS can be completely different

from one phase to another.

(3) During some phases the system may be subject to a particularly stressing environment,

thus experiencing dramatic increases in the failure rate of its components.

(4) In order to accomplish its mission, an MPS may need to change its configuration over

time, to adopt the most suitable one with respect to the performance and dependability

requirements of the phase being currently executed, or simply to be more resilient to an

hazardous external environment.

(5) The successful completion of a phase, as well as the activities performed therein, may

bring a different benefit to the MPS with respect to that obtained with other phases.

Examples of MPS can be found in various application domains (nuclear, aerospace,

transportation, electronic, and many other industrial fields). They include systems for the aided-

guide of aircraft, whose mission-time is divided into several phases such as take-off, cruise,

landing, with completely different requirements. A very important sub-class of MPS is

represented by the so-called Scheduled Maintenance Systems encountered in almost all the

application domains where an artifact is to be used for long time and is periodically subject to

maintenance actions. An SMS is easily formulated as an MPS, for which operational and

maintenance phases alternate according to a prefixed schedule.

Because of their deployment in critical applications, the dependability modeling and analysis of

MPS have been considered tasks of primary relevance, and many different approaches have

appeared in the literature [8, 9, 15, 26, 28, 29, 33-35]. However, modeling a MPS can be a

complex task even inside one single phase; when a multiplicity of phases and the dependencies

among them are to be taken into account, additional difficulties are encountered.

This paper describes DEEM (DEpendability Evaluation of Multiple-phased systems) [7], the

dependability modeling and evaluation tool specifically tailored for the time-dependent analysis

of MPS, being currently developed at the University of Florence and CNUCE-CNR. DEEM
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supports the methodology proposed in [28, 29] for the dependability modeling and evaluation

of MPS. This methodology relies upon Deterministic and Stochastic Petri Nets (DSPN) as a

modeling formalism and on Markov Regenerative Processes (MRGP) for the model solution.

DEEM is equipped with many modeling features that improve the expressive power of Petri Net

modes, the same modeling features as those already available in several general purpose tools

such as SPNP [14], UltraSAN [32], DSPNexpress [23, 24], PANDA [3], and SURF-2 [6].

The rich set of DEEM modeling features is made accessible through a X-Window Graphical

User Interface (GUI). The GUI supports: a) model construction of MPS, including definition

of attributes of model objects; b) definition of the relevant dependability measures for the

system under analysis; and c) models executions (which can also be done through a command

line).

The DEEM solution algorithm is based on splitting the Markov chains underlying the DSPN

for different phases. This way the transient analysis of the overall DSPN model is almost

completely reduced to the cheaper problem of the separate solution of each MPS phase.

The paper is organized as follows. Section 2 summarizes the DSPN approach adopted in

DEEM to the modeling of MPS and the analytical solution technique highlighting the

advantages over previous general MRGP solutions. Section 3 describes the Graphical User

Interface of DEEM for modeling, and management of the analyses, describing also the

specialized solution algorithm. Then, Section 4 describes the use of DEEM for the solution of

representative MPS problems. In particular the DEEM models and model solution of a Phased

Mission System [28, 29] and of a Scheduled Maintenance System [9] will be described. These

problems have already been investigated and solved by hand in the reference provided; here we

wish to point out the advantages of the simple automated support compared to hand made

modeling and evaluation. A brief overview of related work is the content of Section 5. 

2 The DSPN methodology to model MPS adopted in DEEM

Deterministic and Stochastic Petri Nets (DSPN) have been chosen as the modeling formalism

for DEEM, whereas the solution technique finds its ground in the efficient time-dependent

analysis of Markov Regenerative Processes (MRGP) presented in [11]. Precisely, DEEM is

based on the methodology proposed in [28, 29], which has been explicitly developed to provide

a support for the modeling and time-dependent analysis of the MPS dependability related

features. The main advance of that methodology is found in the adoption of a highly expressive

modeling formalism for concisely represent MPS dynamic behavior, coupled with a powerful

analytical solution method of the stochastic processes underlying the models. In its actual

version, DEEM does not fully exploit the potentialities of the referred methodology, which is

very powerful to include general distributions, but the following restrictions are applied:
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1) the duration of the phases is deterministic;

2) each intra-phase process is a time-homogeneous Markov chain (the phase model is

restricted to contain only exponential and instantaneous transitions).

2.1 Modeling of MPS using DSPN

DSPN models extend Generalized Stochastic Petri Nets and Stochastic Reward Nets, allowing

for the exact modeling of events having deterministic occurrence times. A DSPN model may

include immediate transitions, transitions with exponentially distributed firing times, and

transitions with deterministic firing times. Due to their high representative power, DSPN models

are able to cope with the dynamic structure of MPS, and allow defining very concise models of

even quite complex systems, through the use of guards on transitions, immediate transition

priorities, halting conditions, multiplicity functions, rate and impulse rewards, etc. Indeed, the

treatment of the dependencies among phases is moved from the low level of the Markov chains

to the more abstract and easier to handle level of the DSPN.

According to the methodology in [28, 29], models of MPS consist of two logically separate

parts: the System Net (SN), which represents the failure/repair behavior of system components,

and the Phase Net (PhN), which represents the execution of the various phases. Each net is

made dependent on the other one by marking-dependent predicates that modify transition rates,

enabling conditions, transition probabilities, multiplicity functions, etc., to model the specific

MPS features. Notice that, the predicates expressing enabling conditions are not intended to

substitute the classic enabling rules of Petri net model transitions, rather they represent

additional constraints that must be fulfilled for a transition to be eligible for firing.

Several advantages are offered by the DSPN approach over previous proposals cited in [28, 29].

First, the modeling features of DSPN allow a very concise representation of MPS, compared

with a Markov chain that results in huge models, which readily become sources of errors in

modeling. On the contrary, the DSPN high-level approach turns out in an overall MPS model

that is concise, easy to understand and to modify. The two parts of the DSPN model represent

two different abstraction levels of the same MPS. The mission profile is explicitly modeled in

the PhN, and can be very easily modified to represent different MPS. Moreover, the whole

modeling procedure limits in itself the possibility of introducing errors inside the models.

Various structural properties of the separate Petri net sub-models can be checked to increase the

confidence that can be put in the modeling itself. Further, the links among the various sub-

models are expressed through predicates of the marking, in a clear and unambiguous way.

Phase-triggered reconfigurations, which add a significant complexity to the treatment of

dependencies among phases, are easily handled through the implicit mapping which is

embedded in the model (as in [2, 5, 15, 33]). Indeed, the mapping between successive phases are
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completely specified at the level of the DSPN modeling, thus dramatically reducing the amount

of user-assistance needed to define the MPS models with respect to Markov chain based

techniques.

2.2 The specialized analytical technique to solve MPS

We summarize in this section the transient solution technique presented in [28, 29] to evaluate

dependability related measures of MPS at specific time instants. The algorithm implementation

will be described later in Section 3.4. The probability of successful mission completion, the

relative impact of each single phase on the overall dependability figures, the impact on MPS

reliability of a given maintenance schedule, and the amount of useful work that can be carried

out within the mission are among the measures assessable through such technique.

The specialized solution finds its ground by observing that the only deterministic transitions in a

DSPN model of a MPS are the phase duration, and that these transitions are enabled one at the

time. Thus, the marking process M t t( ), ≥{ }0  of the DSPN is a Markov Regenerative Process

(MRGP) [11] for which the firing times of the deterministic transitions are indeed regeneration

points. Moreover, the following property holds of the DSPN model of a MPS:

Property 1: in every non-absorbing marking of the DSPN there is always one deterministic

transition enabled, which corresponds to the phase being currently executed.

The general solution method for MRGP processes considers computing matrix V t( ) , whose

entry   
r r
m m, '  is the occupation probability of marking   

r
m'  at time t ≥ 0  given the initial marking

  
r
m . Matrix V t( )  is the solution to the generalized Markov renewal equation

V t E t K t V t( ) ( ) ( ) * ( )= + , where K t( )  and E t( ) are the global and local kernel matrices [11] and

“*” is the convolution operator. Instead of directly attacking the solution of the generalized

Markov renewal equation by numerical algorithms or Laplace-Stiltjes transform, DEEM com-

putes matrix V t( ) according to the following analytical method, proposed in [28, 29].

Let S  denote the state space of the MRGP process, let   1 2, , ,K n  be the set of phases the MPS

can perform, and finally let τ i  denote the duration of phase i ,   i n= 1 2, , ,K . Consider the

following subsets of S :

  S m S phase i is being performed i ni = ∈{ } =r
K |      ,  1 2, , ,

  S m Sn+ = ∈{ }1

r
 |  no phase is being performed

Owing to “Property 1”, and because different phases correspond to distinct markings of the

DSPN model, sets Si ,   i n= +1 2 1, , ,K , are a partition of the marking space S . The stochastic
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process M t ti ( ), ≥{ }0 ,   i n= 1 2, , ,K , defined as the restriction of the MRGP within the

execution of phase i , is a continuous-time Markov chain with state space Si  and transition rate

matrix Qi . The transient analysis of the MRGP is carried out by separately considering the

evolution of the processes M t ti ( ), ≥{ }0 .

Consider the block structure that is induced on matrix V t( )  as a result of the marking space

partitioning. Each block V ti j, ( )  is separately computed as follows. Consider the unique path

p i j( , )  that links phase i  to phase j  according to the structure of the PhN. This path is a set of

phases 
  p i j p p pr( , ) , ,,= { }1 2 K , with p i1 = , and p jr = . Block V ti j, ( )  is given by:

V t e ei j

Q

p p
h

r Q t
ph ph

h h

j phh

r

, ,( ) = 





∑
+

=

−

=

− −



∏ τ τ

∆
1

1

1

1

1 (1)

Where ∆ p ph h, +1
,   h r= −1 2 1, , ,K  is the branching probability matrix, whose entry   ∆ r v

m m
p ph h

, '
, +1  is

defined as the probability that   
v
m'  is the initial marking of phase ph+1 , given that   

r
m  is the

marking at the end  of phase ph.

3 Description of DEEM

DEEM has been explicily designed and implemented to support (part of) the methodology

proposed in [28, 29] for the dependability modeling and evaluation of MPS. The tool is written

in C, runs under Solaris (SUN) and Linux (PowerPC and Pentiumclass) workstations and

possesses a X-Window Graphical User Interface (GUI), inspired by [3], realized using an X11

installation with Motif runtime Libraries. The main features the DEEM’s GUI supports are:

1 MPS model construction based on the DSPN modeling formalism [1], according to the

methodology defined in [28, 29];

2 Definition and management of evaluation scenarios (studies) and setting of the

parameter values for multiple evaluations;

3 Definition of dependability measures of interest, through the general mechanism of

marking-dependent reward functions;

4 Activation of the transient analysis to evaluate the dependability measures;

5 Saving in a file of the state distribution of the model at the end of the transient analysis

and loading from a file of the initial state distribution used for the transient analysis;



page 7

6 Documentation of the MPS model producing a LATEX file containing all model

information.

Other features the DEEM’s GUI supports are those tipycal of many similar tool, such as file

and editing utilities, help-on-line, etc, as shown in the menu bar of Figure 1.

3.1 Modeling MPS with DEEM

A DEEM model may include immediate transitions, represented by a thin line, transitions with

exponentially distributed firing times, represented by empty rectangles, and transitions with

deterministic firing times, represented by filled rectangles. Moreover, DEEM makes available a

set of modeling features that significantly improve DSPN expressiveness: arbitrary functions of

the model marking may be employed to define firing times (rates or deterministic times) of

timed transitions, probabilities of immediate transitions, enabling conditions (named guards) of

the transitions, arc multiplicities and rewards. This rich set of modeling features, accessible

through a Graphical User Interface, provides DEEM with the ability of supporting the bipartite

MPS modeling approach described in the previous section.

The working area is split in two fields, as shown in Figure 1:

• System Net (SN), shown in the lower part of the window in Figure 1, which represents

the intra-phase evolution of an MPS. For instance, depending on the specific MPS, the

SN may include the failure/repair behavior of system components, the operations to be

carried out within operational phase, the maintenance activities, and so on. SN-type

subnets are only allowed to include exponentially distributed and immediate

transitions. This constraint is imposed to ensure the existence of a simple and

computationally efficient time-dependent analytical solution. Besides that, any

structure of the SN sub-model can be considered.

• Phase Net (PhN), shown in the upper part of the window in Figure 1, which represents

the execution of the various phases. PhN contains all the deterministic transitions of

the overall DSPN model and may as well contain immediate transitions. A token in a

place of the PhN model represents a phase being executed, and the firing of a

deterministic transition models a phase change. The DSPN of the PhN must possess

distinct markings corresponding to different phases. Notice that quite general

structures of the PhN sub-model are allowed. In particular, the PhN is not limited to

have a linear structure, but it may take a tree or cyclic structure [8, 9, 28, 29].
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Figure 1: DEEM interface and the DSPN model of the MPS in [29]

Windows associated to each place, such as that in Figure 2 referred to the place Launch, support

the definition of the initial marking of the model. The field Capacity specifies the maximum

number of tokens for the place, e.g., when there are two tokens in a place with capacity equal to

two, then each transition having an arc entering in that place is disabled.

Figure 2: Property window associated to place Launch

Each net can be made dependent on the other one by marking-dependent predicates which

modify transition rates, enabling conditions, transition probabilities, multiplicity functions, etc.,

to model the specific MPS features. A restriction is only imposed on the firing times of the

deterministic transitions of the PhN, which are not allowed to be dependent on the marking of

the SN.
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Figure 3: Property window associated to the exponential timed transition t2

Marking dependent attributes of the various objects (transitions and arcs) can be defined

through the DEEM property window associated to each object. Figure 3 shows the window

associated to transition t2 of the SN of Figure 1, while Figures 4 and 5 show those associated to

transition T6 and NO_SO1 respectively of the PhN.

Figure 4: Property window associated to the deterministic timed transition TH3
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Figure 5: Property window associated to the immediate transition NO_SO1

Notations “MARK(Place_Name)” and “VAR(Parameter_Name)” denote the number of

tokens in the place “Place_Name” and the parameter “Parameter_Name”, respectively. Other

examples of expressions will be shown in Sections 4, when presenting case studies. More

information can be obtained from the Help on line of the tool.

Figure 6 shows the window associated to the arc that connects place Up and transition t1.

Figure 6: Property window associated to the arc from place Up to transition t1

3.2 Parameters and studies

When building the models, the attributes of objects like times, rates, probabilities or

multiplicities, can be expressed through parameters rather than numerical values directly, using

the syntax “VAR(Parameter_Name)”, as already shown in Figure 3. Then, prior to proceed to

the model evaluation, the user has to assign values to the parameters.
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Figure 7: Parameters window with two studies for the example in Figure 1

DEEM automatically builds a parameters table collecting all the symbols defined in the model;

this table is made accessible through the command “Parameters” in the Menu “Compute”,

generating the window illustrated in Figure 7. For each study, represented by a column in the

table, parameters are also allowed to take a range or a set of values; in the current version, this

feature is restricted to two parameters only. This way, a sensitivity analysis can be performed

around the values of impacting parameters, thus generating a family of curves from the

evaluation of a single study.

3.3 Dependability measures and transient analysis

Central to the dependability evaluation process is the definition of specific measures of system

behavior that are of interest to a user. Useful work to formally categorize measures of system

behavior based on “reward models” are [22, 31]. A reward model consists of a stochastic

process and a “reward structure”. Following the same approach adopted in [31], the specific

dependability measures of interest for the MPS evaluation are defined through a reward

structure that quantifies behaviors at the DSPN level, instead of the state level. They are based

on a general mechanism of marking-dependent reward functions. Informally, a reward structure

[22, 31] consists of a rate or impulse reward that are associated with the time spent in a state or

with some event of the process, respectively. Rate rewards can be defined as arbitrary function

of the model marking. Measures are further distinguished in three categories, in accordance with

the time interval they depend on: instant-of-time, interval-of-time and time-averaged interval-of-

time [31]. The instant-of-time measure represents the reward that is associated with the status of

the modeled system at a particular time. The interval-of-time and time-averaged interval-of-time
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measures represent the total and time-averaged reward accumulated during some interval of time,

respectively.

In DEEM, dependability measures can be defined by a reward function

“IF(<Predicate>)THEN(<Reward>)ELSE(<Reward>)” and an analysis type flag (for

instantaneous, cumulated and timed-averaged analysis), as shown at the top of Figure 8. This

window is selected through the command “Measures” in the Menu “Compute”. <Reward>

denotes an expression defining the rate or impulse reward associated to the state (number of

tokens in places) or event (firing of a transition), respectively, defined by the Boolean

expression <Predicate>. Composed measures can be also defined, as a function of the evaluated

reward-based measures, referred with the notation “FUN(<Measure Name>)”.

Once measures are defined, the transient evaluation can be launched on the selected study.

Results are collected in two output files, in formats compatible with spreadsheet programs and

gnuplot respectively, so as to produce plots or tables of the dependability measures.

Figure 8: Measures window

Finally, DEEM permits to save in a file the state distribution of the net at the end of the transient

analysis. From this file, the initial state distribution used for a next transient analysis may be

loaded. In this way, it is possible to separately perform evaluations of the same model in a

sequence of different periods of time, where the parameters relative to each period depend on the

results of the evaluation at previous periods of time.

3.4 The solution algorithm

This section describes in some details the solution algorithm implemented in DEEM. It is

organized in two parts: first, the steps of the algorithm are presented, then a discussion on the

efficiency of the proposed algorithm follows.
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3.4.1 Algorithm description

To compute the defined dependability figures, DEEM computes the probability vector P t( )  of

each marking in SN at time t. P t( )  is obtainable from the transient probability matrix V t( ) ,

through the equation P t P V t( ) = ⋅0 ( ), where P0  is the initial probability vector of the DSPN.

Equation (1) allows to evaluate V t( )  through the separate analysis of the various alternative

paths composing the mission, and only requires the computation of the matrix exponentials eQiτ ,

and the branching probability matrices ∆ i j,
,   i j n, , , ,= 1 2 K , which can be automatically obtained

once the reachability graph is generated. The solution of the DSPN model is thus reduced to the

cheaper problem of solving a set of homogeneous, time-continuous smaller Markov chains.

To compute P t( )  and then the dependability figures of the system, the solution engine of

DEEM starts taking as input the DSPN model and its initial probability vector P0 , and performs

the following steps:

I. Builds RGP, the reachability graph of the PhN sub-model. This graph has exactly one

stable marking   
r
mi  for each phase i n= 1 2, ,...,  the MPS may perform.

II. Calls deem_solver(1 00, ,P ).

deem_solver( i P ti
init

i
init, , ) implements a recursive algorithm, whose steps are:

1. To build the reachability graph   RGS mi

r( )  of the whole DSPN model when marking   
r
mi  is the

only one permitted for the PhN. From   RGS mi

r( )  the transition rate matrix Qi  of the

continuous-time Markov chain describing the evolution of the DSPN during the execution

of phase i  is obtained.

2. If phase i  is the last one, or t ti
init

i≤ + τ  then to compute the transient state probability vector

P t P ei i
init Q t ti i

init

( ) = −( ) and return, else to continue at step (3).

3. To compute the transient state probability vector P P ei i
init Qi i= τ .

4. To build the reachability graph 
  
RGS m next mi i

r r
, ( )( ) , where

  
next m m mi j jm

r r r( ) = { }1
,..., , of the

whole DSPN model, when the initial marking of the PhN is   
r
mi , and transition ti

Det  is the

only deterministic one allowed to fire. Each marking 
  
r
m jh

is reachable from   
r
mi  through the

firing of some instantaneous transition next to the firing of ti
Det .
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5. For each stable marking 
  
r
m jh

 (phase jh), to perform the following steps:

5.1. From 
  
RGS m next mi i

r r
, ( )( ) , to obtain the branching probability matrix ∆ i jh,

for the

transition from phase i  to phase jh .

5.2. To compute the initial state probability vector of the phase jh : P Pj
init

i i jh h
= ∆ , .

5.3. To call deem_solver( j P th j
init

i
init

ih
, , + τ ).

To evaluate the specific dependability measure of interest for the MPS, based on reward

structures, DEEM operates on Pi  according to the standard computation algorithms [13].

It is worthwhile observing that: i) the state space of the MRGP process does not need to be

generated and handled as a whole; ii) transition rate matrices Qi  can be generated separately one

from another; iii) to build matrices ∆ i jh,
, the generation of the reachability graph for consecutive

phases is required.

The realization of all the steps described above only require well-known algorithms [10, 30]; in

fact they have been already implemented in most of the tools for the automated evaluation of

dependability. The generation of the reachability graphs and their reduction to a continuous-time

Markov chains (CTMC) are obtained using the sequential version of the algorithm SRGG

proposed in [4] and implemented in the tool PANDA [3], by eliminating on-the-fly all vanishing

states (all states with zero sojourn time). This way, CTMC is built directly from the SPN

without permanently storing all the vanishing states. Before feeding SRGG with the DSPN

model, the transitions of the PhN are modified in exponentially distributed. In particular, to

generate the RGP in step I, SRGG takes as input the DSPN model with the enabling predicates

of the transitions of the SN modified set to FALSE. To build the   RGS mi

r( )  in step 1, SRGG

takes as input the DSPN model with the enabling predicate of the transitions of the PhN

modified set to FALSE and the initial marking of the PhN modified in the one corresponding to

phase i . Finally, to generate the
  
RGS m next mi i

r r
, ( )( )  in step 4, the SRGG takes as input the

DSPN model modified as follows: the initial marking of the PhN is that of the phase i ; the

enabling predicate of all the other transitions of PhN is FALSE; and rate 1 is assigned to the

transition enabled in phase i . Assuming rate 1, the entries of matrix ∆ i jh,
 in step 5.1 may be

obtained directly from the corresponding values in 
  
RGS m next mi i

r r
, ( )( ) , without normalization.

To compute the matrix exponential in steps 2 and 3, the version of the uniformization (or

randomization) algorithm in [30] is used.
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3.4.2 Evaluation of the algorithm efficiency

For generating the reachability graphs at steps I, 1, 4, the asymptotic computational complexity

is given by O C Cjh

m

jh

m

h h= =∑ ∑















0

2

0

max max

log , where C Si i= , j i0 =  and mmax ≥ 1 is the

maximum number of phases reachable directly from a phase (n-1 in the worst case), and the

asymptotical memory requirements are given by O Cjh

m

h=∑









0

2max

. These costs, dominated by

the operations at step 4, can be reduced to O C C C Ci j i jh

m

h h
+( ) +( )



=∑ 2

1
log

max

 (time complexity)

and O C Ci jh
+( )( )2

 (space complexity) by generating the reachability graph only for the two

consecutive phases i  and jh, for each phase jh reachable from the current phase i . Note that the

same memory space can be reused to store the reachability graph relative to different

consecutive phases. For the transient solutions at steps 2 and 3, the computational complexity

isO C qi i i
2 τ( ) , where qi  is the maximum absolute diagonal entry of Qi  and the memory

requirements areO Ci
2( ). For the multiplication operations at steps 2, 3 and 5.2 (repeated at most

mmax  times) the computational complexity isO C C Ci i jh

m

h

2

1
+



=∑

max

 and the memory

requirements are O C C Ci i jh

2 +( ). For obtaining the branching probability matrix at step 5.1

(repeated at most mmax  times), the computational complexity is O C C C Ci j i jh

m

h h
+( )



=∑ 1

max

 and

the memory requirements areO Cjh

m

h=∑









0

2max

.

Therefore, the overall asymptotic computational cost of the DEEM solution algorithm is

dominated by the operations at steps 2 and 3 and is given by O C qi i ii

n 2

1
τ

=∑( ). The overall

asymptotic memory requirements are dominated by the costs at step 4 and is given by

O Cjh

m

h=∑









0

2max

, but can be reduced to O C Ci jh
+( )( )2

.

The complexity orders, for time and space, shown by our algorithm are very good, being

comparable to those of the cheapest algorithms in the literature to deal with PMS scenarios [29].

Therefore, the issues posed by the phased-behavior of PMS are completely and efficiently

solved by our method. The applicability is only limited by the maximum time required to

compute the operations at steps 2 and 3, and by the maximum memory space required for the

reachability graph of the consecutive phases computed at step 4.
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4 Examples of DEEM applications

In this section we illustrate the use of DEEM in the solution of two representative problems that

have been already studied in the literature, but without the support of any automated tool. The

purpose of the re-examination here is to show the usage of DEEM on interesting case studies,

to better illustrate the advantages the tool offers.

The first problem we deal with is the modeling and evaluation of a Phased Mission System for

space applications, which has been studied in [29]. The other consists in the optimization of a

Scheduled Maintenance System from dependability and cost viewpoints, a problem which has

been previously dealt with in [9, 36]. With respect to PMSs, SMS add a further degree of

complexity, in that the long lifetime of a SMS can be partitioned into a set of missions, each of

them composed by several phases.

4.1 The case of a Phased Mission System

Consider a space application whose mission alternates operational phases (as launch, planet

flyby, scientific observations) with hibernation phases (typically entered to maintain a low level

of activity during the navigation). Primarily due to the adverse environmental situations and to

the long mission duration, there is a high likelihood that spacecraft components are subject to

failures. In order to ensure adequate dependability levels, the system employs a set of N

identical processors.

The main characteristics of such PMS, to be properly modeled by exploiting the interaction

capabilities between the PhN and SN sub-nets, are the following.

 Phase-Triggered Reconfigurations of the SN. The system uses in each phase the number of

processors that are actually needed to meet the dependability requirements of the current phase,

and keeps the others as cold spares, ready to be employed when performing critical activities.

Specifically, hibernation phases employ two active processors, being also able to survive with

just one active processor, while operational phases always require three active processors. At the

start of each hibernation phase, a reconfiguration takes place and one of the active processor is

turned off. Similarly, when a new operational phase starts, one spare must be turned on. A

standby processor is fault-free; however, a failure may occur when activating a cold spare with

probability 1-c (being c the coverage of the activation procedure).

 Phase-Dependent Behavior of the SN. Active processors fail with phase-dependent rates: the

failure rate during hibernation phases is less than the failure rate during operational phases.

Repair actions are applied to faulty components, based on the nature of the faults affecting the

spacecraft. We assume that active processors fail and are repaired independently from each
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other, whereas spare processors do not fail. As already discussed, different success/failure

criteria are specified for each phase.

Mission Profile Dependent on SN Marking. The choice of the next phase to execute may be

dictated by how the preceding phase ends. Such a dynamic choice of the mission profile may be

useful to skip phases that would endanger the execution of more important activities. For

instance, a secondary goal could be sacrificed if there are few available resources, which should

be better held in a spare state in order to guarantee a reliable execution of the main goal of the

mission.

4.1.1 The DEEM model

The DEEM model of the space application described above, is shown in Figure 1 (presented in

Section 3.1), while Tables 1 and 2 report the definitions of the timed and immediate transitions

respectively, which have been included in the corresponding DEEM’s property windows. From

these tables, it can be noted the dependency of transitions properties from the marking of the

two sub-models, to capture the dynamicity of the involved phases and the relationships among

the system components, as previously discussed.
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Table 1: Properties of the timed transitions for the model of Figure 1

A token in a place of the PhN model represents a phase being executed; τL, τH1, ..., τSO2 are the

deterministic time duration of the phases; and the firing of a deterministic transition models a

phase change. A token in the places Sc_Obs_2 or Sc_Obs_3 represent the same Scientific

Observation 2, which is replicated along the two possible mission paths. The sequence of

phases ends with a token in the Stop place, which represents the mission’s end. Notice that,

without the place Stop, the PhN net shows a tree structure, according to the fact that this

particular MPS performs a dynamic choice between two distinct mission paths. Transition t1 in

the SN subnet represents the failure of a processor, and transition t2 the repair of a faulty

processor. The initial marking of the DSPN is: mark(Launch)=1, mark(Up)=3,

mark(Spare)=N-3, and no tokens in the remaining places. The actions performed at each phase
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are modeled through the guards on immediate transitions (Turn-off, used to adjust the system

configuration when entering a new phase; Rec-ok and Rec-nok, to model the turning-on of spare

processors; S-fail1 and S-fail2 to account for the failure criteria of the different phases). The

system-dependent mission profile is easily modeled through the two immediate transitions

YES_SO1 and NO_SO1, whose enabling conditions depend on the marking of the SN.
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Table 2: Properties of the immediate transitions for the model of Figure 1

4.1.2 The DEEM analytical solution

Estimations of the probability that the system successfully completes its mission, that is the

reliability of the PMS at the end of the mission, have been performed by using the transient

solver of DEEM. In order to allow direct comparison, the values assumed for the model

parameters are the same as those in [29]. The number of system nodes is 4, and fault rates are

considered different in the different phases (the fault rate is higher during the most stressing

phases such as scientific observations, while it lowers during hibernation phases). After

execution, the transient solver of DEEM returns the following file:

FILE_NAME: pms_net.study_PMS

NET_NAME: pms_net

STUDY_NAME: study_PMS
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STUDY_variables_setting:

Time    8.853600e+04

tau_L   4.800000e+01

tau_H1  1.752000e+04

tau_P   1.680000e+02

tau_H2  2.628000e+04

tau_H3  4.380000e+04

tau_H4  4.404000e+04

tau_SO1 2.400000e+02

tau_SO2 4.800000e+02

tau_SO3 4.800000e+02

k_H     1.000000e-01

k_O2    1.000000e+01

lambda_LP       1.000000e-05

mu      [1e-5, 1e-2, *10]

c       {0.9, 0.99, 0.999, 0.9999}

_____________________________________________________________________________

REW_MEASURE_NAME: Reliability

REW_FUNCTION: IF(mark(Fail)=0)THEN(1)ELSE(0)

ANALYSIS_TYPE: INSTANTANEOUS

mu/c            9.000000e-01    9.900000e-01    9.990000e-01    9.999000e-01

1.000000e-05    8.823736e-01    9.628646e-01    9.689930e-01    9.695845e-01

1.000000e-04    9.335368e-01    9.843568e-01    9.874891e-01    9.877822e-01

1.000000e-03    9.434508e-01    9.888337e-01    9.913524e-01    9.915837e-01

1.000000e-02    9.540315e-01    9.946170e-01    9.965105e-01    9.966778e-01

The first part of the file summarizes the parameters setting used in the experiment, then the

definition of the measure under evaluation follows, and finally the obtained results are listed (in

the format directly usable by a spreadsheet program). Note that parameters mu and c are

variable in an interval and a set of values, respectively.

4.2 The case of a Scheduled Maintenance System

Consider a system equipped with two components. Component A is a primary unit providing

some functionality to the system, and component B acts as a backup unit for component A,

ready to take the role of primary upon A’s failure. The system cyclically executes two types of

mission: 1) M1 consisting of a single phase of fixed duration τ11, and 2) M 2 consisting of two

phases, having duration τ21 and τ22, respectively. The time to failure of component A is

exponentially distributed, with parameter λ1A during M1, and parameter λ2A during M2, whereas

the time to failure of component B is constantly λB.
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Maintenance actions are undertaken during the SMS lifetime, according to the following

schedule. i) a complete maintenance check on the whole system is operated every 100 missions,

which restores the system to the initial condition; ii) primary unit A is replaced at the end of

each mission, if failed; after its repair, A takes again the role of primary unit; and iii) backup unit

B is subject to a partial check at the end of each α pairs of missions. Since after complete

checks the system is as a new one, the reliability R needs to be studied in the time interval

between two complete checks (i.e., the duration of 100 missions). System failure is defined as

the failure of A and B, a possibly catastrophic event leading to relevant economic loss. The

probability of system failure is denoted by F, and can be computed as 1-R.

Here, we are interested in optimizing maintenance actions. It is therefore relevant to determine

whether it is economically convenient to improve the maintenance (by increasing the number of

intermediate checks, or increasing the coverage c of such checks), or to accept the costs

associated to a higher system failure.  Suppose a cost Φ is paid in case F occurs during the one

hundred missions, and a cost ϕ is paid to perform the partial check of B each α pairs of

missions. The cost ϕ of the check and the coverage c that it provides obviously depend from

each other: the higher the target coverage, and the more expensive the check required. We use

ϕ=ϕ(c) to denote such dependency. Then, to optimize the SMS with respect to the schedule of

the maintenance, one should minimize the following overall expected cost function:

Cost = Φ ⋅ Pr ob[F] + ϕ (c) ⋅ 50
α  = Φ ⋅ (1 − R) + ϕ (c) ⋅ 50

α  (2)

4.2.1 The DEEM model

The DEEM model of the SMS is shown in Figure 9. The defined model is slightly different

from that proposed in [9]; however, the modifications do not impact on the results, which

therefore remain comparable.

The PhN concisely represents the two types of mission executed by the SMS. A token in place

P1 represents the execution of the single phase of M1, and the firing of transition T1 represents

the completion of the phase. A token in places P2 and P3 enables transitions T2 and T3,

modeling the execution of phases 1 and 2 respectively of M2, and firings of T1 and T2 represent

completions of those phases. The place Count keeps track of the number of missions performed

by the SMS. Definitions of the timed and immediate transitions are listed in Tables 3 and 4

respectively. As in the previous case, from the tables it can be observed the dependency of the

properties of the transitions from the marking of the two sub-nets. Moreover, it is worthwhile
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observing that the advantages of this compact modeling of the possible missions grow at

increasing the number of missions repeated between two complete maintenance checks.

Figure 9: The DEEM model of the SMS

Concerning the SN sub-model, a token in place Aok or Afail models the correct or failed state of

component A, respectively, and similarly for component B. The initial number of tokens of Aok

and Bok is 1. The failure process of components A and B is modeled by the exponential

transitions fA and fB, respectively. Table 3 reports the properties set for the timed transitions.
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Table 3: Properties of the timed transitions for the model of Figure 10

The discrete repairs induced by the maintenance actions are modeled by the immediate

transitions Yes_repair_A, Yes_repair_B, ok_repair and nok_repair. These immediate
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transitions are enabled at the end of those missions for which a maintenance action has been

scheduled (one token in Tstop1 or in Tstop2), according to the conditions specified in Table 4.
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Table 4: Properties of the immediate transitions for the model of Figure 10

To explain the evolution and synchronization of the PhN and SN models, suppose that

component A correctly works, component B is failed (one token is in Bfail) and the α-th

Mission 2 is not yet ended (one token in P2 or P3 and α-1 tokens in Count). As soon as α-th

Mission 2 ends, one token reaches places Stop2 enabling transition Tcount and one token

reaches Count, which now contains α tokens. At this point, component B is to be repaired. First

the transition Yes_repair_B fires (now its enabling function is true and its priority is higher than

that of Tcount) and one token reaches place repair_B. Then transitions ok_repair and

nok_repair are allowed to fire. Similar is the evolution and synchronization of the submodels in

the case that component A fails. Notice that when both components A and B are failed (one

token in Afail and Bfail) the Yes_repair_A and Yes_repair_B are permanently disabled and the

failure of the mission is modeled.

4.2.2 The DEEM analytical solution

The SMS model just described has been solved through the DEEM transient solution, in order

to study the cost function defined by Equation (2). The study has been developed at varying the

coverage c of the check on the backup unit B, for a fixed value λB = λ1A of component B failure

rate. We assume as unitary the cost Φ of the system failure, and proportionally define the cost

function ϕ (c) = k1 ⋅ ek2c  in a way that a check providing coverage 0.6 requires a cost of 10−6 Φ ,

whereas a check with coverage 0.99 costs 10−2 Φ . This setting is the same as in [9]. The
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following file, returned by the transient solver of DEEM, includes the parameters setting, the

definition of the evaluated measures and the results of the evaluation.

FILE_NAME: sms_net.Cost_Study

NET_NAME: sms_net

STUDY_NAME: Cost_Study

STUDY_variables_setting:

Time 1.500000e+03

tau_11 1.500000e+01

tau_21 5.000000e+00

tau_22 1.000000e+01

lambda_1A 1.000000e-03

lambda_2A 2.000000e-03

lambda_B1.000000e-03

alfa {1, 2, 5}

c {0.6, 0.7, 0.8, 0.9, 0.95, 0.99}

PHI 1.000000e+00

k1 7.017040e-13

k2 2.361630e+01

_____________________________________________________________________________

REW_MEASURE_NAME: Reliability

REW_FUNCTION: IF(mark(Afail)+mark(Bfail)<2)THEN(1)ELSE(0)

ANALYSIS_TYPE: ISTANTANEOUS

alfa/c 6.000000e-01 7.000000e-01 8.000000e-01 9.000000e-01 9.500000e-01 9.900000e-01

1.00e+009.118943e-01 9.238274e-01 9.332045e-01 9.407681e-01 9.440268e-01 9.464250e-01

2.00e+008.599788e-01 8.790535e-01 8.946035e-01 9.075257e-01 9.132017e-01 9.174220e-01

5.00e+007.536677e-01 7.807849e-01 8.045963e-01 8.256808e-01 8.353453e-01 8.426997e-01

_____________________________________________________________________________

COMP_MEASURE_NAME: Cost

COMP_FUNCTION: VAR(PHI)*(1-FUN(Reliability))+VAR(k1)*exp(VAR(k2)*VAR(c))*FLOOR(50/VAR(alfa))

alfa/c 6.000000e-01 7.000000e-01 8.000000e-01 9.000000e-01 9.500000e-01 9.900000e-01

1.00e+008.815566e-02 7.670307e-02 7.242233e-02 1.189230e-01 2.503889e-01 5.535962e-01

2.00e+001.400462e-01 1.212117e-01 1.082099e-01 1.223198e-01 1.840061e-01 3.325887e-01

5.00e+002.463423e-01 2.193212e-01 1.965291e-01 1.862574e-01 2.035378e-01 2.573045e-01

Note the inclusion in the file of the definition and evaluation of the reliability measure, since it is

necessary to determine the cost function.
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4.3 Remarks on the case studies

Comparing the results obtained through DEEM for both case studies with the corresponding

ones previously determined in [29] and [29], where the same systems have been modeled and

solved by hand, it can be observed that the results are very similar. This reinforces the

confidence on the correct definition and implementation of the DEEM analytical solution.  

Now, a few comments on the efficiency of DEEM in solving the above examples. The size of

the overall model of the PMS example is given by 35 states and 60 non-zero entries of the

matrices Qi , but thanks to the separation of the solution of the various phases the biggest model

solved by DEEM was of 5 states and 10 entries of Qi . The CPU time needed to perform the

evaluation task did not exceed the order of few seconds and the total amount of physical

memory used did not exceed 2100 Kilobytes, on a Pentium II 350 MHz, 192Mb RAM PC. In

the SMS case, the overall model size is given by 600 states and 600 non-zero entries of the

matrices Qi , but again, thanks to the separation of the solution of the various phases operated by

DEEM, the biggest model solved was of 4 states and 4 entries of Qi . The CPU times needed to

perform the evaluation of the studies Study_1 and Study_2 were respectively 66 seconds and

100 seconds and the total amount of physical memory used did not exceed 2100 Kilobytes, on a

Pentium II 350 MHz, 192Mb RAM PC. From these data, it can be appreciated the efficiency of

the DEEM’s solution algorithm with respect to non specialized solutions, which approach the

model solution in its entireness.

Of course, DEEM’s benefits grow with the growing dimension of the analyzed problem, for

which the usage of a general-purpose evaluation tool may be easily defeated by the well-known

problem of state explosion. Among the others, a problem we have dealt with and where the

efficiency of DEEM has been fundamental in allowing the target evaluation activities has been

that of the Reactor Protection System (RPS) in use at Westinghouse nuclear plants [16]. For

this very critical system, we have modeled and analyzed scheduled maintenance actions, which

have to be executed on-line without interrupting the service provided. The RPS entire model is

of the order of one million of states.  However, the biggest model solved by DEEM was of 4096

states and the time needed to perform a single study did not exceed, on average, the order of few

tens of minutes on a Pentium III 500 MHz, 128 Mb RAM PC. The dimension of this problem

would have been hardly tractable by other evaluation tools, unless performing simplifications on

the system representation, which of course would have turned out in less accurate evaluation

results.
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5 Related Work

Some considerations on related work are here drawn. Concerning the methodology for

modeling MPS using DSPN which is followed in DEEM, a wide treatment of the related

literature has been already carried on in [27, 28], where such methodology has been originally

developed.

Among the existing tools for dependability modeling and evaluation, the EHARP tool [34] (an

extension of the HARP tool) implements the methodology proposed by Somani et al., which is

specifically designed for SMS scenarios. Some further extensions of EHARP for the SMS

problem were introduced by Twigg et al. in [36]. The EHARP tool is based on a separate

Markov chain modeling of the SMS inside the various phases, an approach that is able to

effectively master the complexity and the computational cost of the analysis. However, as

carefully explained in [28, 29], this separate Markov based modeling approach requires a

relevant amount of user-assistance to correctly model the dependencies among successive

phases.

Concerning the solution algorithm implemented in DEEM, we mention that, to numerically

evaluate the transient state probability vector P t( )  of the DSPN model, different approaches,

algorithms and tools could be considered [11, 12, 17-19, 21, 24, 25, 37]. A general-purpose

transient solver for DSPNs, such as TimeNET, can be used for this purpose [20]. TimeNET

provides many of the modeling features available under the SRN paradigm, and is able to

support our modeling methodology. Actually, this tool implements three different transient

solution techniques: a general solution and two variants which optimize on time and memory

consumption but restricted to specific (and therefore restricted) DSPN structures [20, 21]. Only

PMS models belonging to the class of DSPN in which a sequence of deterministic transitions

fire periodically at previously known instants of time, are solvable by TimeNET using an

efficient method having the same computational complexity as the DEEM’s algorithm and

memory requirements given by O Cii

n

=∑



1

2
 [19, 20]. The PMS models dealt with in Section 4,

do not belong to such class of DSPN; using TimeNET for their modeling and solution imply

applying the general transient solution algorithm (adopted for deterministic transitions firing at

random time instants). In such method, the technique of the discretization of the continuous

variables is used for the numerical solution of a system, consisting of as many differential

equations as the number of non-vanishing markings. Of course, in this case no advantage is

obtained from the particular structure of the PMS model and the asymptotic computational cost

needed for the solution is higher, being O C q ji i i
i

i

n 2

1
τ max=∑( ) , where j i

max  denotes the number of

steps required for the discretization of the CDF of the firing time of the non-exponential

transitions.
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