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Abstract

Service contracts characterise the desired behavioural compliance of a com-
position of services. Compliance is typically defined by the fulfilment of all
service requests through service offers, as dictated by a given Service-Level
Agreement (SLA). Contract automata are a recently introduced formalism
for specifying and composing service contracts. Based on the notion of syn-
thesis of the most permissive controller from Supervisory Control Theory,
a safe orchestration of contract automata can be computed that refines a
composition into a compliant one.

To model more fine-grained SLA and more adaptive service orchestra-
tions, in this paper we endow contract automata with two orthogonal layers
of variability: (i) at the structural level, constraints over service requests and
offers define different configurations of a contract automaton, depending on
which requests and offers are selected or discarded, and (ii) at the behavioural
level, service requests of different levels of criticality can be declared, which
induces the novel notion of semi-controllability. The synthesis of orchestra-
tions is thus extended to respect both the structural and the behavioural
variability constraints. Finally, we show how to efficiently compute the or-
chestration of all configurations from only a subset of these configurations.
A prototypical tool supports the developed theory.
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1. Introduction

Service computing is a well-known paradigm for the creation, publication,
discovery and orchestration of services, which are autonomous, platform-
independent and reusable pieces of software that are loosely coupled into
networks of collaborating end-user applications [1, 2]. Services are usually
programmed with little or no knowledge about clients and other services.
They are created and published by possibly mutually distrusted organisa-
tions, and may have conflicting goals. Services have to cooperate to achieve
overall goals and at the same time compete to perform specific tasks of their
organisation. Ensuring reliability of a composite service is important, e.g.
to avoid economic loss. Therefore, understanding and fulfilling a minimal
number of behavioural obligations of services is crucial to determine whether
the interactive behaviour is consistent with the requirements. Such obliga-
tions are usually dictated by a Service-Level Agreement (SLA). Recently, the
Service Computing Manifesto [3] considers service design as one of the four
emerging research challenges in service computing for the next 10 years, and
calls for formal models supporting it:

“Service systems have so far been built without an adequate rig-
orous foundation that would enable reasoning about them. |[...]
The design of service systems should build upon a formal model
of services.”

Service contracts offer means to formalise the externally observable be-
haviour of services in terms of offers of the service and requests by the service
to be matched. The notion of agreement characterises compliance of (a com-
position of) contracts and it is based on the fulfilment of all service requests
through corresponding service offers. Behaviour in agreement is implemented
by an orchestration of services. Orchestrations must dynamically adapt to
the discovery of new services, to service updates and to services that are no
longer available. Moreover, a precise semantics of service contracts allows
us to mechanically verify that an orchestration enjoys certain properties and
to assess whether it satisfies a given SLA. We refer the reader to [4, 5] for
surveys on formal models of service contracts.

Contract automata [6] are one such formal model for service contracts.
A contract automaton represents either a single service (in which case it is
called a principal) or a multi-party composition of services. Each principal’s
goal is to reach an accepting state by matching its request actions (of the
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Figure 1: Two automata (left and middle) and a possible composition of them (right)

form a, b, . ..) with corresponding offer actions (of the form @, b, ...) of other
principals. Service interactions are implicitly controlled by an orchestrator
synthesised from the principals, which directs them in such a way that only
finite executions in agreement actually occur, i.e. such that each request
action a is fulfilled by an offer action @. Technically, such an orchestration is
synthesised as the most permissive controller (mpc) known from Supervisory
Control Theory (SCT) [7, 8]. The goal of this paper is to present a richer
framework of contract automata, which allows the user to model more fine-
grained SLA and more adaptive service orchestrations.

Consider two automata interacting on a service action a, depicted in Fig. 1
(left and middle parts), and a composition of these automata in Fig. 1 (right
part) that models two possibilities of fulfilling service request a from the
leftmost automaton by matching it with a service offer @ of the middle one
(i.e. (a,a@)). Assume that a must be matched with @ to obtain an agreement,
and that for some reason state 4 is to be avoided in favour of state v'. In most
automata-based formalisms, including the contract automata of [6, 9], this is
typically not allowed by the definition of composition and the resulting mpc is
empty. Indeed, we would like to be able to express that a must eventually be
matched, rather than always. In this paper, we introduce a type of contract
automata in which it is possible to orchestrate the composition of the two
automata on the left in such a way that the result is the automaton on the
right without state %, i.e. a is only matched with @ after the occurrence of an
unmatched service offer b of the middle automaton (i.e. (e,0)).

Technically, we extend contract automata with action modalities to dis-
tinguish necessary from permitted service requests (borrowed from [9]) and
with two novel orthogonal variability mechanisms. Necessary and permit-
ted request actions differ in that the first must be fulfilled, while the second
may also be omitted. The notions of necessary and permitted modalities
stem from modal and deontic logic, which trace back to seminal work by Von
Wright [10, 11]. As in [9], we assume offer actions to always be permitted
because a service contract may always withdraw its offers not needed to reach
an agreement.



The first variability mechanism is defined inside service contracts, i.e. at
the behavioural level, to declare necessary request actions to be either urgent
or lazy. These modalities drive the orchestrator to fulfill all the occurrences
of an urgent action, while it is required to fulfill at least one occurrence of lazy
actions. The simple example above has no urgent action; the only necessary
one is the lazy request a. Intuitively, the matching of a lazy request may be
delayed whereas this is not the case for urgent requests.

The second variability mechanism concerns constraints that operate on
the entire service contract and that are defined at the structural level. They
are used to define different configurations, which is important because ser-
vices are typically reused in configurations that vary over time and to adapt
them to changing environments [3]. Configurations are characterised by
which service actions are mandatory and which forbidden. The wvalid con-
figurations are those respecting all the structural constraints. We follow the
well-established paradigm of Software Product Line Engineering (SPLE),
which aims at efficiently managing a family of highly (re)configurable sys-
tems to allow for mass customisation [12, 13]. To compactly represent a
product line, i.e. the set of valid product configurations, we use a so-called
feature constraint, a propositional formula ¢ whose atoms are features [14-16]
and we identify features as service actions (offers as well as requests).

To effectively use these two variability mechanisms, we refine the classical
synthesis algorithm from SCT. We compute orchestrations, in the form of an
mpc, of a single valid configuration, i.e. such that it includes all mandatory
actions and none of the forbidden, besides fulfilling all necessary requests and
the maximal number of permitted requests. Here maximal is to be under-
stood in the sense that if the orchestration were to fulfill another permitted
request, then this would cause one of the other requirements to no longer be
fulfilled. An important technical result of this paper is that we can compute
the orchestration of a product line without computing the mpc for each of its
valid product configurations; it suffices to compute a small selected subset of
valid configurations. This guarantees efficiency and scalability of our novel
framework of contract automata.

Summarising, the main contributions of this paper are as follows:

1. A novel formalism for service contracts, called Featured Modal Contract
Automata (FMCA), which offers support for structural and behavioural
variability not available in the literature.

2. The new notion of semi-controllability (related to lazy actions), which
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refines both those of controllability (related to permitted actions) and of
uncontrollability (related to urgent actions) used in classical synthesis
algorithms from SCT. This notion is fundamental to handle different
service requests in the orchestration synthesis for FMCA.

3. A revised algorithm for synthesising an orchestration of services for a
single valid product.

4. An algorithm for computing the orchestration of an entire product line
by joining the orchestrations of a small selected subset of valid products.
It is worth noting that the number of valid products is exponential
in the number of features [17], thus only using few of them greatly
improves performance.

5. The open-source prototypical tool FMCAT implementing our proposal.’

Outline. In Section 2, we introduce our running example, a Hotel service
product line, and briefly survey and evaluate our tool FMCAT. We formally
define FMCA in Section 3, including composition, projection and control-
lability. In Section 4, we define the synthesis algorithms for FMCA. Two
notions needed to efficiently compute the orchestration of an entire product
line follow in Section 5, introducing so-called automata refinement, and Sec-
tion 6, providing a means to (partially) order the products of a product line.
In Section 7, we discuss related work, followed by our conclusions in Section 8.
All proofs of the results presented in this paper are in Appendix A.

2. Motivating Example: Hotel Reservation Systems Product Line

A (software) product line is a set of (software-intensive) products in a
portfolio of a manufacturer (or software house) that share common features
and that are, ideally, built from a set of reusable (software) components by
means of well documented variability [12, 13]. A feature represents an ab-
stract description of functionality and a feature model typically provides a
description of products in terms of features: each product is thus uniquely
characterised by a set of features. It is well known that a product can be
represented by a Boolean assignment to the features (i.e. selected = true
and discarded = false) and a feature model can thus be represented by what

! Available(with ashort video tutorial) at https://github.com/davidebasile/FMCAT/
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we call a feature constraint in this paper (i.e. a Boolean formula over the
features). As a matter of fact, checking if a product respects the constraints
expressed by a feature model, i.e. if it is valid, reduces to a Boolean satisfia-
bility problem that has efficient solutions [14-16].

2.1. The Hotel Reservation Systems Product Line and its Feature Constraint

We illustrate our approach with a product line of a basic franchise of hotel
reservation systems. We consider three types of service contracts: a Hotel
and two clients, called BusinessClient and EconomyClient, each with different
service requests and offers, and with its own feature constraint. A system is a
composition of these contracts, e.g. BusinessClient @ Hotel ® EconomyClient,
and the feature constraint of the Hotel service product line is the conjunction
of the feature constraints of the individual contracts. The 10 features concern
requesting/offering a singleRoom or sharedRoom, privateBathroom or shared-
Bathroom, payment by card or cash, its confirmation by invoice or receipt, and
the possibility of freeCancellation or noFreeCancellation. Furthermore, card
and cash are alternative features and there are two additional constraints:
invoice is selected in case cash is selected and sharedBathroom in case shared-
Room is. The resulting feature constraint ¢ of the Hotel service product line
is as follows, where @ denotes exclusive or and F the set of features:

¢ = (card@cash) A ( \ A
fEeF,f¢{card,cash}

(cash — invoice) A (sharedRoom — sharedBathroom)

2.2. The Valid Products of the Hotel Reservation Systems Product Line

As already said, a product p assigns a Boolean value to each feature, and
the atoms of a feature constraint ¢ mapped by p to true (false, resp.) are
called mandatory (forbidden, resp.).

Usually, in Software Product Line Engineering (SPLE), each feature is
either selected or discarded to configure a product. In other words, all varia-
bility is resolved and the interpretation of the atoms of ¢ is total. Here,
instead, we consider as valid products also so-called sub-families (in SPLE
terms), which are defined by a partial assignment satisfying ¢ (see the com-
ment after the 4 products below). This enables us to synthesise the orches-
tration of an entire product line by considering a few valid products only,
rather than computing all valid ones. This is one of the main results of our
paper, presented in Section 6.



To give an idea of the impact of our improvement, it suffices to note that
when no variability is left, the feature constraint ¢ characterises 288 product
configurations, each representing a different instantiation of all its features.
When the assignment is instead partial, as in our case, there are 4860 valid
products, but we will show below that only 4 of them suffice to characterise
the orchestration of the entire Hotel service product line. It is easy to imagine
that for real-world feature models of up to millions of configurations the gain
is considerable, confirming the scalability of our approach.

We partially order valid products by stipulating p; < ps if and only if the
sets of mandatory and forbidden features of py are included in those of p.
Accordingly, the mazimal products are the valid products maximal in < (cf.
Definition 17 in Section 6). The 4 maximal products of ¢ (out of 4860) have
the following sets of mandatory (R) and forbidden (F) features.

cash, invoice, sharedBathroom]; F : [card] (product P4854)
cash, invoicel; F : [card, sharedRoom| (product P4857)
card, sharedBathroom|; F : [cash] (product P4858)

( )

product P4859

;U;U;U;U

H
3
H
: [card]; F : [cash, sharedRoom]

A partial assignment that interprets the elements of R as true, those of F
as false and all the others as “don’t care” satisfies ¢ (cf. Definition 11 in
Section 4). Indeed, whichever Boolean value replaces “don’t care” leaves the
formula satisfied.

2.3. FMCA: Behavioural Representations of the Hotel Reservation Systems

As mentioned above, a feature constraint ¢ describes all the valid prod-
ucts of a product line. However, it has no immediate operational interpreta-
tion, in terms of the actions that the principals involved in a contract have to
perform in order to achieve their goals. We address this operational aspect
by using the aforementioned formalism of FMCA, which extend the model
n [9]. The composition of two FMCA is itself an FMCA (see below) and it
represents the composition of two service contracts.

Each FMCA A is a pair made of a special finite state automaton and a
feature constraint ¢, which is related to the automaton in the following way.
The labels on the arcs of the automaton identify the actions for requests
and offers, a subset of which corresponds to all features in ¢. We say that
A respects a product p whenever all features declared mandatory (forbidden,



Table 1: Classification of basic actions of FMCA distinguishing among
offers/requests (||), permitted/necessary (|) and lazy/urgent (|)

offers | requests
permitted necessary
lazy urgent
a [ [ ad aly aly,

resp.) by p correspond to actions that are reachable (unreachable, resp.) from
the initial state of A (cf. Definition 18 in Section 6).

Moreover, each automaton describes a contract where the actions corre-
sponding to offers are overlined and those to requests are not. Offers are
all considered permitted, while requests are either permitted or necessary at
different degrees, namely urgent or lazy (cf. Table 1 and Definition 2 in Sec-
tion 3). In this way, besides expressing that a request has to be matched (by
an offer), one can also specify to what extent this must occur, i.e. whether
the request must always (an urgent request) or eventually (a lazy request)
be matched in a contract. The behaviour of A is the language it accepts.

We now specify the automata of the three service contracts introduced in
the beginning of this section. Actually, we will illustrate different behavioural
descriptions. Notationally, permitted actions label dotted arcs, suffixed by <,
while urgent and lazy requests label (red and green in the pdf) full arcs and
are suffixed by O, and Oy, respectively (cf. Table 1 and Figure 2).

The automaton in Figure 2 provides the behavioural description of service
contract BusinessClient, in which a business client classifies the request for a
room as urgent and the request for the invoice as lazy; all other actions have
an obvious meaning and are permitted.

The automaton in Figure 3 describes the Hotel behaviour. It has several
points of non-determinism to comply with the requests of a BusinessClient as
well as those of an EconomyClient. It also has cyclic behaviour enabling it
to start new interactions with different clients. Finally, the hotel offers free
breakfast (action freebrk<) or requires to fill a captcha (action captcha) to
clients that pay by card and request an invoice (for the sake of example),
although not all of these actions have corresponding features.

The EconomyClient contract, depicted in Figure 4, is similar to its business
counterpart, but the single room request is lazy. Optionally a shared room
is requested instead of a single room, and a shared bathroom is requested.

Composition of two FMCA is similar to standard automata composition,
except that one’s request actions have to be matched by the other’s corre-
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Figure 4: The automaton for EconomyClient

sponding offers, if available. Inspecting the composition, we can determine
whether services are compliant, in the sense that all requests are fulfilled
(i.e., matched by offers). Additionally, we can further refine the composition
so that only compliant behaviours are possible, as illustrated in Section 2.4.

2.4. Orchestrations of the Hotel Reservation Systems Product Line

We intuitively show how to synthesise the orchestrations of the products
of a product line, again in the form of an FMCA. The orchestration of a
product p is defined as the largest sub-portion of A in agreement, i.e. all
requests are matched by corresponding offers, and respecting p. Below, we
discuss some examples of structural and behavioural variability.

Considering mandatory and forbidden feature constraints. We first illustrate
structural variability. We start by computing the orchestration of the com-
position A = BusinessClient ® Hotel ® EconomyClient for product P4858, i.e.
the mandatory features card and sharedBathroom are selected whilst the for-
bidden feature cash is discarded. The orchestration is in Figure 5, where
all requests are matched by corresponding offers. No interleaving of actions
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Figure 5: Orchestration of composition BusinessClient ® Hotel ® EconomyClient of the
three automata in Figures 2, 3 and 4 for the product P4858

from either component can occur (except for freebrk), because as soon as a
request is enabled, there is a matching offer available.

The orchestration of A for product P4859 is the same as in Figure 5, but
with state (¢p3, qus, ¢ps) and its incident transitions removed. Indeed, in this
product the feature sharedRoom is discarded, and hence so is the transition
labelled by action sharedRoom leading to (¢ps, qus, ¢rs)-

The Hotel service product line has only two maximal products in < that
have non-empty orchestrations, namely P4858 and P4859. Instead, products
P4854 and P4857 have empty orchestrations. Indeed, no cash payment is
ever performed by either client (recall that for both cash and invoice are
mandatory, while card is forbidden). In addition, invoice is unreachable (in
the clients’ contracts), because card is forbidden.

Note that mandatory and forbidden feature constraints are more demand-
ing than imposing a request action to be necessary: the feature constraints
of a product are global to a whole FMCA, while necessary requests are local
to its transitions. More in detail, if an action corresponding to a manda-
tory feature is unreachable, then agreement is violated (see above). Instead,
unreachable necessary requests do not spoil contract agreement.

The orchestration of a product line is the union (in automata theory
terms) of the orchestrations of its products. A main result of this paper is
based on the notion of canonical product, requiring it to have non-empty
orchestration and to satisfy a further mild condition of its forbidden actions
(cf. Definition 19 in Section 6). We can compute the orchestration O of a
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product line as the union of those of its canonical products, only, because
all the orchestrations of the non-canonical products are sub-automata of O.
In our example, the orchestration O of the Hotel service product line is the
union of the orchestrations of the two canonical products P4858 and P4859.

Considering necessary action requests. We now continue by illustrating be-
havioural variability. We first discuss why offers are always permitted. If free
breakfast were a necessary offer in Hotel, then we would have the unrealistic
scenario in which the hotel contract rejects all clients’ contracts. Indeed, no
agreement would be reached because in the clients’ contracts there is no free
breakfast request to match the offer.

Next we consider a composition of the Hotel service with both types of
clients and we show how urgent requests can be used for enforcing priorities
among service requests. To the best of our knowledge, this is not present in
any automata-based formalisms.

In the following, orchestrations always refer to product P4858. If Economy-
Client is served before BusinessClient, i.e. (EconomyClient ® Hotel) ® Business-
Client (we will see later that ® is non-associative), then both lazy matches

to = (qro,Ho0,B0; (singleRoom, singleRoom, ®)Oy, &7, 16,Bo)

t» = (Gro.mo.Bo, (sharedRoom, sharedRoom, )0y, (ks 1s.Bo)

are present in the composition, so preventing the urgent match
te = (@ro,H0,B0, (@, singleRoom, singleRoom)0.,, {ro, 16, B6 )

The absence of the urgent match causes the resulting orchestration to be
empty. Intuitively, it should be the converse: the business client should be
served before the economy client (i.e. t. instead of ¢, or ¢,). In that case,
i.e. (BusinessClient ® Hotel) ® EconomyClient, there does exist a non-empty
orchestration respecting a business client’s priority (cf. Figure 5).

2.5. Modelling and Analysing with the FMCAT Tool

We implemented in Java a prototypical tool called FMCA Tool (FM-
CAT) that supports the definition of FMCA and that synthesises its or-
chestration in terms of its mpc. It is open source, and available at https:
//github.com/davidebasile/FMCAT, including the models used in this pa-
per. FMCAT builds on CAT [18], a tool for contract automata, and it offers
the functionalities described below. Our tool exploits FeatureIDE [19], an

11


https://github.com/davidebasile/FMCAT
https://github.com/davidebasile/FMCAT

open-source framework for feature-oriented software development based on
Eclipse, offering different feature model editing and management tools.

Modelling with FMCA decouples tasks of software engineers from tasks
of experts in formal methods. Indeed, the syntactic description of a product
line as a feature model (interpreted as feature constraint) and the descrip-
tion of its semantics as an automaton are separate concerns. By separating
them, a software engineer can focus on designing a feature model and its valid
products, leaving the task of specifying the operational semantics to an ex-
pert in formal modelling. Subsequently, these two aspects can be seamlessly
integrated in the same FMCA, making it possible to detect inconsistencies
between the syntactic and semantic levels of the same formalism. In general,
a software designer would like to minimise the number of product configura-
tions that do not admit safe behaviour (i.e. empty orchestrations). Indeed,
valid products with empty orchestrations are such that the syntactic con-
straints provided by the feature model are not fulfilled by their behavioural
descriptions. By inspecting the orchestration of the product line, one can de-
tect all products with no safe behaviour (in the form of compliant services).
If there are any, one either amends the feature model or their behavioural
description so as to obtain non-empty orchestrations.

Consider once more the above example. The feature constraint ¢ of
the Hotel service product line forces an invoice to be emitted in case of
cash payments, and identifies cash and card payments as two alternative
features. When the cash feature is selected, it requires also the invoice feature
to be implemented while at the same time the card feature must not be
implemented. However, in the behavioural description of the Hotel service
in Figure 3, an invoice is emitted only for credit card payments, whereas a
mere receipt is provided in case of cash payments. As a result, the maximal
products P4854 and P4857 are not canonical because they require the cash
feature to be implemented. One can fix this inconsistency between ¢ and
the behavioural description by either removing the constraint cash — invoice
from ¢ or by swapping receipt with invoice in the Hotel automaton.

Note that for detecting possible inconsistencies of this kind it suffices
to only inspect the maximal products (here only 4), instead of all product
configurations (here 288) with a total Boolean assignment.

2.6. FEvaluation

To further corroborate our proposal, we provide an evaluation of the two
main innovations proposed by FMCA: behavioural and structural variability.
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Set-up of the Evaluation. We briefly evaluate FMCA using FMCAT (build
June 2019). The evaluation was carried out on a machine with Processor
Intel(R) Core(TM) i7-8700 CPU at 3.20 GHz, 3192 Mhz, 6 Core(s), 12 Logical
Processor(s) with 16 GB of RAM, running 64-bit Windows Version 10.0.17134
build 17134.

FEvaluating Behavioural Variability. First we evaluate behavioural variability,
and in particular the gain in expressiveness due to the novel notion of semi-
controllability. We will informally sketch an encoding of an FMCA into one
without lazy transitions and estimate the differences in the state spaces of
the two models.

As stated in Section 1, while permitted and urgent actions are related to
the notions of controllability and uncontrollability of SCT [7, 8], respectively,
lazy actions are related to a novel notion called semi-controllability. We
recall that a lazy request must eventually be matched, rather than always,
as is the case for urgent requests. Indeed, a lazy request allows to model a
frequent scenario in contracts where the satisfaction of a necessary request
can be delayed, as in case of the room request of EconomyClient. While
the synthesis algorithm cannot prune “bad” urgent transitions, it can prune
“bad” lazy transitions as long as there exists another lazy transition where
the same request is matched (cf. Section 4). Note that in general it is not
possible to know a priori whether a transition is bad or not, because this
depends on the given requirements to enforce (e.g. agreement, forbidden and
required actions).

Hence, the encoding A’ of an FMCA A containing n lazy transitions is
the union of 2" automata that are obtained by all possible combinations of
pruning a subset of the n lazy transitions of A and turning the remaining lazy
transitions into urgent. One of such combinations will prune exactly the same
transitions pruned by the synthesis and thus the resulting orchestration of
A’ will contain the orchestration of the original automaton A, among others
that are not maximally permissive. In the worst-case scenario, the number
of states of the encoding A’ will be the number of states of the original
automaton A multiplied by 2", plus an additional new initial state.

FMCAT has been equipped with a functionality that estimates the worst-
case number of states of the encoding discussed above. Table 2 reports the
results of the tool for the compositions discussed in this section. For each
automaton we display the number of states, the number of lazy transitions
and an estimation of the number of states of the encoding. As expected,
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Num. Num.lazy  Num. states

states transitions  of encoding
BusinessClient ® Hotel ® EconomyClient | 343 143 343 x (2143)—{—1
BusinessClient ® Hotel 54 9 54 x (2°) +1
EconomyClient ® Hotel 47 10 47 x (219) +
(BusinessClient®@ Hotel) ® EconomyClient | 340 144 340 x (2144)—1—1
(EconomyClient®Hotel) @ BusinessClient | 278 106 278 x (2196) 41

Table 2: Results about the expressiveness of lazy transitions

the results show that in the worst case there is an exponential growth in the
number of states of the automata, which quickly makes their analysis and
usage non-tractable.

Concluding, the possibility offered by FMCA of primitively expressing
necessary requests that must eventually be satisfied allows to reduce the
number of states by an exponential factor with respect to other formalisms
that only support controllable and uncontrollable actions.

FEvaluating Structural Variability. We now evaluate the structural variability
of FMCA, and in particular the introduction of a partial order of products to
reduce the number of configurations used to compute the orchestration (i.e.
the most permissive controller) of the family. While the literature contains
other attempts at synthesising the most permissive controller of a product
line [20, 21] (cf. Section 7), these require to compute the most permissive con-
troller for each product (in which all variability has been resolved) without
ordering the products. On the other hand, FMCA only considers canoni-
cal products. As shown in the remaining part of this section, ordering the
products allows to improve the performance and reduce the state space. To
evaluate the benefits introduced by FMCA, FMCAT was equipped with a
functionality for computing the most permissive controller of a family with
or without taking advantage of such partial order of products.

The results are displayed in Table 3. The table reports for each automaton
the number of states and the time needed by FMCAT to compute it. It also
reports the number of configurations for which an orchestration has been
synthesised and the configurations for which the orchestration is non-empty.
These last two columns are relevant when computing the orchestration of
the family. The first six rows report the various compositions used in this
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section. The next four rows report the orchestration of these compositions
for a specific product (denoted as K 4,, where A is the composition and p is
the product). These are the orchestrations discussed in Section 2.4. The next
three rows report the orchestration of the family for the various compositions,
by exploiting the partial order of products. In this case, the computation only
requires to analyse the four canonical products. As previously discussed,
products P4858 and P4859 are the only two canonical products used in the
orchestration of the family. Finally, the remaining three rows display once
again the orchestration of the whole family, but this time without exploiting
the partial order. In this last case, computing the orchestration requires to
analyse the 288 products originally generated by FeaturelDE, where those
with non-empty orchestrations are:

R: F\ F;F : [cash, receipt, sharedRoom, freeCancellation]  (product P86)
R: F \ F;F : [cash, receipt, freeCancellation] (product P94)
R: F\ F;F : [cash, sharedRoom, freeCancellation] (product P182)
R: F\ F;F : [cash, freeCancellation] (product P190)

These four products are indeed those generating the orchestration of the fam-
ily without exploiting the partial order. In particular, the orchestrations for
products P182 and P190 are identical to those of products P4858 and P4859.
However, the orchestration of the family also includes two non-relevant prod-
ucts, namely P86 and P94. Indeed, the orchestrations of products P86 and
P94 are included in those of products P182 and P190, and thus are not sig-
nificant for characterising the orchestration of the family.

Concluding, the experiments empirically show that FMCA, and in par-
ticular their partial order of products, reduces both the state space of the
orchestration of the family and the time needed to compute its orchestration.

3. Featured Modal Contract Automata

We now formally define Featured Modal Contract Automata (FMCA),
borrowing the following notation from [6, 22]. In our framework, we distin-
guish basic actions belonging to the sets of requests R = {a,b,c,...} and
offers O = {@,b,¢,...} where RN O = (. The alphabet of basic actions is
defined as ¥ = RUO U {e} where @ ¢ RU O is a distinguished element
representing the idle move. We define the involution co : ¥ — ¥ such that
(abusing notation) co(R) = O, co(O) = R and co(e) = e.
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Num. Time  Num. Used con-
states (ms) configu-  figurations
rations

BusinessClient ® Hotel ® EconomyClient | 343 71 - -
BusinessClient ® Hotel 54 - -
EconomyClient ® Hotel 47 - -
(BusinessClient@Hotel) ® EconomyClient | 340 55 - -
(EconomyClient®Hotel) @ BusinessClient | 278 22 - -
KusinessClient@Hotel@EconomyClientpsgss | 14 875 1 P4858
K BusinessClient®Hotel®EconomyClientpsgse | 19 080 1 P4859
K (EconomyClient@Hotel)2BusinessClientpagss | U 337 1 P4858
K (BusinessClientHotel) @EconomyClientpggss | 14 998 1 P4858
OBusinessClient@Hotel@EconomyClient 28 3220 4 P4858, P4859
O (EconomyClient@Hotel )@ BusinessClient 0 950 4 -
O (BusinessClient@Hotel )@ EconomyClient 28 2796 4 P4858, P4859
OBusinessClient@Hotel@EconomyClient 99 129600 288 P86, P94,
without PO P182, P190
O (EconomyClient@Hotel)BusinessClient 0 60186 288 -
without PO
O (BusinessClient@Hotel )@ EconomyClient 55 130994 288 P86, P94,
without PO P182, P190

Table 3: Results of the evaluation performed with FMCAT
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Let ¥ = (e1,...,e,) be a vector of rank r, = n > 1, and let v;) denote
the 7th element with 1 <+¢ < r,. By 917, - - - U,,, we denote the concatenation
of m vectors v;. From now onwards, we stipulate that in an action vector a
there is either a single offer or a single request, or a single pair of request-
offer that match, i.e. there exists exactly 7, j such that d(; is an offer and d;
is the complementary request; all the other elements of the vector contain
the symbol e, meaning that the corresponding principals remain idle. In the
following, let " denote a vector of rank m, all elements of which are e.

Definition 1 (Actions). Given a vector @ € X", if

-d=e"qae" nynyg >0mn;+ny+1=n, then @ is a request (action)
on « if o € R, whereas d is an offer (action) on o if « € O

- d=e"qae" co(a)e™ ny,ng,ng >0, n+ng+ng+2=n, thend is a

match (action) on «, where « € RUO

Actions @ and b are complementary, denoted by a X l;, iff the following holds:
(i) 3o € RUO s.t. @ is either a request or an offer on «; (i) d is an offer
(request, resp.) on « implies that b is a request (offer, resp.) on co(a).

The actions and states of contract automata are vectors of basic actions
and states of principals, respectively. The alphabet of an FMCA consists
of vectors, each element of which intuitively records the execution of basic
actions of principals in the contract.

An FMCA declares a product line of service contracts through (i) per-
mitted and necessary transitions; and (ii) a feature constraint ¢ identifying
all valid products (cf. Section 4). Modalities (i.e. permitted and necessary)
classify requests and matches, while all offers are permitted. Offers and per-
mitted requests reflect optional behaviour and can thus be discarded in the
orchestration.

We further partition the set of necessary requests into urgent and lazy re-
quests. Since these requests must be matched to reach an agreement among
contracts, they express another layer of variability that specifies if a nec-
essary request must always or eventually be matched in a contract. This
extension leads to an increasing degree of controllability, as formally shown
in Section 3.2. Table 1 in Section 2 depicts the different types of basic actions.

The definition of an FMCA follows, which is essentially a finite state
automaton with an alphabet of basic actions appropriately partitioned, plus
a propositional logic formula used to characterise the product line.
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Definition 2 (Featured modal contract automata). Assume as given a finite
set of states Q = {q1,q2,...}. Then a featured modal contract automaton
A of rank n > 1 is a tuple (Q, ¢, A®, AP+, A%t A° T, p, F), where

- Q:QIX...XQnan
- qo € Q is the initial state

- A® A9 AP C R are (pairwise disjoint) finite sets of permitted, urgent
and lazy requests, resp.; we denote the set of requests by A" = A° U
APy AP

- A° C O is the finite set of offers

-TCQxAxQ, where A= (A"UA° U {e})", is the set of transitions
partitioned into permitted transitions T and necessary transitions T,
constrained as follows. Givent = (q,a,q") € T,

* @ is either a request or an offer or a match

*Viel...n, dg = e implies quy = ¢’

*t €T iff @ is either a request or a match on a € A° or an offer
ona € A°; otherwise t € T"

- @ 1s a propositional logic formula, whose atoms belong to RU O

- F C Q is the set of final states
A principal FMCA (or just principal) has rank 1 and A" N co(A°) = 0.

For brevity, unless stated differently, we assume a fixed FMCA A =
(Qa,q0., A%, ALY, AE{, A%, T, pa, Fa) of rank n. Subscript A may be omit-
ted when no confusion can arise. Moreover, if not stated otherwise, each
operation f on one of the elements of the tuple (e.g. union f(A")) is in-
tended to homomorphically act on its elements (e.g. f(A°), f(A"), and
F(A79)). Also, let T°Y" be a shorthand for T° U T and likewise for other
transition sets. Finally, we call a transition t request, offer or match if its
label is such. An FMCA recognises a language over (annotated) actions.

Definition 3. Let O € {<¢,0,,0,}. A step (w, q) % (w',§) occurs iff w =
aow', w e (AU{O})* and (§,d,q") € T°. We write 7% when w,w' and
q" are immaterial and (w,q) — (w',q’) when @O is immaterial. Let —* be
the reflexive and transitive closure of transition relation —. The language of

Ais L(A) ={w| (w,q)>*(,q), € F}.
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By an abuse of notation, the modalities can be attached to either basic
actions or to their action vector (thus, e.g., (ady, @) = (a,a)0y).

3.1. Composing FMCA

The FMCA operators of composition are crucial for generating (at bind-
ing time) an ensemble of services. By adding new services to an existing
composition, it is possible to dynamically update the product line (i.e. both
its feature model and its behaviour) and to synthesise, if possible, a compo-
sition satisfying all requests defined by the service contracts (cf. Section 4).

A set of FMCA is composable if and only if the conjunction of their feature
constraints leads to no contradiction.

Definition 4 (Composable). A set Set = {A; | i € 1...n} of FMCA is
composable iff (A geser $4,) b false.

We now formally define our first (non-associative) composition operation,
intuitively presented in Section 2. Its operands A;, i € 1...n are either
principals or composite services. Intuitively, product composition ® partially
interleaves the actions of all operands, with one restriction: if two operands
A; and A; are ready to execute two complementary actions (i.e. @; X @;) then
only their match is allowed and their interleavings are prevented. Moreover,
the generated match will inherit the modality of the request. This was shown
in Section 2 and is further illustrated in Example 1 following the definition.

In detail, the transitions of the composite service are generated as follows.

Case (1) in Definition 5 generates match transitions starting from two
transitions with complementary actions (i.e. @ X @;), coming from two
operands A; and A;. If, e.g., (,d;,q}) € T, then the resulting match
transition is marked as necessary (i.e. (¢,¢,¢") € T"). If both complemen-
tary actions are permitted, then their resulting match transition ¢ is marked
as permitted. All other principals not involved in ¢ remain idle.

Case (2) in Definition 5 generates all interleaved transitions if and only if
no complementary actions can be executed from the composed source state .
An operand A; executes its transition t = (q;, @;, ¢";) while all others remain
idle. The composed transition is marked as necessary (permitted) only if ¢
is necessary (permitted, resp.). Note that condition @; M @; excludes pre-
existing match transitions of the operands being involved in new matches.
Recall that we implicitly assume the set of labels of an FMCA of rank m to
be A C (A"U A°U {e})™.
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Definition 5 (Composition). Let A; be a composable FMCA of rank r;,
i€l,...,n, and let O € {<&,0}. The product composition ®;eq ., A; is the
FMCA A of rank m = Y";c, ., 7i, where

_Q:le...me thhqBZQquBn
- A" :Uiel...n A;; Ao:Uz‘el...nA;‘)f
ST CQXxAXQ st (q,6,7") €T iff, when =q¢, -+ G, € Q,

1. either 31 < i < j < n st (G,d@,q)) € TO, (@, d;, ) € TPV,
a; X d; and

c=eo"d; o a;® withu =1+ +7r;_,
U:T‘i+1+"'+7'j71, Z:Tj+1+"‘+7’n, |51:m
and ' =q1 - Gi1 Giv1 " Gj-1 (7" Tit1* G

2. 0or31<i<nst (¢,d,q )GTO nd
c=eo"q;®" withu=1mry+---+1ri_1,
U:ri+1+-~-+rn,\c_1:m,
7"=qGi-1 @5 Gi+1- o and Vj #i, 1 <j<n

- oy

s.t. (qj,d;,q75) € TJ-OUO, a; X a; does not hold
- 9= Niet.n ¥i
S F={G- G €Q|GEF, icl..n}

Example 1. In Figures 2 and 3, two principals discussed in Section 2 are
depicted. A sub-portion of their composition BusinessClient ® Hotel, which is
their non-empty orchestration, is shown in Figure 6. The outgoing transition
qBo,Ho (singleloom. singleRoom)Buy ;s oy example of an wrgent match between the
urgent request singleRoomO, of the first principal and the permitted offer
singleRoom< of the second. Recall that a match excludes any interleavings

of principals in the composition. For example, in this composition neither
of the transitions qpo,mo (singleRoomBy, e), ¢y JBO’HOMM@ are allowed
because of (singleRoomO,,, @) X (e, singleRoom<).

'4

4 o
(singleRoom, (noPreeCancellation, (privateBathroom,

Ptog,
s .
® singleRoom)0, H,u["l-{il,’Cﬂ71(,‘(*,”!17‘,’/7(171)Q privateBathroom)<& (card, mrd)<> (receipt, Teceipl) O
> > >

Figure 6: Orchestration of composition BusinessClient ® Hotel of the two automata in
Figures 2 and 3 for the canonical product P4859
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In the following, we assume every FMCA A of rank r4 > 1 to be
composed by FMCA with the composition operators described in this section.
We now define the projection operator [J'(.A), which retrieves the principal
A; involved in A and identifies its original transitions and feature constraint.
This operator is now formally defined (recall from Definition 2 that the set
A" is the union of all requests, permitted and necessary, while 7¢ and T"
partition the set T"). Note that ¢ = A;c1., @i as dictated by Definition 5.

Definition 6 (Projection). Let A be of rank n. The projection [T'(A) =
(IT'(Q), dosy, IT'(A°), IT'( D) IT'(A7), IT(A°), IT(T), IT'(¢0), IT"(F))

on the 1th pmnczpal i€l...n,is st
-I1Q) ={dw 1 7€ Q}
-IA) ={ala€ A", (q.0,¢) €
-II'(A%) ={a|ae A, (¢.a,¢)

(

- I1(T°) = { (@), da) 4" o) | (&

- T(T7) = { (@), @), T ) | ((d,7") € T Ny € R) }
- [T (Nieron 0i) = @i
-I(F) ={qw | de F}

The associative composition operator K is defined below on top of the
operators ® and [[. First, the corresponding principals of the operands are
extracted by [] and then they are recomposed all together in a single step
by ®. This causes all pre-existing matches to be rearranged.

Definition 7 (A-composition). Let A;, As be two composable FMCA of rank
m and n, resp., and let I = {IT"(A1) |0 <i<m}U{I(A) |0<j<n}.
Then the a-product composition of A; and Ay is A1RAy = @ 4.c1 Ai-

Note that ® models a dynamic composition policy: new services joining
composite services can intercept already matched actions.

Hence, by changing operators of composition or the order of composition
different composite FMCA can be obtained, as exemplified below.
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Example 2. Consider again the example from Section 2 and compositions
(EconomyClient @ Hotel) ® BusinessClient and EconomyClient ® (Hotel ®
BusinessClient).  In both, the transition {go mo 5o (o, singleroom, singleroomBuy), ;g
allowed, whereas it is not in the composition (EconomyClient @ Hotel) &
BusinessClient, which has an empty orchestration.

3.2. Controllability

We base our algorithm for orchestration synthesis on that used to obtain
the most permissive controller (mpc) in Supervisory Control Theory (SCT).

The purpose of SCT is to synthesise the mpc that enforces only “good”
computations in finite state automata in which forbidden states are never
traversed while marked (i.e. final) states represent the successful termination
of a task. To this aim, SCT distinguishes controllable actions (those that
the controller can disable) and uncontrollable actions (those that are always
enabled), besides partitioning actions into observable and unobservable (obvi-
ously uncontrollable). If all actions are observable, then an mpc exists which
never blocks a good computation, if any. Ideally, the actions that ruin an
orchestration of service contracts should be removed by the synthesis algo-
rithm. However, this can only be done for actions that are controllable in
the orchestration.

Besides the classical controllable and uncontrollable actions, we intro-
duce the new semi-controllable ones. Moreover, we call a transition control-
lable /uncontrollable if its action label is such.

All permitted actions are fully controllable. Urgent actions (i.e. requests
and matches) are uncontrollable. Note that in these cases controllability and
uncontrollability can be checked locally on a single transition.

Lazy actions (i.e. requests and matches) are semi-controllable. Semi-
controllable transitions may lead to either controllable or uncontrollable
transitions, depending on a global condition to be checked on the whole
automaton resulting from a composition. If this condition is satisfied, then
the semi-controllable transition is also controllable, otherwise it is uncontrol-
lable. This condition states that the request (labelling the semi-controllable
transition) must be matched in at least one transition in the automaton.
Note that this is not the case for urgent actions that are uncontrollable in
every transition in which they appear. The synthesis algorithm can therefore
safely discard those lazy transitions leading to bad states (because they are
controllable), provided that in the resulting automaton that specific request
has been matched somewhere else. The following auxiliary definition will
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help in defining semi-controllability. It introduces dangling states, i.e. those
unreachable or from which no final state can be reached.

Definition 8 (Dangling state). The state ¢ € Dangling(A) is dangling iff
Fw s.t. G§*q or qg=rqr € F.

The next definition classifies the transitions in an FMCA A. Differently
than what happens in standard SCT, all the transitions of FMCA are ob-
servable, because contracts declare the executions of a principal in terms of
their requests and offers. Then we define the transitions that are controllable
or not. We state the conditions that make a semi-controllable transition ¢
controllable or not. Intuitively, ¢t is controllable if in a given portion of A
there exists a lazy match transition t', with source and target not dangling,
and in both ¢ and ¢’ the same principal, in the same local state, does the
same request. Otherwise, ¢ is uncontrollable.

In what follows, we call A’ sub-automaton of A (in symbols A" C A)
whenever p 4 = 4 and the other components of A" are included in the
corresponding ones of A.

Definition 9 (Classifying transitions). Lett = (¢, d1,q1") be an (observable)
transition in A. Then

- If @ is an action on a€ A°, then t is controllable (in A);
- If @y is a request or a match on a€ A, then t is uncontrollable (in A);

- If dy is a request or a match on a€ A™¢, then t is semi-controllable (in A).
Moreover, given A'C A, if t is semi-controllable and 3t' = (g, d2, ¢2') € Ty,
s.t. dy is a match, ¢, @' & Dangling(A'), i) = ) and aig) = dag =a,
then t is controllable in A’ (via t'); otherwise, t is uncontrollable in A’.

Example 3. Consider A = BusinessClient ® Hotel ® EconomyClient from
Section 2, its orchestration K a,,,, in Figure 5 and the trace

(singleRoom, singleRoom, )0, (e, singleRoom singleRoom)Dg>

— — * —
4dB0,H0,E0 qB6,H6,E0— {B3,H3,E0

The semi-controllable transition t = ¢po, mo.ko (e, singleRoom, singleRoom)Ogy Tx
. . s gl = (e, singleRoom, singleRoom)Oy

is controllable in K ap,,, via t' = §ps H3 ko € TK 4p s
Thus, t is safely removed in K 4,,,, because the corresponding request appears
in another transition in a match (in this example t').
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(singleRoom, (noFreeCancellation, (privateBathroom,

Figure 7: A spurious composition Cy;

Example 4. Consider A = BusinessClient @ Hotel from Fxample 1 and its
orchestration K a,,,, displayed in Figure 6. The semi-controllable transition
t = (¢Ba2,m2, (invoice, invoice) Oy, Gps pr) in T4 is controllable in ICa,,,., via
t" = (qB2.mo, (invoice, invoice) Oy, {B3.13)-

Conwversely, consider the ill-formed orchestration Ky, in Figure 7, obtained
Jrom K ap,e5s bY Temoving states Gpa mo and qps g7 and its incident transitions
(including t'). Now no other matches for invoiced, are reachable. Hence, in
this case, t is uncontrollable in KCy;. Indeed, Ky cannot be synthesised starting
from A because t cannot be removed without violating the constraints in A.

4. Controller Synthesis for FMCA

We now extend the standard synthesis algorithm of SCT for computing
the mpc to also deal with the newly introduced semi-controllable actions.
Of course, with only urgent and permitted actions, the standard synthesis
of SCT is immediately applicable. Moreover, we want to synthesise an or-
chestration of services that satisfies the feature constraint. To this aim, the
synthesis algorithm computes the mpc of a valid product of the product line.

We first recall from [9] the properties of (modal) agreement and of (modal)
safety of FMCA. Intuitively, a trace is in agreement if it is made of matches
and offer actions only. An FMCA is safe when all traces of its language are
in agreement, and it admits agreement when at least one of its traces is such.

Definition 10 (Modal agreement, modal safety). Let O € {<,0,,0,}. A
trace accepted by an FMCA is in agreement if it belongs to the set

A={we (X"0)"|Vis.t. wy =dO, dis a match or an offer, n > 1}

An FMCA A is safe iff Z(A) C A; otherwise it is unsafe. Finally, if
ZL(A)NA#D, then A admits agreement.

Example 5. The FMCA in Figure 6 admits agreement because the following
trace belongs to its language and to the set 2

(singleRoom, single Room)O,, (noFree Cancellation, noFreeCancellation)<

(privateBathroom, private Bathroom)< (card, card)(receipt, receipt)
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A few auxiliary definitions follow, which help to present our algorithm for
synthesising an orchestration of an FMCA, viz. its maximal safe sub-portion.

Whilst generally products are total interpretations of a feature constraint,
in a product we allow some atoms to have a “don’t care” value by letting
the interpretation function to be partial. We now define when a product is
valid under a given, possibly partial, interpretation, and which are the basic
actions that are mandatory and forbidden in the contract.

Definition 11 (Valid products). Let ¢ be a formula over RU O and let
P >p:RUO = {true, false} be a (partial) interpretation function.

Then [¢] = {p € P | ¢ |5, true} is the set of all valid products of .
Furthermore, let Mandatory(p € P) = {a € RUO | p(a) = true} and let
Forbidden(p € P) ={a € RUO | p(a) = false }.

Now, we formally define when a state is “bad”, i.e. a transition outgoing
from it cannot be blocked by the orchestrator, be it forbidden or a request
that is not matched. This is because such transitions violate the constraint
put by the predicate ¢ or they violate the agreement property. We also define
when a transition of an FMCA is forced by its controller.

Definition 12 (Uncontrollable disagreement). Let A be an FMCA, K C A,
and let p € [oa]. A transition t =§% € Ty is forced in A by K iff (i) t is
uncontrollable in IC or (ii) there exist no t' € T, t' # t with source § & F.
A state ¢ & Dangling(KC) is in uncontrollable disagreement w.r.t. p by K
iff there exists a trace G454 made by forced transitions only, and either

1. an action occurring in w belongs to Forbidden(p) or w ¢ A; or
2. for all traces q_’lw—l>*cj’f € Fu, condition (1) above holds for w'.

Example 6. State ¢p2 g2 of A = BusinessClient® Hotel from Example 1 is in
uncontrollable disagreement w.r.t. P4859 by Ky, (cf. Figures 6 and 7) because
the transition (q2,m2, (invoice, invoice) Oy, Gps ur) € Ta is uncontrollable and
forced in Ky (cf. Example 4), and from state qs ur the final state g3 s can
only be reached by executing the request action (e, captchal>) (¢ ).

Before giving the algorithm that synthesises an orchestration for a con-
tract, we introduce the notion of mpc for an FMCA. Intuitively, given A and
one of its valid products p, the mpc IC of p is an FMCA that allows all traces
of A in agreement with no states in uncontrollable disagreement w.r.t. p by
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KC, and blocks all the others. Moreover, all actions that are mandatory in p
must occur in C whilst none of the forbidden ones. It turns out that IC is
unique up to language equivalence.

Definition 13 (mpc of product). Let A, K be FMCA and let p € [pi].
Then K is a controller of p iff the following hold

1. K is safe
2. Dangling(K) = ()
3. either £ (K) =0 or Ya€ Mandatory(p) Jwe L (K) s.t. a occurs in w

4. Bw € Z(K) s.t. w contains actions Forbidden(p) or g%, @042 T4
and i s in uncontrollable disagreement w.r.t. p by IKC.

A controller IC of valid product p of A is the most permissive (modal) con-

troller (mpc) iff for all controllers K' of p, L (K') C Z(K) holds.

Example 7. All orchestrations discussed in Section 2 are the mpc of their
corresponding service composition for either products P4858 or P4859.

The rest of this section presents an iterative algorithm that, given an
FMCA A, computes the mpc of one of its products p. Intuitively, the al-
gorithm iteratively builds the set of bad states, i.e. those in uncontrollable
disagreement, and it detects the bad transitions, i.e. those leading to such
states. Recall that the bad states are those that cannot prevent a necessary
request or a forbidden action to be eventually executed. Checking whether
a transition is bad requires to inspect the whole automaton A to be able to
decide whether a given transition is controllable or uncontrollable (cf. Defi-
nition 9). Apart from discarding the transitions forbidden by the product p,
this is the main difference between our synthesis algorithm and the standard
synthesis algorithm of [7], while—as expected—our algorithm still removes
all requests that are not matched.

More precisely, we first let the initial mpc Ky be the whole A, from which
we remove its bad controllable transitions. The auxiliary set of bad states
Ry is also initialised with the source states of the bad uncontrollable transi-
tions and with the dangling states of KCy. At each iteration 4, the algorithm
prunes the controllable transitions with bad target and the uncontrollable
transitions with bad source from ;. Moreover, R; is updated by adding to
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R;_1 (i) the newly generated dangling states; (ii) the sources of uncontrol-
lable transitions with bad target; and (iii) the sources of those transitions
(of A) not belonging to K; that become uncontrollable (and bad) because
of the pruning above, i.e. the sources of those transitions that turned from
semi-controllable to uncontrollable because of pruning (cf. Definition 9). The
algorithm terminates when no new updates are available, and the synthesised
automaton, say /C,, is the mpc of p. Of course, if the initial state is bad (in
R,,) or some action mandatory in valid product p is unavailable in KC,,, then
the mpc is empty.

Definition 14 (Synthesis). Let A be an FMCA and let p € [pa]. The
function f : FMCA x 29 — FMCA x 29 is iteratively defined as follows.
Let Ko = (Q, o, A®, AP« AP A° T \ {t controllable in A | t request V
a € Forbidden(p) }, o4, F), let Ry = Dangling(Ko) U{q | ({ =) =t € T}
on a uncontrollable in Ky and (t request V a € Forbidden(p)) }.
Then f(/Ci_l, Rz‘—l) == (K:“ Rz), where

- ’CZ = < Q? q_67 A<>7 ADu7 ADZ’ AO7 TIC@? @A? F>7 with
Tic,=Tk, \({(T— q')=t€Tx,_, | t controllable in K;—1, ¢’ ER;_1 }
U{(7—)=1teTx,_, |t uncontrollable in KC;_1, GER;_1})

- Ri=R, . U{q| (¢ — ¢") €T, uncontrollable in K;, §¢ Ri—1, ' € Ri_1}
U{q| (§—) € T4 lazy uncontrollable in IC; } U Dangling(K;)
The following property is immediate.

Proposition 1. Given two FMCA A, A" and two sets of states R, R', let
(A R) < (A,R)if Ty DTy and RC R'.

The function f of Definition 14 is monotone w.r.t. < and, stipulating
that ICo is as in Definition 14, its unique fized point is:

(Kn, Rn) = sup({ " (Ko, Ro) [ n € N })
The definition of the mpc for a valid product p is now straightforward.

Definition 15 (Computing mpc). Let (K., R,) =sup({ [ (Ko, Ro) | n€N })
as in Proposition 1 and let T'={t=q— € K,, | t controllablein IC,, € R,, }.
Then the mpc K4, for the valid product p of A is:

() if g € R, or 3a € Mandatory(p) s.t. Vt € Ty, :
K4 = t is not a transition on a

’ (Q\ Ry, 4o, A®, AP APt A° Ty \'T', F\R,) otherwise
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We now prove the main result of this section.

Theorem 1 (mpc for product). Let A be an FMCA and let p € [p4] be a
valid product. The FMCA K4, computed through Definition 15 is the mpc
for the valid product p of A.

Once obtained the mpc, one can construct the controlled system through
a standard synchronous composition of A and K4, (and not through the
operators in Definition 5). As a matter of fact, it is unnecessary to specify
the controlled system, because in our framework the mpc s the orchestration
itself, and the needed interactions between the orchestrator and the principals
are left implicit (for a longer discussion, cf. [22]).

5. Refining FMCA

Based on the notion of controllability of Definition 9, we now define a
refinement relation between FMCA in the classical sense such that a refined
automaton (i.e. with less states and/or transitions) still preserves certain
properties of interest of the original automaton. We will then use this notion
to efficiently compute the orchestration of a given product line.

As for the standard modal refinement [23], we stipulate that an FMCA A,
refines an FMCA A when T4, C T4. More precisely, all the uncontrollable
transitions of A are also present in A,, and a subset of the controllable ones
of A also belong to A,. In addition, we require that a semi-controllable
transition that is controllable in A must be present in A,, if it turns out
to be uncontrollable there (this means that all the transitions making it
controllable in A are not present in A,, as dictated by Definition 9).

Definition 16 (Refinement of FMCA). Let A and A, be two FMCA. Then
A, is a pre-refinement of A iff

-ACA
- t € T4 is uncontrollable implies t € T4,

- t € Ty is semi-controllable and At' € Ty, s.t. t is controllable via t' (in
A, ) implies t € Ty,

Finally, A, is a refinement of A, in symbols A, T A, if it is obtained from
a pre-refinement of A by removing all the dangling nodes and the transitions
they share.
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Example 8. Consider K a,,,, in Figure 6 and the automaton K' obtained
by adding to K ap,, transition t = (qp2.m2, (invoice, invoice) Oy, Gps u7), state
qBs.u7 and transition ({s.u7, (freebrk<, o), Gps ).

Then the refinement KC 4,45, T K' holds because t € Ti is semi-controllable
i K Apgess and controllable via (Gp2,mo, (invoice, invoice) Oy, 0p3,H3)-

Finally, consider again Ky from Example 4 in Figure 7; in this case it
holds that KCyq L K" because t € Tir, t & Ky but t is uncontrollable in K.

The next theorem states that the mpc of valid product p of A produces
the largest refinement of the principals in A guaranteeing that there exists an
agreement among the parties. Intuitively, if a permitted action does not spoil
the overall agreement, then it will be available in the composition of services.

Theorem 2 (Largest refinement). Let A = ®;c;A; be a composition of
principals A;, let p be a valid product of A, let K4, # () be its mpc computed
through Definition 14 and let Vi € I : 11;(K4,) = A,, be its principals. Then:

VZ'EIZ.AHE.Ai <1>
K' # () controller of p of A implies Vi€ I:1L(K') C A,, (2)

Example 9. Let IC be the orchestration of BusinessClient @ Hotel in Figure 6.
Then (IT*(K) = Client,) C BusinessClient.

6. Feature Constraints and Products

In Section 4, we presented the algorithm for synthesising an orchestration
of service contracts for a specific product of a product line. The number of
valid products of a product line is in general exponential in the number of
features [17]; here we construct the orchestration of the entire product line
only using a small selected subset of valid products.

All valid products [¢] of a product line can be partially ordered by
(component-wise) set inclusion, providing us with the basis for computing
the orchestration of a product line.

Definition 17 (Partially ordering [¢]). Let [¢] be the set of valid products.
Then ([¢], <) is a partially ordered set, where p < p’ (in other words p is a
sub-product of p’ or p’ is a super-product of p) iff component-wise

(Mandatory(p'), Forbidden(p")) C (Mandatory(p), Forbidden(p))

Morever, the maximal products are the maximal elements of <.
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Example 10. The feature constraint @ in Section 2 has 4860 valid products
(recall that we also consider partially interpreted products). Three exem-
plary products are the mazimal product P4858 (cf. Section 2) with manda-
tory features {card, sharedBathroom} and forbidden feature {cash}, product
P4829 with mandatory features {card, sharedBathroom} and forbidden fea-
tures {cash, freeCancellation} and, lastly, product P4832 with mandatory fea-
tures {card, sharedBathroom, privateBathroom} and forbidden feature {cash}.
Thus follows P4829 < P4858 and P4832 < P4858.

6.1. FMCA respecting valid products

The validity of a product p is defined in logical terms, but it is convenient
to see how it is reflected in the behaviour of an FMCA A. Intuitively, all
the mandatory actions in p correspond to executable transitions in .4 and no
actions forbidden in p have executable counterparts in A.

Definition 18 (Respecting validity). An FMCA A respects p € o] iff

1. Ya € Mandatory(p) 3(q,a,q") € Ty s.t. @ is an action on a and §,q" &
Dangling(A), and

2. Vb € Forbidden(p) 3(q, b, q") €Ty st b is an action on b and §,q’ ¢
Dangling(A).

We now prove that the partial order on valid products is such that if A
respects one of them, then it respects all its super-products.

Theorem 3 (Respecting validity is preserved by =<). Let A be an FMCA
and let p,p’ € [oa]. Then:

(A respects p and p < p') implies A respects p’

Example 11. While P4858 and P4859 from Section 2 are maximal products
featuring payments made by credit card, the maximal products P4854 and
P4857 correspond to the Hotel product requiring payments by cash (and hence
forbidding payments by credit card). Both products P4858 and P4859 are
respected by BusinessClient @ Hotel @ EconomyClient (cf. Figure 5), whereas
P4854 and P4857 are not. Consider again product P4829 from Example 10.
Since P4829 < P4858 and BusinessClient ® Hotel @ EconomyClient respects
P4829, it also respects P4858. Moreover, every sub-product of P4854 or P4857
is mot respected by all the given orchestrations (clients never pay cash).
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The theorem above suggests an efficient procedure for singling out valid
products respected by A: visit the partially ordered set ([¢], <) in top-down
fashion, starting from the maximal ones, and discard the subsets of products
rooted in p if A does not respect p.

The following lemma relates (i) the existence of an mpc for a valid product
p of A to (ii) the notion of respecting validity. While (i) implies (ii), the two
notions imply each other whenever the set of actions mandatory in p is non-
empty. Finally, Lemma 1(5) complements Theorem 3 and says that if a valid
product p has a non-empty mpc, then there exists a p’ such that p’ < p and
p’ has a non-empty mpc.

Lemma 1. Let K4, be the mpc of a product p of A. Then.:
ZL(Ka,) #0 implies K4, respects p (3)

(KCa, respects p and Mandatory(p) # 0) implies L(Ka,) #0  (4)
(L (Ka,)#0 and I={p'#p | P/ 2p}#0) implies Ip'€1: L(Ka,)#0 (5)

Example 12. Consider BusinessClient ® Hotel ® EconomyClient from Sec-
tion 2. The orchestrations of products P4858 and P4859 are non-empty, and
by Lemma 1(3) it follows that both products are respected in their orches-
tration. Conversely, since both products have a non-empty mandatory set
of actions and are respected by their corresponding mpe, by Lemma 1(4) it
follows that their orchestrations are non-empty. Finally, consider products
P4832 and P4829, which are both sub-products of P4858 (cf. Example 10).
By Lemma 1(5) it follows that there exists a sub-product of P4858 with non-
empty orchestration. Actually, both products P4832 and P4829 are such.

Note that in general the converse of Lemma 1(3) does not hold, because
respecting validity ignores agreement, which is enforced by the mpc. A trivial
counterexample is an A not admitting agreement and with products with no
mandatory features.

The following lemma shows that the mpc K 4, for a valid product p of A
is a refinement of the mpc IC A, of a super-product p’. In other words, the
partial order on valid products induces a refinement of controllers.

Lemma 2. Let A be an FMCA and let p,p’ € [pa]. Then:

p=p and L(Ka,) #0 implies K, EKa,
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Example 13. Consider again A = BusinessClient ® Hotel ® EconomyClient
from Section 2, the maximal product P4858, and its sub-product P4844 with
mandatory features {card, sharedBathroom} and forbidden features {cash,
sharedRoom}. Since the orchestration K 4,,,, is non-empty, by Lemma 2 it is
a refinement of the orchestration K a,,,., of A for product 4858 (depicted in
Figure 5). Indeed, K a,,,,, is obtained from IC a,,,., by removing state Gps ps ks
and its incident transitions.

An important consequence of Lemma 2 is that we can compute the or-
chestration O 4 of a product line A without generating the mpc for each of its
valid products. Indeed, O 4 is the union of some controllers of certain valid
products defined below, where we introduce the relation < that is clearly an
equivalence relation. Note that in the following we refer to the set of valid
products of A with non-empty controllers, partially ordered in the usual way.

Definition 19 (Canonical products). Let A be an FMCA, let p,p’ € [pal,
let ME(A) be the set of mazimal elements of ({p | £ (Ka,) # 0}, =), let

p=p iff Forbidden(p) = Forbidden(p')

and let the canonical products p. € CP(A) be the representatives of the
equivalence classes of ME(A)/=.

Intuitively, a canonical product represents all the maximal elements in <
that have the same set of forbidden actions. Note that the information about
mandatory actions is ignored by the equivalence relation =< because we are
only considering non-empty controllers.

Example 14. For A = BusinessClient ® Hotel ® EconomyClient from
Section 2, as before, we obtain ME(A) = {P4858, P4859}. Furthermore,
the product P4844 of Example 13 has the same set of forbidden features as
mazximal product P4857, and P4844 < P4857. Finally, P4858 and P4859 are
the canonical elements of their (singleton) equivalence class in ME(A)/ <.

The orchestration of the product line is now defined as the union of the
orchestrations of the canonical products, where union is the standard oper-
ation on automata.

Definition 20 (Orchestration of product line). The orchestration of an
FMCA A is defined as:

Os= U Ka

peCP(A)
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The canonical products fully characterise the mpc of each valid product
in A as refinement of the orchestration of the product line, as guaranteed by
the following theorem.

Theorem 4 (Refinement of product line). Given the product line orchestra-
tion O 4 from Definition 20, it holds that:

Vp € [pal : L(Ka,) #0 implies Ka, E Oy

Example 15. Consider again A = BusinessClient @ Hotel ® EconomyClient
from Section 2. Its orchestration of the product line is O = K Ap55 YK Apagso-
Moreover £ (K ap,g,,) 7 0 (¢f. Example 13) and, by Theorem 4, K 4p,q,, = O 4.

We now sketch an algorithm that incrementally computes the synthesis
of the mpc for a valid product p of A (starting from the canonical products).
First compute the mpc of the immediate super-products of p, then intersect
all the resulting automata (with the standard intersection operation on au-
tomata) and, finally, apply to it the procedure defined in Definition 15 to
obtain K4,. This algorithm is based on Theorem 4 and its correctness is
guaranteed by the following theorem.

Theorem 5 (Efficient mpc synthesis). Let p € Depth(A,n), where
Depth(A,n) = {p|p € [pal, |Mandatory(p)| + |Forbidden(p)| = n }
Then:

Ka,#() and Depth(A,n-1)#0 implies K4, T N Ka,

p
p=p’€Depth(A,n-1)

Example 16. Let A be as in Example 13, and recall that it has a non-empty
orchestration of product P4844. We obtain Depth(A,3) = {P4858, P4859},
P4844 € Depth(A,4), P4844 < P4858, and P4844 < P4859. Theorem 5

guarantees that ICAP4844 C IC-AP4858 mICAszssg and thus }C-AP4844 = IC-AP4858 mICAszssg'

The algorithm sketched above is more efficient than the standard ones
(cf., e.g., [20]) that compute the controllers for all the valid products of a
given product line, without taking advantage of the fact that they share some
parts, as expressed by the relation C.
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7. Related Work

Many formalisms exist for modelling and analysing service contracts. In
this section, we first discuss some main differences between the most repre-
sentative ones and FMCA, after which we discuss the basic differences with
automata-based formalisms from Component-Based Software Engineering.

In [24-26], behavioural contracts of web services are described by CCS-
like process algebrae, which model service features through input and output
actions that synchronise. They have different, generally weaker notions of
contract compliance than ours, e.g. only involving two parties. Choreogra-
phies were studied in [26] by seeing them as compound services, similar to
our composed services, except that service competition was not considered.
Sessions and session types [27-31] were introduced to reason over the be-
haviour of orchestrations and choreographies in terms of service interactions.
Differently than in our proposal, none of the above papers consider different
levels of criticality of service interactions (cf. [32] for a survey).

As anticipated, FMCA builds upon contract automata [6] that were used
to study several issues arising in a composition of service contracts. In partic-
ular, the problem of circular dependencies among contracts was investigated
by defining weak agreement. Roughly, this property considers acceptable
traces where requests are recorded as debits that in the future are satisfied
by the corresponding offers. It was studied for so-called competitive and
collaborative contracts, with the results that generally safety is preserved
in collaborative contracts and not in competitive ones. Weak agreement is
suitably checked by algorithms for network flow optimisation. Contract au-
tomata were also related to two intuitionistic logics introduced for modelling
circular dependencies among contracts. Orchestration and choreography of
contract automata was investigated in [22], by identifying the conditions for
dismissing the central orchestrator for both synchronous and asynchronous
choreographies, thus avoiding the overhead due to the interactions between
services and the orchestrator. Controller synthesis of contracts was recently
extended to a real-time setting [33, 34], where it is rendered as a winning
strategy for timed contract games.

The definition of FMCA also borrows from two automata-based for-
malisms, namely Modal Transition Systems (MTSs) [35, 36] and Featured
Transition Systems (FTSs) [37]. Our distinction into permitted and neces-
sary transitions, borrowed from [9], was inspired by MTSs, while the explicit
incorporation of feature constraints comes from FTSs. Compared to FMCA,
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neither of these two formalisms can explicitly handle dynamic composition
and orchestration, by means of which new services that join composite ser-
vices can intercept already matched actions. Such a compositionality is a
basic characteristic that FMCA inherited from contract automata.

The accidentally homonym contract automata of [38] model generic legal
contracts between two parties, expressed in natural language. Their states are
tagged with deontic modalities in the form of obligations and permissions.
These modalities are similar to our necessary and permitted requests, but
they have no degree of criticality. FMCA target a different domain, viz.
multi-party service contracts. Moreover, [38] studies techniques for solving
contract violation, while the focus of our compositional approach is on the
synthesis of an orchestration of services.

Within the area of Component-Based Software Engineering, there are
many formalisms for describing and composing components, similar to be-
havioural contracts. We briefly survey some of them. I/O automata [39]
are input-enabled, i.e. in any state they are ready to receive any possible
input from the environment, and composition is restricted to automata that
do not share external actions. Therefore, they cannot model contracts that
compete on offering or requesting the same service, a key feature of FMCA.
Interface automata [40] are not input-enabled, rather they broadcast offers to
every request. Their compatibility between interfaces requires that all offers
are matched, dual to our agreement. Neither interface nor I/O automata
have actions with different levels of criticality (other than concrete real-time
constraints in their timed version). Modal I/O automata [41] combine the
characteristics of interface and I/O automata with may and must modalities
of MTSs. Some actions can thus be declared more critical than others, but
still they differ from FMCA in the aspects mentioned above.

Supervisory Control Theory (SCT) was first applied to behavioural prod-
uct line models in [20], where the CIF 3 toolset was used to synthesise all
the valid products starting from components and requirements rendered as
automata. However, all the actions are controllable, unlike our approach; the
controller of the product line requires computing those of all the valid prod-
ucts, and finally orchestration is not considered. Another work along this
line is [21], where the standard synthesis algorithm was adapted to obtain a
specific controller for each consistent product of the product line. Differently
than in our proposal, the behaviour is specified by modal sequence diagrams
and their actions are only controllable or uncontrollable. More recently, the
interplay between SCT and product lines modelled as Priced Featured Au-
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tomata was studied [42], where three-valued logic and partial-order reduction
were used to greatly reduce the number of controllers required.

8. Conclusions and Future Work

We have proposed FMCA, an automata-based formalism for service con-
tracts borrowing some aspects of Software Product Lines. According to this
approach, services come in different configurations, or products. Two dis-
tinguished orthogonal ingredients of FMCA deal with the arising variability,
which permit (i) different levels of criticality for service requests, defining how
certain requests must be matched in a contract, and (ii) feature constraints
over the product line, defining the valid products. With these ingredients,
one can model service contracts with more adaptive service orchestrations
and more fine-grained Service Level Agreement.

We have defined automata composition and their orchestration, i.e. a way
to guarantee that both types of variability constraints are satisfied, besides
fulfilling client’s requests. The orchestration has the form of the most per-
missive controller of Supervisory Control Theory, and it has been obtained
by extending the classical synthesis algorithm. Our novel notion of semi-
controllability turned out to be crucial in handling different service requests.

We have defined a partial order on the valid products of a product line,
through which its orchestration can be efficiently computed. Indeed, one only
constructs the orchestration of the few maximal products in the partial order.
Technically, this required to introduce a refinement relation on automata and
to consider partially interpreted products. Typically, the maximal products
of a product line are much less than its valid products that are exponentially
many. Our proposal thus improves over the methods available in the litera-
ture, e.g. that in [20]. Also, one can only inspect these maximal products to
find possible inconsistencies in the contract specifications.

We have implemented an open-source prototypical tool to support speci-
fication of a product line through the associated FMCA, and to compute the
orchestrations of its valid products.

Future work includes a study of circular dependencies among services,
by extending the results of [6]. It would also be interesting to investigate
a choreographed coordination approach for FMCA, as was recently under-
taken for a related contract automata formalism with different notions of
semi-controllability [43]. Moreover, we plan to establish a correspondence

36



between FMCA and Featured Transition Systems [37], in order to transfer
some techniques of [44] for proving correctness properties.

Further work is needed to apply our theory to provide a formal framework
for modelling and synthesising dynamic service product lines [45-53], i.e.
services in which different configurations are reused to adapt to environments
that change over time (including so-called late variability at runtime).

Finally, another research direction is enhancing service requests and offers
with quantitative information. Reaching an agreement would then amount
to finding the optimal trade-off among FMCA, each with a positive pay-off.
This might lead to a formalisation of Quality of Service, allowing us to assess
non-functional properties of services, like reliability or performance.
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Appendix A. Proofs
We provide here all the proofs and some auxiliary results.

Proposition 1. Given two FMCA A, A" and two sets of states R, R', let
(A, R) < (A,R) if TADTy and RC R'.

The function f of Definition 14 is monotone w.r.t. < and, stipulating
that Kq is as in Definition 14, its unique fized point is:

(Kn, Ry) = sup({ f" (Ko, Ro) [ n € N})

Proof. By Definition 14, at each iteration the set of states R; can only in-
crease while the set of transitions T; can only decrease, thus f is monotone
on the partial order ({(A,R) | A € FMCA,R C 0Q},<). Moreover, this
partial order is complete since the sets of transitions 7'y and states R are
finite, hence by the Knaster-Tarski theorem the least fixed point of f exists,
is unique and can be computed in a finite number of iterations. O]

To prove that the automaton computed through Definition 15 is indeed the
mpc for the valid product p of A, we use the following auxiliary lemma.

Lemma 3. Let A be an FMCA, let p € o] be a valid product, let IKC,, be the
FMCA (of p) and let R, be the set of states computed through Proposition 1.
Then:

Yq € R, : ¢ is unreachable in IC,, or ¢y € R, (A.1)

let Uy, ={ 7| ¢ in uncontrollable disagreement w.r.t. p by IC,, }
then  Upax, U Dangling(K,) = R,, (A.2)

(Fw not containing basic actions a € Forbidden(p) s.t.
Sw = 1{ G, | (Goe, ™" G, 2" qpe, ) N (w = wiwy € L(A)NA) } # 0
and Sy, N Upax, = 0) implies Sy, N R, =0 (A.3)

Proof. We first prove (A.1). By contradiction, assume ¢y ¢ R, and there
exists a sequence of states (traversed by a trace) p = qo---¢'q"---q" s.t.
q",...,q" € R, and ¢’ ¢ R,. Let i be an iteration of the algorithm in
Definition 14 s.t. ¢ € R;_1, ' & R;_1, and let t = ¢’ — ¢” be the transition

traversed in p. If ¢ is controllable, then by Definition 14 it is removed in /C,,,
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a contradiction. Otherwise, if ¢ is uncontrollable, then ¢’ is added to R; by
Definition 14, and ¢’ € R,,, a contradiction.

Next we prove (A.2). We start by proving Up,ax, U Dangling(KC,,) C R,,.
By contradiction, assume 3¢ € Upax, U Dangling(K,) s.t. ¢ € R,. By
Definition 14, Dangling(K,) € R,. Hence, ¢ ¢ Dangling(K,) and ¢ €
Upak,- Thus, by Definition 12, there exists a trace w s.t. ¢*%*q is only
executing forced transitions, and either (i) w ¢ 2 or w contains a basic
action a € Forbidden(p) or (ii) Vq1%>* @ € F4 and w' satisfies condition (i).

We first assume case (i) holds and let wy@ be a prefix of w such that
q*q’ 9 and either @ is a request or it is forbidden in p. We first prove
that ¢’ € Ry. If ¢'% is controllable, then by Definition 12 it is the only
outgoing transition from ¢”, which is removed in Ky by Definition 14, and
hence ¢’ € Dangling(Ky) C Ry. Similarly, if ¢’% is uncontrollable in /Co,
then ¢” € Ry by Definition 14. Thus we have proved that ¢’ € Ry is reachable
by only executing forced transitions from ¢ in A.

We now proceed by induction on the length of the trace ¢ KiNy q’. For
the base case, we have a transition ¢ = ¢ — ¢’. Similarly to the previous
reasoning, if ¢ is controllable in Iy then by Definition 14, it is removed in
K1 and, by Definition 12, ¢ is the only outgoing transition from state ¢ (i.e.
it is forced) and hence ¢ € Dangling(KC,1) and ¢ € Ry C R, a contradiction.
Otherwise, if ¢ is uncontrollable in Ky, then by Definition 14, § € Ry C R, a
contradiction. For the inductive step, we have ¢ — ¢ —* ¢’ s.t. 7" € R;_
and ¢ ¢ R; 1. By applying the same reasoning as for the base case we can
conclude that ¢ € R; C R,, a contradiction.

For case (ii), a final state ¢y cannot be reached from ¢; without executing
either a request or a forbidden action, hence by hypothesis ¢; cannot avoid
to reach a final state without traversing a state ¢’ € Ry (otherwise a trace
without requests and forbidden actions would exist). By Definition 14, there
will be an iteration i s.t. ¢ € R;, and ¢ € R,, by proceeding as for case (i).

We now prove R,, C Uk, U Dangling(KC,,). The proof is by induction on
R;. The base case is Ry. From Definition 14, it follows that Dangling(ICy) C
Ry. Thelast caseis { | (¢ —) =t € T} on a uncontrollable in Ky, (¢ request
Va € Forbidden(p)) }, i.e. by Definition 12, in U,4x,. Note that if a tran-
sition t is uncontrollable in IC; for some ¢, then for all 7, ¢ < 7 < n, t is
uncontrollable in ;.

For the inductive step, by the inductive hypothesis we know R; | C
Upak, U Dangling(K;—;) and we prove R; C Upax, U Dangling(KC;). We
proceed again by the cases of Definition 14. The first case is S = {¢ |
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(¢ — q") € Ty, uncontrollable in K;, §¢ Ri—1, ¢' € R }U{{|§—€ T4
lazy uncontrollable in KC; }. By Definition 12, the transitions used in S are
forced in A because they are uncontrollable in /C; (hence in K,) and, by
the inductive hypothesis, their target state is in Uy, U Dangling(IC;—1). It
follows that S C Upax, U Dangling(C;). The last case is Dangling(IC;) that
holds trivially.

Finally, we prove (A.3). By hypothesis, S, N Dangling(K,,) = () and the
thesis follows by (A.2). O

Theorem 1 (mpc for product). Let A be an FMCA and let p € [p4] be a
valid product. The FMCA K 4, computed through Definition 15 is the mpc
for the valid product p of A.

Proof. We will prove that the algorithm always terminates, that K4, is a
controller of product p of A and, in particular, that it is the mpc of product
p of A. Termination of the algorithm is ensured by Proposition 1.

Next we prove that K4, is a controller of p of A, ie.: p € [pa] (triv-
ial); (1) K is safe, (2) Dangling(K) = 0 (trivial), (3) Z(K) = 0 or Va €
Mandatory(p) Jw € Z(K) s.t. basic action a occurs in w, and (4) fw €
Z(K) s.t. w contains actions a € Forbidden(p) or ¢ox%*qkc, qo,~>*¢a and
Jx is in uncontrollable disagreement w.r.t. p by K.

We first prove (1). Since IC4, is derived from A by pruning transitions,
trivially £ (K4,) € Z(A). To prove Z(K4,) C 2, we have to show that
no trace w' recognised by .Z(K 4,) contains a request @. Note that the algo-
rithm only prunes and never adds transitions and since in Ky all controllable
requests are pruned, @ cannot be a controllable request. By contradiction,
assume @ is an uncontrollable request, executed by a transition §2%, and w’
is recognised by K4,. Then ¢ € Ry and thus ¢ € R, by Definition 14. By
Lemma 3(A.1), we have ¢y € R,, and we reach the contradiction 4, = ().

We now prove (3). From the fact that none of the states of K4, is dan-
gling, (3) trivially holds by Definition 14.

We conclude by proving (4). Assume q?),cl“%*@ '-% w'd prefix of w, with @
on action a € Forbidden(p) holds. By Definition 14, ¢’%--% is not controllable
(otherwise it would have been removed) and hence ¢’ € Ry C R,,. Then ¢’}
is not a state of K4,, a contradiction. Assume that (w,goc)*(e, gk) and
(w, q0.,) " (e, qa), with ¢'in uncontrollable disagreement holds. Since K4, is
derived from A, we have ¢ox = ¢, and gk = 4. By Lemma 3(A.2), ¢4 € R,
and since it is reachable from ¢; ,, by Lemma 3(A.1), it must be the case that
do, € R, and we reach the contradiction K4, = ().
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Finally, it remains to prove that K 4, is the mpc. By contradiction, assume
K’ to be a controller of product p of A such that £ (K4,) C Z(K'). Hence
there must be a trace w; € Z(K') s.t. wy € Z(K4,). Let Sy, be the set of
states traversed by K’ to recognise w;. Since K’ is a controller, S,,, NUpaxr =
(. By Lemma 3(A.3), Sy, N R, = 0. Then, by Definition 14, all states in S,,,
are in K 4,. Moreover, all transitions used for recognising w; are not requests
nor forbidden because K’ is a controller, and since S,, N R, = () no state in
Sw, 18 in any of Ry, ..., R,. By Definition 14, these are all possible cases for
which a transition is removed. Hence, all transitions used for recognising w
are also in K4, and it follows that w; € £ (K4,), a contradiction. O

The proof of the next theorem makes use of the following auxiliary lemma.

Lemma 4. Let A be an FMCA, let p € [@a] and let K4, # () be its mpc
computed through Definition 15. Then K4, E A.

Proof. From Theorem 1 and Definition 14, we have K4, € A (component-
wise inclusion with exception of ¢) and, moreover, Qx N Dangling(K 4,) = 0.

It remains to prove that (1) all uncontrollable transitions of A and (2) all
semi-controllable transitions ¢ of .4 that are uncontrollable in K4, (i.e. Bte
Ti,, st t is controllable via ¢’ in Ky4,), in both cases (1-2) with source
7 € Qx, are available in K 4,. For (1), by contradiction, let ¢ € Qx and let
t = (¢,d,q") be s.t. t is uncontrollable in A and ¢ ¢ T. By Definition 14,
t ¢ T only if ¢ € R,, and, by Lemma 3(A.2), ¢ € Upax,. If ¢ € Uy, , then
by Lemma3(A.1) 4, = (), a contradiction.

For (2), by contradiction, let ¢ € Qx and let t = (¢, a, ¢”) be s.t. t is con-
trollable in A, uncontrollable in K 4, and ¢ ¢ Ti¢. Hence ¢t must be uncontrol-
lable lazy in K 4,, and ¢ € R, by Definition 14. Finally, by Lemma 3(A.2),
7 € Upak, and, by Lemma 3(A.1), K4, = (), a contradiction. ]

Theorem 2 (Largest refinement). Let A = ®,c;A; be a composition of
principals A;, let p be a valid product of A, let K4, # () be its mpc computed
through Definition 14 and let Vi € I : I1;(K 4,) = A,, be its principals. Then:
Viel: A, CA, (1)
K’ # () controller of p of A implies Vi € I:1;(K') C A, (2)

Proof. Lemma 4 and Definition 6 suffice to prove (1).
To prove (2), assume by contradiction that for some ¢ we have [[;(K') =
A L A,,. Then by (1) and Lemma 4, there must exist ¢+ € T, \ Ti¢, . By

Theorem 1, Z(K') € £ (K 4,), a contradiction.
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Theorem 3 (Respecting validity is preserved by =<). Let A be an FMCA
and let p,p’ € [oa]. Then:

(A respects p and p < p') implies A respects p’

Proof. Intuitively, p imposes more restrictions on respecting validity than p'.
By contradiction, assume that p is respected by A and that p’ is not respected
by A. By Definition 18, either one of the following cases must hold:

(1) 3a € Mandatory(p') s.t. V(q,d,q’) € T4 : dis an action on b # a or
7,4’ € Dangling(A). In this case, p is not respected by A because, by
Definition 17, Mandatory(p') C Mandatory(p), a contradiction.

(2) b € Forbidden(p') s.t. (q, b, q") € Ty, b is an action on b and 7, §” ¢
Dangling(.A). In this case, p is not respected by A because by Defini-
tion 17, Forbidden(p') C Forbidden(p), a contradiction. O

Lemma 1. Let K4, be the mpc of a product p of A. Then:
ZL(Ka,) #0 implies Ka, respects p (3)

(KCa, respects p and Mandatory(p) # 0) implies L(Ka,) #0  (4)
(L (Ka,)#0 and I={p'#p | p'2p}#0) implies Ip'€l: L(Ka,)#0 (5)

Proof. For (3) assume by contradiction that p is not respected by K 4,. Then,
by Definition 18, either one of the following two cases must hold:

(1) 3a € Mandatory(p) s.t. V(q,d,q") € Tic,, : @ is an action on b # a or
7.q' € Dangling(K4,). In this case, w € £(K4,) s.t. w contains
a basic action a and thus, by Definition 13, K4, is not an mpc, a
contradiction.

(2) 3b € Forbidden(p) s.t. (q, b, q") € Ty, b is an action on b and 7,7’ ¢
Dangling(K 4,). In this case, Jwibwy € ZL(K4,) for some w;, w, and,
by Definition 13, K 4, is not an mpc, a contradiction.

— = =

For (4), by hypothesis 3a € Mandatory(p) such that (¢, da,q’) € Ti 4,
on a and ¢, ¢" & Dangling(K 4,), and Z(IC4,) # 0 by Definition 8.

For (5), it suffices to note that a sub-product p’ can be obtained by adding
an action a ¢ Mandatory(p) U Forbidden(p) to either (i) Mandatory(p') or

48



(ii) Forbidden(p') (the existence of such action a is guaranteed by hypothesis).
Action a is either present or not in Ky4,. If action a is present, then the
sub-product p’ obtained through case (i) (i.e. a € Mandatory(p')) is s.t.
ZL(Ka,) # 0 by hypothesis (we are requiring an action that is present). If
action a is not present, then the sub-product obtained through case (ii) (i.e.
a € Forbidden(p')) is s.t. £ (Ka,) # 0 by hypothesis (we are forbidding an
action that is not present). [

Lemma 2. Let A be an FMCA and let p,p’ € [pa]. Then:
p=p and L(Ka,) # 0 implies K4, T Ka,

Theorem 4 (Refinement of product line). Given the product line orchestra-
tion O 4 from Definition 20, it holds that:

Vp e [pa] : L(Ka,) #0 implies Ka, E Oy

Proof. The statement follows immediately from Definition 20, Lemma 2,
Lemma 1 and the hypothesis. [

Theorem 5 (Efficient mpc synthesis). Let p € Depth(A,n), where

Depth(A,n) ={p|p € [pa], |Mandatory(p)|+ |Forbidden(p)| =n}

Then:
Ka,#() and Depth(A,n-1)#0 implies K, T N Ka,
p=p’€Depth(A,n-1)
Proof. Straightforward from Lemma 2. m
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