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Abstract—An in-depth analysis of the energy conservation in
the δ-SPH model has been carried on. In comparison to the
standard SPH scheme, the mechanical energy equation of the δ-
SPH variant is characterized by a further term that is generally
dissipative and is related to the diffusive operator inside the
continuity equation. The behaviour and the structure of such a
term have been studied in detail and a number of specifically
conceived test cases has been considered, highlighting that the
dissipative term is generally small and it mainly acts when
spurious high-frequency acoustic components are excited.

I. Introduction

The δ-SPH scheme is a variant of the standard SPH model
that includes a diffusive term in the continuity equation to
reduce the high-frequency spurious oscillations in the pressure
field. This scheme satisfies the conservation of mass and of the
linear and angular momenta and, since its definitions (see [1],
[2]), it has been successfully applied to several hydrodynamics
problems (see [3]–[6]). In the present work we add a further
contribution to the analysis of the δ-SPH scheme and study
the conservation of energy in such a model.

We show that, in comparison to the standard SPH model, the
mechanical energy equation of the δ-SPH scheme contains a
further term that is generally dissipative and that derives from
the diffusive operator inside the continuity equation. Further,
we describe the general structure of such a term (hereinafter
called diffusive power term) and, through numerical test cases,
we draw a qualitative description of its behaviour. Specifically,
we considered two test cases where the fluid is inviscid and
no solid boundaries are present. Under these hypotheses, it is
possible to focus on the evolution of the diffusive power term,
neglecting viscous and fluid-body interactions. We observed
that the magnitude of the diffusive power term is generally
small and it mainly acts during the generation of shock waves
or when spurious high-frequency oscillations characterize the
pressure field. Since the diffusive power term principally drags
energy from the compressible components of the SPH, the δ-
SPH scheme appears to be somehow “less compressible” than
the standard SPH.

The paper is organized as follows: section §III introduces
the δ-SPH scheme and section §IV describes the main energy
terms, the energy equations and define the diffusive power
term. Then, sections §V and §VI show some applications
of the δ-SPH to inviscid free-surface flows and describe the
behaviour of the diffusive power term.

II. The standard SPH

Hereinafter we call standard SPH the following system:

dρi

dt
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ρ2
j

+
pi

ρ2
i

 ∇iWi j m j + f i +

+ µ
∑

j
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= ui pi = c2

0 ( ρi − ρ0 )

(1)

where ρi, pi are respectively the density and the pressure of
the i−particle while ri and ui are its position and velocity.
The particle mass, mi, is constant during the motion so that
the global mass i conserved exactly. Here, Wi j is the kernel
function (a Wendland kernel is used hereinafter), ∇i denotes
the differentiation with respect to ri and f i is the body force at
the position ri. Finally, symbols ρ0 and c0 indicate the density
along the free surface (which is the reference value for the
density field) and the sound velocity (assumed to be constant).
The dynamic viscosity is indicated through µ while the kernel
of the viscous term is given in [7] and reads:

πi j = K
(u j − ui) · r ji

‖r ji‖
2 . (2)

where K = 2 (n+2) and n is the number of spatial dimensions.

III. The δ-SPH scheme

The δ-SPH has been first defined in [1] and further inspected
in [2]. It reads:
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(3)
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Here, Vi = mi/ρi is the volume of the i-th particle and,
similarly to the standard SPH, the mass mi is constant during
the evolution. The diffusive term is given by:

Di = 2
∑

j

ψ ji
r ji · ∇iWi j

‖r ji‖
2 V j (4)

where r ji = (r j − ri) and

ψ ji =

{ (
ρ j − ρi

)
−

1
2

(
〈∇ρ〉Lj + 〈∇ρ〉Li

)
· r ji

}
. (5)

The system (3) is integrated in time by using a fourth-order
Runge-Kutta scheme with frozen diffusion as described in [2].
The time step is obtain as the minimum over the following
bounds:

∆t ≤ 0.44
h
δ c0

, ∆t ≤ 0.125
h2

ν
, ∆t ≤ 0.25 min

i

√
h
‖ai‖

,

∆t ≤ CFL min
i

(
h

c0 + ‖ui‖ + h max j |πi j|

)
.

where ‖ai‖ is the particle acceleration and CFL = 2. Generally,
the last inequality is the most restrictive. To impose the
weakly-compressibility assumption, the sound speed has been
chosen to satisfy the following requirement:

c0 ≥ 10 max
(

Umax ,

√
pmax

ρ0

)
, (6)

where Umax and pmax are the maximum expected velocity and
pressure.

IV. The energy equations

The global kinetic energy equation is obtained by
multiplying the momentum equation for ui scalarly and by
summing all over the fluid particles. Using the symmetry
properties of the arguments of the summations, it is possible to
rearrange the global kinetic energy equation in the following
manner:

dEK

dt
= −

1
2

∑
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Vi
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where the starred summations indicate the summations over
the fluid particles and:

Ek =
∑

i

∗

mi
‖ui‖

2

2
. (8)

The symbol Ps represents the power due to the interaction
between the fluid with the solid boundaries:

Ps = −
∑

i

∗

Vi
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(p j + pi) ui · ∇iWi j V j +

+ µK
∑

i

∗

Vi

∑
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The barred summations indicate the summation over the mirror
particles in the solid boundary.

If the body force is conservative, that is f = ∇φ with
φ = φ(r), we can extract the potential energy:∑

i

∗

mi ui · f i =
d
dt

∑
i

∗

mi φi

 = −
dEp

dt
. (10)

Finally, we introduce the global internal energy Ei with the
following requirement:

d
dt

(
Ek + Ep + Ei

)
= 0 . (11)

Hereinafter, we indicate the total energy of the system by
Etot = Ek +Ep +Ei. As a consequence of (11), the equation of
the internal energy reads:

dEi
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=

1
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−
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∗
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Finally, we indicate the mechanical energy of the system
through EM = Ek + Ep.

A. The power of the diffusive term

Now, let us focus on the first term in the right-hand side of
equation (7). Using the continuity equation and the symmetry
properties, it is possible to rewrite it in the following way:

−
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where
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∑

i

∗

Vi pi

∑
j

(u j − ui) · ∇iWi j V j , (13)

and the symbol EC indicates the reversible energy due to
compressibility. In the present case, we obtain:

EC =
∑

i

∗

mi c2
0

[
log

(
ρi

ρ0

)
+
ρ0

ρi

]
(14)

Then, in comparison to the standard SPH scheme, the δ-
variants predicts a further term in the global equations of
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kinetic and internal energy. Specifically, the global kinetic
energy equation can be rearranged in the following way:

d
dt

[
EK + Ep + EC

]
= Pδ + Pv + Ps + P̂s , (15)

where Pδ represents the power associated to the diffusive term
and Pv is the power dissipated by viscosity:

Pδ = δ h c0

∑
i

∗ pi

ρi
DiVi (16)

Pv =
µK
2

∑
i

∗

Vi

∑
j

∗

πi j (ui − u j) · ∇iWi j V j . (17)

Differently from Pv (which is always negative for the second
principle of thermodynamics), Pδ, Ps and P̂s have not a
defined sign. In the sequel, we show through numerical
simulations that Pδ is negative as well and, therefore, it
represents a dissipation.

Before proceeding to the analysis, it is convenient to
introduce some further concepts. As a consequence of equation
(11), we can write:

d
dt

[Ei − EC] = −Pδ − Pv − Ps − P̂s . (18)

Hereinafter, we indicate the irreversible energy of the system
by Eirr = Ei − EC and the reversible energy of the system by
Erev = Ek + Ep + EC . Integrating in time equations (15) and
(18), we obtain:

Erev(t) − Erev(t0) = −Qδ − Qv − Qs − Q̂s ,

Eirr(t) − Eirr(t0) = Qδ + Qv + Qs + Q̂s ,

where the following convention is used to indicate the heat Q:

Qδ = −

∫ t

t0
Pδ dτ , Qv = −

∫ t

t0
Pv dτ ,

Qs = −

∫ t

t0
Ps dτ , Q̂s = −

∫ t

t0
P̂s dτ .

Then, a positive sign for the heat means that the fluid system
is loosing reversible energy and is increasing the irreversible
energy. Since the main subject of the present analysis is the
δ-SPH scheme, we avoid simulations with solid boundaries,
so that we can always put Ps = P̂s = 0.

V. Oscillating drop under a central conservative force field

In the present section we consider a two-dimensional fluid
drop evolving under the action of a central conservative force
field, −B2 r, where B is a dimensional parameter. The fluid is
inviscid (i.e. µ = 0, Pv = 0) and the drop is initially circular
with radius R. The drop evolves periodically as an oscillating
fluid ellipse, according to the following law:{

u = A(t) x
v = − A(t) y , (19)

where the solution for A(t) is given in [8]. It is simple to show
that the global dynamics depends on the ratio A(0)/B, which,

Fig. 1. Oscillating drop. Initial (right plot) and final instant (left plot) of the
evolution. The dashed lines indicate the analytic solution of the free surface
(R/∆x = 100).

Fig. 2. Oscillating drop. Evolution of the semi-axis a(t) as predicted by the
δ-SPH (R/∆x = 200). The dashed line represents the analytic solution.

in the following simulations, is set equal to 1. According to
(6), the sound velocity has been set equal to 15 A(0) R.

Figure 1 displays the initial and the final instant of the
evolution obtained by using the δ-SPH scheme and the
analytic solution of the free surface (dashed lines). The overall
comparison is very good and it is further confirmed in figure
2, where the δ-SPH solution is compared with the analytic
solution for the ellipse semi-axis, a(t). At a first glance, the
simulation seems to preserve energy but is not. Figure 3
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(Etot − E
0
tot)/E

0
M

(EC − E
0
C)/E0

M

EM/E
0
M − 1

−Qδ/E
0
M

Fig. 3. Oscillating drop. Energy components of the δ-SPH scheme (R/∆x =
200). The superscript ‘0’ indicates the initial value of the corresponding energy
component.

Qδ/E
0
M

Fig. 4. Oscillating drop. Evolution of Qδ for different values of A(0)/B
(δ-SPH with R/∆x = 200). The symbol EM0 indicates the initial value of the
mechanical energy.

shows that Qδ is always positive and, therefore, represents a
dissipation. In any case, it is generally small and, in the time
range here considered, it corresponds to few percentages of
the initial mechanical energy.

Figure 3 also displays the time histories of the compressible
and total energy. The latter one is obtained by integrating each
term in equation (11) numerically. This procedure allows us to
check if the time-integrator is affected by spurious dissipations
and to control the accuracy of the simulation. In the present
case, the time history of the total energy is practically constant
and no spurious dissipation occurs. The compressible energy
EC is periodic and maintains always small, this confirming
that the weakly-compressibility assumption is satisfied.

Figure 4 displays the evolution of Qδ for increasing
values of the ratio A(0)/B, that is for increasing elongations.
As expectable, the energy dissipated by the diffusive term
increases as the deformation/elongation of the drop increases.
An opposite behaviour is observed as the spatial resolution
becomes finer and finer (see figure 5). This further confirms
the consistency of the δ-SPH with the compressible Euler
Equations for h going to zero. In all the cases shown above, the
compressible energy maintains small and tends to a converged
solution (see figure 6).

The analysis of the energy components is repeated by using
the standard SPH (δ = 0 and, consequently, Pδ = 0) with
A(0)/B = 1. In this case, the simulations are more noisy

EM/E
0
M − 1

Fig. 5. Oscillating drop. Evolution of EM for different spatial resolutions
(δ-SPH). The superscript ‘0’ indicates the initial value of the corresponding
energy component.

(EC − E
0
C)/E0

M

Fig. 6. Oscillating drop. Evolution of EC for different spatial resolutions
(δ-SPH). The superscript ‘0’ indicates the initial value of the corresponding
energy component.

and this leads to the occurrence of spurious dissipation in
the time integration (see figure 7). Despite this phenomenon
decreases as the spatial resolution increases (figure 8), the
CFL number has been reduced to 0.1 to make the integration
errors negligible. The conservation of the total energy is
displayed in figure 9 and confirms the accuracy of the time-
integration. Apart from this, figure 9 also shows an interesting
behaviour of the standard SPH: a defined increase of the
compressible energy at the expense of the mechanical energy.
Such a phenomenon tends to disappear for increasing spatial
resolutions (see figure 10) but it is always present and seems
to suggest an “irreversible” energy flux from the mechanical
to the compressible energy. This is quite surprising since the
equations of the standard SPH are reversible (no viscosity, nor
diffusion are introduced in the numerical scheme). To be sure
that such a behaviour is not caused by the Runge-Kutta time
integrator, we repeat the simulations by using the symplectic
integrator described in [9] but obtained the same results. A
possible explanation to this phenomenon may be probably
given only in terms of statistical mechanics (see, for example,
[10], [11]). In any case, this, at the moment, goes far beyond
the aim of the present work.

VI. The impact of two rectangular fluid patches
In the present section we consider the impact of two

rectangular fluid patches. Similarly to the previous section,
the fluid is assumed to be inviscid and barotropic.
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(Etot − E
0
tot)/E

0
M

EM/E
0
M − 1

Fig. 7. Oscillating drop. Evolution of EM for A(0)/B = 1 with the standard
SPH (R/∆x = 200). The superscript ‘0’ indicates the initial value of the
corresponding energy component.

(Etot − E
0
tot)/E

0
M

Fig. 8. Oscillating drop. Evolution of Etot for A(0)/B = 1 with the standard
SPH and different spatial resolutions. The superscript ‘0’ indicates the initial
value of the corresponding energy component.

(Etot − E
0
tot)/E

0
M

(EC − E
0
C)/E0

M

EM/E
0
M − 1

Fig. 9. Oscillating drop. Evolution of EM for A(0)/B = 1 with the standard
SPH (R/∆x = 100) and CFL = 0.1. The superscript ‘0’ indicates the initial
value of the corresponding energy component.

(EC − E
0
C)/E0

M

Fig. 10. Oscillating drop. Evolution of EC for A(0)/B = 1 with the standard
SPH and different spatial resolutions (CFL = 0.1). The superscript ‘0’ indicates
the initial value of the corresponding energy component.

Figure 11 displays some snapshots of the evolution and
compares the solutions obtained by using the δ-SPH (upper
half of the fluid domain) and the standard SPH (lower half of
the fluid domain). The initial stages are very similar: two shock
waves generate just after the impact (right upper panel of figure
11) and are followed by two rarefaction waves (left lower panel
of figure 11). During the evolution, these waves are reflected
at the free surface and combine together in a very complex
manner. Because of the weakly-compressibility assumption,
high-frequency oscillations are generated in the pressure field
and propagate in the fluid bulk. These are smoothed out by
the δ-SPH while, on the contrary, they persist in the standard
SPH (right lower panel of figure 11).

In figure 12 we show the evolution of the mechanical
energy for the δ-SPH at different spatial resolutions and the
analytic solution for an incompressible fluid (see [12]). Note
that the latter one is characterized by a sudden drop of
the mechanical energy due to the incompressibility condition
(see, for example [13]). The global evolution is made by
a transitory in which the diffusive term smooths out the
high-frequency oscillations of the pressure field. During this
stage, the diffusion leads to an increase of Qδ (see figure 13)
and to a corresponding decrease of the compressible energy
(see figure 14). Remarkably, after the transitory stage (whose
duration decreases as the spatial resolution increases), the δ-
SPH approaches the analytic solution. This is a remarkable
point, since it means that the diffusive term is not dissipating
any more (see figure 13) and confirms that it mainly acts
against the high-frequency oscillations caused by the weakly-
compressibility assumption.

The above analysis has been repeated by using the standard
SPH. Figure 15 shows that the mechanical energy decreases
after the initial impact but does not converge toward the
analytic solution. Such a decrease corresponds to an equivalent
increase of the compressible energy EC that, similarly to
the stretching drop described in the previous section, is
accumulated during the evolution and it is not transformed
back in mechanical energy. Again, the use of the diffusive
term seems to prevent such a behaviour.

As a final example, we consider the standard SPH with
the artificial viscosity proposed in [7]. Hereinafter such a
scheme is denoted by α-SPH and the viscous parameter α
is set equal to 0.01. Figure 16 displays the evolution of the
mechanical energy for different spatial resolutions. In this case,
the phenomenon of accumulation of EC disappears but the
use of the artificial viscosity leads to an excessive loss of
mechanical energy. Apart from this, the α-SPH tends to the
analytic solution as the spatial resolution becomes finer and
finer (i.e., as α tends to zero). It seems that the use of a
small viscosity (similarly to the use of the diffusive term) may
prevent the accumulation of the compressible energy shown by
the inviscid standard SPH.

VII. Conclusion
The energy components of δ-SPH scheme have been

analysed in detail, highlighting the presence of a diffusive
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Fig. 11. The impact of two rectangular fluid patches: sketches of the evolution. The upper part of the fluid domain is given by the δ-SPH while the lower
part is obtained by using the standard SPH

EM/E
0
M − 1

Fig. 12. The impact of two rectangular fluid patches: evolution of the
mechanical energy as predicted by the δ-SPH for different spatial resolutions.

−Qδ/E
0
M

Fig. 13. The impact of two rectangular fluid patches: evolution of Qδ as
predicted by the δ-SPH for different spatial resolutions.

Fig. 14. The impact of two rectangular fluid patches: energy components as
predicted by the δ-SPH for L/∆x = 200.

EM/E
0
M − 1

Fig. 15. The impact of two rectangular fluid patches: evolution of the
mechanical energy as predicted by the standard SPH for different spatial
resolutions.

EM/E
0
M − 1

Fig. 16. The impact of two rectangular fluid patches: evolution of the
mechanical energy as predicted by the α-SPH for different spatial resolutions.

power term in the mechanical energy equation that generally
behaves as a dissipative contribution. Such a term mainly
works against the compressibility features of the SPH,
reducing the high-frequency spurious oscillations in the
pressure field and preventing an eventual accumulation of
mechanical energy as compressible energy EC . Its action
generally leads to an increase of the internal energy of the
system which is, however, limited to the stages of the evolution
when the compressibility of the fluid is more excited. For this
reason, the δ-SPH is just slightly more dissipative than the
standard SPH while, in turn, it appears to be less compressible
and more accurate.
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