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Foreword 

Dear Delegate, 

Since its conception in 2005 with the Inaugural Meeting in Chatou, France, the 
Smoothed Particle Hydrodynamics rEsearch and Engineering International 
Community (SPHERIC) has foster, steered and disseminated the development 
and application of the Smoothed Particle Hydrodynamics (SPH) method in 
academia and industry alike.  

The International SPHERIC Workshops are a unique series of yearly events with 
exclusive focus on the SPH method and associated particle-based methods. SPH 
has been widely adopted in the field of computational fluid mechanics, solid 
mechanics, geomechanics, manufacturing engineering and many other 
disciplines. The SPH scheme is considered to be the mainstream method for free-
surface flows, and multi-phase flows, high non-linear deformation, fracture and 
fragmentation and, complex physics due to its meshless particle-based nature. 

The SPHERIC workshop brings together state-of-the-art developments from 
academia and novel interdisciplinary applications from industry in a unique blend 
towards the advancement of the numerical scheme.    

It is our pleasure and privilege to host the 17th edition of the International 
SPHERIC Workshop in Rhodes Island, Greece and I am looking forward to 
welcoming you for a stimulating and fruitful event. 

Sincerely, 

Georgios Fourtakas 
Chair of the Local Organizing Committee 
17th International SPHERIC Workshop 
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Abstract—In the present paper, the sloshing flow in a squared
L× L tank is investigated with both experimental and numerical
approaches. The filling depth chosen is h/L = 0.35 which is close
to the critical depth h/L = 0.3374. The experimental tank has
a breadth of 0.1L such reducing three-dimensional effects. Hi-
resolution digital camera and capacitance wave probes are used
for time recording of the wave height. By varying the oscillation
period and the amplitude of the imposed sway motion of the tank,
several scenarios in terms of free surface evolution are identified.
Periodic and quasi-periodic regimes are found for the most part
of the analysed frequencies but, among them, sub-harmonic
regimes are also identified. Energetic chaotic regimes are found
at larger amplitude motion. For the numerical investigation an
advanced and well established Smooth Particle Hydrodynamics
(SPH) method is used to help the comprehension of the physical
phenomena involved and to extend the range of frequencies
experimentally investigated.

I. Introduction
Sloshing is a resonant fluid motion that appears within

a tank forced to oscillate. Because of the high local and
global loads associated with the wave impact against the
lateral wall, sloshing flows have several implications from the
practical point of view. For example, in the naval framework
the knowledge of the flow features occurring during the violent
liquid motion within confined spaces [31], is a key issue for
the safety of LNG (Liquid Natural Gas) carriers. Since these
ships operate at different filling conditions of their tanks, it
is important to gain an in-depth understanding of the main
features of the involved phenomena. In particular, the filling
height of the tank may drastically change the observed regimes
when the the tank is almost fully [30], partially [13], or barely
filled [8].

Although proper modeling of the local evolution of the flow
field is fundamental for the description of the fluid loads, it
is also extremely important to consider the global features of
the flow during the tank motion.

Generally speaking, in sloshing flows induced by purely
periodic swaying tanks, the free surface moves with a period
that is strictly connected with the excitation frequency. As
this latter approaches to resonant conditions, super-harmonic
components, induced by the nonlinear effects, appear. Beside
this, the identification of peculiar non-linear sloshing flow
behaviours as sub-harmonic or chaotic modes requires the
analysis of several conditions varying the filling-heights, the
amplitudes and the frequencies of the tank motion.

That approach was adopted during the early experimental
campaign at CNR-INM (formerly INSEAN) in 2003. The
experimental setup of a similar campaign carried out in the
’70s by [29] was reproduced. The same size of the tank, i.e.
squared L × L with L = 1m, and the same filling depth, i.e.
h/L = 0.35 close to the critical one, were considered. As in
[29], in order to limit the 3D effects, the breadth of the tank
was set equal to 0.1L. In [29] the wave height was measured
with a wire probe positioned ad 5 cm from one of the vertical
tank sides. Beside this, in the CNR-INM campaign other three
wire probes were used.

During each test a sinusoidal sway motion was imposed
to the tank with a prescribed amplitude and frequency. A
span of several frequencies and amplitudes was investigated
through the analysis of the wave height, measured locally by
the wire probes and globally by video recording. Following
the experimental procedure detailed in [29], 300 seconds of
motion were recorded for attaining a stable regime condition.

Following the same investigation of [12], in the present
work a more accurate analysis of the wave height is carried out
for A = 0.01L and A = 0.03L, by considering the time signals
of different wave probes in the proximity of the two vertical
walls of the tank. Besides the values of maxima took into
account by [29], the entire time history of the wave elevation
is investigated, identifying the regimes attained by the flow
motion.

Similarly to [15], where the identification of regimes for the
flow past a NACA profile or a circular cylinder was considered,
periodic monochromatic, non-monochromatic, quasi periodic
and chaotic regimes are found. Moreover, as remarked in [22],
for some values of the oscillation frequency, the nonlinear
nature of the time signals may trigger the onset of sub-
harmonics or super-harmonics that lead to doubling-frequency
or tripling-period bifurcations.

In the present analysis, the experimental data obtained for
A = 0.03L are compared with numerical simulations obtained
with δ-LES-SPH model. The reliability of δ-LES-SPH for
these kind of problems comes from many validations carried
out in the framework of violent sloshing flows simulations
in [24]. In the present work, a large numerical campaign
is performed for completing the experimental database with
a wider frequency range and a larger number of analyzed
frequencies. In order to investigate the effect of the motion
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Figure 1. Experimental box sketch with highlight of the filled volume.

amplitude, a lower amplitude database (A/L=0.01) is also
provided, where similar analyses were performed.

II. Experimental Set-up

The tank used during the experimental campaign at CNR-
INM is L = 1 m long and tall, D = 0.1 m wide and is filled
with water up to hFS = 0.35 m. The total mass of the liquid is
therefore equal to ml = 34.76 Kg. Based on the filling height
hFS selected, the natural sloshing periods can be derived from
([18]):

Tn =
2πr

gnπ
L

tanh
nπhFS

L

n = 1, 2, . . . (1)

by setting n equal to the desired mode. For example, by
considering that g is the gravitational acceleration, the period
of the first mode is T1 = 1.265 s.

In order to ensure a purely sinusoidal sway motion, x(t) =
A sin (2πt/T ), an ad-hoc mechanical system was designed. A
and T are the amplitude and the period of the prescribed
motion, respectively. The small breadth of the tank, i.e.
D = 0.1 m, provides an almost two-dimensional flow in the
sloshing plane. Moreover, five capacitance wire probes are
placed within the tank. The first two are located at a distance
of 1 cm and 5 cm from the left side. Other two probes are
positioned symmetrically at the right side, while the last wire
probe is in the middle of the tank (i.e. 50 cm from the sides
of the tank). The corresponding dimensionless measurements
of the wave heights hi are indicated as ηi = (hi − hFS )/L with
i = 1, 5, 50, 95, 99.

During the tests, flow visualizations are obtained through a
digital video camera JAI CV-M2. This camera has a spatial
resolution of 1600×1200 pixels and a frequency rate equal to
15 Hz. It is placed in front of the tank and far enough from
it to record the whole flow pattern. A wire potentiometer has
been used for the evaluation of the tank position.

A suitable synchronizer is used to trigger the start of
all acquisition systems, which are characterized by different
sampling rates. A sketch of the experimental setup is given in
figure 1.

III. Numerical solver

In the present work a two-dimensional fluid domain Ω is
considered with its boundaries which are composed by the tank
walls ∂ΩB and the free surface ∂ΩF . Only the liquid phase
is consider and the latter is model as a weakly-compressible
media and assumed to be barotropic. The liquid is assumed
to be Newtonian and the flow isothermal, while the surface
tension effects are neglected. The tank translate along the x-
axis and the equation are formulated in the non-inertial frame
of reference (Ni-FoR). With these assumptions the δ-LES-SPH
model presented in [3] and [25] is considered, i.e.:


dρi

dt
= −ρi

X

j

(u ji + δu ji) · ∇iWi jV j +

+
X

j

(ρ j δu j + ρi δui) · ∇iWi jV j + Dρi

ρi
dui

dt
= Fp

i + Fv
i + g − atank(t) e1 +

+ρ0

X

j

(u j ⊗ δu j + ui ⊗ δui) · ∇iWi jV j

dri

dt
= ui + δui , Vi(t) = mi

�
ρi(t), p = c2

0(ρ − ρ0)
(2)

where the index i refers to the considered particle and j refers
to neighbour particles of i. The vectors Fp

i and Fv
i are the

pressure and the net viscous force acting on the particle i.
The notation u ji in (2) indicates the differences (u j − ui) and
the same holds for δu ji and r ji. The spatial gradients are
approximated through the convolution with a kernel function
Wi j. Following [3], a C2-Wendland kernel is adopted in the
present work.

In order to recover regular spatial distribution of particles
and consequently accurate approximation of the SPH operators
a Particle Shifting Technique (PST) is used (see also e.g. [21,
27]). For the sake of brevity the specific law adopted for the
shifting velocity δu is not reported here, this being identical to
the one adopted by [24, 26] in which violent sloshing problems
were studied.

The time derivative d/dt used in (2) indicates a quasi-
Lagrangian derivative since the particles are moving with the
modified velocity (u+δu) and the first two equations of (2) are
written following an Arbitrary Lagrangian-Eulerian approach.
Because of this, the continuity and the momentum equations
contain terms with spatial derivatives of δu (for details, the
interested reader is referred to [5]).

The mass mi of the i−th particle is assumed to be constant
during its motion. The particles are set initially on a Cartesian
lattice with spacing ∆r, and hence, the volumes Vi are initially
set as ∆r2. The particle masses mi are calculated through the
initial density field (using the equation of state and the initial
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pressure field). While the particle masses mi remain constant
during the time evolution, the volumes Vi change in time
accordingly with the particle density (see bottom line of eq.
(2)).

In eq. (2) a simple linear state equation linking the pressure
with the density is assumed where c0 plays the role of a
constant speed of sound of the liquid and ρ0 is the density
at the free-surface (where p is assumed to be equal to zero).
The weakly-compressible hypothesis implies the following
requirement:

c0 ≫ max

Umax,

s
(∆p)max

ρ0

 (3)

where Umax and (∆p)max are, respectively, the maximum fluid
speed and the maximum pressure variation expected (with
respect to the zero pressure free-surface level) in Ω. By
considering that the time integration is performed with a time
step related to the value of c0, the latter is always set lower
than its physical counterpart. The constraint (3), however, must
be checked for guaranteeing the fulfillment of the weakly-
compressible regime.

In the present paper, the whole set of numerical simulations
spans from Re=3 × 104 to Re=3 × 105, where the Reynolds
number is defined as:

Re =
2π A

T
L
νw

where νw = 10−6 m2/s is the kinematic viscosity of the water,
A is the amplitude of tank oscillation, T the excitation period
and L the tank length (1 meter in the present investigations).
By considering the Reynolds numbers involved, a sub-grid
model is needed. A simple LES with a classic Smagorinsky
model was adapted in the present SPH using quasi-Lagrangian
formalism introduced in [3].

To avoid instabilities on the pressure field the diffusive term
Dρi , introduced by [2], is added in the continuity equation.
For the sake of brevity Dρi is not reported here, the interested
reader can find more details also in [3, 25] where the intensity
of this term is determined dynamically in space and time.

The pressurer and viscous forces Fv are expressed as:


Fp
i :=
X

j

(pi + p j)∇iWi j V j

Fv
i := K

X

j

(µ + µT
i j) πi j ∇iWi j V j K := 2(n + 2)

πi j :=
ui j · ri j

||r ji||2 , µ
T
i j := 2

µT
i µ

T
j

µT
i + µ

T
j

, µT
i := ρ0 (CS l)2 ||�i||

(4)
where n is the number of spatial dimensions, l = 4∆r is
the radius of the support of the kernel W for two spatial
dimensions and represents the length scale of the filter adopted
for the LES sub-grid model. CS is the so called Smagorinsky
constant, set equal to 0.18 (see [32] and [6]). ||�|| is a
rescaled Frobenius norm of the rate of strain tensor, namely
||�|| = √2� : �. The viscous term (4) contains both the

effect of the physical viscosity µ as well as of the one related
to the turbulent stresses µT

i . In order to dump the turbulent
eddies near the wall boundaries a classical van Driest damping
function is employed [33].

A 4th-order Runge-Kutta scheme is adopted to integrate in
time system (2). The time step, ∆t, is obtained as the minimum
over the following bounds as set by Courant-Friedrichs-Lewy
conditions:


∆tv = 0.031 min
i

l2 ρi

(µ + µT
i )
, ∆ta = 0.3 min

i

s
∆r
∥ai∥

∆tc = 0.6 (l/c0) , ∆t = min(∆tv ,∆ta ,∆tc)

(5)

where ∥ai∥ is the particle acceleration, ∆tv is the time step
related to viscosity, ∆ta is the advective time step and ∆tc is
the acoustic time step (see e.g. [14]).

A. Enforcement of the boundary conditions

The governing equations require appropriate boundary con-
ditions to be applied on the free surface and on the tank
walls. As clarified in [10, 11], the kinematic and dynamic
conditions on the free surface are intrinsically satisfied with
SPH methods.

The no-slip boundary condition on the solid surface is
enforced with a ghost-fluid approach (see e.g. [23] [4] and
also [5, 28] where quasi-Lagrangian formulation is used). It
requires that at least five particles should be present within the
boundary layer region. High spatial resolution simulations are
designed in such a way as to fulfill the above constrain.

An estimation of the boundary layer thickness (WBT) can
be obtained by using the Blasius equation. Considering the
Reynolds number regime studied in this work, it results that
the WBT spans between 0.9 and 2.7 cm. The maximum spatial
resolution adopted for the current simulations is N = H/∆r =
200, i.e. the particle size is 1.75 mm.

IV. Discussion on results

The present research activity considered a wide range of os-
cillation frequencies for the motion of the tank, at a prescribed
filling depth of h/L = 0.35. The oscillation period T of the
sinusoidal motion of the tank is made non-dimensional with
the natural period of the first sloshing mode T1. During the
numerical campaign, the period T is approximately varied be-
tween T = 0.5 T1 and T = 1.6 T1. The considered amplitudes
of tank motion are A = 0.01L, only numerical, and A = 0.03L
for both numerical and experimental campaign.

The experimental and numerical campaigns carried out at
CNR-INM by [22] and [13] have shown that the time signals
of the free surface elevation can be rather complex for some
specific amplitude A or period T because of the presence of
typical phenomena like wave breaking, formation of water jets,
water impacts, etc. As a consequence, the wave signal max-
ima experience a severe scattering when doubling-frequency,
tripling-period, or quasi-periodic (i.e periodic with a chaotic
modulation) time behaviours are triggered. This means that the
consideration of the highest values only, as in [29], may be
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Figure 2. WEFD for tank oscillations of 0.01m and varying frequency. With
different symbols and colors the different regimes.

not meaningful. Moreover, it should be considered that isolated
spikes may occur, such distorting the data evaluation.

Following these considerations, in the present investigation
the average of the maxima within a suitable time window and
the associate standard deviation are taken into account. The
time windows are framed after the initial transient (which
usually lasts about 80 oscillation periods), where the time
signal is very energetic and less significant for the description
of the system behaviour.

The averaged maxima Wave Elevation Frequency Distribu-
tions (WEFD) are then built for sway oscillation amplitudes
of A=1 cm and A=3 cm. For most interesting cases, Fourier
spectra and phase maps are also shown.

A. Amplitude 0.01L

The experiments for oscillation amplitude of 1 cm are only
numerical, because the physical limits of the experimental
apparatus do not allow to go under 3 cm.

The WEFD for this oscillation amplitude, reporting the
time averages of the free surface elevation maxima η5max,
is depicted in figure 2. The free surface elevation signal is
analyzed after 80 oscillation periods of physical simulation
time in order to avoid spurious effects from the initial transient.

As clarified in [17], the highest surface elevation is not
achieved for T = T1, as expected from the theoretical pre-
dictions of the linear theory described in [19], where the free
surface elevation is expressed with a sine expansion.

[16] showed that the nonlinear effects modify the WEFD
similarly to the soft-spring solutions of the Duffing equation
[20] when the filling height h is greater than the critical depth
(while for h lower than the critical depth the WEFD changes
like an hard-spring solution; see e.g. [1, 7]).

The soft-spring dynamical behaviour described by [16] is
discussed also in [9] for sloshing experiments near the critical
depth. The amplitude response respect to the oscillation period
shows two stable branches with a turning point between them.
The set of turning points for different excitation amplitudes
defines jumps from lower to upper branch and can be found
from a cubic secular equation indicated in [16].

The WEFD resulting from linear theory is drawn in Fig. 2
with a dashed line, where the theoretical predictions are taken

from the book of [19]. The departing from the linear theory
of the numerical WEFD, shown in Fig. 2, is actually due
to nonlinear effects. In particular, in that figure the abscissas
related to T = T3 , 2T3 , 2T2 (see formula (1)) are evidenced
with vertical lines.

The peak on the left side is related to the resonance of the
third sloshing mode, the period of which is T3 = 0.517 T1.
The nonlinear effects lower the amplitude of η5max to ≈ 0.1
and shift the period to T ≈ 0.55 T1.

The first sloshing mode leads to a maximum peak of WEFD
observed at T = 1.044 T1 with η5max ≈ 0.344. It should
be emphasized that the mode 2T3 is very close to the first
resonance, as highlighted in Fig. 2, so that a combination
between T1 and 2T3 is a possible explanation of the rightward
bending of the WEFD peak.

The second mode, and in general all the even modes, is not
directly excited with the tank swaying, but it appears because
of non linear effects. From the WEFD in Fig. 2, a little jump
in the low frequency (i.e. long period) branch is found at T =
2T2, where T2 = 0.64 T1 is the second sloshing period. The
jump is evidenced with a magnification of the WEFD in the
range T ∈ [1.2T1 − 1.35T1].

Once fixed the swaying amplitude, different sloshing
regimes are observed at different frequencies and are indi-
cated in Fig. 2 with different symbols (similarly to [15]).
The regimes found at the smallest amplitude (A = 0.01L)
are: periodic monochromatic, periodic non-monochromatic,
doubling frequency and quasi periodic regimes.

Fig. 3 shows the time histories and the corresponding
Fourier Transform spectra of η5 for four different cases:

1) ) T = 1.50 T1 Periodic Monochromatic,
2) ) T = 1.01 T1 Periodic Non-Monochromatic,
3) ) T = 1.28 T1 Doubling-frequency mode,
4) ) T = 0.55 T1 Quasi-Periodic mode.
At low frequencies (T > 1.4 T1) η5 behaves as a monochro-

matic signal. As shown in frame (a) of Fig. 3, the time signal
resembles a simple sinusoidal function and, indeed, the Fourier
transform shows a single dominant peak at f ∗ = T f = 1.
The blue circle at f ∗1 = T/T1 = 1.50 represents the oscillation
frequency of the tank and it is dominant during the transient. In
the selected time window, the latter is lower than 10−4, so that
it can reasonably be assumed negligible and the regime may be
considered as unaffected by the transient spurious components.

Increasing the oscillation frequency, a periodic non-
monochromatic time signal appears. In Fig. 3-(b) the signal at
T = 1.01 T1, where the oscillation frequency is forced close to
the first resonance, is shown. The Fourier transform shows a
main peak, corresponding to the excitation frequency, at f ∗ = 1
and a sharp peak at every integer multiple.

When the excitation period T is such that T = 2 T2, the
second even mode appears because of non-linear effects. This
mode leads to the onset of a doubling-frequency bifurcation,
clearly visible in Fig. 3-(c), where the time signal η5 presents
two peaks in a period. As a consequence, a second peak at
f ∗ = 2, the intensity of which is comparable to the one at
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Figure 3. Time signals (left) and corresponding Fourier transform spectra
(right) for different sloshing regimes at oscillation amplitude of 0.01m. Frame
- a: T/T1 = 1.50 - Periodic Monochromatic. Frame - b: T/T1 = 1.01 -
Periodic Non Monochromatic. Frame - c: T/T1 = 1.28 - Doubling Frequency.
Frame - d: T/T1 = 0.55 - Quasi Periodic. The non-dimensional frequency
is f ∗ = T f . The blue circles indicates the amplitudes related to first natural
frequency f ∗1 = T/T1.

f ∗ = 1, occurs in the Fourier transform. Similarly, nonlinear
effects induce a similar behaviour for f ∗ = 3 and f ∗ = 4.

At high frequency, when the period T is close to T3, a
quasi-periodic regime is achieved. A quasi-periodic signal is
a periodic signal modulated by a chaotic component (see e.g.
[15]). In Fig. 3-(d), the time signal and the Fourier transform
of η5 is shown at T = 0.55T1. The Fourier transform presents
a dominant peak for f ∗ = 1 while the rest of the spectrum is
continuous, typical of chaotic signals (see e.g. [15]).

The final motion of the tank is attained after a ramp,
during which, besides the forcing frequency 1/T , a continuous
spectrum of modes is excited. The 1st natural mode (i.e. the
first resonance) of period T1 is the most energetic (among
them) during the initial transient stage, whereas the other ones
typically weaken rather quickly, unless strengthened by mutual
nonlinear interactions. In fact, the 1st natural mode behaves
alike a modulation of the time signals that, in same cases,
decays after long transients during which the corresponding
component remains as a distinct peak in the Fourier spectrum.

Figure 4. Phase maps for different sloshing regimes at oscillation amplitude
of 0.01m. Cases (a) and (d) of Fig. 3 on the left frame and and cases (b) and
(c) on the right frame.

In order to show that the simulations are long enough to make
negligible this effect within the analysed time windows, a blue-
dot corresponding to the amplitude of the 1st natural mode is
drawn in the Fourier spectra of Fig. 3. As visible, it is always
associated to amplitudes of about 2 orders of magnitude lower
than the amplitude of the excitation frequency.

Fig. 4 depicts the phase maps (η5, η̇5). For the case a) the
periodic monochromatic signal is represented, as expected,
by an elliptical orbit in Fig. 4 - (a). The frame (b) of Fig.
4 reports the phase map of the case b), where the periodic
non-monochromatic behaviour leads to an orbit which is an
elliptical shape distorted by the non-linearities. The thickness
of the set of curves indicates the presence of a weak modula-
tion that does not preserve a single stable orbit. The doubling
frequency regime of case c) is represented in Fig. 4-(c) by a
knotted orbit with the internal little loop related to the lower
peak within the signal period. The quasi-periodic phase map,
case d), is shown in Fig. 4-(d) and is characterized by nearly
circular orbits, where the unpredictable amplitude modulation
gives rise to a severe scattering of them.

B. Amplitude 0.03L

Experimental and numerical campaigns have been carried
out for A = 0.03L. The numerical and experimental WEFD
are drawn in Fig. 5, together with the different regimes
identification, given coherently with the classification of sec-
tion IV-A. As a comparison, the theoretical WEFD coming
from multimodal approach of [16] is superimposed to the
experimental and numerical results.
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Figure 5. WEFD for tank oscillations of 0.03m and varying frequency. With
different symbols and colors the different regimes. Top: numerical simulations.
Bottom: experiments.

The theoretical approach is not capable to take into account
singular events as breaking or wave impacts, so the high
frequency cases are not properly predicted. Despite of it, as
visible by the dashed line of top frame of Fig. 5, the numerical
results are rather close to multimodal data, at least in the range
T/T1 ∈ [0.67 − 1.6). Regardless its intrinsic limitations, the
multimodal approach is able to predict the bifurcation around
T = 1.1 T1 and the doubling frequency jump at T = 2 T2.
Conversely, the numerical outcomes reveal a chaotic wave
height time signal in the range T/T1 ∈ [0.50 − 0.67), where
the multimodal solution shows a high peak related to the third
resonance T3/T1 and is thus unable to predict such a behaviour.

Bottom plot of Fig. 5 reports the comparison between with
the experimental data and the multimodal approach. In the

Figure 6. Test case A = 0.03L, T/T1 = 0.944, corresponding to a quasi-period
regime. Colors are representative of the δ-LES-SPH pressure field. Black dots
are the free surfaces extracted by the experimental video

period ranges T/T1 ∈ (0.79, 1.00) and T/T1 ∈ (1.14, 1.34) the

Figure 7. Time signals (left) and corresponding Fourier transform spectra
(right) for different sloshing regimes at oscillation amplitude of 0.03m. Frame
- a1: T/T1 = 1.10 - Quasi periodic - numerical simulations. Frame - a2:
T/T1 = 1.10 - Quasi periodic - experiments. Frame - b1: T/T1 = 0.867 -
Tripling period - numerical simulations. Frame - a2: T/T1 = 0.867 - Tripling
period - experiments. The non-dimensional frequency is f ∗ = T f .

numerical results are in a good agreement with the experi-
mental data in terms of mode classification, value of η5max
and its related standard deviation. In particular, the doubling-
frequency regime is found experimentally and numerically
near T = 2T2 similarly to amplitude A = 0.01L, already
discussed in section IV-A. At T = 0.867 T1 a tripling-period
bifurcation is identified by both δ-LES-SPH and experiments.

In order to stress better the similitude between numerical
predictions and experimental data, Fig. 6 compares the free
surface extracted from camera acquisition with the δ-LES-
SPH particle configuration at T = 0.944T1. Two different time
instants were considered, corresponding to most leftward and
most rightward tank positions. The agreement is rather good
with small discrepancies mainly linked to breaking events
typical of the quasi-periodic regime.

Although the experimental/numerical comparisons are gen-
erally in good accordance, at T = 2T3 the experiments show a
second tripling-period scenario not found with the numerical
simulations. The disagreement is mainly related to 3D effects,
in fact the fragmentation of the free surface is more intense
in the experiments than in the 2D simulations. Indeed, the

130



2023 International SPHERIC Workshop Rhodes, June 27–29, 2023

Figure 8. Phase maps for different sloshing regimes from numerical
simulations at oscillation amplitude of 0.03L. Frame - a1: Quasi-periodic.
Frame - b1: Tripling-period.

Figure 9. Test case A = 0.03L, T/T1 = 0.867, corresponding to a tripling-
period regime. Colors are representative of the δ-LES-SPH pressure field.
Black dots are the free surfaces extracted by the experimental video.

fragmentation induces extra-dissipation phenomena which are
responsible for the lower value of η̄5. Similarly, the highest
points of the WEFD at T = 1.067T1 and T = 1.107T1 of the
experimental data are about the 13% lower than the δ-LES-
SPH results.

Fig. 7 shows the experimental and numerical time histories
and the related Fourier transforms for case T = 1.107 T1
(frames a1 and a2) and T = 0.867 T1 (frames b1 and b2).
As commented above, the numerical simulation represented
in frame (a1) presents a more energetic signal with respect to
the experimental one, shown in frame (a2). A quasi-periodic
regime is attained for both signals, as evidenced by the Fourier
spectrum, where dominant peaks overlies an almost continuous
spectrum, as it is typical of a chaotic modulation.

The case T = 0.867 T1, close to the period T = 2 T4,
corresponds to a tripling-period scenario. The numerical and
experimental time histories are reported in the frames (b1)
and (b2) of Fig. 7, respectively. The signals look very similar
although some differences are visible in the height of the

peaks which lead to a larger standard deviation for δ-LES-
SPH. The tripling-period mode is characterized by a periodic
sequence with period 3T characterized by three local max-
ima. This behaviour reflects on the Fourier transform where,
beside the peak at the excitation period T , two other peaks
at lower frequency appears. The non-linear combination of
three frequency components excite also other high frequency
harmonics, such leading to the peaked shape of the Fourier
spectra.

Phase maps (η5, η̇5) related to the former regimes are
depicted in Fig. 8. In the left plot of Fig. 8 a quasi-periodic
map is drawn for T = 1.107 T1. The orbit related to the
excitation period T is disturbed by chaotic modulation and
the final orbit appears rather scattered with evident fluctua-
tions. In the right plot of the same figure, the tripling-period
regime at T = 0.867 T1 is characterized by three concatenate
orbits. Again the orbits are characterized by scattering and
fluctuations which are related to breaking wave events.

For this latter case, Fig. 9 depicts the free-surface extracted
by camera acquisition and compares it with the simulation
SPH particles at four time instants, demonstrating a fair
good agreement between them. It is worth noting that in the
δ-LES-SPH plunging breaking waves are developed, while
in the experiments only spilling breakers are found. These
differences are likely related to the fact that the surface tension
effects are neglected in the numerical model.
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