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Abstract
A key element to understand complex systems is the relationship between the spatial scale of
investigation and the structure of the interrelation among its elements. When it comes to economic
systems, it is now well-known that the country-product bipartite network exhibits a nested
structure, which is the foundation of different algorithms that have been used to scientifically
investigate countries’ development and forecast national economic growth. Changing the subject
from countries to companies, a significantly different scenario emerges. Through the analysis of a
unique dataset of Italian firms’ exports and a worldwide dataset comprising countries’ exports,
here we find that, while a globally nested structure is observed at the country level, a local, in-block
nested structure emerges at the level of firms. This in-block nestedness is statistically significant
with respect to suitable null models and the algorithmic partitions of products into blocks
correspond well with the UN-COMTRADE product classification. These findings lay a solid
foundation for developing a scientific approach based on the physics of complex systems to the
analysis of companies, which has been lacking until now.

Understanding the structure of interactions in a complex system is a fundamental issue [1, 2], since the
structure affects the system’s function [3, 4] and its resilience against diverse perturbations [5–8]. Yet,
interactions can be bounded by different kinds of constraints [9]. When this is the case, understanding the
structure and dynamics of interactions requires to identify clear boundaries that separate an ecosystem from
its surroundings. While this idea and the resulting methods [9–12] have found promising initial applications
in ecological [13–16], neural [17, 18] and social networks [19, 20], they have not yet been applied to
economic systems where actors produce and export products. As for these systems, most studies assume that
the ecosystem where a country operates is the entire world [21–23]: in principle, each country competes with
all the others, and all products are considered. To uncover the complexity of countries’ export structure, the
world trade web is often represented as a bipartite network where countries and products constitute the
nodes of the two layers [24, 25]. At this global scale, a peculiar property emerges: nestedness [12].
Well-known in ecology, in this context nestedness means that developed countries are highly diversified and
produce all kinds of products, while developing countries only produce a few ubiquitous products. This
empirical observation led to the development of economic complexity, an interdisciplinary approach which
applies methods from statistical physics and network science to uncover the determinants of country
development [24, 25]. Notably, a predictive approach based on nestedness [25] is able to forecast GDP
growth with a significant improvement and complementarity with respect to the IMF projections [26, 27].
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Despite these remarkable achievements, a fundamental question remains still open: given that the export
of countries is nothing more than the result of the production of individual companies at national level, can
the economic complexity approach be extended to the scale of companies? In principle, answering this
question could provide both firms and policymakers with an algorithmic tool to evaluate the competitiveness
of a company, to design optimal strategies for development, and to forecast its economic performance.
Indeed, a high-fitness firm will likely be able to exploit countries’ comparative advantage.

Despite its importance, this investigation has been hindered by two main factors. First, data scarcity:
export data at the company level is extremely sensitive in terms of privacy policy and is much less
homogeneous with respect to the harmonized data about the international trade. Second, and more
importantly, the networks of countries and companies may have different structures and, regarding firms, it
is unclear how to detect a suitable economic environment—or ecosystem—wherein to assess a firm’s
competitiveness. Note that such ecosystem could be composed of possible competitors but also suppliers or
service providers, as long as a set of capabilities are shared, in the spirit of Porter’s theory of management
[28, 29].

Thanks to our collaboration with the Italian National Institute of Statistics (IT ISTAT), we could
overcome these limitations and access a unique dataset of Italian firms’ export records. The products are
coded in the same way as previously-analysed datasets of countries’ exports, which enables a direct
comparison of the structures of the country-product and company-product ecosystems.

Building on this dataset, we apply algorithms to statistically validate the presence of modularity,
nestedness, and in-block nestedness [11, 20] to both the country-product and the company-product
networks. We find that the same level of nestedness which is present at the country scale is absent when one
looks at a national economy of companies as a whole, but re-emerges at the local level, once that the modular
structure of the company-product network is considered. As a result of these structural differences, the
ranking algorithms developed to evaluate countries’ competitiveness do not work properly when applied to
the network of companies as a whole. At the same time, the detected in-block nestedness of the
company-product network opens up the possibility to apply the economic complexity framework also at the
company level, provided that the proper locally-nested ecosystems are considered: the company, its
competitors, and the products they compete on.

1. Results

1.1. Same ranking algorithm, different conclusions
Economic complexity algorithms were originally designed to evaluate the competitiveness of countries and
the complexity of products from the structure of the country-product network [24, 25]. We begin by
showing that state-of-the-art economic complexity algorithms are inadequate to capture the complexity of
products and the competitiveness of firms from the structure of the company-product network [30]. To
demonstrate this point, we apply the fitness-complexity (FC) algorithm [25, 31] (see Methods for the
mathematical formulation) to both the country-product and the company-product networks. In this way, we
obtain two different evaluations of the same quantity: the complexity of products. To assess whether the
obtained complexity scores are good proxies for the economic value of a product, we compare the complexity
rankings with those obtained according to the logPRODY index (see Methods), an external monetary metric
that measures the sophistication of products from the GDP of the exporting countries [32, 33]. We expect
that a reasonable measure of complexity should exhibit a good correlation with logPRODY.

A good agreement between complexity and logPRODY is only observed when the complexity score is
obtained by applying the FC algorithm to the country-product network (Spearman’s correlation coefficient
ρ= 0.642), but not when the same algorithm is applied to the company-product network (ρ=−0.224, see
figure 1). A similar conclusion is reached by comparing the countries’ and companies’ (extensive) fitness
scores with their export volumes, which can be interpreted as proxies for their competitiveness. We only
observe a high correlation for countries (ρ= 0.887), but not for companies (ρ= 0.378) - see supplementary
section II and [30] for a comparison with the degree. These results indicate that when applied to the
company-product network, the FC algorithm does not accurately estimate the economic value of products
and the competitiveness of the exporters. It comes therefore natural to wonder why the FC algorithm can not
be applied as it is on the company-product network; our starting point is the crucial requirement that the
whole structure of the network should be nested.

Indeed, a possible answer lies in the different structures of the company-product and country-product
networks. The FC algorithm builds on the premise that competitive countries tend to diversify their export
baskets as much as possible, given their available capabilities [34–36]. This hypothesis is motivated by the
globally nested structure of the country-product network [12, 25]: the most diversified countries export all
kinds of products, whereas the products exported by more specialised countries are typically exported by the
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Figure 1. Same ranking algorithm, different product Complexity. The 2d histograms compare the product rankings obtained with
the fitness-complexity algorithm at the company (left) and the country (right) level with those computed using the logPRODY
index, an economic-based measure of sophistication. Points are grouped in bins of size 0.1, with rankings being normalised
between 0 and 1. In the case of similar classifications, an accumulation of points around the secondary diagonal should be
observed. We find that the complexity of products is correlated with the logPRODY index when it is extracted by applying the
fitness-complexity algorithm to the country-product network (b), but not when extracted from the company-product network
(a). A possible explanation lies in the different structures of the two networks.

diversified ones as well. Drawing a parallel with ecology, a more diversified export basket might increase the
robustness of a country’s economy with respect to adverse external events [6, 37]. A similar argument might,
in principle, apply to firms as well, and prior works have associated the diversification of a firm’s activities
with its economic performance [38–40]. Yet, other studies emphasised the importance for a firm to diversify
within its core set of capabilities, avoiding unrelated activities [30, 41–45]. These works suggest that a
globally nested structure might not be found, and that the company-product network might be instead
partitioned into specialised blocks, which would disagree with the basic premise of the FC algorithm.

1.2. The different role of modularity
The ultimate test of these conjectures lies in the empirical data. To identify potential differences in the
structure of the two economic systems, we apply a modularity maximisation algorithm (BRIM, see Methods
for more details) to both. By only looking at the modularity scores of the two networks, one may naively
conclude that both exhibit a pronounced modular structure (Q= 0.218, p< 0.01 for the country-product
network, Q= 0.512, p< 0.01 for the company-product network, where the p-values have been obtained
with the BiCM null model, see Methods).

Yet there are two substantial differences between the two modular patterns. First, the detected partitions
are much noisier in the country-product network than in the company-product network (see Supplementary
figure S2 for a visual comparison). More specifically, the blocks in the country-product network contain only
50% of the links, whereas in the company-product network they contain more than 70% of the links.

Second, the interpretation of the detected blocks is radically different in the two systems. To interpret the
detected blocks, we investigate their sector composition. To this end, we compare the modularity-detected
partition of products with the ones corresponding to the 21 sections of the official export classification, that
is the Harmonized System (HS), 1992 edition (see supplementary section V for a detailed description of this
classification). The basic idea is that, since the HS sections represent homogeneous categories of products,
then coherent (specialised) partitions should show a substantial degree of relatedness, that is, similar
products should co-occur in the same blocks. Conversely, heterogeneous (diversified) partitions should show
a low degree of relatedness. To ensure the robustness of our conclusions, we perform the comparison
between HS sections and the partitions extracted by several different community detection algorithms
(BRIM and BRIM2 [46], BiLouvain [47], and IBN [11]—see Methods for more details): robust results should
not depend on the particular algorithm employed, as long as it provides a reasonable partition. The
similarity between the partitions is measured using the adjusted mutual information [48] (AMI, see Methods
for the mathematical definition). We emphasise that this analysis does not aim to evaluate the detected
partitions [49], but only to provide a robust interpretation of the detected modules.

We find that the AMI is significantly larger in the firm-product than in the country-product network. For
example, by using the Bipartite, Recursively Induced Modules (BRIM) algorithm, the AMI is 270% larger in
the company-product network than in the country-product network. Qualitatively similar results hold for
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Figure 2. A comparison between the detected product partitions and the HS categorisation for the countries’ and firms’
ecosystems. The similarity between classifications is measured through the adjusted mutual information (AMI), which is based on
the idea that if two partitions are similar, one needs very little information to infer one partition given the other (see Methods for
more details). In the case of companies, the division of products closely resembles the homogeneous classification provided by the
HS System (high AMI), while the same does not hold true for countries, where the identified blocks are characterised by a
pronounced heterogeneity (low AMI).

Figure 3. The different structure of the bipartite export network at company and country level. While the country-product
network exhibits a globally-nested structure, the firm-product network can be partitioned into blocks that exhibit an internal
nested structure. (a) Firm-product export network. Within each module detected by the BRIM modularity maximisation
algorithm (coloured blocks), rows and columns have been sorted according to the fitness-complexity algorithm. The colours of
each module reflect the economic sector represented by the majority of products in the module. (b) Country-product export
network, where rows and columns have been sorted according to the fitness-complexity algorithm. While for countries the proper
ecosystem is the whole world, in the case of companies local ecosystems in line with the intuitive sectoral divisions emerge.

other algorithms (see figure 2). This set of results indicates that companies are genuinely specialised entities
that mostly focus on homogeneous groups of products. By contrast, countries do not specialise in confined
groups of similar products, as proven by the high heterogeneity of the detected blocks: developed countries
diversify their production [25]. It can be shown that the significant degree of modularity observed in the
country-product network can be explained by the countries’ diversification patterns (see supplementary
section III B for a detailed discussion).

These results lead to the investigation of the internal structure of the detected company-product blocks.
In particular, the interesting point to evaluate is whether there is a resemblance between the structure of
these blocks and the global structure that characterises the country-product network. Such evidence would
support the idea that the detected blocks act as boundaries that limit the companies’ ability to diversify. To
this end, we apply the FC algorithm to the BRIM blocks, and we use the rankings to order the
company-product matrices. The result is depicted in figure 3(a). Besides a good agreement with the industrial
sectors, the blocks identified in the company-product network display another very interesting feature: they
exhibit an internally nested structure. This property will be deeply investigated in the next section.

In light of these results, an initial characterisation of the two economic ecosystems can be outlined. For
countries, nestedness is the dominant property, whereas modularity (although statistically significant)
emerges only as a second-order feature, essentially determined by the countries’ diversification. For
companies, modularity is the dominant property, whereas nestedness is relegated within blocks, as a local
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Figure 4. Evaluating the statistical significance and the robustness of the in-block nestedness of the countries’ and firms’
ecosystems. (a) Empirical values of the optimal degree of in-block nestedness, I∗, and the global nestedness,N , for both the
firm-product and the country-product network; I∗

CM andN CM denote the average of the two functions over ten realizations of
the randomised networks generated according to the bipartite configuration model. Differently from the country-product
network, the firm-product network exhibits I∗/N ≫ 1, proving quantitatively the in-block nestedness of this system.
(b) Robustness analysis by using different partitions obtained by maximising the modularity function (BRIM, BRIM2 and
BiLouvain), or by maximising the I function and through the sector information (HS System). The value of the in-block
nestedness I is always higher (lower) than the nestednessN in the case of companies (countries).

property. We can then argue that the reason why the FC algorithm, if applied to the whole company-product
network, misestimates the sophistication of products and the competitiveness of companies is that it neglects
the block structure of the network.

1.3. Local nestedness in the firms’ ecosystem
A full validation of the previous characterisation of the two systems requires the deployment of methods that
can disentangle the role of nestedness and modularity [11]. Specifically, to prove the claim that nestedness is
a local (global) property in the firms’ (countries’) ecosystems, we implement a recent method to rigorously
determine whether a network can be partitioned into blocks with an internal nested structure [11]. This
method relies on a quality function—referred to as in-block nestedness, I (see Methods for the mathematical
definition) – and requires to optimise the in-block nestedness function and to compare its optimal value, I∗,
against the value of the same function for a single-block partition, which we refer to asN (see Methods).
Large values of the ratio I∗/N indicate that nestedness is a local property, while networks where nestedness
is a global property exhibit I∗ ≃N [11, 20].

Our findings quantitatively confirm the qualitative representation of figure 3. We find a large I∗/N ratio
for firms (I∗/N ≃ 12.0; see figure 4(a)), where the in-block nestedness maximisation produces a partition
with more than 80 blocks, but not for countries (I∗/N ≃ 1.02), where only two modules are detected, of
which the largest one includes the vast majority of the network nodes (97.6%) - see supplementary figure S5
for a visual representation. To rule out the possibility that large I∗ values arise through random
fluctuations [50], we compare the observed values of I∗ against those obtained in randomised bipartite
networks that preserve on average the nodes’ degree (see Methods). We find that the in-block nestedness I∗

of the firm-product network is significantly larger than that of the corresponding randomised network,
whereas the same does not hold for the country-product network (figure 4(a)), where the level of in-block
nestedness is entirely due to the degree of global nestedness. Note that by testing the significance of this result
with the BICMmodel, we are performing a highly conservative statistical validation, which can notoriously
rule out global nestedness in most empirical networks [51, 52]. Taken together, these results demonstrate
that nestedness is a global property for countries, while it emerges locally for firms.

This conclusion is robust with respect to alternative partitions of the network. Specifically, the empirical
result that I ≫N holds not only for the optimal in-block nested partition (I = I∗), but also for reasonable
alternative partitions determined by modularity maximisation (via the BRIM, BRIM2 and BiLouvain
methods) or economic sectors (based on HS sections, HSSec, and chapters, HSChap) – see Methods for a
summary of these partitioning methods. Although the value of I for these partitions is smaller than I∗, it
remains considerably larger thanN (see figure 4(b)) – the fingerprint of a network where nestedness is a
local network property, and not a global one. Remarkably, in the country-product network, none of the
sub-optimal partitions achieves a value of I comparable toN : we observe I ≪N for all partitions but the
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optimal one (for which I = I∗ ≃N ; see figure 4(b)). This further confirms that nestedness is a global
property of the country-product network.

2. Discussion

Despite recent advances in economic complexity, comparing the structure and dynamics of economic
ecosystems at the country and company scales remained elusive, mostly due to the scarcity of datasets on
firms’ export activities and the lack of specific methodologies. Here, we overcame this limitation by analysing
a unique dataset of Italian firms’ exports and a worldwide dataset of the export flows between countries, and
by comparing the observed structure of the firms’ and countries’ ecosystems via recently introduced
approaches [11, 20].

Our results reveal that, when looking at an economic ecosystem at different scales, stark structural
differences emerge - which is not totally unexpected, given the different objectives of a firm’s management
with respect to the public sector. More in detail, while we observed a globally nested structure at the country
level, we found an in-block nested structure at firm level. We showed that the observed structural differences
have profound implications for economic complexity rankings: the FC algorithm [25], which provides an
optimal ranking for nested networks, neglects the block structure of interactions and, as a result, it correctly
extracts the economic value of products and the competitiveness of economic agents in the country-product
network, but not in the firm-product network.

Nevertheless, developing economic-complexity ranking and recommendation algorithms tailored to
firms would have profound implications for managerial and policy-making decisions, innovation strategies
and investments. To this end, our findings suggest that the first crucial step should be the identification of the
local ecosystem of the firms of interest and its boundaries. The appropriate context is not the entire network
(as for countries), but is provided by the company-product blocks where the firms operate. Interestingly,
since these local ecosystems are internally nested, then applying locally the FC algorithm may still be an
effective strategy to rank companies and products within their ecosystem. This analysis will be the subject of
future works.

3. Methods

3.1. Data and network construction
We analysed two datasets: (1) the country-level dataset obtained from the UN-Comtrade dataset (https://
comtrade.un.org), which is the standard database used in the Economic Complexity framework and (2) the
ISTAT dataset concerning the export of Italian companies. In both datasets the export flows are recorded,
and products are classified according to a six digit code which, after a data cleaning procedure, was
standardised to the HS 1992 categorisation. We then coarse-grained the obtained classification by
considering only the first 4 digits, resulting in a set of about 1200 products.

The firms’ dataset spans from 1993 to 2017 and it includes 879 280 companies. From year to year the
number of companies exporting at least one product varies between 150 000 and 200 000. The countries’
dataset spans from 1996 to 2018, and it includes 169 countries in total.

To perform a coherent analysis for both firms and countries we summed up the export volumes for all
the available years and only kept the firms (countries) that remained active (for which data is available) for
the entire time interval considered. As a result of this filtering procedure, a total of 18 349 firms and 161
countries were left. From these filtered data, we constructed the country-product and the firm-product
bipartite binary networks.

The criterion adopted in order to decide whether a country (company) can be considered or not as a
competitive exporter of a particular product is the so-called revealed comparative advantage (RCA) [53]. For
a pair (i,α) composed of a potential exporter i (country or company) and a product α, the RCA is defined in
terms of the ratio between the fraction of export of product α by country (company) i and the overall export
of α. The obtained quantity is then divided by the ratio between the total export of i and the overall export
by all countries (companies). This is the most natural way to remove trivial dependencies from the sizes of
the economic agents and sectors. In formulas:

RCAiα =

qiα∑
i ′ qi ′α∑
α ′ qiα ′∑

i ′α ′ qi ′α ′

. (1)
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As in previous works [24, 25], a threshold value R∗ = 1 is used. As a result, a binary country
(company)-product matrixM is built, whose generic element is:

Miα =

{
1 if RCAiα ⩾ R∗ = 1

0 if RCAiα < R∗ = 1
, (2)

i.e. country (company) i can be considered a competitive exporter of product α if and only ifMiα = 1. In the
equivalent network representation, the node of the country (company) i is linked to the node of the product
α if and only ifMiα = 1. For the characterisation of the basic properties of the two constructed networks, see
Supplementary table S1.

3.2. Network analysis methods
3.2.1. Modularity
We search for a (sub)optimal modular partition of the nodes by applying a variant of the BRIM algorithm6

[46] to maximise Barber’s modularity [54], defined as:

Q=
1

E

NR∑
i=1

NC∑
α=1

(Miα − Piα)δ(ai,aα), (3)

where E is the number of interactions (links) in the network,Miα is the biadjacency matrix which denotes
the existence of a link between row nodes i and column nodes α, Piα = kikα/E is the probability that a link
between nodes i and α exists by chance under a degree-preserving null model, ai is a membership variable
that defines the block to whom the node i belongs, and δ(ai,aα) is the Kronecker delta function, which takes
the value 1 if nodes i and α are in the same community, and 0 otherwise.

Given the resolution limit that affects modularity optimisation [55], we also considered an alternative
method that applies the BRIM algorithm twice, by performing community detection within the blocks
identified through the first application of the algorithm. We refer to this method as BRIM2. In order to verify
the robustness of the results, all the analyses were replicated using the BiLouvain algorithm, which is the
extension to bipartite networks of the popular Louvain algorithm introduced by Blondel et al [47].

3.2.2. Global and In-block nestedness
In-block nested structures are patterns of interactions characterised by compartments of nodes that
internally exhibit a nested pattern of interactions. Using the formulation developed in [11], the degree of
in-block nestedness I of a network can be quantified as:

I =
2

NR +NC

{∑
i,j

Oi,j −⟨Oi,j⟩
kj(Ci − 1)

Θ(ki − kj)δ(ai,aj)+
∑
α,β

Oα,β −⟨Oα,β⟩
kβ(Cβ − 1)

Θ(kα − kβ)δ(aα,aβ)

}
, (4)

where Ci is the number of nodes that belong to the block to whom the node i belongs, Oi,j measures the
degree of links overlap between rows node pairs, ⟨Oij⟩ represents the expected number of links between row
nodes i and j in the null model and is equal to ⟨Oij⟩= kikj/NR, andΘ(·) is the Heaviside step function that
guarantees that the overlap is computed only between pair of nodes such that ki > kj. The function I , called
in-block nestedness fitness, can be interpreted as a generalisation of the global nestedness function:

N =
2

NR +NC

{∑
i,j

Oij −⟨Oi,j⟩
kj(NR − 1)

Θ(ki − kj)+
∑
α,β

Oαβ −⟨Oα,β⟩
kβ(NC − 1)

Θ(kα − kβ)

}
, (5)

introduced in [11] as an overlap-based metric, inspired by the nestedness metric based on overlap and
decreasing fill [56], which compares the observed level of nestedness with the expected value under a suitable
null model. Noteworthy, the objective function I reduces toN if one considers a single block

6 https://github.com/genisott/pycondor.
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(ai = aα = a, ∀i,α). Here we search for a (sub)optimal in-block nested partition of the nodes by applying a
variant of the extremal optimisation algorithm [57], adapted to maximise the in-block nestedness function7.

3.2.3. Null models and statistical tests
To statistically validate the degree of modularity and in-block nestedness, we have used the bipartite
configuration model (BiCM) [23, 58] paired with the p-value.

The BiCM is an entropy-based and unbiased null model which preserves, on average, the degree of both
rows and columns8.

The p-value is computed by measuring the frequency of matrices in the null ensemble that are more
modular/in-block nested than the input matrix and a threshold value λ= 0.05 is used to denote a statistically
significant level (p< λ). For matrices where no randomised networks satisfy this condition, we
conservatively assigned p< 1/R, where R is the number of independently generated random matrices.

3.2.4. Sectoral partitions
In addition to community detection methods based on maximising modularity and in-block nestedness, we
also constructed partitions following the HS classification for products (supplementary section V). In
particular, in one case (referred to as HSSec) we partitioned the products according to the 21 HS sections and
then we assigned countries (companies) to the block corresponding to their highest export volume. The
second method (referred to as HSChap) follows the same strategy, except that the product communities do
not correspond to the 21 HS sections but to the 99 HS chapters.

3.2.5. Partition similarity measures
To evaluate and compare the performances of the clustering algorithms, here we make use of similarity
measures based on information theory, which are built on the idea that if two partitions are similar, one
needs very little information to infer one partition given the other, and thus this extra information can be
used as a measure of dissimilarity. In particular, we employ the so-called AMI [48], defined as:

AMI=
I(X,Y)− E{I(X,Y)}

1
2 [H(X)+H(Y)]− E{I(X,Y)}

, (6)

where X and Y are two clusterings, I(X,Y) is their mutual information and E{I(X,Y)} is a correction for
randomness using the permutation model [59], in which clusterings are generated randomly subject to
having a fixed number of clusters and points in each cluster. Specifically, the AMI equals 1 when the two
clusterings are identical, and 0 when the mutual information between the two clusterings equals its expected
value.

3.3. Economic complexity methods
3.3.1. The FC method
The FC method is a non-linear, iterative approach for economic complexity evaluation [25]. Grounded on
the nested network structure of the country-product network, the fitness of a country Fi is measured by the
sum of its exported products, weighted by their complexity Qα, while the complexity of a product is
measured in a nonlinear way. The underlying intuition is that the information that a product is made in
some scarcely competitive countries is sufficient to conclude that the complexity of such product is low. In
formulas9[25]: F̃(n)i =

∑
αMiαQ

(n−1)
α

Q̃(n)
α = 1∑

i Miα
1

F
(n−1)
i

−→


F(n)i =

F̃(n)i

⟨F̃(n)i ⟩i

Q(n)
α =

Q̃(n)
α

⟨Q̃(n)
α ⟩α

. (7)

The initial conditions are Q̃(0)
α = 1 ∀α and F̃(0)i = 1 ∀i. The vector of country and product scores is the

stationary point of these iterative equations. Noteworthy, this algorithm produces highly-nested biadjacency
matrices [31].

7 https://github.com/COSIN3-UOC/nestedness_modularity_in-block_nestedness_analysis.
8 https://github.com/mat701/BiCM.
9 https://github.com/ganileni/ectools.
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3.3.2. PRODY
The PRODY index [32] is the weighted average of per capita GDPs Y, where the weights represent the RCA10

Riα in product α for country i:

PRODYα =
∑
i

RiαYi∑
iRiα

. (8)

A slight modification, known as logPRODY and introduced in [33], consists in replacing GDPpc with its
logarithm. The reasoning behind this choice is that, since GDPpc’s of countries span about four orders of
magnitude, the geometric mean is better suited to represent such a numeric distribution of values.

By construction, sectors with high values of (log)PRODY are those where high-income countries play a
major role in world exports. Then, under the reasonable assumption that high-income countries display a
strong presence where comparative advantages are determined by factors such as know-how, technological
skills and so on, sectors characterised by a high (log)PRODY index are more sophisticated than sectors with a
low value of the index.
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