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Abstract. Knowledge distillation (KD) is a key technique for transferring knowl-
edge from a large, complex “teacher” model to a smaller, more efficient “student”
model. Although initially developed for model compression, it has found applica-
tions across various domains due to the benefits of its knowledge transfer mecha-
nism. While Cross Entropy (CE) and Kullback-Leibler (KL) are commonly used
in KD, this work investigates the applicability of loss functions based on un-
derexplored information dissimilarity measures, such as Triangular Divergence
(TD), Structural Entropic Distance (SED), and Jensen-Shannon Divergence (JS),
for both independent and identically distributed (iid) and non-iid data distribu-
tions. The primary contributions of this study include an empirical evaluation of
these dissimilarity measures within a decentralized learning context, i.e., where
independent clients collaborate without a central server coordinating the learn-
ing process. Additionally, the paper assesses the performance of clients by com-
paring pairwise distillation averaging among clients to conventional peer-to-peer
pairwise distillation. Results indicate that while dissimilarity measures perform
comparably in iid settings, non-iid distributions favor SED and JS, which also
demonstrated consistent performance across clients.

Keywords: Information dissimilarity measure · Divergence Function · Knowl-
edge Distillation · Distributed intelligence.

1 Introduction

The integration of Artificial Intelligence in edge processing has led to the emergence of
an interdisciplinary field known as Distributed Intelligence or Edge Intelligence, which
aims to develop systems composed of software agents, robots, sensors, and computer
systems that can collaborate effectively [22,23,15]. In this field, Knowledge distilla-
tion (KD) has been employed to facilitate knowledge transfer between edge devices,
enhancing the development of more efficient and accurate models [28]. KD is a ma-
chine learning technique designed to transfer knowledge from a large, complex model
(the teacher) to a smaller, more efficient one (the student) [10,8,7]. In addition to its
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Fig. 1: KD-based decentralized network consisting of K clients, where distillation is
performed using soft predictions for effective knowledge transfer.

primary role in model compression, it has started to find applications in other areas,
including distributed intelligence [3] and continual learning [4].

In KD-based distributed learning framework, clients exchange information to en-
hance their learning process, where each client operates both as learner and source of
knowledge for other clients. These clients are part of a decentralized system where no
single model acts as the central teacher. Instead, each client trains on its local dataset
and shares knowledge with others. As illustrated in Fig. 1, this information exchange
is achieved through a combination of two types of losses. The first loss component,
indicated as “fully-supervised loss”, is usually the cross-entropy (CE) with “hard” tar-
gets derived by the ground-truth labels of the input samples. The second component is
the “distillation loss” designed to ensure that each learning client mimics the output of
other remote clients [25]. This loss is typically implemented by comparing the prob-
ability distributions of the models involved, where one model acts as the student and
others take turns serving as teachers. This encourages the student’s output probabilities
to closely match those of the teacher. The model’s output probabilities are typically
computed using a softmax layer. Adjusting the softmax temperature during training has
proven to be crucial in metric learning and distillation processes. In the context of dis-
tributed intelligence, this technique is also employed to generate soft predictions for
effective distillation. Hence, the distillation loss is expressed as minimizing the gap be-
tween the soft predictions of one client with respect to the soft predictions of all other
clients [1,2,27].

Given that the softmax function transforms an array of logits into an array of positive
values summing to 1, various information dissimilarity measures can theoretically be
used to implement the distillation loss. However, in practice, it is predominantly realized
using CE, in addition to Kullback-Leibler (KL) Divergence, and Mean Squared Error
(MSE) [13]. These methods have been extensively studied and proven effective for
knowledge transfer in diverse machine learning tasks, while a wide range of information
distance functions remain unexplored in the literature related to distributed learning.
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In this work, we break new ground by investigating alternative dissimilarity mea-
sures – specifically, Triangular Divergence (TD), Structural Entropic Distance (SED),
and Jensen-Shannon (JS) divergence – in the context of KD for decentralized learning
scenarios. Recently, the correlations among these measures and the commonly used CE
have been examined in [6] for independent and identically distributed (iid) data. Our
work aims to expand the understanding of how these dissimilarity measures can en-
hance KD techniques, particularly in settings where data distribution may vary across
learning clients (with a non-iid data distribution). To the best of our knowledge, our
study is the first to empirically evaluate the effectiveness of TD, SED, and JSD for KD
in a decentralized learning framework, offering novel insights and expanding the poten-
tial of KD applications beyond conventional CE and KL-based approaches. Our main
contributions include designing a distributed KD environment suitable for investigating
the aforementioned information dissimilarity measures and examining the performance
of a set of clients by comparing pairwise distillation averaging among clients to the
conventional peer-to-peer pairwise distillation, considering the various information dis-
similarity measures.

The rest of this article is structured as follows. Section 2 provides background and
related works on knowledge distillation and the dissimilarity measures utilized. Sec-
tion 3 details the fully decentralized learning model employed in our study. Section 4
presents our experimental setup, while Section 5 discusses the results. Section 6 pro-
vides the conclusions.

2 Background and Related Works

2.1 Information Dissimilarity Measures and Statistical Divergences

Information distance refers to a measure that quantifies the dissimilarity between two
sources of information (e.g., two finite objects). This concept is distinct but also re-
lated to statistical divergences, which quantify the dissimilarity between two probabil-
ity distributions. For example, some information distances, including SED, can be used
to compare also probabilities, while statistical divergence can be interpreted as infor-
mation distances when the source of information are probability distributions. In the
following, we provide formal definitions of the divergence functions and information
distances used in this paper4.

Kullback-Leibler Divergence. The KL divergence measures the difference between
two probability distributions as the amount of information lost when one distribution is
used to approximate the other. Given two distributions q and p, it is defined as

KL(q : p) =
N

∑
i=1

qi log
qi

pi
(1)

4Please note that, as in [6], we use the delimiter ‘:’ as argument separator of non-symmetric
divergence instead of the double bar notation ‘||’ used in information theory.
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Jensen-Shannon Divergence. The JS divergence, historically introduced in [26], is a
“smoothed, symmetrised“ version of KL divergence and can be interpreted as the total
KL divergence relative to the average distribution q+p

2 [21]. In this paper, we use the
following definition:

JS(q,p) =
1
2

(
KL
(

q :
q+p

2

)
+KL

(
p :

q+p
2

))
(2)

Structural Entropic Distance. SED [20] is an information-theoretic measure that
compares the Shannon entropy H of two probability vectors with that of their arith-
metic mean, where H(p) = −∑

N
i pi ln pi represents the amount of information needed

to describe the probability vector p = [p1, . . . , pN ] [5]. Considering two probability vec-
tors p and q, SED can be calculated as the ratio of the complexity of the mean vector to
the geometric mean of the complexities of individual vectors:

SED(q,p) =
C(q+p

2 )√
C(q)C(p)

−1 (3)

where the complexity is computed as C(p) = b−∑
N
i=1 pi logb pi . The formulation in Eq. (3)

gives an outcome in the range [0,1], where 0 implies the two input vectors are identical,
and 1 implies that they are orthogonal.

Triangular Divergence. The Triangular Divergence 5, also known as Triangular Dis-
crimination [24] is defined as: T D(q,p) = ∑

N
i=1

(qi−pi)
2

qi+pi
. Since the range of this function

is [0,2], in our work we use its scaled form:

T D(q,p) = 1
2

N

∑
i=1

(qi− pi)
2

qi + pi
= 1−

N

∑
i=1

2qi pi

qi + pi
(4)

where the formulation in the right part of Eq. (4) is an optimized version obtained
observing that (qi− pi)

2 = (qi + pi)
2−4qi pi and ∑

N
i=1 pi = ∑

N
i=1 qi = 1.

Cross Entropy. CE is a divergence measure widely used in machine learning to com-
pare two probability distributions. It is defined as:

CE(q : p) =−
n

∑
i=1

qi log pi (5)

It is worth noting that in the context of machine learning, as shown in [6], for spaces
with certain properties, CE, KL, JS, TD shows very tight correlation. Specifically, if q
is fixed, the perfect correlation between cross-entropy and Kullback-Leibler divergence
is well-known and derives from simple algebra (KL(q : p) = CE(q : p)−H(q)) [6].

5Note that its square root is a metric, referred to as Triangular Distance, Vincze-Le Cam
distance and the symmetric chi-squared distance [17]



Information Dissimilarity Measures in Decentralized Knowledge Distillation 5

Moreover, Jensen-Shannon correlates almost perfectly with triangular divergence in al-
most all high-dimensional spaces [24], while cross-entropy and triangular divergence
are strongly correlated when the probabilities are obtained within the softmax function
(Eq. (6)) with high temperature. Note that triangular is much cheaper calculation than
cross-entropy and if the correlation is very strong the latter may be used instead.

2.2 Knowledge Distillation as the Teacher-Student Approach

Knowledge distillation was initially introduced to transfer knowledge from pre-trained
teacher (large) networks to student (small) networks. This involves approximating the
soft output or intermediate representation of teacher networks, aiming to derive a com-
pact and faster model [16].

Concretely, for any input data x, the teacher network generates a vector of logits
z(x)= [z1(x), . . . ,zN(x)] that are turned into a probability vector p(x)= [p1(x), . . . , pN(x)]
using the softmax function: pi(x) = ezi(x)

∑
N
j ezi(x)

. Typically, neural networks produce proba-

bility distributions with sharp peaks, which might lack informativeness. To address this,
Hinton et al. [10] proposed temperature scaling in the softmax to soften these probabil-
ities:

pi(x,T ) =
ezi(x)/T

∑
N
j ez j(x)/T

,∀i ∈ {1, . . . ,N} (6)

where T is a hyperparameter called temperature.
In KD, both the student and the teacher generate softened probability distributions,

denoted as pS (x,T ) and pT (x,T ), respectively. The student’s total loss is then defined
as a linear combination of a supervised student loss Lstu and a knowledge distillation
loss LKD:

L = αLstu +(1−α)LKD (7)

where α∈ [0,1] is a hyperparemeter. Typically, Lstu =CE (y : pS (x,T = 1)) and LKD =
CE (pT (x,T = t) : pS (x,T = t)), with y being the hard labels (ground-truth). Note that
the distillation loss is expressed as minimizing the gap between the output representa-
tion of the teacher and the output representation of the student.

KD-based Distributed Learning. Recent research has explored KD for decentralized
learning [28]. While much of this work focuses on a central teacher supervising student
model training, there is a growing interest in fully decentralized settings where multiple
clients collaborate to share knowledge without relying on a central authority.

Kim et al. [13] explored the role of the temperature hyperparameter in KD, showing
higher temperature results in logit matching, which generally offers better generaliza-
tion than label matching obtained with lower temperatures. They proposed employing
MSE loss for direct logit matching. They showed that KL divergence loss stretches
the second-to-last layer representations more than MSE loss and that KL divergence,
especially with low temperature, is more resilient to noisy labels. Mishra et al. [18] de-
veloped EarlyLight, a method for training lightweight deep neural networks (DNNs) on
edge devices using knowledge distillation from larger DNNs, considering also factors
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Table 1: Summary of notation used
Notation Description

T Temperature in the softmax
N Number of classes
(G ,ε) Network of clients. G is the set of nodes, ε is the set of edges
K, k Number of clients, Index of current client
Ck Current client
Dk = (Xk,yk) Local annotated dataset on client k. Xk is the data, yk are the labels
(x,y) ∈ Dk Data sample x and the corresponding label y
Φk, φ Set of indices of remote clients with respect to Ck, Index of a remote client
M k = [M k

h1
,M k

h2
] Multi-head model held by client k

wk = [wk
1,w

k
2] Weight parameters of the local model of client k

Lk,CE Fully supervised Loss computed on client k
Lk,KD Distillation loss used for client k
α loss weight parameter

like storage, processing speed, and execution time. Molo et al. [19] proposed a knowl-
edge distillation approach for vehicle detection using smart cameras in parking lots,
where a large detector (teacher) guides smaller edge-based models (students) without
additional labeled data. Their experimental results showed that students improve per-
formance and can even surpass models trained with annotations.

Other approaches used a KD-based learning without a single teacher. Zhmoginov et
al. [28] introduced Multi-Headed Distillation for distributed learning on the ImageNet
dataset. This approach uses multiple model heads distilling to each other and simul-
taneous distillation of client model predictions and network embeddings, resulting in
significantly higher accuracy than naive distillation methods. Jin et al. [12] introduced
a personalized Federated Learning (FL) framework using self-KD to transfer histor-
ical personalized knowledge, balancing personalization and generalization. Similarly,
Jeong et al. [11] addressed personalization challenges in FL for clients with diverse
data and behaviors by proposing a KD-based algorithm to compare local models, en-
hancing client performance without data sharing and showing improved test accuracy,
especially under non-iid data distributions.

Most works in the literature use KL divergence or CE as dissimilarity measures for
distillation. However, there remains significant potential to investigate and utilize alter-
native dissimilarity measures, which could offer new insights into efficient knowledge
transfer and performance across various learning tasks and scenarios.

3 Fully Decentralized Learning Model

In this section, we outline the decentralized learning environment used to evaluate the
effectiveness of various information dissimilarity measures, introduced in Section 2.1,
whose results are discussed in Section 5. The notation used is summarized in Table 1.

We consider a full network of K clients represented by a directed graph (G ,ε),
where G = {Gk | k ∈ K} is a set of nodes and ε is the set of edges between the nodes.
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Fig. 2: KD-based decentralized network consisting of K clients, where distillation is
performed using soft labels for effective knowledge transfer. In this setting, the first
head of each client is communicated to the neighboring clients.

Each node Gk represents a client Ck holding a local dataset Dk composed of a pair
(Xk,yk), with Xk = {xk

i }I
i=1 representing the set of input data and yk = {yk

i }I
i=1 the

corresponding ground-truth labels. Each client Ck holds a model M k, which we assume
to be a multi-head neural network. Specifically, the model has a backbone, which is the
main body of the neural network that processes input data into a feature representation,
and two heads, which take the features extracted by the backbone and perform final
task-specific operations. The heads consist of a set of fully connected layers added on
top of the backbone. We denote the models consisting of the backbone and the first head
as M k

h1
, and the backbone and the second head as M k

h2
. The model with the first head,

M k
h1

, is trained on the local distribution Dk, while the second, M k
h2

, is trained using
knowledge distillation from connected clients.

The considered KD-based training procedure for this decentralized network in-
volves training multiple clients concurrently, allowing them to share knowledge through
distillation to improve overall model performance. Initially, each client’s first model
M k

h1
is trained in a supervised manner until convergence with local data Dk. Then, as

shown in Fig. 2, for each k ∈ {1, . . . ,K}, the first model from client Ck is shared with all
outgoing connected clients in G . Concurrently, client Ck receives the first head from all
other incoming connected clients. This exchange enables each client to integrate knowl-
edge from others while preserving their local data and model specialization, facilitating
collaborative learning across the decentralized network. For the purposes of this study,
we assume that all clients are interconnected. However, the proposed approach can be
easily adapted to accommodate networks with different topologies and size.

For a fixed k, we used the notation Φk to indicate all the indices except k. We refer Ck

as the current client and {Cφ |φ∈Φk} as the remote clients. So, once the first head of the
models are trained, Ck communicates M k

h1
to all remote clients and receives the models
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{M φ

h1
}φ∈Φk from them. The client Ck performs distillation using the available models

from remote clients to train its second head M k
h2

. Specifically the parameters wk
2 of M k

h2
are trained by optimizing a local total loss Lk, which is obtained as a combination of a
cross-entropy loss Lk,CE and a distillation loss Lk,KD:

Lk = αLk,CE +(1−α)Lk,KD, (8)

where α ∈ [0,1] is a parameter that weights the contribution of the losses with respect
to the total loss. This dual-phase training approach allows each client to effectively
train its local model while leveraging shared knowledge from other clients, improving
generalization and performance across the network. The cross-entropy loss

Lk,CE = E(x,y)∼Dk LCE(wk
2,x,y) (9)

is used to minimize local prediction with respect to the ground-truth labels of local
data.6

For defining the distillation loss Lk,KD we considered two alternatives:

– Case 1: The sum of pairwise dissimilarities between the current client’s soft-prediction
and remote client’s soft-predictions.

– Case 2: A distillation loss based on the dissimilarity between the current client’s
soft-predictions and the average of soft-predictions from remote clients.

Formally, let pk(wk
2,x) = [pk

1, pk
2, . . . , pk

N ] denote the softmax output obtained using the
M k

h2
model for the input data x, and pφ(x) = [pφ

1, pφ

2, . . . , pφ

N ] the softmax outputs of a

remote client φ for the input data x (obtained using the pre-trained M φ

h1
model). For

Case 1, we used

Lk,KD(wk
2,x) = ∑

φ∈Φk

Ex∼Xk f
(

pk(wk
2,x),p

φ(x)
)

(10)

where f can be any divergence measure (e.g., CE,KL, TD, SED, JS). Since the sum of
pairwise dissimilarities is used, we refer to this case as "sum" in the experiments. For
Case 2, referred to as "average" in the experiments, we used

Lk,KD(wk
2,x) = Ex∼Xk f

(
pk(wk

2,x),
∑φ∈Φk

pφ(x)
|Φ|

)
(11)

Algorithm 1 summarizes the considered distillation training procedures.

4 Experimental Setup

Our analysis was conducted on a decentralized network consisting of three intercon-
nected clients. This topology serves as a baseline evaluation, with plans for future work

6Please note that LCE(wk
2,x,y) is simply the CE dissimilarity (Eq. (5)) between the output of

M k
h2

model for the input x and the true labels y
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Algorithm 1: Decentralized Training with Knowledge Distillation
Data: (G ,ε) graph representing a network of K client {C1, . . .CK}
Local datasets Dk = (Xk,yk), where Xk = {xk

i }I
i=1 is set of input data and yk = {yk

i }I
i=1

is the set of labels associated with each input, for all k ∈ {1, . . . ,K}.
Result: Trained model parameters for each client.
// Initialization
foreach client k ∈ {1, . . . ,K} in parallel do

/* Train the model with the first head, M k
h1
, until convergence.

wk
1 are the model parameters to be updated */

M k
h1
← LocalModelTraining

(
LCE(wk

1,D
k)
)

// Inizialize the model with the second head, M k
h2
.

backbone(M k
h2
)← backbone(M k

h1
)

head(M k
h2
) randomly inizialized

end
// Communication
for each client k ∈ {1, . . . ,K} in parallel do

Φk← indices of incoming connected clients in G // remote client indices

Share M k
h1

with all outgoing connected clients in G
Receive M φ

h1
from all remote clients φ ∈Φk

end
// Knowledge Distillation
foreach client k ∈ {1, . . . ,k} in parallel do

/* Train the model with the second head M k
h2

using KD until

convergence. Use the loss Lk = αLk,CE +(1−α)Lk,KD, where wk
2

are the model parameters to be updated, Lk,KD is calculated
either using Eq. Eq.10 or 11 */

M k
h2
← LocalModelTraining

(
Lk(wk

2,D
k)
)

end

to extend the analysis to networks with more clients and various connectivity topolo-
gies.

We studied the effectiveness of different information dissimilarity measures (namely,
CE, KL, SED, TD, JS) on distributed learning systems with different levels of data
heterogeneity, ranging from scenarios where the data distribution is uniform across
all clients (iid) to more extreme situations where each client focuses on its own spe-
cific tasks (non-iid). For this purpose, we used the CIFAR-10 [14] dataset and the
SUN397 [29] dataset. We split the datasets into three subsets, corresponding to three
clients in total.

For the CIFAR-10, the iid distribution is obtained by shuffling and evenly splitting
the entire dataset, ensuring each client has different samples. For the non-iid distribution
across the clients, we followed the configuration in [28]. Each client Ck receives a subset
{ℓi} of the labels, which are designated as primary labels for Ck. Labels not included in
{ℓi} are considered secondary for Ck. Samples for each label ℓ are distributed randomly
among clients, with a higher probability (1 + γ times greater) of being assigned to
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clients that have ℓ as a primary label. The parameter γ, referred to as dataset skewness,
determines this distribution. When γ = 0, the data is distributed uniformly (iid), but as
γ approaches infinity, samples for label ℓ are assigned exclusively to clients where ℓ is
primary (non-iid). In the experiments, we used γ = 15 for CIFAR-10 and γ = 10 for
SUN397.

Performance evaluation was conducted using 10% of the entire data distribution for
both iid and non-idd datasets. For each client, we computed the accuracy of its model.
In the next section, we present aggregated results, specifically the mean accuracy across
the three clients.

In our implementation, we trained the three clients using independent Docker con-
tainers, each saving the model checkpoints to a shared folder. To train the second head
of one client, the first heads from other remote clients are loaded from this shared folder
for distillation. This choice was made to simplify the implementation and does not af-
fect the analysis of the models’ accuracy and the performance of the various losses. The
study of training efficiency, including communication costs of model parameters, is left
for future work.

All models are based on ResNet18 [9] and are initialized with weights pre-trained
on ImageNet, as provided by PyTorch. We also employ standard data augmentation
techniques as recommended in the PyTorch documentation7 for ResNet18.

For the second head, we modified the classifier of ResNet18, using two dense hidden
layers with 512 and 256 neurons for CIFAR-10 and 1024 and 512 neurons for SUN397,
respectively. We set the skewness parameter to 15 for CIFAR-10, and 10 for SUN397.
In all cases, the batch size is set to 128. The optimizer used is SGD with an initial
learning rate of 0.001, momentum of 0.9, and a weight decay of 5×10−4.

We performed the distillation using various temperature T values (1, 10, and 100)8,
depending on the dataset distribution. We report the optimal temperatures for each dis-
similarity measure and dataset. For CIFAR-10 in the non-iid. context, T = 10 provided
the best results for all dissimilarity measures for both the sum and average of remote
predictions. In the iid context, T = 10 was optimal for the sum of distillation losses and
only for CE, KL, and TD in the case of the average of remote predictions. For JS and
SED, T = 1 is used. Moreover, for the SUN397 dataset, T = 10 was best for CE and
KL, and T = 1 for all other cases, both for the sum and average of remote predictions.

The code to reproduce the experiments is available at https://github.com/joaquimbasa/
Distributed_KD_Information_Dissimilarity.git.

5 Results and Discussion

Consistent with the correlation findings in [6], our experiments with an iid distribution
of data among three clients revealed that the various dissimilarity measures tested in
the KD-loss yielded comparable results. Fig. 3a and Fig. 3b present the average accu-
racy of secondary-head model M k

h2
of clients belonging to G under iid data conditions

on CIFAR-10 dataset, while varying the hyperparameter α. Here, α = 0 indicates that

7https://pytorch.org/vision/main/models/generated/torchvision.models.resnet101.html
8As noted in [1], the best temperature is highly context-dependent, but a wide range of tem-

peratures can be useful. They suggest using temperatures in the range of 0.1 up to 100

https://github.com/joaquimbasa/Distributed_KD_Information_Dissimilarity.git
https://github.com/joaquimbasa/Distributed_KD_Information_Dissimilarity.git
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet101.html
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the total loss comprises only the distillation loss, while α = 1 indicates that no distilla-
tion from remote clients is performed, and each model is trained solely in a supervised
manner using its local annotated dataset. Overall, our results indicate that KD does not
significantly enhance overall accuracy when the input data is sufficient and balanced.
Furthermore, all tested dissimilarity measures exhibited performance similar to CE.
This observation is consistent across both cases for computing the distillation loss: us-
ing the sum of pairwise distillation losses between the current client’s predictions and
those of each remote client (Eq. (10)), as shown in Fig. 3a, and using the distillation
loss between the current client’s prediction and the average of predictions from remote
clients (Eq. (11)) as shown in Fig. 3b. Based on this observation, in iid settings, the
choice of a dissimilarity measure may depend on implementation requirements, with a
preference for computationally efficient measures such as TD. Fig. 3b also demonstrates
that using distillation with the average predictions of remote clients CΦ results in simi-
lar, and in some cases slightly better, performance than the sum of pairwise losses. This
approach has the added advantage of allowing the computation of a single loss instead
of multiple pairwise losses, thereby reducing computational complexity.

In the case of non-iid distribution (Fig. 3c and Fig. 3d), the distillation process led
to an increase in the average accuracy of the clients’ models compared to the fully-
supervised approach. This improvement is particularly noticeable for the value α = 0.5.
For this value, all measures show minimal variance among the three clients (as indicated
by the vertical bars) except in 3c, where the KL provides a high variance compared to
others. For α > 0 values, minimal differences are observed between JS and SED when
computing the distillation loss with the average of predictions generated by the remote
clients, whereas CE and KL perform worse in case α = 0.2. Furthermore, the average
of the predictions obtained from remote clients, in Fig. 3d shows that for α = 0.2,
SED and JS already exhibit good performance. However, for α = 0.8, all measures
perform similarly, with KL having higher variance across clients. On the other hand,
SED appears to be superior to other measures from α= 0.2, providing minimal variance
when considering the sum of distillation losses.

In addition to CIFAR-10, we also performed experiments in the non-iid scenario
using the SUN397 dataset. In these experiments, adding more layers to the second head
caused the model to overfit, showcasing an average accuracy of 48.33% compared to
the first head, showcasing an average accuracy of 57.74% over all clients. This con-
firms the argument made in [28] that when the client’s training data is scarce, leading to
model overfitting, communication between clients can enhance generalization and im-
prove client’s performance on their private tasks. Additionally, communication between
clients improves their learned representations, making them better suited for adapting
to tasks from other clients.

Regarding the performance of the different dissimilarity measures, Fig. 4a and
Fig. 4b show that CE and KL are outperformed by SED, TD, and JS distances for
α = 0 and α = 0.8 when using the sum of distillation losses from each remote client.
However, when using the average of remote predictions, the CE and KL perform worse
for the values of α = 0 and α = 0.2. In other cases, all measures perform equally well.
Notably, all measures exhibit very low variance among the three clients.
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(a) iid data, sum (b) iid data, average

(c) non-iid data, sum (d) non-iid data, average

Fig. 3: CIFAR-10: Mean accuracy over three clients considering the sum of the distil-
lation losses (Eq 10) in the left-hand plots, and the the average of remote predictions
to compute the distillation loss (Eq 11) in the right-hand plots. Results for iid data are
shown in the top row, and results for non-iid data are shown in the bottom row. The bars
indicate the standard deviation of accuracy across the three clients (not visible in the iid
case, where the standard deviation is less than 0.8).

6 Conclusions

This paper empirically evaluated different information dissimilarity measures in a dis-
tributed KD setting. The core of our study was to understand the effectiveness of these
measures using various data distributions. Furthermore, we used a multi-head neural
network to facilitate knowledge transfer among clients, demonstrating that distance
measures can significantly impact the training of distributed models using KD on non-
iid data. Notably, the commonly used cross-entropy and Kullback-Leibler divergences
are not always the most effective.

In future work, we plan to examine the stability of gradients (e.g, exploding or
vanishing gradients) associated with the analyzed information dissimilarity measures,
and evaluate the performance of the proposed distributed KD framework with a larger
number of nodes and various graph topologies.
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(a) sum (b) average

Fig. 4: SUN397 (non-iid data): Mean accuracy over three clients considering (a) the
sum of the distillation losses (Eq 10); (b) the average of CΦ prediction to compute the
distillation loss (Eq 11). The standard deviation of accuracy across the three clients is
less than 0.9 for all the plotted cases.
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