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Abstract: In the context of sea state monitoring, reconstructing the wave field and estimating the sea
state parameters from radar data is a challenging problem. To reach this goal, this paper proposes a
fully data-driven, deep learning approach based on a convolutional neural network. The network
takes as input the radar image spectrum and outputs the sea wave directional spectrum. After a
2D fast Fourier transform, the wave elevation field is reconstructed, and accordingly, the sea state
parameters are estimated. The reconstruction strategy, herein presented, is tested using numerical
data generated from a synthetic sea wave simulator, considering the spectral proprieties of the Joint
North Sea Wave Observation Project model. A performance analysis of the proposed deep-learning
estimation strategy is carried out, along with a comparison to the classical modulation transfer
function approach. The results demonstrate that the proposed approach is effective in reconstructing
the directional wave spectrum across different sea states.

Keywords: marine radar; U-NET; sea wave spectra; sea state estimation

1. Introduction

The observation of sea wave motion and the accurate characterization of sea state
parameters provide valuable information for safety, navigation, coastal management, off-
shore operations, environmental monitoring, and resource management. In this framework,
microwave radar systems have proven to be effective for measuring the wave spectra and
retrieving the sea state information, both offshore and nearshore, with a high spatial and
temporal resolution [1,2]. Radar systems are usually classified according to the operating
frequency, and the bands adopted for sea state monitoring range from UHF (0.3–1 GHz) to
Ka (26.5–40 GHz) bands [3–9]. The choice of the frequency band depends on the application
requirements and has a notable impact on the sensing capabilities and installation flexibility.

In the last decades, Marine Radar (MR), mostly operating at X-band (8–12 GHz),
has received considerable interest in the context of sea state monitoring or retrieving the
sea state information in a range of a few kilometers from the observation platform [4].
Depending on the type of data, MRs can be classified into two categories: non-coherent and
coherent radars. The first one only measures the amplitude of the electromagnetic signal
reflected by the marine surface (herein considered), while the second one measures both
amplitude and phase information [10].

A specific radar data processing is required to retrieve the information about the sea
state. Currently, well-assessed procedures are available in the literature [11,12], which
allow retrieving the hydrographic parameters of the wave motion, such as wavelength
(λp), period (Tp), and direction (θp) of the dominant wave; the significant wave height (Hs);
as well as the sea surface current and bathymetry fields with high accuracy. The basic
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steps of a typical sea state estimation procedure for a non-coherent MR can be summarized
as follows:

• A 3D fast Fourier transform (FFT) is performed to convert the MR image sequence
from a space–time domain to a wavenumber–frequency one;

• A band-pass filter is applied to the radar image spectrum based on the dispersion
relation describing the gravity sea waves;

• A modulation transfer function (MTF) permits to compensate the spectral distortion
introduced by the radar-sensing process and converts the radar image spectrum into a
sea spectrum;

• The sea surface elevation is reconstructed in the space–time domain via an inverse 3D
Fourier transform (IFFT) of the sea spectrum achieved in the previous step.

A crucial point in the above data processing chain is the determination of the MTF
because the modulation phenomena affect the radar sensing principle (e.g., tilt modulation
and shadowing). These phenomena depend on the sea state, radar parameters (e.g., the
space–time resolution of radar data), as well as on the acquisition geometry (e.g., antenna
height). As a result, radar images do not reproduce the sea surface elevation [11,13–15].
Therefore, the role played by MTF is crucial in compensating the modulation effects and
retrieving the sea surface elevation profile. In this context, the empirical methods based
on linear fitting [11], polynomial fitting [16], and linear fitting with variable exponent [17]
have been proposed in the literature for the MTF evaluation. The MTFs were determined by
analyzing marine radar measurements and in situ buoy observations in deep water. Specif-
ically, the MTFs were fit to a power decay law of wavenumbers by using 1D wavenumber
spectrum from marine radar and buoy measurements.

Although these techniques work well for sea states with a strongly dominant wave di-
rection and narrow directional spreading, the angular dependence of the wave spectrum is
overlooked. Based on these considerations, a directional MTF has been recently introduced
in [18]. It should also be stressed that the quality of the directional spectrum reconstruction
impacts not only the sea surface reconstruction but also the estimation of the sea state
parameters such as Hs, Tp, and λp. For this reason, many researchers have focused on the
estimation of these parameters, bypassing the calibration of the image radar spectrum.

The significant wave height, which is one of the most important parameters for sea
state monitoring, has been estimated by taking into account the correlation between the
sea surface elevation and the shadowing phenomenon [19–22] or by exploiting artifi-
cial intelligence approaches [23–28]. The latter includes support vector regression-based
methods [23,24], multilayer perceptrons [25], and a convolutional neural network (CNN)-
based method [26–28]. In addition, a CNN-based method has been recently adopted for
the sea surface reconstruction [29].

In this paper, we investigate the possibility of retrieving the directional wave spectrum
and, consequently, the sea state parameters and sea surface elevation by using the popular
U-NET architecture (e.g., see [30–33]). The feasibility of this approach is validated through
a numerical analysis featuring a wide dataset accounting for different sea conditions. A syn-
thetic sea wave simulator was developed by applying the Fourier domain approach [34–36]
and considering the spectral proprieties of the Joint North Sea Wave Observation Project
(JONSWAP) model [37]. For each sea wave realization, the corresponding radar image
was generated by taking into account the different known mechanisms responsible for
the backscattering phenomenon of the electromagnetic fields transmitted by the radar
antenna [11,23,38]. Following this, the radar image spectrum was obtained through a FFT
and given as input to U-NET in order to reconstruct the wave spectrum and, consequently,
estimate the sea state. A performance analysis of the proposed deep-learning estimation
strategy is provided even through comparison with the classical MTF approach in [11].

The manuscript is organized as follows: Section 2 presents the numerical sea wave
model and the approach for the radar image generation. The U-NET architecture is recalled
in Section 3, and the numerical analysis is presented and discussed in Section 4. Conclusions
follow in Section 5.
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2. Synthetic Data

This section describes the models adopted for generating sea wave elevation and the
corresponding raw radar image. Specifically, the JONSWAP spectrum [37] is assumed
for the wave model, while for the radar image, a simplified geometrical approach, taking
into account the tilt modulation, shadowing phenomenon [11], and the characteristics and
operation conditions of a marine radar, is considered [23].

2.1. Numerical Sea Wave Model

The sea wave elevation is generated by employing the Fourier domain approach [34–36],
already adopted in [7,8], under deep-sea water conditions [39]. According to [35], the wave
elevation η(r, t) at time t and point r = (x, y) can be expressed as

η(r, t) = Re
{∫ ∞

−∞

∫ ∞

−∞

∼
η0(k)e

−i(k·r−ω(k)t+ϕ(k))dkxdky

}
(1)

where k =
(
kx, ky

)
is the wave vector,

∼
η0 and ϕ are the amplitudes and random phase of

each wave component identified by the wave vector k, respectively, and Re{} is the real
part operation.

According to the linear wave theory [39], ω is the angular frequency, which is related
to k through the dispersion relation. In deep water conditions with no sea surface current,
the latter is defined as ω(k) =

√
g|k|, where g is the acceleration of gravity.

By employing the Fourier domain approach [34–36], the wave elevation in Equation (1)
undergoes spatial sampling according to the discretization steps ( ∆x, ∆y). Similarly, the
wave vector components are sampled with step ( ∆kx, ∆ky

)
determined by the discrete

Fourier transform (DFT) theory. Therefore, we introduce the wave spectrum Ew(k) obtained
through FFT of the η(r, t) at a fixed time t. As we will see in Section 3.1, the amplitude of
the wave spectrum Iw(k) = |Ew(k)| represents the U-NET ground truth image.

It should be noticed that, without the loss of generality, the analysis performed in this
study does not account for the temporal sequence of the wave elevation but is based on a
single-time snapshot of the wave field motion.

With regards to the spectral proprieties of the wave elevation, the 2D JONSWAP model
EJS(k) is considered [37]. Therefore, the amplitudes of wave components are given by

∼
η0(k) =

√
2EJS(k)∆kx∆ky (2)

and the phase ϕ(k) is randomly generated from a uniform distribution between [–π, π].
According to the assumed deep sea water model, the directional spectrum is expressed

as follows:

EJS(k, θ) =
0.0076

2k4

(
U2

10
gL f

)0.22

exp

[
−1.25

(
kp

k

)2
]

γεk ·DJS(θ) (3)

εk = exp

− 1
2σ2

(√
k

kp
− 1

)2
 (4)

σ =

{
0.07, |k| ≤ kp
0.06, |k| > kp

(5)

where U10 is the wind speed at a height of 10 m above the mean sea level (MSL), L f is
the fetch length, kp is the peak wave number, and σ is the peak shape parameter. Finally,
DJS(θ) is the directional spreading function defined in [40] as:

DJS(θ) = N f cos2s(θ − θp
)

(6)
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where N f and s are the normalization and spreading factors, respectively, θ is the propa-
gation direction, and θp is the direction of the dominant wave (i.e., wind direction). The
JONSWAP spectral parameters are summarized in Table 1 for convenience.

Table 1. JONSWAP spectral parameters.

Spectral Parameters

L f Fetch length
U10 Wind speed
kp Peak wave number
σ Peak shape

N f Normalization factor
s Spreading factor

Regarding the sea state parameters, the significant wave height Hs is the most common
parameter to characterize the wave elevation field. This parameter can be derived from the
wave spectrum defined in Equation (4) or, equivalently, by the variance (var(·)) of wave
elevation η(r), i.e.,

Hs = 4
√∫ ∞

−∞

∫ ∞

−∞
EJS(k)dkydkx = 4

√
var(η(r)) (7)

On the other hand, the peak wavelength λp and the direction θp of the dominant wave
can be estimated from the position of the peak of the wave spectrum amplitude Iw(k).

2.2. Radar Image Simulation

Once the wave elevation η(r) is generated via Equation (1), the corresponding radar
image is produced by taking into account the main physical mechanisms responsible for
the modulation of the radar signal [11], the characteristics and the operative conditions of a
marine radar [23,38].

As shown in the 2D geometry of Figure 1, a radar mounted at a height hr above the
MSL illuminates, at ground range R, the scene with an incidence angle φ = tan−1

(
R(r)

hr−η(r)

)
.

In a typical configuration, the radar operates in near-grazing conditions, i.e., the incidence
angle φ approaches 90◦.
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Figure 1. Graphical representation of the tilt modulation and shadowing phenomenon in the vertical
plane. The blue curves indicate the illuminated parts of the sea surface.

The modulation of the radar signal amplitude (tilt modulation) depends on the local in-
cidence angle

∼
φ , defined by the incident ray û, and the normal n̂ to the wave surface [11,23],

and it is given by
ξ(r) = û(r)·n̂(r) = cos

∼
φ(r) (8)

To a first approximation, the shadowing effect can be interpreted as a geometrical
phenomenon occurring when the radar antenna does not receive any signal from the
shadowed facet of the sea surface [11,23]. Therefore, the shadowing mask m(r) is obtained
when the following condition holds:

∃ (R, φ) : φ < φ′, R′ < R (9)
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Moreover, the sea surface can be seen as a superposition of long (gravity) waves and
short (capillary) waves. The small ripples are responsible for the main backscattering
contribution (resonant Bragg scattering), which is modulated by longer waves detected by
the radar. According to [23], the received signal power is proportional to the normalized
radar cross section (NRCS) of the sea surface, which is in turn proportional to cos4 ∼

φ(r).
Furthermore, by accounting for shadowing and the presence of a uniformly distributed
multiplicative speckle noise q(r), the NRCS can be written as

ηNRCS(r) =
(

cos
∼
φ(r)

)4
·m(r)·q(r) (10)

Since the radar image is a measure of the received signal power at the output of the
radar amplifier, the radar equation ([23,38]) is applied in the logarithmic form to get the
radar amplifier response (RAR):

ηRAR(r) = log[ηNRCS(r)]− 3log(R) (11)

The RAR defined by Equation (11) undergoes a digitalization process, which in this
study is supposed to be a 16-bit quantization, thereby getting the radar image:

ηradar(r) = digitalization{log[ηRAR(r)]} (12)

At this point, it is possible to introduce the radar spectrum Er(k) obtained through a
double FFT of the ηradar(r). As shown in Section 3.1, the amplitude of the radar spectrum
Ir(k) = |Er(k)| represents the input image of U-NET.

3. Directional Spectrum and Wave Elevation Reconstruction

This section describes the U-NET architecture, the dataset generated to train the
network, and presents the metrics used to assess the reliability of the obtained results.
Additionally, the metrics for the assessment of the wave elevation reconstruction and
derived significant wave height are provided.

3.1. Deep Learning-Based Strategy
3.1.1. U-Net Architecture

U-NET [30] has a symmetric encoder–decoder structure whose input and output are
the amplitude of the radar spectrum Ir(k) and wave spectrum Iw(k), respectively. As the
name suggests, the network is characterized by a U-shape (see Figure 2) where the left
part (encoder) extracts features from the input radar image spectrum Ir(k) by means of
convolutional and pooling layers that progressively decrease the data size and increase
the number of feature maps. On the other hand, the right part of the network (decoder)
provides the wave spectrum Iw(k) through upsampling and convolutional layers that
progressively increase the spatial resolution of the encoded features and reduce the number
of feature maps. It should be noted that the amplitudes of the radar image spectrum and
that of the wave field spectrum are not directly comparable. Therefore, to simplify the
training process, the amplitude of the images is rescaled to vary in the interval [0, 1]. The
network consists of three levels. The input image Ir(k) has dimensions 256 × 128 and
is processed by a sequence of three 3 × 3 convolutions, each one followed by a batch
normalization (BN) and rectified linear unit (ReLu) activation function. The convolutional
layers extract multiple feature maps, with the number of maps increasing in the lower
levels, while the image dimensions remain unchanged after each convolution due to the
use of zero padding. A 2 × 2 max pooling operation (indicated by violet arrows) halves the
dimensions of the feature maps as they move from one level to the next. In the second and
third levels, two convolutions per level are performed, with each convolution followed by
BN and ReLU. At the third level, the feature maps have dimensions of 64 × 32.
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Figure 2. Representation of U-NET architecture.

The network’s ascending path begins with a 2 × 2 upsampling that doubles the
dimensions of each feature map, followed by BN and a ReLU activation (indicated by
the green arrow). Next, half of these feature maps are merged (yellow arrow) with the
corresponding cropped feature maps from the descending path. Afterwards, two 3 × 3
convolutions are performed, along with BN and ReLU. This process continues until it
reaches the first level of the network, where a 1 × 1 convolution reduces the feature maps
to form a single image. This image is then subtracted from the input image via a skip
connection, facilitating residual learning to counteract the vanishing gradient problem [41].

The U-NET output image is the predicted amplitude of the wave spectrum Ipw(k),
which is used for the wave field reconstruction. The squared error averaged over the
mini-batch is considered as loss function for network training [33].

The sea wave field reconstruction is performed by applying the double IFFT to the
wave amplitude spectrum and the phase spectrum as follows:

ηUNet(r) = Re
{∫ ∞

−∞

∫ ∞

−∞
Ipw(k)e−i(k·r−ϕr(k))dkxdky

}
(13)

As regards the phase of the wave spectrum, this quantity is retrieved from the phase
of the radar spectrum ϕr(k) = tan−1

(
Im{Er(k)}
Re{Er(k)}

)
by subtracting a constant phase shift equal

to sign{|k|}·π/2 [42–44]. Here, Im{} and sign{} denote the imaginary part operation and
the signum function, respectively.

3.1.2. Dataset Generation

The synthetic wave elevation dataset considered for the training, validation, and
testing of U-NET is generated according to the numerical model detailed in Section 2.1.
Specifically, Nr = 30, 000 realizations are generated with the JONSWAP parameters L f ,
U10, γ, and s randomly taken from a uniform distribution within the given ranges spec-
ified in Table 2. Given the JONSWAP parameters, the sea state parameters Hs, λp, and
Tp are derived, and their ranges are indicated in Table 2, while their distributions are
depicted in Figure 3. For each combination of sea state parameters, the dominant wave
direction θp is randomly assigned from a uniform distribution over the discrete set of
values [0, 20, 45, 300, 330]◦. It should be noticed that the random phase ϕ(k) involved in the
generation of the sea wave elevation (see Equation (1)) varies for each sample in the dataset.
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Table 2. Variation ranges of JONSWAP and derived sea state parameters.

JONSWAP Parameters Sea State Parameters

Lf [km] U10 [m/s] γ s Hs [m] λp [m] Tp [s]

Minimum value 50 5 1 1 0.69 23 3.4
Maximum value 350 15 7 4 6.67 169.4 10.48

Step - - 1 1 - - -
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Figure 3. Distribution of the sea state parameters.

The wave elevation field η(r) is evaluated over a Cartesian grid with size 256 × 128
and a spatial discretization step ∆x = ∆y = 7.5 m. The corresponding radar image is
simulated by considering the radar antenna to be fixed at a height hr = 30 m above MSL
and located at coordinates (0, 0) m. Additionally, a radar blind zone with a radius equal to
150 m is set, and a multiplicative speckle noise q(r) uniformly distributed with a zero mean
and variance equal to 0.1 is considered for the radar image.

Figure 4 shows an example of the wave elevation field and the corresponding radar
image, as well as the amplitude of the directional wave spectrum and radar image spectra.
It can be seen that the radar image spectrum has similar spatial information compared to
the wave spectrum. However, the radar image spectrum exhibits several distortions due to
radar imaging mechanisms (e.g., tilt modulation and shadowing) that need to be corrected.

The dataset is divided as follows: Ntr =21,000 samples are assigned for training,
Nval =3000 samples are reserved for validation, and the remaining Ntest =6000 samples
are designated for testing.

3.1.3. Network Testing Performance Metrics

The effectiveness of the proposed strategy is evaluated by comparing the predicted
amplitude of the wave spectrum Ipw(k) with the ground truth Iw(k ). Specifically, this
comparison is quantified for each sample in the test dataset in terms of the root mean
square error (RMSE)

RMSE =

√
1
Q∑Q

i=1

∣∣Iwi − Ipwi

∣∣2 , (14)

and the mean percentage error (MPE)

MPE =
∑Q

i=1

∣∣Iwi − Ipwi

∣∣2
∑Q

i=1|Iwi |
2 × 100, (15)

where Q = 256 × 128 is the number of pixels in the images Iw(k ) and Ipw(k), respectively.
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3.2. Metrics for Wave Reconstruction

The similarity between the ground truth η(r) and the reconstructed wave elevation
fields ηrec(r) (ηMTF(r) or ηUNET(r)), is assessed using the linear correlation coefficient
(CC) and the relative percentage error (RPE) normalized to Hs [45]. Their definitions are
given by

CC =
∑r

(
η(r)− ∼

η
)(

ηrec(r)−
∼
ηrec

)
√

∑r

(
η(r)− ∼

η
)2(

ηrec(r)−
∼
ηrec

)2
(16)

and

RPE =
|η(r)− ηrec(r)|

Hs
× 100 (17)

where
∼
η and

∼
ηrec represent the corresponding average values of the ground truth and

the reconstructed wave elevation fields, respectively. Furthermore, the details regarding
the reconstruction of the wave elevation field using the MTF approach are reported in
Appendix A.

On the other hand, the accuracy of the retrieved significant wave height is quantified
by considering the metrics CC, RMSE, and MPE and defined as

CC =
∑Ntest

i=1

(
Hsi −

∼
Hs

)(
Hsesti

−
∼
Hsest

)
√

∑Ntest
i=1

(
Hsi −

∼
Hs

)2(
Hsesti

−
∼
Hsest

)2
(18)

RMSE =

√√√√ 1
Ntest

Ntest

∑
i=1

∣∣Hsi − Hsesti

∣∣2 (19)

MPE =
∑Ntest

i=1 |Hsi − Hsest i |
2

∑Ntest
i=1 |Hsi |

2 × 100 (20)

Depending on the adopted strategy, the quantity Hsest in Equations (19) and (20) may

refer to HsUNet or Hs MTF (see Appendix A). In the same way,
∼
Hs and

∼
Hsest denote the

average values of the true and estimated significant wave height, respectively.
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4. Numerical Results

This section describes the results of the numerical simulations achieved by applying
the deep learning strategy outlined in Section 3.

4.1. Network Training

The network is trained by considering the training options and the hyperparameters’
settings summarized in Table 3. A grid search involving some key hyperparameters is
performed to ensure good network training. As seen in Table 3, three different values
of mini-batch size and initial learning rates are considered together with the ADAptive
Moment estimation (ADAM) optimizer. The adaptive learning rate halves every 5 epochs
up to a maximum number of 50 epochs.

Table 3. U-NET training settings.

Option/Parameter Description/Value

Mini-batch size (2, 4, 8)
Initial learning rate ( 10−3, 10−2, 10−1)

Optimizer ADAM
Learning rate drop period 5
Learning rate drop factor 0.5

Gradient threshold method ‘absolute value’
Gradient threshold 0.01

Shuffle ‘every epoch’
Max. number of epochs 50

The network training is performed via MATLAB 2023a Deep Learning Toolbox (Math-
works, Natick, MA, USA) on a NVIDIA (Santa Clara, CA, USA) Quadro GPU equipped
with 2304 CUDA® cores and 8 GB GDDR6 RAM. The total computation time is about 68 h,
and the best results are obtained for mini-batch size and the initial learning rate equal to 4
and 10−3, respectively.

Figure 5 shows the training and validation versus the number of epochs. It can be
seen that the curves are in agreement, and the loss values converge after about 12 epochs.
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Figure 6 illustrates the network operation on five samples randomly selected from
the test dataset. The first, second, and third rows represent the input Ir(k), output Ipw(k),
and ground truth Iw(k) images, respectively. The input images are filtered employing
a high-pass filter with a cutoff wavelength λcutoff= 190 m, to remove the strong noise
contribution introduced at low wavenumbers by the modulation phenomena and range
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dependency. Despite that, as can be observed, the network predictions highlight a good
agreement with the corresponding ground truth images. Notably, the spreading of the
wave spectrum energy towards the high wavenumbers observed in the input images is
quite well compensated.
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A quantitative assessment of network performance is carried out in terms of the MPE
and RMSE for each sample in the test dataset (see Figure 7). Specifically, the mean error
values (e.g., MPE = 15.7% and RMSE = 0.0042) indicate that the network predictions
effectively compensate for the distortions introduced by the radar sensing process and
quite accurately recover the spectrum amplitude.

4.2. Retrieval of Wave Elevation and Wave Parameters

The wave elevation field is determined using the wave spectrum amplitude predicted
by U-NET and applying Equation (13). In detail, for each sample in the test dataset, the
retrieved wave elevation is compared to the ground truth. Additionally, a comparison with
the reconstruction obtained by applying the MTF is also included (see Equation (A3) in
Appendix A). The quantitative performance analysis is provided through the CC and RPE
metrics introduced in Section 3.2, whose average values are listed in Table 4. Moreover,
an example of the wave elevation field η(r), with sea state parameters λp = 118 m,
θp = 0◦, Hs = 4.62 m, and its reconstruction ηMTF(r) and ηUNET(r), is reported in Figure 8,
while the RPE maps are displayed in Figure 9. Concerning the average CC and RPE, it
is evident that both strategies exhibit limited accuracy in wave elevation reconstruction.
This outcome is primarily attributed to the use of radar phase for wave reconstruction
(see Equations (13) and (A3)). However, it is well established that in this context, a better
performance in wave field reconstruction and sea state parameters’ estimation are achieved
by considering an angular sector around the direction of the incoming sea wave [7]. Hence,
to enhance the reconstruction accuracy, an angular sector of ±35◦ around the incoming
wave direction is selected (indicated by the red lines in Figure 9), resulting in significantly
improved average CC and RPE (refer to Table 4).
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Table 4. Performance analysis of the wave elevation reconstruction.

Metrics ηUNet ηMTF

CC 0.56 0.50
CC±35◦ 0.81 0.76

RPE 16% 18%
RPE±35◦ 11% 14%
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The significant wave height is estimated within the reliable angular sector, and the
performance of the U-NET and MTF strategies is compared in Table 5 and Figure 10. As
observed, the U-NET strategy notably outperforms MTF in estimating Hs from the recon-
structed wave field. Figure 10 clearly shows that the MTF approach tends to overestimate
and underestimate the low and high Hs values, respectively. This occurs because MTF
is an empirical function that needs to be adapted for each sea state [18,44]. Note that the
calibration coefficient c defined in Equation (A4) (refer to Appendix A) is taken as the aver-
age of the coefficients calculated across all the considered training dataset. Additionally,
a fixed coefficient β has been used for all testing samples (see Appendix A), which can
amplify artifacts at low wavenumbers in the radar image spectrum, especially for wave
fields characterized by small wavelengths. This phenomenon leads to incorrect wave field
reconstruction and consequently inaccurate sea state parameters’ estimation.

Table 5. Performance analysis of the Hs estimation.

Metrics HsUNet HsMTF

CC 0.97 0.95
MPE 0.79% 2.82%

RMSE 0.28 [m] 0.53 [m]
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Finally, Figure 11 shows three wave elevation profiles with incoming waves at θp = 0◦

and varying λp and Hs values. It is evident that the reconstruction achieved using the
U-NET strategy outperforms the MTF method. Additionally, for small wavelengths (see
Figure 11a), the reconstruction ηMTF is very inaccurate.
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5. Conclusions

This manuscript has proposed a deep learning approach based on U-NET for recon-
structing the sea wave spectrum from the marine radar data. A synthetic dataset of wave
elevation field with significant wave height values ranging from 0.69 m to 6.67 m has
been generated considering the spectral proprieties of the JONSWAP model. For each
wave field realization, the radar imaging mechanisms (tilt and shadowing modulation)
have been applied to generate the radar image spectrum. This radar image spectrum
has been considered as the input of the network, which provides an estimate of the sea
wave spectrum as its output. A performance analysis in terms of MPE and RMSE has
demonstrated that the proposed approach is effective for different sea wave conditions.
The wave spectra retrieved via U-NET have allowed reconstructing the wave elevation
field and estimating the significant wave height. Numerical results have confirmed that the
proposed approach is more accurate than the classical MTF strategy, both in reconstructing
wave elevation fields, especially in the direction of the incoming waves, and in retrieving
sea state parameters.

Future research activities will focus on the experimental validation of the proposed
technique.
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Appendix A

MTF-Based Strategy

The MTF strategy is partly linked to the linear interpretation of tilt modulation, as
discussed in [44,46]. However, because of the nonlinearities caused by the shadowing
effect and, to a lesser degree, by tilt modulation, the derivation of the MTF typically relies
on a posteriori fitting procedure such as the ones mentioned in [11,16,17]. Therefore,
due to nonlinearities, the MTF should be tuned to the specific sea state and the specific
sea environments, as proposed in [47] for coastal areas. In the general form, the MTF is
calculated as the ratio between the amplitudes of the radar signal spectrum and the wave
elevation spectrum as a function of the wave number, i.e.,

M(k) =
Ir(k)
Iw(k)

(A1)

However, in this study, the MTF strategy proposed in [11] is adopted since it represents
a standard approach for obtaining wave spectra from radar spectra. Specifically, the MTF
is defined as M(k) = |k|β, where β is an empirical coefficient set at 1.2, according to [11].
Starting from the amplitude Ir(k) of the radar image spectrum, the reconstructed amplitude
is calculated as:

IMTF(k) = Ir(k)/M(k) (A2)

To this end, as in Equation (7), the wave elevation reconstruction is achieved by
applying the double IFFT to the IMTF(k) and shifted phase spectrum ϕr(k), i.e.,

ηMTF(r) = Re
{∫ ∞

−∞

∫ ∞

−∞
IMTF(k)e−i(k·r−ϕr(k))dkxdky

}
(A3)

The MTF provided an unscaled wave spectrum amplitude and, hence, an unscaled
wave elevation reconstruction. Therefore, a calibration coefficient is defined using the
relationship between the variance of wave elevation ηMTF(r) and the ground truth of the
significant wave height Hs, given by

c =
Hs

4
√

var(ηMTF(r))
(A4)

and the Hs MTF = 4c·
√

var(ηMTF).
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