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Abstract

Car telematics is a large and growing business sector aiming to collect mobility-related data (mainly private and commercial
vehicles)  and  to  develop  services  of  various  nature  both  for  individual  citizens  and  other  companies.  Such  services  and
applications include information systems to support car insurances, info-mobility services, ad hoc studies for planning purposes,
etc. In this work we report and discuss some of the key challenges that a car telematics pilot application is facing within the EU
project “Track and Know”. The paper introduces the overall context, the main business goals identified as potentially beneficial
of big data solutions and the type of data sources that such applications can rely on (in particular, those available within the
project for experimental studies), then discusses initial results of the solutions developed so far and ongoing lines of research. In
particular, the discussion will focus on the most relevant applications identified for the project purposes, namely new services for
car insurance, electric vehicles mobility and car- and ride-sharing.
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1. Introduction

Mobility  data  generation  and  analysis  is  at  the  core  of  the  business  of  many  mobility–related  companies,
including car  insurances  and associated technology providers.  Indeed,  providing fresh  and detailed information
about the mobility of vehicles and single users can be fundamental in optimizing services. This is the case for car
insurances, where a good knowledge of the driving attitude of the customer allows to identify the most appropriate
contractual conditions, typically associated with the risk of causing accidents. Indeed, risky customers create risks
both for their safety and for the car insurance profit, and the best customers for car insurance providers are indeed
the safe ones. For this reason, in the long term the business objectives of the company should include not only
identifying the risky subjects, but also providing them useful feedbacks to correct their risky behaviours. Similarly,
services aiming at supporting alternative transportation solutions, such as car pooling or electric vehicles, require to
know which kinds of mobility needs the user has, and then infer what kind of changes to her daily routines are
needed to fit the requirements of the new solution. In case of car pooling, that means aligning with the mobility of
other users; in the case of electric vehicles, we have to take into consideration the limited autonomy of current
batteries, the relatively low availability of recharging points, and the relatively long recharge times.

In this paper we summarize the objectives and the challenges of a pilot  application scenario of the EU project
Track  and  Know  in  the  car  telematics  sector,  mainly  addressing  services  and  applications  in  the  three  areas
mentioned above: car insurance, electric vehicle mobility and shared-mobility. In particular,  the  main goal of the
application is to analyze the big mobility data currently produced by car telematics technology providers for routine
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tasks (e.g. providing driving statistics for car insurance companies) and then extract insights that can be useful for
advanced services.

The data sources generated by car telematics typically include movement traces of vehicles that mount an ad hoc
device. Such device periodically establishes the position of the vehicle through GPS technology and also measures
other physical characteristics, such as speed and accelerations. In particular, GPS traces are usually collected at a
fixed rate or through fixed rules (for instance combining constraints on time passed and distance traveled since last
recorded location), while acceleration data are mostly recorded when specific conditions are met, for instance the
overall acceleration exceeds some given threshold. One standard functionality of this kind of devices is to produce
an alert in case of suspected crash, detected as very large and sudden accelerations, which are timely sent to a human
operator to check whether a real crash happened (for instance by calling the vehicle owner) or it was a false alarm. 

These data bases provide a good opportunity for developing mobility data analysis models that try to recognize
the risk factors behind vehicle crashes, both for being able to predict them and to provide the users indications of
how to reduce their (expected) risk. Also, the analysis of long-term mobility needs of a user can provide objective
and detailed information about the impact that a change in mobility modalities could have on her daily needs. In the
context of electric  vehicles,  in particular,  battery recharge is currently needed more frequently and takes  much
longer times than fossil fuel-based cars, therefore the habits and timings established in the user’s daily activity might
change when switching to electric power. Clearly understanding what kind of changes would take place, how big
they are, what portion of the mobility they would affect and what ecological and economical impact they would
bring,  would  provide  the  user  the  means  for  taking  an  informed  decision.  Similarly,  adopting  carpooling  as
(exclusive or complementary) transportation means would clearly require some efforts and changes in the daily
mobility. Carpooling can take place only for those movements that have a match with other users’ travels, therefore
it would be helpful to measure in a data-driven way what is the “carpoolability” ratio of a specific user’s mobility.
Also, such matches are  never  perfect,  and require the user  to anticipate  or delay  the trip,  as well  as  to move
(typically walking) to meet the travel partner. Finally, a complex daily mobility might require the interaction with
several  different  users  (the  different  drivers  that  give  the  user  a  lift),  which  might  make  carpooling  overall
cumbersome and unsustainable in the long run. Clearly, carpooling has positive effects in economical and ecological
terms. All these factors, and possibly others, contribute to define pros and cons of carpooling for the single user,
helping her to decide whether to adopt it or not as well as companies and public bodies to evaluate the most likely
potential of carpooling on a given geographical area.

This contributions of this work can be summarized in two directions:
• first, a set  of interesting application-driven analysis problems are defined,  some of them new, some others

adapted from existing issues;
• second, a set of preliminary results have been obtained on some of the challenges discussed. While far from

definitive, the experiments support our initial ideas, confirming their feasibility and potential, which however
will require further investigation to turn they into solid and ready-to-market solutions.

In the next sections we briefly present the application context and questions (Section 2), the data sources such
applications are based on (Section 3), the main technical challenges  identified (Section 4), and some preliminary
results over some of the research directions discussed (Section 5). Finally, some conclusive remarks close the paper.

2. Innovative business objectives for car telematics

The Car telematics core business is to collect data from telematics devices and develop advanced solutions and
algorithms for  sophisticated  data  analysis,  in  order  to  help insurance  companies  assessing  the  insurance  risks,
provide  services  for  the  management  of  accidents,  and  to  facilitate  communication  between  companies  and
customers. Furthermore, an increasing number of car telematics companies provide services to car manufacturers,
the main activities being the following: developing statistics algorithms on individual driving styles and habits, help
the car  manufacturer to create custom warranty programs derived from driving behavior and offer personalized
services to its own customers.

We divide  the  discussion  into  the  three  main  application  areas  of  the  demonstrator:  car  insurance,  electric
mobility, shared mobility.
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2.1. Car insurance

Car insurance is one of the most important application fields of car telematics, and the movement data collected
by the latter is typically used to provide several services to end users, such as pay-as-you drive contracts, anti-theft
control and prompt emergency rescue in case of accidents. 

A fundamental task of car insurance companies is to find the most appropriate policy pricing for a customer,
which consists in a trade-off between profit and competitiveness. The most intuitive way to do it is to estimate the
customer’s risk of having accidents in the near future, since high-risk ones are likely to cause the company a loss
(paying the costs of her accidents) while low-risk ones are more likely to provide a plain profit. This business case
stems from this idea.

The basic objective is not only to recognize the real risk level of a customer, but also to understand possible
causes. Therefore, we aim to two distinct results:

 Predicting the Customer’s risk score: given a car insurance customer, provide a risk score relative to the near
future, e.g. the next year or the next three months. We expect this estimate to be greatly dependent on how
the customer drives and the conditions of the surrounding environment (traffic,  etc.). The methodologies
proposed are based on the computation of individual driving features, describing how much the user drives
and how much dynamically. More details and preliminary results are given in Section  5. 

 Inferring risk mitigation strategies: given a car insurance customer and her risk score,  we would like to
identify the characteristics of her driving that mostly determine her risk score. From a prescriptive viewpoint,
that will provide the customer indications of how to improve her risk score, with benefits for her (in terms of
safety  and  insurance  costs)  and  the  insurance  company  (in  terms  of  costs  for  accidents).  The  general
approach currently under development will try to query the predictive models adopted, in order to understand
which features decided for the prediction (see Section 4 for some more details).

As the raw mobility data collected by car telematics companies is limited to positions and events of the vehicle,
with no vision of what happens around it, it is clear that in order to achieve our main goals we need to add some
information about the context. Similarly, the raw mobility data describes elementary events (position, acceleration,
etc.) whereas any proper modeling requires a higher-level vision of what is happening to the user. Such higher-level
ones should provide some clear semantics, e.g. some typical maneuvers that involve sequences of deviations, sudden
decelerations, etc. Recognizing and making them explicit is expected to be an important need.

Finally, the data involved in this business case imposes several access restrictions that inhibit the end-user of
applications  to  directly  access  them.  The  motivations  for  such  restrictions  range  from  individual  privacy  to
competitive  advantage  of  the  data  provider.  Therefore,  in  order  to  make  the  solutions  developed  practically
applicable in an industrial scenario the following important requirement emerges:  the data processing that starts
from the raw data and terminates  with the final  results  must  work essentially unmanned,  i.e.  without  the user
interacting or accessing anything but highly aggregated data, e.g. the final risk scores and associated mitigation
strategies.

2.2. Electric mobility

While the EVs industry and their adoption is expanding in most EU countries, the switch from fossil fuel to EVs
still suffers from a lack of a clear understanding of the pros, cons and habit changes that each user is going to
experience. The overall target of this business case is to analyze the mobility of a individual and provide her an
objective, data-driven information to detect and quantify possible issues in switching to an fully electrical vehicle.
For instance, the limited autonomy of batteries and the current limited availability of recharge stations in some areas
might require to heavily change the route of some trips of the user, requiring longer travels and also much longer
refill times (battery recharges on average vehicles can take up to some hours, against the few minutes needed for
typical gas refills). Such information can help companies and individual users to evaluate the ease of conversion to
EV mobility.

In the general  context of  urban mobility,  electric mobility requires the development of new systems that are
natively  integrated  with  control,  diagnostics  and  vehicle  connectivity  systems.  With  the  new  systems  under
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development there will be the possibility for each driver to be able to monitor the performance of the electric vehicle
with simple Apps, as well as allowing the use of a lot of information on the status of the vehicle components (e.g.
battery charge level, etc.) or to receive alerts  in case of  interruption of the top-up, unexpected movements, and
access  to real-time positioning services  or sharing of driving data.  Furthermore,  the growing spread of electric
vehicles will also lead to an evolution in the insurance world, since the components that make up electric vehicles,
such as batteries, will also be insured. The impact will also be significant in the long-term fleet rental sector, where
the transition to electric mobility will favor the spread of new business models, such as pay as you charge, always
based on telematics.

The main focus of this demonstrator is on understanding the impact of EV switching on the individual:
 Estimate Costs/Benefits of EVs for the individual: given an individual customer with her mobility history,

evaluate her costs or savings in terms of money and time in case of switching towards an EV, i.e. provide
detailed description of what kind of habit changes, time loss and additional distances traveled the user is
expected to incur into, in case an EV is used in her daily mobility. That should take into consideration daily
mobility needs, and therefore usual paths, as well as charging point availability (with corresponding detours
from the fastest trip) and charging times. The solutions under development in Track & Know will exploit a
complete, network-based view of the individual mobility, simulating the battery consumption of the user
for her daily trips, and contextualizing possible issues against the part of mobility they affect.

Such general goal will require to understand the mobility needs of the users both at the individual and at the
collective level, identifying the most frequent areas of interest or the most frequent or typical routes adopted, as that
can help assessing the relevance (weight) of the area or route for the main objective.

A key task involved is to derive the consequences of the limited autonomy and longer recharge times of EVs
compared to traditional  vehicles,  since these two factors  might make some fossil  fuel-based trip impossible or
uncomfortable for an EV. Finding EV-compliant alternative routes for the travels of a user, possibly differentiating
among trips of different nature (systematic vs. occasional, long vs. short, easy to substitute with public transport vs.
others), and measuring their efficiency constitutes a starting point for the main objective.

2.3. Shared mobility  

Sharing vehicles  (either  through car-sharing or by ride-sharing,  i.e.  using the user’s  private vehicle)  is  a  basic
measure to reduce traffic congestions, the derived environment footprint, and the personal costs (fuel consumption
as well as maintenance costs).

Car-sharing is increasingly becoming a popular, flexible and affordable mobility solution that grows progressively
in the metropolis all over the world. It is a simple, ecologically sustainable and alternative paradigm of mobility,
especially from an environmental point of view, because it decreases the mean insurance (pay-as-you-drive pricing
will decrease, since the personal vehicle is used much less) and maintenance costs of the car (less kms driven mean
less vehicle wear), especially in congested urban centers.

The  latest  research  in  the  area  of  Shared  Mobility  predicts  that  the  global  carpooling  market  will  grow  at  a
compound annual growth rate (CAGR) of 8% from around 22 million users in 2017 to 47 million in 2025, with
more than 500,000 vehicles  by 2025 (Frost  and Sullivan  2016).  For this  reason,  car  telematics  companies  are
venturing into providing technological solutions for Shared Mobility that also include advanced fleet management
and insurance telematics for operators in the Mobility sector and for rental companies.

Despite the clear difference between the two cases,  EVs mobility and vehicle/ride-sharing have several common
points. In particular, both of them would greatly benefit from a clearer understanding of the pros, cons and habit
changes that each user is going to experience when she joins it. The overall target of this business case is to provide
objective, data-driven means to measure such aspects and let service providers and individual users to evaluate the
ease of adoption of car-pooling and/or car-sharing.
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We remark that studying car-pooling and studying car-sharing are rather distinct problems, yet they share a large
part of concepts and basic tasks, and therefore they are discussed here as a unique subject. 
Our main focus here is the following: 

 Estimate  Costs/Benefits  of  car/ride-sharing  for  the  individual:  given  an  individual  customer  with  her
mobility history, evaluate her costs or savings in terms of money and time in case of adoption of car/ride-
sharing. That should take into consideration daily mobility needs, and therefore the importance that each
trip has in the overall  mobility demand of the individual. The solution under development in Track &
Know exploit a network-based view of the individual mobility, which makes it  possible to  find travel
partners that not only can share a trip, but whose overall mobility matches the user’s one, making it easier
to organize the daily mobility.

Synchronizing with other users (to travel together in the ride-sharing case, or to take the shared car in the other case)
usually affects  the efficiency of the travel  in terms of  time delays and slight changes in the itinerary.  Finding
car/ride-sharing  alternative  routes  for  the  travels  of  a  user  (maybe  focusing  on  the  most  relevant  ones)  and
measuring their efficiency constitutes a starting point for the main objective.

3. Data collection and preprocessing for Car Telematics applications

The main information sources involved in this application context are related to the mobility of individuals (in the
specific case, car insurance customers). In particular, all the problems and solutions discussed in this paper are based
on the following types of information, for a large set of private vehicles:

 Positions:  a  list  of  timestamped  WGS84  GPS  position  (latitude  and  longitude)  related  to  anonymized
vehicles (via anonymous IDs) with an additional labelling about the vehicle travelling status, the satellite
connection status and the cardinal orientation of the car. This data is collected at an average rate of one
position every 1.5 minutes, though there are some exceptions.

 Events: position data (as above) enriched with threshold-base labels describing motion events occurring in a
given times stamp, such as harsh acceleration, harsh braking and (possibly multiple) harsh cornering, with
additional  accelerometer  metrics  related  to  each  event  position.  These  data  are  collected  whenever  the
accelerometer detects an acceleration exceeding predefined parameters (not disclosed to the project). 

 Crashes:  position data (as above) related to crash events with additional  accelerometer  metrics (tri-axial
average and tri-axial maximum accelerations). This dataset contains all machine-detected crash conditions,
basically meaning violent decelerations, including false positives. The records report the result of a manual
validation performed by a human operator, therefore distinguishing the true positives from the negative ones.

 Car models:  a list of registries about car age, brand and model, related to the anonymous vehicle IDs.

In  particular,  the  data  sample  involved  in  the  Track  & Know project  was  provided  by  the  OctoTelematics
company (www.octotelematics.com), currently the largest player in the global market, and covers three geographical
areas (see Figure 1), representing three very different and important situations to be considered in the analyses and
services:

 A very large city (London, UK)
 A moderately large city (Rome, Italy)
 A whole region, composed of variable-size cities (Tuscany, Italy)
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Fig. 1 Geographical areas covered by the data employed in the demonstrator

Also, the data provider has different penetration indexes in the two countries involved (the difference is an order of
magnitude), thus providing a natural testbed for analysis tools over heterogeneous data richness, including transfer
learning issues.

The large-scale collection of mobility data inevitably brings several quality issues due to a number of causes,
yielding either imperfect records (for instance, due to GPS error or incorrect device configuration) or missing ones
(for  instance,  lost  data packages).  Trying  to  mitigate  such issues  requires  an  ad hoc  approach  that  studies  the
characteristics of the data sample at hand. In particular, several analyses require the reconstruction of trips out of
raw GPS points recorded for each device:  determining the start and end of each trip in a precise way requires
specific heuristics (e.g. Mousavi, S., Harwood, A., Karunasekera, S. et al. 2017) and, in particular, in our scenario
we adopted a spatio-temporal criterion, as described in Section 5; reconstructing the detailed path (which roads were
traversed) might require map matching and similar solutions; also, singling out noise and errors is important for
obtaining good results, yet, while it is relatively easy to identify large anomalies (which we implemented in our
preprocessing steps simply removing points very far from the others), detecting those of moderate size in the data
(e.g. a distortion large enough to move a point over the wrong road segment, yet too small to be spotted by visual
inspection) can be very challenging.

Finally, several applications require to associate some semantics to the raw data. That is currently realized in the
project  by  simply  joining  external  information,  for  instance  by  attaching  to  each  GPS  location  the  weather
conditions,  local  traffic  and  points-of-interest  around it.  An alternative,  more  sophisticate  approach  consists  in
inferring  such  semantics  from the available  data;  for  instance,  it  is  currently  under  study  the  identification  of
recurrent trips or the spatial aggregation of driving events aimed to identify areas were some specific behaviours are
more frequent, e.g. bad road conditions leading to frequent sudden decelerations.

4. Technical challenges and related works

The business cases described in the previous section present several challenges from the technical viewpoint,
since they mostly require a deep understanding of human mobility starting from raw data lacking any detailed
semantics.  In  this section we discuss  some of  the most important  ones,  linking them to existing literature  and
highlighting the specificities of our context.

4.1. Individual-centered mobility modeling

A specific  type of  semantics  is  related  to  the  meaning that  the different  parts  of  the mobility  have  for  the
individual: recurrent vs. systematic trips, frequent locations vs. single visit ones, transit locations vs. long stays, etc.
To infer this type of information we need to model the mobility of the individual as a whole, creating a single,
complete picture of it. This process is currently ongoing exploiting Individual Mobility Networks (Rinzivillo et al.
2014), a network-based representation that integrates important locations, movements and their temporal dimension
in  a  succinct  way.  Such  model  allows  several  different  types  of  inference  (detecting  the  purpose  of  the  trip,
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simulating realistic mobility agendas, etc.), in contrast to others that are tailored around a specific objectives, e.g.
predicting  next  location  (e.g.  Amirat,  H.,  Lagraa,  N.,  Fournier-Viger,  P.  et  al.  2019).  Integrating  as  much
information  as  possible  in  a  single  formalism  and  inferring  from  it  mobility  indicators  useful  for  the
predictive/prescriptive purposes of the demonstrator are among the key challenges.

4.2. Prediction of (crash) risk probability

Risk in this context means probability of accidents, which are (in statistical terms) rare events. That, together
with the lack of a clear set of predictive indicators to adopt, make the risk prediction a difficult task. 

The existing literature addresses the problem from various perspectives. A large body of works focus on real-time
prediction of individual crashes, i.e. try to identify the events that lead to a crash in next few seconds, thus providing
feedbacks  to  the user  as  she drives,  e.g.  Wang,  Xu and Gong (2010).  Similarly,  though  following completely
different directions, Yutao B et al. (2017) try to related crashes to both behavioural characteristics and physiologic
parameters. Other approaches work on identifying areas that show characteristics usually associated with accidents,
such as increased traffic density, adverse weather conditions, etc., e.g. Lee, Hellinga and Saccomanno (2003) and
Mannering and Bhat (2014). While extremely useful, such approaches result to be not applicable to fields like car
insurance,  where  we are  interested  in  creating  a  general  risk  profile  of  the  user,  thus implicitly  involving  the
prediction of her crash risk in the long run, such as few months in the future. Only few, early works are available on
this direction, e.g. Wang et al. (2017), limited to simplistic approaches.

The approach under development will take into consideration several aspects, ranging from the driving behaviour
of the user to the types of environment she usually traverses – the latter includes both static information, such as
road categories, and dynamic ones, such as weather during driving time. 

4.3. From prediction to prescription 

Achieving a good prediction accuracy often conflicts with the understandability of the predictive model. It is well
known that in difficult settings very complex models (deep learning, large random forests, etc.) can achieve far
better performances than simpler ones (decision trees, Bayesian classifiers, etc.); yet, the former are usually not
human  understandable.  One  of  our  main  objectives  is  not  only  to  provide  good  predictors  for  the  car  crash
application, but also extracting risk mitigation guidelines for the user (the driver), which means we are interested in
understanding which factors made a driver a risky one, in order to propose changes in her behaviour that can reduce
the risk. While that makes simpler models more appealing, the project will explore also methodologies coming from
the “explainable AI” community (e.g. Guidotti et al. 2018), aimed to extract from a black-box model an explanation
for each prediction obtained. Current work within the project is addressing the problem exploring approaches based
on adversarial  learning  (Kurakin  A,  Goodfellow  IJ  and  Bengio  S,  2017),  which  traditionally  tackles  similar
problems yet with very different purposes, and counter-factual analysis (see e.g. Poyiadzi R et al. 2019). 

4.4. Models Transferability

The various types of mobility models involved in this demonstrator are expected to be highly dependent on the
specific geographical area under study. For instance, it has been empirically verified that the trip purpose prediction
models  proposed  by  Rinzivillo  et  al.  (2014)  work  very  well  in  the  areas  where  they  were  extracted,  their
performances degrade dramatically if applied to areas with different characteristics. At the same time, not all areas
of  interest  for  the  demonstrator  are  equally well  covered  by data,  due  to  the  non-homogeneous penetration  of
tracking devices, making it difficult to build different models for different areas. For instance, the penetration of
GPS vehicle trackers in UK is an order of magnitude lower than Italy, and other countries where this market just
started show even lower values. All this calls for methodologies that make it possible to adapt models built in data-
rich areas to less rich ones, basically a geographical instance of the general transfer learning problem (Pan and Yang
2009).
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4.5. Defining proper notions of electrificability and shareability of individual mobility

Measuring how much the mobility of an individual is compatible with alternative transport modalities – in our
case, EVs and car sharing/pooling, both with their own constraints – is a not well defined problem. Existing work
measured the ratio of trips that are perfectly compatible with them (Guidotti et al. 2017, Janssens et al. 2012), or
simply  compare  general  mobility  demand  (based  on  trip  length  distribution  and  other  overall  descriptors,  for
instance, as in Donati A et al. 2015) but without a more realistic evaluation of the effort required on behalf of the
user to adapt her whole mobility. In the case of EVs, that means changing times and routes to intercept charging
stations when needed.  Moreover,  mobility optimization might intersect  energy distribution issues,  including the
balance of energy consumption on the grid or how to use vehicles as potential distribution means, as studied in
Neaimeh et al. (2015); for car sharing/pooling, it means to change times of travels, or even reschedule part of them.
Providing  such  definitions  and  the  tools  for  computing  their  values  is  another  challenge  the  project  (and  this
demonstrator in particular) is going to pursue.

5. Preliminary results and insights on the data

This section summarizes some of the first insights and preliminary results obtained over the datasets adopted in
the demonstrator, and focused on the main demonstrator objectives and most promising analytical tools.

All experiments are based on a trajectory extraction process that scans the raw GPS traces of an individual in
chronological order, filters out noisy points (here defined as those whose distance from the previous point would
imply an average speed above 250 km/h), and identify stops (here defined as moments where the vehicle moved less
than 50 meters in the last 20 minutes). A trajectory is then defined by the points between two consecutive stops.

5.1. Mobility-based Characterization of Geographical Areas

Most analyses and models extracted from data are highly dependent on the characteristics of the territory under
study. In particular, it is known that mobility models extracted in one region might not work well in other ones, thus
raising an issue of transferring models across different areas. In this direction, the technical activities of the Track &
Know project are addressing the problem of characterizing different areas based on a wide variety of indicators, with
the aim of better assessing the similarity of different geographical areas (the idea being that models are more easily
transferrable between similar areas) and possibly devise mechanisms to adapt models across areas with different
characteristics.

The initial exploration on this line considered the following families of mobility-based city indicators:
 Spatial  Concentration  of  population:  various  measures  of  concentration  are  computed  over  each  city,

including spatial entropy and Moran’s I, based on a fixed tessellation of the territory.
 Traffic flows distribution: starting from the traffic network among the sub-areas of a city, various indexes

are  computed,  such  as  the  modularity  index  (Newman  2006),  as  well  as  the  fitness  of  such  traffic
distribution with standard mobility models like the gravitational model (IZA World of Labor 2016).

 Distribution of IMNs properties:  for  each individual estimated to be resident  in the city,  we build his
mobility network (Rinzivillo et al. 2014) and analyze its network features, such as number of nodes, etc.

 Road network and traffic concentration: the static structure of roads in the city is analysed, by computing
for instance their spatial concentration, and by joining them with real mobility data we measure how much
the traffic is concentrated in a few km of roads.

Examples of the above mentioned measures are shown in the following figure, plotting their spatial distribution over
the Tuscany region. It is clearly visible that most indicators have a rather high heterogeneity over the territory,
meaning that each city shows some difference from others, including close ones. At the same time, each indicator is
significantly different from the others, thus bringing potentially useful and non-redundant information.
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Fig. 2 Spatial distribution of sample city indicators over the Tuscany region: (a) Population entropy, (b) Modularity,
(c) Fit to gravitation model, (d) N. of nodes in IMNs, (e) Roads concentration, (f) Traffic concentration

Discussion of results: the experimental results obtained confirmed our working assumption about the possibility of
identifying local, discriminating properties of a territory looking at its mobility in conjunction with its geography.
The usability of such features has been tested on some specific analysis task (Section 5.3), yet it is still to understand
how well they capture the phenomena they describe, and whether they are correlated with other contextual features.

5.2. Individual Mobility Networks

Based on the paradigm introduced by Rinzivillo et al (2014), the mobility of an individual can be summarized by
a graph representing the locations visited by the user (inferred from the single start- and end-points of each trip
performed) and the transitions between locations,  together  with spatio-temporal  distributions associated to each
location and transition. IMNs are a basic tool to analyze the population of an area through the characteristics of the
individual that live there. First explorations show that the differences across different areas are not easy to spot
through direct visual inspection, as shown in the following figure.

Fig. 3 Sample IMNs for 6 different cities in Tuscany; apparently, no clear visual feature characterize cities

Therefore, new ways of representing, aggregating and visualizing IMNs are under study, to enable a more effective
comparative analysis of different territories. 
In addition to that, human mobility is a dynamic phenomenon that can change significantly in time, and therefore
IMNs  can  represent  the  gradual  evolution  of  users’  changing  mobility  needs.  The  following figure  shows  an
example  where  the  IMN of  a  user  has  been  computed  over  two months  (left)  and  then  recomputed  over  the
following two months (right).
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Fig. 4 Temporal evolution of a IMN computed over 2–months periods; changes in mobility are clearly visible

In can be easily seen that while the core parts of the user’s mobility are preserved (North of the city), its spatial
range extended significantly over new areas. Also, the frequency of visits of the new areas (represented by the size
of the corresponding  nodes)  suggest  they became part  of  the  user’s  routines.  How to integrate  such evolution
patterns in a comprehensive model of human mobility is a challenging question that is currently under study.

Discussion of results: the preliminary results confirm the usability of IMNs for summarizing individual mobility, yet
also showing that the level of detail of the identified locations can be sometimes too fine (each user has several tiny
locations that are difficult to analyze), and that the time component in long-duration data must be considered in a
more comprehensive way, for instance developing dynamics-aware models.

5.3. Geographical Transfer of Mobility Models

As previously discussed, the data availability in the mobility domain is often heterogeneous, allowing to build
strong models (for instance, predictive ones) on some geographical areas where rich data are accessible, but not on
other, less rich areas. It is well known that any (non-trivial) mobility model is tightly linked to the area it describes,
therefore we expect that a good model built on a (data-rich) area does not work equally well on different regions.

There are two main ways to tackle the problem. One consists in developing a strategy that takes a strong model
built on a specific area A and adapts it to work on a different area B by exploiting the (relatively little) information
available over the latter. The already cited approaches in Rinzivillo et al (2014) represent examples of such line of
work. Another, simpler way consists in recognizing which are the areas where the model developed on area A is
likely to perform well. This clearly requires to study the features of the areas that make them somehow compatible,
i.e. they apparently obey to the same kind of rules. In the following we briefly report some results obtained on this
second direction, where the city descriptors introduced in a previous section (Mobility-based Characterization of
Geographical Areas) have been deployed to group cities into clusters.

First, a simple prediction problem is defined: predicting the traffic of the next hour in key areas of a city. In
particular, each of the 270+ municipalities of Tuscany, Italy was divided in a regular grid and 10 representative cells
were selected, 5 among the top 10% traffic and 5 within the 80-90% percentile of traffic. For each city, then, a time
series representing the aggregate hourly traffic volume of such cells is obtained, and the prediction task is to predict
the next value based on previous ones. The prediction model adopted is a standard XGBoost regressor (Chen and
Guestrin 2016). The next figure shows four sample cities analyzed (a) and a sample hourly time series (b).
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Fig. 5 sample cities analyzed (a), sample hourly time series and (c) normalized root mean square error (NRMSE)

The matrix in Figure (c) shows, for each pair (A,B) of cities, the normalized RMSE (root mean square error) of
predictions obtained on B by using the model learnt on city A. The cities have been clustered through a hierarchical
agglomerative method based on the city features already introduced in Section 5.1, which yielded 4 clusters. The
matrix described above has the rows and columns sorted according to the cluster each city belongs to, resulting in a
block matrix, blocks being delimited by red lines. What we can see, is that blocks on the diagonal, corresponding to
cities in the same cluster, exhibit a brighter color than others,  which means that the NRMSE error tends to be
smaller. This provides a first evidence that the cities that look similar based on the features studied above are also
homogeneous in terms of rules that drive the evolution of traffic volumes, and therefore the prediction model is
more easily transferrable among them.

Discussion of results:  the results shown above are obviously just a first step towards the overall objective. Indeed,
the prediction problem and the model adopted were rather simple, whereas in real applications, including those
considered  in  this  paper,  both  problem  and  model  are  expected  to  be  much  more  complex  and  challenging.
Moreover, the approach followed here, i.e. recognizing pairs of model-compliant cities, is effective only if the data-
rich cities available cover most of the city types (the clusters in our experiment) we expect to meet, since in that case
each city can be served with a model built from a data-rich city of the same type. Data-poor cities of different types
would  be  not  associated  with  any  model.  The more  general  solution  consists  in  defining  adaptation  strategies
(possibly based on the same city features considered here) that allow to customize a model to the specific city we
need to apply to.

5.4. Crash Prediction

Predicting the crash risk of a user is a difficult task, since it is in general affected not only by how the user drives,
but also by external factors, including other drivers. As already discussed in Section 4,  most  works in literature
focus on real-time prediction of individual crashes, or on the identification of personal or contextual factors that
relate to crashes.  In the  car insurance domain we are interested in creating a user’s risk profile related to long
periods of time, such as months in the future. 

In our this preliminary exploration of the problem, we focused on such long-term prediction of crash risk, and we
measure what kind of performances we can expect to reach with simple users’ features. In particular, experiments
consist in characterizing each user by his mobility data in a time window of three months, and try to predict the
presence of crashes in the next month. The experiments include only users that have a significant mobility (here
defined as those making at least 10 trips in the period under observation), since inactive vehicles are not interesting
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for our purposes – their crash risk is virtually zero. No data balancing or other particular filtering was performed, yet
for practical reasons the experiments focused on a time period where the density of crashes was the highest.

The features adopted fall in the following three categories:
 Travel features: length and duration of trips, also split into periods of the day or of the week
 Events features: frequency and intensity of driving events, i.e. accelerations and decelerations, divided

by event type and temporal intervals
 Car brand and model

The prediction was performed with various methods, including Random Forests, Support Vector Machines and
Neural Networks. RFs yielded the best and more stable results, shown in the following figure. The table also divides
performances over different subsets of features (traj = travel only, evnt = events only, evnt = both, all = include also
brand and model). The results were computed over a sample of data, covering vehicles in Rome and London, and
the corresponding model parameters were selected by grid search optimization.

Fig. 6 Performances of Random Forest models on various sets of features

We can see that  using all  feature types the overall  performances (F1 score) is  maximized, and therefore all
features appear to bring some improvement. We notice that the problem is imbalanced (around 1 crash every 5
users), therefore a significant recall is as valuable as a high accuracy.

Discussion of results:  the results obtained show that the problem can be approached with the methods discussed
above, although the results still call for technical improvements. In particular, current ongoing work is integrating
other, more sophisticated features that take advantage of the IMNs of the users and of contextual information.

6. Conclusions and future works  

This paper presented a set of challenges in the car telematics domain, that correspond to a pilot application of the
Track and Know EU project, focusing in particular on telematics car insurance and mobility services. The technical
challenges to transform the raw mobility data collected by the telematics companies  into insights and valuable
services are numerous and require improvements of current research state-of-art. Preliminary results show promising
signals of meaningful solutions for the identified problems. 

The ongoing work is trying to purse several of the issues mentioned in the paper: developing more sophisticated
individual mobility models, that might extend existing Individual Mobility Networks; developing strategies to adapt
one model built in a geographical area to work well on a different one; developing a set of sophisticated mobility
descriptors to better identify crash risks in the long term, including relations with the geo-spatial context, weather
conditions,  changes  in  the driving habits  (e.g.  through the analysis  of  the user’s  IMN changes),  etc.;  defining
satisfactory indicators to measure the compatibility of users with shared mobility or electric vehicles, as well as
developing processes to accurately estimate them.
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