
Private Drivers Identification based on users’ routine

Gianpiero Costantino and Ilaria Matteucci

IIT-CNR
Pisa, Italy

gianpiero.costantino@iit.cnr.it
ilaria.matteucci@iit.cnr.it

Davide Micale

Dip. di Matematica e Informatica
University of Catania

Catania, Italy
davide.micale@phd.unict.it

Giuseppe Patanè

Park Smart Srl
giuseppe.patane@parksmart.it

Abstract—This paper presents Private Secure Routine (PSR)
as a paradigm with two main objectives: i) identify drivers
depending on their habits/routine and ii) keep private drivers’
data. We implemented PSR exploiting the secure Multi-Party
Computation (MPC) technique against a honest-but-curious
attacker model. Moreover, we evaluated PSR by establishing
its accuracy in combination with other existing research works
based on machine learning techniques. Evaluation of PSR is
performed on different test-beds, considering single-owner and
two-owners identification.

Keywords-Driver identification, Privacy, Machine learning

I. INTRODUCTION

Intelligent Transport System (ITS) integrates information

and communication technologies into road transportation

and offers applications [1] to users such as road safety, traffic

efficiency and services.

In this paper, we focus on authorized drivers identifi-
cation. An authorized driver for us is a family member,

or customers of a car sharing company that is licensed to

use the car, i.e., he/she signed an agreement or got explicit

authorization to use the car. Driver identification may lead

several advantages to the driver such as, customized services,

possible discounts, e.g., related to insurance, and it can also

be exploited to discourage car theft: in 2020 New York City

and Los Angeles have seen a soaring of car thefts [2].

This paper proposes Private Secure Routine (PSR)

paradigm for drivers identification that distinguishes autho-

rized drivers of a car from the others in a privacy preserving

way. PSR identifies drivers using cars’ sensors data gathered,

for instance, using OBD-II [3] interface or directly from

the CAN bus [4] of the vehicle. Through the data sharing

within an ITS architecture, PSR is able to build an accu-

rate model of authorized drivers. PSR exploits the secure

Multi-Party Computation (MPC) technique to guarantee that

drivers’ data are exchanged in a privacy preserving way.

We experiment the Private Secure Routine paradigm on two

different test-beds and the results are quite promising. As far

as we know, PSR is the first algorithm that identifies drivers

maintaining private the models and the data of vehicles. PSR

exploits the computation units of the RUs so vehicles do not

need powerful devices on board.

In literature there are other solutions based on machine

learning and neural network techniques for driver identifi-

cation. Martinelli et al. compared different Decision Trees

algorithms on dataset Θ using all features on the research [5]

and using only the six best features in [6]. Authors obtained

up to 99,2% of precision and recall using J48. Uvarov et

al. [7] verified how accurate can be driver identification

models using only public sensors’ data available with every

OBD-II dongle. Authors best result is 79% of accuracy

using RF in multi-driver identification whereas on the owner

identification problem authors obtained 99% of accuracy.

The paper is structured as follows: Next section presents

the background about Neural Network and §III describes

the reference architecture on which Private Secure Routine

works and depicts the attack models. §IV presents the main

steps the Private Secure Routine algorithm at design level

while §V at implementation level. §VI reports the results of

the PSR experiments and §VII concludes the paper.

II. NEURAL NETWORK AT A GLANCE

Neural Networks (NNs) [8] are computing systems that

tries to resemble a human brain to perform a specific task.

They are composed of simple process units, neurons, that

resembles the human neurons to constitute a network. Each

neuron can receive input information as weighted signal

from other neurons of the network through links. The

weighted inputs of a neuron are combined with an extra

element called bias. Weights and bias are called parameters.

The output of the neuron is the result of the activation
function that limits the range of output values of the neuron.

The structure of a NN is called network architecture
and describes how the neurons are arranged and linked.

Networks are organized in layers and are distinguished by

the number of layers in single-layer network, i.e., network

with only one computational layer, and multi-layer that has

an input layer, an output layer and one or more intermediate

layers known as hidden layers. The input layer is not a

computational layer because neurons belonging to this layer

does not perform any computation.

Hence, to define a NN architecture we need to define

the number of layers, number of neurons of each layer,

the links between neurons, the combiner function and the

1753

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-1-6654-3574-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00236

20
21

 IE
EE

 In
tl

C
on

f o
n

Pa
ra

lle
l &

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 w

ith
 A

pp
lic

at
io

ns
, B

ig
 D

at
a

&
 C

lo
ud

 C
om

pu
tin

g,
 S

us
ta

in
ab

le
 C

om
pu

tin
g

&
 C

om
m

un
ic

at
io

ns
, S

oc
ia

l C
om

pu
tin

g
&

 N
et

w
or

ki
ng

 (I
SP

A
/B

D
C

lo
ud

/S
oc

ia
lC

om
/S

us
ta

in
C

om
) |

 9
78

-1
-6

65
4-

35
74

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PA
-B

D
C

lo
ud

-S
oc

ia
lC

om
-S

us
ta

in
C

om
52

08
1.

20
21

.0
02

36

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

activation functions of the neurons. Then, the parameters of

NN are established through a learning process [9] starting

from the definition of a dataset. A dataset is a collection of

data, represented by means of a table, that contains samples

regarding the task. The rows of the table are called instances
and the columns are the features of each instance. The

dataset is split into two partitions: the training dataset and

the test dataset. Training dataset represents all instances

adopted to make experience and evolve the model. Instead,

instances of a test dataset is employed to verify how much

accurate the model is in doing the predictions.

The learning phase recalls the following five steps: i) The

parameters of NN are randomly initialized; ii) The network

is run with data of the training set as input; iii) Using a

loss function, the output of the network, i.e., the predictions

are compared with the expected answer, i.e., the labels,

obtaining the loss value. This indicates how bad the network

is to make predictions. iv) The parameters are corrected

according to the loss value by using an optimizer [10] that

searches the best parameters minimizing the loss value. The

correction is limited by a learning rate multiplier. v) The

steps from ii) to iv) are repeated depending on training

preferences, e.g., training accuracy.

To make the training faster, the training set is split in

batches. Each optimization step is executed on instances of

a batch: once an optimization step is applied to all training

data, an epoch is completed. The epochs [11] are the number

of times the training data are processed.

III. PRIVATE SECURE ROUTINE

Private Secure Routine (PSR) is a paradigm to identify au-

thorized drivers belonging to the same vehicle in a privacy-

preserving manner. Private Secure Routine is built on top of

the Secure Routine (SR) paradigm [12]. The advantages of

PSR with respect to SR are twofold:

• PSR distinguishes among several authorised drivers

depending on their routine. While SR is able to identify

only one authorized driver for a target vehicle, i.e., the

owner of the vehicle, PSR identifies more than one

authorized driver for a target vehicle.

• PSR guarantees that information about drivers and

vehicles are exchanged in a privacy-preserving way.

A. Private Secure Routine infrastructure

The PSR paradigm takes as input all pieces of information

about drivers and vehicles circulating in the infrastructure

and generates models of each driver in each vehicle using

Secure Multi-Party Computation (MPC) [13].

Secure Multi-Party Computation is a cryptography tech-

nique that involves n parties, where each party i holds the

input xi, and all participants want to compute a function

f(x1, x2, ..., xn) maintaining private each party input. The

function f in a secret sharing scheme is randomly split into

n secrets, named shares, in such a way that certain subsets

of shares can be used to reconstruct the secret and others

reveal nothing about it.

We model the transportation infrastructure, which we

define as Private Secure Routine infrastructure, on three

different layers that communicates one another (Figure 1).

Cloud layer

Fog layer

Ground layer

Figure 1: Communication Layers in the PSR infrastructure

The Ground layer is composed by drivers and vehicles.

Modern vehicles are equipped with devices such as the In-
Vehicle Infotainment (IVI) system able to collect, store and

communicate information generated by car sensors. While a

driver uses the vehicle, this one requests and stores pieces

of information about the driver during its usage. Such data

are collected via OBD-II [3] or the CAN bus [4] protocol,

which transport the data related to vehicle’s sensors. Using

these data, a dataset is generated. It is represented as a table

in which all instances referred to a driver are collected. An

instance is made of timestamp recorded with the following

template: (day, month, year, hour, minute, second and day

of the week) and pieces of information about vehicle’s

components, e.g., oil engine temperature, throttle position,

speed and so on. Note that, each vehicle belonging to this

layer has an unique identifier “ID”, which is represented as

a random string, that we employ as data addressing during

the model training phase that we show in Section IV.

The Fog layer contains all the Roadside Units (RUs) able

to collect and process information coming from the ground

layers. RUs are the computational party acting as a bridge

between peers of the ground and cloud layer and between

vehicles connected to different RUs. In addition, RUs are in

charge of share data among entities in a privacy-preserving

way by running the MPC technique. Still in this layer, RUs

are involved by vehicles to retrieve needed information to

train and create drivers’ model as described in Section IV.

Furthermore, as for vehicles even roadside units have a

single identifier “ID” that we use as data addressing during

the model training phase.

The Cloud layer provides cloud storage resources main-

taining a database for the association between drivers and

vehicles. Moreover, cloud resources send to RUs the labels

for the training of models and also they store roadside units

and vehicles public keys.

In this work, we consider the cloud and the vehicles as

untrusted entities: their intent is to obtain the data of other

vehicles. Instead, RUs are trusted entities, i.e., Trusted Third

Party (TTP). If one or more RUs are compromised, the

1754

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

vehicles’ data and models are kept private by using MPC.

Moreover, we assume that all communications among layers

happen through secure channels. This will overcome possi-

ble active attacks. Also, we use an asymmetric cryptography

protocol [14]. The cloud layer publishes the public keys of

all the RUs to the Internet.

B. Attack Model

The cornerstone of Private Secure Routine are the pieces

of information about drivers that circulate among the entities

belonging to one of the three layers of the depicted scenario.

Thus, a possible attacker can play the following attacks:

• Honest-but-Curious (HBC): Also known as Passive

Attack; an attacker may exploit the information legit-

imately gleaned by capturing information exchanged

among the three layers of the infrastructure, but he/she

will not perform any malicious activity to harvest it.

• Fully Malicious (FM): Also known as Active Attack;

an attacker is able to change drivers’ information to

alter the capability of PSR to identify the drivers. So,

the attacker strategy is to succeed in at least one of

the following attacks: i) Impersonation attack in which

attacker forges or alters driver’s information that are

considered valid by the recipient; II) Sniffing attack
where the attacker reads the content of any messages

exchanged among the layers.

IV. MODEL GENERATION

To identify drivers in a vehicle, PSR creates a model able

to identify each driver of a target vehicle that circulates on

the PSR infrastructure. Model generation depends on differ-

ent situations that can occur and involve both drivers and

vehicles. Hereafter, we highlight three different scenarios

and for each of them, we explain how PSR identifies drivers

in the infrastructure presented above.

In the PSR paradigm we know that drivers’ routines are

not fixed, they can evolve over time [15], e.g., a mother who

takes for the first time her child to school. Also, drivers’

style can be different in particular situations, e.g., heavy

rain, snowfall, and so on. If driver identification should

fail, a vehicle can use a traditional authentication method

e.g., password, voice recognition, and so on, as a fallback

method to identify the driver. When a fallback method, out

of scope of this paper, is used, a vehicle labels the recent

sensors’ data as belonging to the authenticated driver. Even

if traditional authentication methods fail, sensors’ data are

labelled as belonging to a non-authorized driver. Moreover,

the PSR paradigm transparently authenticates the driver, i.e.,

PSR continuously compares the actual driving style with its

model. Each vehicle periodically issues a new training model

to improve the learning of new routines and driving styles.

A. A new vehicle joins the PSR infrastructure

When a driver di with her vehicle vi join the PSR

infrastructure for the first time, the creation of a new model

is needed to identify di. To do this, our PSR requires that

the vehicle collects data from its sensors related to driver di.
Upon the collection of these data, the vehicle vi generates

two labels: one label li tied to driver di and another label

lother to consider data for other drivers different from di
that may use vehicle vi. The collected data will be sent to

the RUs that will be in charge to train the model for vi.

Hereafter, we detail how data are collected, shared with

the PSR infrastructure and how the model is trained.

Model Initialization: A vehicle does not share the labels

directly with the cloud layer. So, vi first contacts the nearest

roadside unit to share its labels and its ID (Step 1 in

Figure 2). When the RU receives li, lother and the vehicle’s

ID from vi, it may forward the labels and the ID to the

cloud layer that can grab sensitive information belonging to

vi, e.g., the geographical position of the nearest RU may

provide indication about the vehicle location. To avoid this,

the roadside unit close to vi sends the labels and the ID to

an intermediary RU randomly chosen (Step 2). Only now,

the intermediary forwards the labels and the ID to the server

(Step 3) at cloud layer. When labels and the ID are received

at the cloud layer, they are stored on a local repository, for

instance a database. From now on, vi and di are part of the

PSR infrastructure. However, vi is not yet ready to identify

di since the model has not been trained.

The vehicle requests the training of its model: The

vehicle vi sends a request to train its model to identify di.
This step is obtained through a request that is sent to the

nearest RU, (Step 4). This one forwards the training request

to an intermediary RU, (Step 5). This RU sends the training

request at the cloud layer (Step 6). It, then, identifies the

label to use, i.e., lother. Note that label lother is identified

but not yet sent to RU.

The cloud layer requests the training for vi’s model:
To train vi’s model, the lother label is sent from the cloud

layer to other vehicles involved in the PSR infrastructure. So,

lother is sent, first, to the intermediary roadside unit (Step 7)

that forwards the label to the RU closest to vi (Step 8) and

sends lother alongside with the vi’s ID (Step 11) to other

RUs within a certain radius, whose size is not relevant here.

Finally, each RU forwards the lother label to their connected

vehicles together with the IDs of the roadside units involved

in the training (Step 12). Note that, the label li is not sent

because there are no vehicles that have data belonging to

the driver di. Hence, the only vehicle that has the label li is

the vehicle vi itself. At step 12, vi receives the IDs of the

RUs involved in the training.

Vehicles send their shares to train vi’s model: To train

vi’s model, each vehicle belonging to the PSR infrastructure

must share its collected data sensors. First, each vehicle,

1755

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

Figure 2: The PSR Model Generation Workflow

except vi, labels its sensors’ data with the lother label. The

sensors’ data of vehicle vi are already labelled. Then, each

vehicle obfuscates its data splitting them in shares. Next,

each vehicle sends these shares to the nearest RU. Since a

roadside unit may reconstruct the original data with all the

shares received, the vehicle must encrypt the shares so that

only the right RU can have them in plaintext. In the PSR

infrastructure, we keep shares secrecy using an asymmetric

cryptography protocol, e.g., OpenPGP [16]. OpenPGP is

a protocol that provides confidentiality and authentication

of messages and data files [17]. Hence, a vehicle, before

sending each share to a RU, must obtain the public key of

the recipient roadside unit (Step 13) from the cloud layer.

Once the corresponding RU public key is retrieved (Step

14), the vehicle uses the key to encrypt the share before

sending it to the nearest RU (Step 15). Always at Step

15, the vehicle vi sends its encrypted shares to the nearest

RU. Then the vehicle sends all encrypted shares, the nearest

RU will forward them to the other RUs belonging to the

infrastructure to train the model (Step 16).

Training vi’s model: All roadside units, involved in the

training, decrypt the shares and train vi’s model using the

data received from all vehicles in the previous steps.

The vehicle vi receives the updated model: At the end of

training, the roadside units send to vi the shares containing

the new model of di. To do this, each RU encrypts the shares

with the public key of vi and sends the resulting shares

to the vehicle. From now on, vi is able to identify di and

distinguishes her from other drivers (Step 17).

B. A new driver joins the PSR infrastructure

This is the case when a new driver di is identified on

a vehicle vi already present in the PSR infrastructure. The

vehicle vi has already a model trained for another driver dj ,

with dj �= di, and sensors’ data used for dj are labelled as

lj . Driver dj must authorize the new driver. The procedure to

give di the permission to drive the vehicle vi is out of scope.

The vehicle vi must update the current model to identify also

the new driver di. To perform this task, we proceed similarly

to the previous scenario and the following steps occur.

Model Initialization: The vehicle vi generates the label

li. Labels lother and lj already exist on vehicle vi since they

were created for driver dj . Then, the vehicle sends the label

li and its ID to the nearest RU (Step 1). This one forwards

the label li and vehicle’s ID to an intermediary RU randomly

chosen (Step 2). Finally, the cloud layer receives li and the

ID from the intermediary RU and stores them on a database

(Step 3). Now, the new driver di is part of the transportation

infrastructure. However, the vehicle vi is not yet able to

identify di since its model has not been trained.

The vehicle requests the training of its model: In this

phase, the vehicle vi sends to the nearest RU a training

request (Step 4). The RU forwards this request to an inter-

mediary RU (Step 5) and, then the intermediary sends the

request to the cloud layer (Step 6).

The server request the training for vi’s model: The

cloud layer sends a training request to all vehicles on

the PSR infrastructure within a certain radius. Cloud layer

knows the label of driver di from Step 3 and the label lj due

to past training for driver dj . As next step, from the cloud

layer the labels lother, lj and the ID of vehicle vj are sent to

the intermediary RU, (Step 7) which provides to the closest

roadside unit of vehicle vi the labels and the ID (Step 8).

Roadside Unit searches vehicles with authorized
drivers in common with vi: This is a new step with

respect to the previous training scenario. We introduce this

step since it may happen that driver dj may be a driver

of another vehicle vj different from vi. So, we need to

consider this situation by collecting also data coming from

other vehicles. In this phase, the RU ri, to which vi is

connected, looks for the vehicle vj and contacts it through

its nearest roadside unit, which we label as rj . The PSR

1756

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

infrastructure uses a Distributed Hash Table (DHT) [18]

to keep track of the nearest roadside unit of each vehicle

present in the PSR infrastructure. A DHT provides a lookup

table, distributed between peers of a network, to quickly

locate data. The Roadside Units are peers of the network.

The lookup algorithm uses a key to locate the peer using

{key, value} pairs. In particular, the key is the vj’s ID hash

and value represents the ID of the nearest Roadside Unit

to vj (Step 9). The RU ri receives the ID of rj closest to

vehicle vj (Step 10). Then, rj receives from ri the labels

lother, lj and the IDs of vi and vj (Step 11). Always at Step

11, ri sends the label lother and the ID of vi to the other

roadside units. The roadside unit rj forwards the labels to

vehicle vj and the IDs of the roadside units involved in

the model training (Step 12). Also at the same step, each

roadside unit sends the label lother and the RUs’ identifiers

to other vehicles of the PSR infrastructure. Finally, ri sends

only the identifiers to vi, at the same Step 12.

Vehicles send their data to train the vi’s model: Now,

each vehicle shares the data collected from its sensors with

the RUs to train vi’s model. First, the vehicle vj labels

with lj sensors’ data that belong to driver dj . All remaining

data not belonging to dj are labelled as lother. Vehicle

vi sensors’ data are already correctly labelled. The other

vehicles label their sensors’ data as lother. Then, all vehicles

get the RUs’ public key from the cloud layer (Steps 13 and

14). Then, each vehicle of the PSR infrastructure sends the

data, through encrypted shares, to its nearest roadside unit

for training (Step 15). Then, these shares will be exchanged

among the RUs before the training session (Step 16).

Training vi’s model: Each roadside unit decrypts the

received shares and trains the model.

The vehicle vi receives the updated model: When the

training is concluded, the roadside units send to vi the

encrypted shares of the new model exploiting the closest

roadside unit ri (Step 17). Then, the vehicle decrypts and

combines all received shares to obtain the new model. From

now on, vehicle vi is able to identify di and dj .

C. Driver identification on a vehicle of the infrastructure

This scenario considers the case in which a driver di has

already a model in a vehicle vi and we wish to identify the

driver into a different vehicle vj . Since, data related to driver

di already exist in the transportation infrastructure, we can

directly train her corresponding model. However, even if the

model of vehicle vj is trained using previously di driving

sessions in vi, the driver may use a driving style completely

different, e.g., a city car is driven in a different way than a

sports car. The fallback authentication allows PSR to register

the different driving style to later update vj’s model.

Model Initialization: To train the new model, RUs use

driver di’s past data collected by other vehicles of the

platform. The resulting model allows vehicle vj to identify

driver di. First, vehicle vj generates a random label li for

driver di. The label lother already exists so it is not necessary

to create a new one. Then, vehicle vj shares the new label

alongside with its ID using the nearest roadside rj (Step

1). Upon label and ID reception, the roadside unit chooses

randomly an intermediary RU and forwards the label and the

ID to it (Step 2). The intermediary RU forwards the label li
and the ID to the cloud layer that stores them (Step 3).

Request to train vj’s model: The cloud layer knows vj
has already a model for a driver dj , with dj �= di. Assuming

that driver dj is already known on the vehicle vj with the

label lj , vj’s model should include also driver di in addition

to dj . Driver dj could be also known in the vehicle vk, with

vk �= vj . Next, a training request for vj’s model with the

labels li, lj , lother and the IDs of vehicles vj , vi and vk is

sent to the intermediary RU (Step 7). This sends the labels

and the IDs to nearest RU rj (Step 8).

Searching vehicles that already know dj and di: The

roadside unit close to vj looks for those vehicles that already

know one or both drivers di and dj . In Step 9, the roadside

unit rj looks for the other RUs that are close to vehicles

vi and vk to be able to contact them. Then, in Step 10 the

roadside unit rj receives the “IDs” of ri and rk respectively

nearest to vi and vk. On Step 11, ri receives the labels

lother, li and the “ID” of vehicles vi and vj while rk receives

the labels lother, lj and the “ID” of vehicles vk and vj . At

the same step, rj sends to the other RUs the label lother
and the “ID” of vehicle vj . At Step 12, the roadside units

ri and rk share the labels respectively with vi and vk and

the identifiers of RUs involved in the training. At the same

time, all the roadside units send the label lother and the IDs

to other vehicles of the PSR infrastructure, except vj that

receives only the identifiers.

Vehicles send their data to train vj’s model: Each

vehicle sends its data to the RUs involved in the training:

vehicle vi labels with li sensors’ data that belong to driver

di and, similarly, vehicle vk labels with lj sensors’ data that

belong to driver dj . All remaining sensors’ data of vehicles

vi and vk get the label lother. Also, the other remaining

vehicles of the infrastructure label their data with lother.

The data of vehicle vj are already correctly labelled, hence

no changes are needed. Each vehicle retrieves the public

keys of the RUs involved in the training (Step 13 and 14).

Then, the vehicle splits data in shares, encrypts the shares

with the public keys retrieved in the previous step and sends

them to the vehicle’s nearest roadside unit for training (Step

15). Such shares are then shared among the RUs (Step 16).

Training vj’s model: All the RUs involved in the training

receive the shares, decrypt them and train the model.

Vehicle vj receives the updated model: At the end of

training, the RUs send to vj the encrypted shares of the new

model through rj , Step 17. Here, vj decrypts the shares and

combine them to obtain the model. From this moment on,

the vehicle vj is able to identify di, dj .

1757

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

V. PRIVATE SECURE ROUTINE IMPLEMENTATION

The Private Secure Routine paradigm is implemented by

using PySyft framework, a Python library that implements

the secure Multi-Party Computation (MPC) for private train-

ing of Neural Networks [19]. The framework maintains both

parameters of the model and the dataset private.

The PySyft implementation of MPC is secure against the

honest-but-curious adversaries [19] but can not guarantee se-

curity against active attackers. Some parties could exchange

their shares and potentially reconstruct the original values.

We aim to evaluate the impact of MPC on the accuracy

results. Hence, we simulate the chain of computations of

the parties belonging to the PSR infrastructure without the

bottleneck of communications over the network. To do this,

we simplify the behaviour of both instances of ground and

cloud layer. At ground layer, vehicles generate the dataset

and label the instances. At cloud layer, the server sends

requests to vehicles to trigger the labelling activity. In our

implementation, we employ three roadside units, two of

them train the neural network, while the third RU acts as

the Crypto-Store, i.e., it provides the necessary elements for

the computation in the MPC environment [20]. All parties

are Virtual Workers, i.e., they run on the same computer.

A. Dataset Generation Algorithm

The dataset generation involves the situation in which

vehicles generate their dataset to train the vehicle v’s model

in the different training scenarios described in §IV. Once the

dataset is created, vehicle labels the dataset instances (ins)

depending on the experiment we are going to setup.

Listing 1 shows how the dataset of the experiments are

generated. The algorithm uses the label “Other” to every

instances with a label not present in drivers, i.e., list of

the authorized drivers: if each vehicle is owned by only

one driver, d, the list drivers contains only d. In case each

vehicle is owned by more than one driver, e.g., two drivers,

d1 and d2, the list drivers contains these two labels.

Listing 1: Dataset generation

1 function generate_owner_dataset(drivers, ins)
2 inslabelled ← for each instance in ins set label

"Other" to instances not made by one of the
drivers in driver

3 return inslabelled

The generated dataset has to be shared with the RUs to

train the models. Each vehicle creates a private dataset by

generating the shares (Listing 2) of both training set (85%

of instances) and test set (the remaining 15%). The function

receives in input the workers’ references, one for each RU:

the virtual workers that train the model and the crypto

provider that setups the Function Secret Sharing algorithm.

The training set and test set are split in batches (Listing 2,

lines 5 and 8) with size equal to 1024. To better train the

network, the labels are converted into the one-hot encod-
ing [10] (Listing 2, lines 6 and 9). A one-hot encoding is

a vector of length equal to the number of possible labels,

e.g., in case of two owner, the vector size is three: d1, d2
and “Other”. In Private Secure Routine, the vehicles must

create vector of size much bigger than the number of drivers

of v: for instance suppose that the one-hot vector is of size

number owners drivers + 1, where the first components

of the vector represent the owners of the vehicle and the last

component represents the other drivers. A malicious vehicle

could easily set its past driving instances has belonging to

one of the legit v’s owner, e.g., set all instances in the first

component as if they belong to the first owner. In case the

vector size is too big and the components that represent

the legit owners are chosen randomly, the attacker does not

know which components represent the legit owners. Hence,

she is not able to create fake instances belonging to a legit

owner. Then, vehicle creates the shares of training and test

set for each virtual worker (Listing 2, lines 7 and 10).

Listing 2: Generation of dataset shares - Vehicle

1 function generate_private_dataset(inslabelled,
workers, crypto_provider)

2 (instrain, instest) ← choose randomly 85% of
instances as training and the remaining as
testing from inslabelled

3 (xtrain, ytrain) ← separate features of the instrain
instances from the respective label

4 (xtest, ytest) ← separate features of the instest
instances from the respective label

5 loadertrain ← split xtrain and ytrain in batches.
Data are shuffled

6 loader_one_hottrain ← labels in loadertrain are one
hot encoded

7 loader_privatetrain ← create shares of labels and
features in loader_one_hottrain, distributing
them between workers with the help of
crypto_provider

8 loadertest ← split xtest and ytest in batches
9 loader_one_hottest ← labels in loadertest are one

hot encoded
10 loader_privatetest ← create shares of labels and

features in loader_one_hottest. Return the
pointers to the shares

11 return (loader_privatetrain, loader_privatetest)

B. Dataset preparation for training

Once RUs have received the private dataset of each

vehicle, they are in charge of running the secure multi-party

computation technique. Train dataset of each vehicle are

combined in a single dataset (Listing 3, line 2). We con-

catenate the datasets of different vehicles to run the average
imputation. The procedure handles the, eventually, missing

values with the average value of each feature. Also, neural

networks require that training dataset is randomly shuffled

for an optimal training [10]. Without the dataset concate-

nation, the average imputation should be run separately for

each vehicle dataset, obtaining different averages. Also, at

1758

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

training phase, the neural network should sequentially train

each vehicle training dataset. Finally, managing a single

training dataset is simpler than managing multiple training

datasets. Similarly, test datasets are combined too (line 3).

The average imputation in the training set replaces miss-

ing values with the average value of each feature, whereas

in the test set null values are filled with the same averages

obtained from the training set [21]. First, we calculate the

average value of each feature in loader privatetrain (line

4). Then, we fill null values with the respective average

(line 6) and create new feature columns to keep track of

the rows that have null values for each feature (line 5) and

the columns of the rows with null values and we apply the

average imputation in the test set (lines 7 and 8).

Next step is the normalization of training and test

set to speed up the process of model training [22]. We

use the Min-Max Normalization procedure: for each fea-

ture f the dataset values are transformed from the range

[minf
loader privatetrain

, maxf
loader privatetrain

] to the range

[min, max] arbitrary using the equation:

vnew =

vold −min
f
loader privatetrain

max
f
loader privatetrain

−min
f
loader privatetrain

(max−min)+min

(1)

We choose min equal to −1 and max equal to 1. In Listing

3 line 9, we get the minimum and maximum value for each

feature in loadertrain filled. Then, we apply the Equation 1

to normalize the loadertrain filled. Similarly, we normalize

the loadertest filled using the same [minf
loadertrain filled

,

maxf
loadertrain filled

].

Listing 3: Preparation of dataset for training - RUs

1 function
training_preparation_dataset(array_loader_privatetrain,

array_loader_privatetest)
2 loader_privatetrain ← concatenate loaders in

array_loader_privatetrain in a single loader
3 loader_privatetest ← concatenate loaders in

array_loader_privatetest in a single loader
4 averages ← calculate average of each feature in

loader_privatetrain
5 loadertrain_cols_na ← add a column for each

feature, each row contains TRUE if the
value is null, FALSE if the value is
present

6 loadertrain_filled ← fill null values in
loadertrain_cols_na with the average in averages
of the respective feature

7 loadertest_cols_na ← add a column for each feature
in loader_privatetest with null value, each row
contains TRUE if the value is null, FALSE
if the value is present

8 loadertest_filled ← fill null values in
loadertest_cols_na with the average in averages
of the respective feature

9 scaler ← for each feature in loadertrain_filled get
minimum and maximum values

10 loadertrain_normalized ← normalize loadertrain_filled
in range (-1, 1) according to scaler

11 loadertest_normalized ← normalize loadertest_filled in
range (-1, 1) according to scaler

12 return (loadertrain_normalized, loadertest_normalized)

C. Model Generation Algorithm

Each vehicle v creates a new model as described in

Listing 4. As a first step, vehicle creates the initial model,

(line 2). To optimize the training speed, we adopt a multi-

layer Neural Network with three layer architecture: two

linear hidden layers with dropout [23], as method of reg-

ularization, and the rectified linear unit (ReLU) [10] as

activation function defined as follows:

ReLU(x) =

{
x if x ≥ 0

0 if x < 0
(2)

The first hidden layer is made of 128 neurons and the

second hidden layer contains 64 neurons. The output layer

is linear and its size depends on the experiment.

Once the model is created (line 2), the vehicle v generates

the shares for the model (line 3). Such shares are sent to RUs

in a privacy preserving way. To train the model is required

an optimizer that adjusts the model parameters at each epoch

to reduce the loss and to increase the accuracy [10]. Then,

v defines the optimizer and its parameters (line 4). The

model and the optimizer parameters are converted from

float to fixed precision (line 3 and 5) according to PySyft

requirements [24]. Fixed precision represents values with

two components: an integer, i.e., the coefficient and the

position of the radix point, i.e., the exponent. A value is

represented as value = coefficient ∗ 10exponent [25].

Having a low value for the exponent allows RUs to speed up

the training but it reduces the accuracy. In the experiments,

we keep 3 decimals from the value. Once the model is split

into shares and optimizer parameters are converted in fixed

precision, the vehicle sends the shares to all the RUs.

Listing 4: Model generation algorithm - Vehicle

1 function initialize_model_shares(workers,
crypto_provider, lr)

2 model ← create Neural Network
3 model_private ← create shares of model,

distributing them between workers with the
help of crypto_provider

4 optim ← define the Stochastic Gradient Descent
optimizer with the learning rate lr

5 optim_private ← convert the optimizer parameters
in fixed precision

6 return (model_private, optim_private)

D. Model Training Algorithm

Roadside units are in charge of training the model (Listing

5). As a first step, RUs search the best Learning Rate (LR)

for the model running a known algorithm [26] that returns

shares of the learning rate. The size of the LR influences how

much the optimizer adjusts the parameters at each epoch.

1759

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

The smaller is the LR the more are the epochs necessary for

training. On the other hand, the training may never converge

to a good accuracy if LR is too high [10].
Once the LR is found, the roadside units send the learning

rate shares to vehicle v. The vehicle initializes again the

model and the optimizer according to the LR found as seen

in Listing 4. From line 5 to 14, roadside units train the

model. We set the number of epochs of training (equal to

2 in our experiments). For each epoch i, the parameters of

the model change and the accuracy is calculated. Hence, the

roadside units must return to the vehicle the most accurate

model. First, we define the variables that will contain the

best model with the correlated accuracy (lines 5 and 6). For

each epoch, we train the model with the training dataset, the

optimizer and the loss function MSE (line 8) [27].

MSE =
1

n

n−1∑
i=0

(ŷi − yi)
2

(3)

where: n is the number of predictions; ŷi is the i-th value

predicted by the NN; yi is the i-th actual value.
Then, the accuracy of making predictions over the test set

is calculated by comparing the results with the correct labels.

Next, the stored best accuracy is compared with the last

obtained accuracy (line 10). In case there is no best accuracy

stored, the current accuracy and the current model are stored

(lines 11 and 12). In case the current accuracy is greater than

the stored one, the current accuracy and the current model

are saved. Otherwise, they are discarded. After the model is

trained for all the epochs, the RUs send the shares of the best

model and the relative accuracy shares to v (line 15). The

vehicle combines the shares and obtains the model trained

and the accuracy. Note that the RUs do not need to disclose

the accuracy values to make the comparisons. Only v will

know how well the model performs.

Listing 5: Model training algorithm - RUs

1 function find_lr(workers, crypto_provider,
loadertrain_normalized, model_private, optim_private)

2 lr_private ← find the best learning rate to train
model using the training dataset
loadertrain_normalized, the optimizer optim_private
and the loss function MSE

3 return lr_private
4 function train_model(workers, crypto_provider,

loadertrain_normalized, loadertest_normalized,
model_private, optim_private)

5 best_accuracy_private ← NULL
6 best_model_private ← NULL
7 for epoch = 1 to 2 then:
8 train model_private using the training dataset

loadertrain_normalized and the optimizer
optim_private and the loss function MSE

9 accuracy_private ← make predictions using the
values of features in loadertest_normalized and
calculate the accuracy shares using the
aforementioned predictions and the label in
loadertest_normalized

10 if best_accuracy_private is NULL OR
best_accuracy_private < accuracy_private then:

11 best_accuracy_private ← accuracy_private
12 best_model_private ← model_private
13 end if
14 end for
15 return best_model_private, best_accuracy_private

VI. PRIVATE SECURE ROUTINE EVALUATION

We compare PSR paradigm with Secure Routine [12] and

the work in [6], hereafter denoted with M . We experiment

PSR on two examples: 1) single owner identification and

2) two owners identification. Then, we evaluate the NN of

PSR comparing it alongside an architecture trained without

the application of secure multi-party computation. This is

because PySyft with MPC is time consuming due to the

fact that parties need to exchange several messages within

the training phase and that PySyft uses the CPU instead of

the GPU that is not yet supported.

A. Experiments

To evaluate PSR, we performed eight experiments on two

datasets: Θ [28] and Ψ [29] that have in common 9 features

(Table I). The experiments run on a Virtual Machine with

an Intel(R) Xeon(R) Gold 6140M using 8 threads, 32 GB of

RAM and Ubuntu 18.04 as OS. Our experiments compare

PSR with Secure Routine and M on the Accuracy metric.

Accuracy =
CP

CP +WP
(4)

where CP is the number of Correct Predictions and WP

is the number of the wrong ones.

1) Single Owner identification (SOI): We aim at identi-

fying if a target instance belongs to the vehicle’s owner.

As first experiment, we compare PSR with Secure Routine

and M on the Ψ dataset. We select the best feature set in

PSR. Since MPC is time consuming, we trained PSR only

for two epochs (Listing 5). Secure Routine achieves the best

results (Table II(a)). PSR is 6,05% of accuracy lower in

comparison with Secure Routine and 4,67% less than M .

Note that M do not use this dataset in their research, so

we replicated their experiments to establish the accuracy.

Despite PSR model being trained only two epochs, it scores

an high accuracy keeping private the used data.

We repeat the same experiment on Θ. We use the same

feature selected in [12]. The work of M adopted the dataset

Θ but they do not calculate the accuracy, so we replicates

their experiments to retrieve the accuracy. Table II(b) shows

that PSR obtains 89,96% of accuracy, SR achieves the best

accuracy. PSR obtains 9,87% of less accuracy than SR.

To measure the impact of MPC on the accuracy of PSR,

we evaluate the PSR network comparing the results of the

same neural network trained for 2 and 4000 epochs but

without the support of MPC.

Then we consider the dataset Ψ. Table III(a) shows that

PSR without MPC scores 99,91% of accuracy while PSR

with MPC has lost 2,58% of accuracy in comparison with

1760

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

Table I: Common features description

Feature Description Example Unit
Throttle pos Percentage of throttle opening 25% %
Short term fuel trim bank 1 Percentage of ratio air/fuel in the first bank of cylinders instantaneous -3,00% %
MAF The air flow mass in the engine 8,12g/s g/s
Engine RPM Number of revolutions per minute crankshaft makes 2100RPM RPM
Speed Speed of the vehicle 55km/h km/h
Timing advance Percentage of crankshaft rotation when spark plug fires in advance 0,423% %
Engine coolant temp Temperature of the coolant/antifreeze liquid mix of engine 90C C
engine runtime minutes Minutes elapsed from engine start 39m minutes
engine runtime second Seconds elapsed from engine start 10s s

(a) SOI in Ψ

PSR SR M
93,79% 99,84% 98,46%

(b) SOI in Θ

PSR SR M
89,96% 99,83% 99,62%

Table II: Accuracy comparison of Driver Identification

paradigms for SOI test bed

the model trained in plain for 2 epochs. This loss of accuracy

may be caused by the conversion of input data and model

parameters in fixed precision required by PySyft.
Moving on Θ, Table III(b) shows PSR scores slightly

lower (0,04%) than the PSR without MPC with two epochs.

(a) Single Owner Identification in Ψ.

PSR 2 epochs PSR 2 epochs PSR 4000 epochs

(no MPC) (no MPC)

93,79% 96,37% 99,91%

(b) Single Owner Identification in Θ.

PSR 2 epochs PSR 2 epochs PSR 4000 epochs

(no MPC) (no MPC)

89,96% 90% 97,77%

Table III: Accuracy comparison of PSR for SOI test-bed

2) Two Owners Identification (TOI): Here, we test PSR

in case a vehicle is owned by two drivers. Neither Secure

Routine nor M were designed and work with two owners

identification. Since we are not able to replicate the work in

M to test this scenario, we compare PSR only with a slightly

modified version of SR able to manage also this case. Once

again SR achieves the best result, i.e., 99,69% (Table IV(a)).

PSR obtains a respectable 87,51%, i.e., 12,18% less than the

same model trained 2 epochs with plain data.
Then, we repeat the experiment also on the other dataset.

Table IV(b) indicates that SR obtained an average precision

of 99,71%. In comparison, PSR loss 19,63% of accuracy.

This results depends on the NN poorly trained, i.e., trained

(a) TOI in Ψ

PSR SR
87,51% 99,69%

(b) TOI in Θ

PSR SR
80,08% 99,71%

Table IV: Accuracy comparison of Driver Identification

paradigms for TOI test-bed

(a) TOI in Ψ.

PSR 2 epochs PSR 2 epochs PSR 4000 epochs
(no MPC) (no MPC)

87,50% 92,31% 99.88%

(b) TOI in Θ.

PSR 2 epochs PSR 2 epochs PSR 4000 epochs
(no MPC) (no MPC)

80,08% 80,04% 95,21%

Table V: Accuracy comparison of PSR on TOI test-bed

for only 2 epochs. An higher number of epochs will increase

the accuracy as shows the table V(b), but more on that later.

Also in this case, we evaluate the impact of MPC on PSR.

Let us consider the dataset Ψ. Again PSR without MPC

achieves an high score, (99,88%), Table V(a). With MPC,

PSR loses 4,86% comparing with the same model trained

two epochs with plain data.

Moving on the dataset Θ, PSR obtained a better result than

the public trained on 2 epochs, i.e., 0,04% more accurate.

The best result is obtained by the PSR without MPC fully

trained (95,21%).

VII. CONCLUSION

In this paper, we have presented the Private Secure

Routine (PSR) as a novel privacy-preserving paradigm able

to identify drivers in an ITS infrastructure. PSR is based

on secure multy-party computation. In particular, the PSR

paradigm aims to provide a solution to identify more than

one driver into the same vehicle and to do it in a privacy

preserving way. We evaluated the accuracy of PSR in

comparison with two research works present in literature.

Although the goal of PSR is on privacy-preserving and

1761

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

multi-owner identification, it obtained elevate accuracy val-

ues when compared with the other two research works.

As future work, we will aim to extend PSR to improve

its accuracy considering also other privacy preserving tech-

niques.

REFERENCES

[1] ”ETSI”, “Intelligent transport systems (its); vehicular
communications; basic set of applications; definitions,”
06 2009, URL:https://www.etsi.org/deliver/etsi tr/102600
102699/102638/01.01.01 60/tr 102638v010101p.pdf.

[2] S. M. Nir, “Here’s Why Car Thefts Are Soaring (Hint: Check
Your Cup Holder),” 01 2021, URL:https://www.nytimes.
com/2021/01/06/nyregion/car-thefts-nyc.html [retrieved: 07,
2021].

[3] ”The OBDII Home Page”, “Obd-ii background,” URL:http:
//www.obdii.com/background.html [retrieved: 07, 2021].

[4] International Organization for Standardization, “Road vehi-
cles — Controller area network (CAN) — Part 1: Data link
layer and physical signalling,” https://www.iso.org/standard/
63648.html [retrieved: 07, 2021], 2015.

[5] F. Martinelli, F. Mercaldo, V. Nardone, A. Orlando, and
A. Santone, “Who’s driving my car? a machine learning based
approach to driver identification,” 01 2018, pp. 367–372.

[6] F. Martinelli, F. Mercaldo, A. Orlando, V. Nardone,
A. Santone, and A. K. Sangaiah, “Human behavior
characterization for driving style recognition in vehicle
system,” Computers & Electrical Engineering, vol. 83, p.
102504, 2020. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0045790617329531

[7] K. Uvarov and A. Ponomarev, “Driver identification with obd-
ii public data,” in 2021 28th Conference of Open Innovations
Association (FRUCT), Jan 2021, pp. 495–501.

[8] S. S. Haykin et al., “Neural networks and learning machines,”
2009.

[9] R. Rojas, Neural Networks: A Systematic Introduction.
Berlin, Heidelberg: Springer-Verlag, 1996.

[10] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into
Deep Learning, 2020, https://d2l.ai [retrieved: 07, 2021].

[11] J. Torres, First Contact with Deep Learning,
practical introduction with Keras. Watch
this space, 7 2018, URL:https://torres.ai/
first-contact-deep-learning-practical-introduction-keras/
[retrieved: 07, 2021].

[12] D. Micale, G. Costantino, I. Matteucci, G. Patanè, and
G. Bella, “Secure routine: A routine-based algorithm for
drivers identification,” in VEHICULAR 2020, The Ninth In-
ternational Conference on Advances in Vehicular Systems,
Technologies and Applications, 10 2020, pp. 40–45.

[13] O. Goldreich, “Secure multi-party computation,” Manuscript.
Preliminary Version, 03 1999.

[14] W. Stallings, Network Security Essentials: Applications and
Standards, 6th ed. Pearson, 2016.

[15] I. Lavie, A. Steiner, and A. Sfard, “Routines we live by: from
ritual to exploration,” Educational Studies in Mathematics,
vol. 101, no. 2, pp. 153–176, Jun 2019, URL:https://doi.org/
10.1007/s10649-018-9817-4.

[16] A. Ulrich, R. Holz, P. Hauck, and G. Carle, “Investigating
the openpgp web of trust,” in Computer Security – ESORICS
2011, V. Atluri and C. Diaz, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 489–507.

[17] H. Finney, L. Donnerhacke, J. Callas, R. L. Thayer,
and D. Shaw, “OpenPGP Message Format,” RFC 4880,
Nov. 2007, URL:https://www.rfc-editor.org/rfc/rfc4880.html
[retrieved: 07, 2021].

[18] H. Zhang, Y. Wen, H. Xie, and N. Yu, Distributed Hash Table,
01 2013.

[19] T. Ryffel, D. Pointcheval, and F. Bach, “Ariann: Low-
interaction privacy-preserving deep learning via function se-
cret sharing,” 2020.

[20] ”OpenMined”, “Smpc protocols explanation,”
URL:https://github.com/OpenMined/PySyft/blob/PySyft/
syft 0.2.x/examples/tutorials/advanced/SMPC Protocols
Explanation.ipynb [retrieved: 07, 2021].

[21] M. Kuhn and K. Johnson, Applied Predictive Modeling, 01
2013.

[22] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts
and Techniques, ser. The Morgan Kaufmann Series in Data
Management Systems. Elsevier Science, 2011. [Online].
Available: https://books.google.it/books?id=pQws07tdpjoC

[23] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors,” CoRR, vol.
abs/1207.0580, 2012. [Online]. Available: http://arxiv.org/
abs/1207.0580

[24] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso,
D. Rueckert, and J. Passerat-Palmbach, “A generic framework
for privacy preserving deep learning,” 2018.

[25] ”OpenMined”, “precision.py - pysyft source code,”
URL:https://github.com/OpenMined/PySyft/blob/
d811ef1e91e5e2c84fbbf1edf61e6983380b4d16/syft/
frameworks/torch/tensors/interpreters/precision.py\#L19
[retrieved: 07, 2021].

[26] L. N. Smith, “Cyclical learning rates for training neural
networks,” 2017.

[27] K. Das, J. Jiang, and J. Rao, “Mean squared error of empirical
predictor,” Annals of Statistics, vol. 32, 07 2004.

[28] HCRL, “Driving dataset,” URL:http://ocslab.hksecurity.net/
Datasets/driving-dataset [retrieved: 07, 2021].

[29] C. A. d. S. Barreto, “OBDdatasets,” 2018,
URL:https://github.com/cephasax/OBDdatasets/blob/master/
masterDegreeResearch/dailyRoutes.csv [retrieved: 07, 2021].

1762

Authorized licensed use limited to: CNR Area Ricerca Pisa. Downloaded on December 20,2023 at 10:22:41 UTC from IEEE Xplore. Restrictions apply.

