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Metamaterials are structures engineered at a small scale with respect to the wavelength of the excitations they interact
with. These structures behave as artificial materials whose properties can be chosen by design, mocking and even
outperforming natural materials and making them the quintessential tool for manipulation of wave systems. In this
Letter we show how the acoustic properties of a silicon nitride membrane can be affected by nanopatterning. The degree
of asymmetry in the pattern geometry induces an artificial anisotropic elasticity, resulting in the splitting of otherwise
degenerate mechanical modes. The artificial material we introduce has a maximum Ledbetter-Migliori anisotropy of
1.568, favorably comparing to most bulk natural crystals. With an additional freedom in defining arbitrary asymmetry
axes by pattern rotation, our approach can be useful for fundamental investigation of material properties as well as for
devising improved sensors of light, mass or acceleration based on micromechanical resonators.

Modern strategies for the manipulation of electronic, pho-
tonic or acoustic waves rely on the concept of creating arti-
ficial materials by deterministic patterning. The fine struc-
ture of geometrical elements with a size smaller than the sys-
tem wavelength cannot be resolved, yet it can manifest in
macroscopic effects resulting in the creation of effective ar-
tificial materials with properties chosen by design. Recently,
the concept of artificial material has entered into the me-
chanical realm, focusing on frequencies around and exceed-
ing the audible spectrum; both acoustic metamaterials1 and
metasurfaces2 have been introduced, with size and periodicity
of scattering elements significantly smaller than the acoustic
wavelength. Artificial acoustic materials have revealed inter-
esting properties such as negative refraction3, superlensing4

and cloaking5 of mechanical waves.

Along with micro- and nano-structuration, the miniatur-
ization of whole mechanical resonators has been pushed
to the micrometric scale; among the others, a wide in-
vestigation has interested nanometer-thick, micrometer-wide
membranes6–8. Thanks to their large quality factors6,9,10 and
extreme aspect ratio, these kinds of device have been used
as a standard platform for classical and quantum effects in
optomechanics9,11 and for light12, pressure13, mass14 and
other sensing applications7,15. The mechanical membranes
are an ideal platform for hosting photonic metasurfaces, which
can be introduced by periodically patterning a portion of
the device. This merging has enabled the realization of a
class of optomechanical devices where membrane mechani-
cal modes affect the electromagnetic modes in the photonic
structure16. Such devices have been very successful in pho-
tonics, where the mechanical actions added a dynamic com-
ponent to the optical response of static devices17,18; applica-
tions included high-performance reflectors19–21, metamaterial
absorbers22 and manipulation of light polarization23, to name
just a few. Similar concepts can be translated to mechanical
membranes with embedded acoustic metasurfaces, where the
mechanical resonator can be tweaked by controlling the prop-
erties of its constitutive (artificial) material.

In this Letter we report on square silicon nitride (Si3N4)

membranes periodically patterned with holes which defined
phononic metasurfaces. We realized devices with a different
degree of asymmetry in the pattern geometry, resulting in de-
generacy breaking for selected mechanical modes, which we
characterized through self-mixing interferometry. The asym-
metric pattern made the metasurface equivalent to an artificial
homogeneous orthotropic shell where the axis anisotropy can
be controlled with the geometrical asymmetry. Furthermore,
our design allowed to arbitrarily define the orthotropic axes
which could be oriented in any direction on the membrane
plane, obtaining devices whose realization would be challeng-
ing employing natural anisotropic materials.

The metasurface consists of a 300-nm-thick Si3N4 slab
perforated with holes, arranged in a square pattern with lat-
tice constant a = 2 µm (see Fig. 1 (a)). The hole was
designed starting from a rectangle with aspect ratio depen-
dent on an asymmetry parameter α; its sides were given by
lx = a(2−α)/2 and ly = a(α)/2, respectively. In order to
avoid large stress accumulation at sharp corners, the hole was
filleted using two circles of radius ly/2 placed at the rectan-
gle outermost edges in x̂ direction. We investigated six dif-
ferent metasurfaces with α varying from 1 (perfectly circu-
lar holes) to 0.5; the unit cell of each membrane has been
reported in Fig. 1 (b). The calculation of Block modes dis-
persion for an infinite metasurface was performed using a
commercial Finite-Element Method (FEM) solver (COMSOL
Multiphysics). Si3N4 was described using the material pa-
rameters reported in Table I (more on this later). The eigen-
frequencies were determined in different points of the recip-
rocal space around Γ which were selected using appropriate
Floquet-Bloch boundary conditions. As expected in quasi-2D
systems, the first simulated acoustic mode showed a quadratic
dispersion, while the second and third had a linear one. The
group sound velocities around a frequency of 2 MHz for dif-
ferent propagation directions are reported in the polar plots
of panels (c-e) for the out-of-plane (ZA), transversal (TA) and
longitudinal (LA) acoustic modes, respectively. The polar plot
angle is relative to the x̂ direction. Running simulations for
decreasing α , all the velocity plots became more anisotropic.
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FIG. 1. (a) Unit cell of the metasurface. The central hole shape can
be controlled by the asymmetry parameter α , going from isotropic
(α = 1) to a maximum anisotropy before structural fail (α = 0.5),
panel (b). (c-e) Polar plots of sound velocities at 2 MHz of the first
three acoustic modes for different αs. The full angle velocity plots
can be obtained by mirror symmetry at 0◦ and 90◦. The different
lines correspond to the unit cells of panel (b) of the same color.

The particular deformation of the LA mode offers an intuitive
interpretation of the pattern effect, which results in a small
elastic stiffening for the dispersion along x̂, concurring to a
strong softening in the one along ŷ (see the arrows as guides
for the eyes). This can be interpreted considering the elon-
gated shape of the holes, which are more easily "squeezed"
across the long edge rather than across the short one. Over-
all, these velocity plots suggest that the metasurface can be
described by an artificial material with different sound veloci-
ties along the two directions. A metric for the material degree
of anisotropy can be obtained through the Ledbetter-Migliori
index, which is defined by the ratio of the square of the maxi-
mum and minimum shear velocities (TA)24. Using the results
reported in Fig. 1 (d), we obtained an anisotropy of 1.568 at
α = 0.5. Starting from these results on infinite metasurfaces,
we fabricated finite-size mechanical membranes with embed-
ded patterns with varying αs in order to experimentally study
the effect of the artificial material on the device resonances.

The starting point for fabrication was a 250-µm-thick, dou-
ble side polished, silicon wafer with a 300-nm-thick LPCVD
high-stress Si3N4 film deposited on top and bottom surfaces.

Using an AR-P 6200 resist mask, several periodic patterns
with different asymmetry parameter α were defined via elec-
tron beam lithography on one side of the wafer, each one con-
taining an array of 60x60 holes. The exposed Si3N4 was re-
moved through reactive ion etching. Afterwards, the wafer
was immersed in a hot (80◦C) 30% in weight KOH solution,
so that the membranes were completely suspended upon etch-
ing of the Si underneath. The final membrane side was of 128
µm. Finally, 15 nm of gold were thermally evaporated on the
membranes in order to enhance their optical reflectivity. Real-
ization of membranes with α < 0.5 was discarded after several
attempts, as it resulted in a strong decrease of the fabrication
yield due to the pattern-induced high stress on the membrane
upon release. A cross sectional sketch of a membrane device
is reported in Fig. 2 (a), while a scanning electron microscopy
(SEM) of a detail of one fabricated membrane (α = 0.8) is re-
ported in Fig. 2 (b).

The characterization of the membrane mechanical modes
was realized through self-mixing interferometry25, a tech-
nique widely employed for vibration and displacement mea-
surements of optomechanical devices12,26–30. As shown in
Fig. 2 (c), a λ = 945 nm laser beam was focused upon the
membrane through a 50x microscope objective, providing a
roughly 36 µm beam spot size in the focal plane12. The laser
signal was then reflected back into the laser cavity, where
it interfered with itself. The reflected laser field carried in-
formation about membrane reflectivity and position: a care-
ful treatment of the Lang-Kobayashi equations governing the
system12,29 can be used to show that membrane fluctuations
in ẑ correspond to light intensity modulations, which can be
detected using an external photodiode. In order to selectively
excite the mechanical modes, the sample was mounted on a
piezoelectric actuator; this was driven with the signal gener-
ator of a lock-in amplifier, which was then used to demod-
ulate the photodiode signal for coherent detection of mem-
brane vibrations. By sweeping the frequency of the sinusoidal
drive, resonance peaks appeared in the lock-in amplitude R,
corresponding to the normal modes of oscillation of the mem-
brane. The sample was kept in vacuum in order to reduce
thin-film damping effects; the vacuum chamber was mounted
on motorized translational x̂− ŷ stages, which were used for
acquiring displacement maps. As an example, maps of me-
chanical modes of the α = 0.6 membrane are shown in Fig.
3. Aided by displacement isolines obtained from simulations,
we can clearly recognize the out-of-plane, lowest order me-
chanical modes, starting from the fundamental (a) to the first
(b-c), second (d) and third excited mode (e-f). A rough check-
ing of the measured frequencies with the velocities reported
in Fig. 1 can be done by using the analytical formula for the
angular frequency ω of the fundamental flexural mode of a
square membrane31:

ω =
2πv

L
(1)

where L is the membrane size and v the sound velocity. Using
the results of Fig. 3, we found a velocity of about 300 m/s,
which well compares with the velocity at 2 MHz of the ZA
mode of Fig. 1 (c), also considering that we disregarded pre-



3

(a)

(b)

2 μm

sample

piezo
actuator

Si3N4 (300 nm)

Si3N4 (300 nm) + Au (15 nm)

(c)

vacuum 
chamber

x

y

z

FIG. 2. (a) Sketch of the cross section of a membrane device. (b) SEM image of a portion of the α = 0.8 membrane from the top. (c)
Experimental setup employed for measurements.

stress effects in this comparison. Note that the lowest mem-
brane modes originate from the ZA mode in the infinite meta-
surface, as can be intuited from the strong out-of-plane nature
of the formers. The maps were deliberately oversampled, us-
ing a 5 µm pixel size, almost 7 times smaller than the laser
spot size, in order to smooth the noise fluctuation generated
by the self-mixing detection scheme. The diverse magnitude
of the absolute value of out-of-plane displacements (obtained
through a calibrated vibrometer, see Supplementary Material)
suggests a different degree of coupling of the modes with the
piezoelectric actuator, which did not have a white excitation
spectrum as well as possibly being ill-coupled with modes
with certain symmetries. Some of the modes, namely the first
and third excited, are energy-split, suggesting a breaking of
some system symmetry. By looking at the shape of the meta-
surface hole, we expect that for α < 1 the mirror symmetry
across the square diagonal is broken: this is consistent with the
fact that only first and third excited modes are split, while the
second excited mode keeps its degeneracy. Similar maps were
measured for all the six membranes. The eigenfrequencies are
plotted in Fig. 4 (a) as a function of the effective asymmetry
parameter αe f f . This parameter was obtained from inspecting
the SEM pictures of each membrane: more details have been
reported in the Supplementary Material.

The experimentally observed membrane mechanical modes
were simulated employing the FEM solver (COMSOL Mul-
tiphysics). The whole membrane, including the patterned
holes, was reproduced in the simulations using a full three-
dimensional domain with fixed boundary conditions. The ac-
tual sizes of the patterned features, corresponding to effective
asymmetry parameter αe f f , were employed to have a precise
match with the experimental membrane. The material proper-
ties were embedded in Hooke’s law for linear, elastic materi-

als:

ε = S : σ +σ
ex, (2)

where σ and ε are the stress and strain tensor, respectively.
σ ex is an extra contribution possibly given by initial strain,
as in the case of strongly pre-stressed materials such as
Si3N4

10,32,33. The constituent materials of the membrane,
namely Si3N4 and Au, are fully isotropic and can be described
by the Young’s modulus E and Poisson’s ratio ν , which are
embedded inside the compliance tensor S. The material den-
sity ρ completes the set of parameters needed for the sim-
ulation. Table I reports the simulation parameters that best
reproduced the experimentally observed modal frequencies.

Si3N4 Au
ρ [kg/m3] 2370 19300
E [GPa] 300 70
ν 0.23 0.44
σ ex [GPa] 1.02 0
thickness [nm] 300 15

TABLE I. Simulation parameters.

The simulations reproduced extremely well the experimental
curves of the devices under investigation (semi-transparent di-
amonds of Fig. 4 (a)), confirming that the mode splitting was
induced by and it is proportional to the pattern asymmetry.

In the metasurface approximation, the subwavelength
membrane pattern mocks an effective medium, which in our
case is an orthotropic mechanical material. This assumption
can be validated by performing mechanical simulations of a
homogeneous square membrane with the same lateral size as
the investigated devices. The pattern effect can be introduced



4

(b)

(d) (e) (f)

ν = 3.52 MHz ν = 3.89 MHz

ν = 4.70 MHz ν = 4.91 MHz ν = 5.60 MHz

nm (c)nm nm

nm nm nm

20μm
(a) ν = 2.34 MHz

FIG. 3. Maps of the mechanical modes of the membrane with α=0.6. (a) Fundamental mode. (b)-(c) First excited modes. (d) Second excited
mode. (e)-(f) Third excited modes. The colorscale depicts the out-of-plane displacement. The superimposed level curves were obtained
through simulations.
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FIG. 4. (a) Experimentally determined (circles) and simulated (dia-
monds) eigenfrequencies for each membrane. (b) Theoretically cal-
culated frequencies of membranes composed of an effective medium
with anisotropic material properties.

as a modification of the compliance S and initial stress σ ex.
In an isotropic material, the 6x6 compliance tensor S depends
only on a set of two parameters; reduced symmetries require
more independent parameters. For example, orthotropic mate-
rials, having symmetric properties about two or three mutually
perpendicular planes, can be described by 9 independent pa-

rameters, namely the three components of E, ν and the shear
modulus G, respectively. S can be written in a compact matrix
form using engineering notation:

S =


1/Ex −νyx/Ey −νzx/Ez 0 0 0
−νxy/Ex 1/Ey −νzy/Ez 0 0 0
−νxz/Ex −νyz/Ey 1/Ez 0 0 0

0 0 0 1/Gxy 0 0
0 0 0 0 1/Gyz 0
0 0 0 0 0 1/Gxz


(3)

In our specific case we assumed that the nanostructuration
mainly affects the properties of one axis (i.e. ŷ), as can be
hinted from the results of Fig. 1 (c). As a first approxima-
tion, we then considered the other two axes (x̂ and ẑ) unaf-
fected by the pattern shape. The anisotropy in the effective
medium can be introduced by a parameter αh, which was used
in an empirical procedure to rescale the Young’s modulus in
Eq. (3). Furthermore, even if we considered full 3D simula-
tions, we can assume that our devices are well within the plate
approximation, meaning that they can be described using a
reduced compliance matrix S′. Assuming that shear effects
along the membrane thickness can be neglected (Kirchhoff-
Love approximation34), S′ is composed only by x̂− ŷ planar
components:

S′ =

 1/E0 −ν0/(
√

αhE0) 0
−ν0/(

√
αhE0) 1/(

√
αhE0) 0

0 0 1/G0

 (4)
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The last ingredient needed for the simulation of the effective
medium is the inclusion of

√
αh in the ŷ-component of the

initial stress σ ex. The simulated eigenfrequencies of a single
300-nm-thick layer as a function of αh are reported in Fig.
4 (b). The use of the following parameters: E0=300 GPa,
ν0=0.23, G0=122 GPa and σ ex=500 MPa well reproduces the
experimental spectroscopy of the metamaterial membrane; the
comparison makes our patterned membrane fully equivalent
to a homogeneous orthotropic layer with a tunable degree of
anisotropy along x̂ and ŷ, respectively.

The power of our approach relies in the possibility to de-
sign arbitrary, in-plane asymmetry axes, without specific re-
strictions to the directions parallel to the membrane sides, as
in the case investigated so far. This favorably compares with
other mechanical systems where symmetry breaking has been
achieved by boundary modification (i.e. going from square
to rectangular membranes35) or by the use of natural mate-
rials whose choice of orientation is often limited by fabrica-
tion constraints (i.e. material growth, anisotropic wet etching,
etc.). A simple rotation of the geometrical pattern shown in
Fig. 1 induces a rotation of the orthotropic axis, which can
now be oriented in an arbitrary direction on the membrane
x̂− ŷ plane. FEM simulations of the first excited mode for a
model membrane with rotated pattern are reported in Fig. 5
for selected angles of rotation θ . Here the asymmetry param-
eter has been taken equal to 0.5. As one can see, the mode
shape follows closely the rotation angle, going from a mode
with ŷ-mirror symmetry (θ=0°) to a mode with mirror sym-
metry along the square diagonal (θ=45°). Interestingly, this
corresponds to an effective medium where both the elasticity
matrix and initial stress have been rotated by the same quan-
tity θ . The simulation results for this latter case have been
reported in the right panel of Fig. 5.

In this Letter we have introduced artificial degrees of
anisotropy by micro-patterning a homogeneous Si3N4 layer.
By controlling the pattern shape asymmetry, we can modify
the sound velocity along a specific crystallographic orienta-
tion. Holding a maximum Ledbetter-Migliori anisotropy of
1.568, our artificial layer can be used to control the symmetry-
breaking mode splitting in square membranes, allowing tun-
ing of the resonances to address particular device parameters.
Additionally, the artificial anisotropy can be realized in arbi-
trary directions on the membrane plane, with a further tuning
knob for membrane design. Our approach flexibility makes
it useful for the implementation of multi-mode devices for
mass, force and acceleration sensing as well as for the real-
ization of optimized systems for opto- and electro-mechanics,
where mechanical resonators can interact with electromag-
netic waves, for example in membrane-in-the-middle config-
urations. Here, mode control can be useful for enhancing or
suppressing the interaction of mechanical modes with electro-
magnetic cavity modes of certain symmetries.

SUPPLEMENTARY MATERIAL

See Supplementary Material for the calculation of the ef-
fective asymmetry parameter αe f f and for the estimation of

θ= 0

θ= π/8

θ= π/4

Metamaterial Effective 
Medium

θ= 0

θ= π/8

θ= π/4

rotated 
pattern

rotated 
material
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FIG. 5. Comparison between the simulated first excited mode in
a metamaterial membrane with rotated pattern with α = 0.5 (left
panel) and an effective medium with rotated anisotropy axis (right
panel).

the out-of-plane displacements.
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