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Abstract. We adapt the standard notion of bisimilarity for topological
models to closure models and refine it for quasi-discrete closure models.
We also define an additional, weaker notion of bisimilarity that is based
on paths in space and expresses a form of conditional reachability in a
way that is reminiscent of Stuttering Equivalence on transition systems.
For each bisimilarity we provide a characterisation with respect to a
suitable spatial logic.

Keywords: Closure Spaces; Topological Spaces; Spatial Logics; Spatial Bisim-
ilarities; Stuttering Equivalence.

1 Introduction

The use of modal logics for the description of properties of topological spaces—
where a point in space satisfies formula 3Φ whenever it belongs to the topological
closure of the set [[Φ]] of the points satisfying formula Φ—has a well established
tradition, dating back to the fourties, and has given rise to the research area
of Spatial Logics (see e.g. [5]). More recently, the class of underlying models of
space have been extended to include, for instance, closure spaces, a generalisa-
tion of topological spaces (see e.g. [20]). The relevant logics have been extended
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work equally.
This is an extended version of the paper “Back-and-Forth in Space: On Log-
ics and Bisimilarity in Closure Spaces”, by V. Ciancia, D. Latella, M. Massink,
and E-P. de Vink. In: N. Jansen, M. Stoelinga, P. van den Bos (eds), A Jour-
ney from Process Algebra via Timed Automata to Model Learning. Lecture Notes
in Computer Science, vol 13560. Springer, Cham. pp. 98 -115, Springer, 2022, at:
https://link.springer.com/chapter/10.1007/978-3-031-15629-8 6#chapter-info.
This document contains all the detailed proofs of the results presented in the above
mentioned paper, that had been omitted in the paper for space reasons.



accordingly. The approach has been enriched with algorithms for spatial (and
spatio-temporal) logic model checking [14, 13] and associated tools [4, 11, 24, 12,
23], and has been applied in various domains, such as bike-sharing [17], Turing
patterns [30], medical image analysis [2, 10, 4, 3]—Figure 1 shows the segmen-
tation of a nevus (Fig. 1a) and a segmentation of a cross-section of brain grey
matter (Fig. 1b); the original manual segmentation of both the nevus [29] and
the grey matter [1] is shown in blue, while that resulting using spatial model
checking is shown in cyan for the nevus and in red for grey matter. As the fig-
ures show, the manual segmentation of the nevus and that obtained using spatial
model-checking have a very good correspondence; those of the grey matter co-
incide almost completely, so that very little blue is visible.

Notions of spatial bisimilarity have been proposed as well, and their potential
for model minimisation plays an important role in the context of model-checking
optimisation. Consequently, a key question, when reasoning about modal logics
and their models, is the relationship between logical equivalences and notions of
bisimilarity on their models.

(a) (b)

Fig. 1: Segmentation of (a) nevus and (b) grey matter in the brain.

In this paper we study three different notions of bisimilarity for closure mod-
els, i.e. models based on closure spaces. The first one is closure model bisimilarity
(CM-bisimilarity for short). This bisimilarity is an adaptation for closure mod-
els of classical topo-bisimilarity for topological models [5]. The former uses the
interior operator where topo-bisimilarity uses open sets. Actually, due to mono-
tonicity of the interior operator, CM-bisimilarity is an instantiation to closure
models of monotonic bisimulation on neighbourhood models [27, 6, 25]. We pro-
vide a logical characterisation of CM-bisimilarity, using Infinitary Modal Logic,
a modal logic with infinite conjunction [8].

We show that, for quasi-discrete closure models, i.e. closure models where
every point has a minimal neighbourhood, CM-bisimilarity gets a considerably
simpler definition—based on the the closure operator instead of the interior
operator—that is reminiscent of the definition of bisimilarity for transition sys-
tems. The advantage of the direct use of the closure operator, which is the
foundational operator of closure spaces, is given by its intuitive interpretation in
quasi-discrete closure models that makes several proofs simpler. We then present
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a refinement of CM-bisimilarity, specialised for quasi-discrete closure models.
In quasi-discrete closure spaces, the closure of a set of points—and so also its
interior—can be expressed using an underlying binary relation; this gives rise to
both a direct closure and interior of a set, and a converse closure and interior,
the latter being obtained using the inverse of the binary relation. This, in turn,
induces a refined notion of bisimilarity, CM-bisimilarity with converse, CMC-
bisimilarity, which is shown to be strictly stronger than CM-bisimilarity. We
also present a closure-based definition for CMC-bisimilarity [15]. Interestingly,
the latter resembles Strong Back-and-Forth bisimilarity proposed by De Nicola,
Montanari and Vaandrager in [19].

We extend the Infinitary Modal Logic with the converse of its unary modal
operator and show that the resulting logic characterises CMC-bisimilarity. CM-
bisimilarity, and CMC-bisimilarity, play an important role as they are the closure
model counterpart of classical topo-bisimilarity. On the other hand, they turn
out to be too strong, when considering intuitive relations on space, such as
scaling or reachability, that may be useful when dealing with models representing
images3. Consider, for instance, the image of a maze in Figure 2a, where walls
are represented in black and the exit area is shown in light grey (the floor is
represented in white). A typical question one would ask is whether, starting
from a given point (i.e. pixel)—for instance one of those shown in dark grey in
the picture—one can reach the exit area, at the border of the image.

(a) (b) (c)

Fig. 2: A maze (a) and its path- and CoPa-minimal models ((b) and (c))

Essentially, we are interested in those paths in the picture, rooted at dark grey
points, leading to light grey points passing only through white points. In [18] we
introduced path-bisimilarity; it requires that, in order for two points to be equiv-
alent, for every path rooted in one point there must be a path rooted in the other
point and the end-points of the two paths must be bisimilar. Path-bisimilarity
is too weak; nothing whatsoever is required about the internal structure of the
relevant paths. For instance, Figure 2b shows the minimal model for the image

3 Images can be modeled as quasi-discrete closure spaces where the underlying relation
is a pixel/voxel adjacency relation; see [2, 10, 4, 3] for details.
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of the maze shown in Figure 2a according to path-bisimilarity. We see that all
dark grey points are equivalent and so are all white points. In other words, we
are unable to distinguish those dark grey (white) points from which one can
reach an exit from those from which one cannot. So, we look for reachability of
bisimilar points by means of paths over the underlying space. Such reachability
is not unconditional; we want the relevant paths to share some common struc-
ture. For that purpose, we resort to a notion of “compatibility” between relevant
paths that essentially requires each of them to be composed by a sequence of
non-empty “zones”, with the total number of zones in each of the paths being
the same, while the length of each zone being arbitrary; each element of one path
in a given zone is required to be related by the bisimulation to all the elements
in the corresponding zone in the other path. This idea of compatibility gives rise
to the third notion of bisimulation we present in this paper, namely Compatible
Path bisimulation, CoPa-bisimulation. We show that, for quasi-discrete closure
models, CoPa-bisimulation is strictly weaker than CMC-bisimilarity4. Figure 2c
shows the minimal model for the image of the maze shown in Figure 2 according
to CoPa-bisimilarity. We see that, in this model, dark grey points from which
one can reach light grey ones passing only by white points are distinguished from
those from which one cannot. Similarly, white points through which an exit can
be reached from a dark grey point are distinguished both from those that can’t
be reached from dark grey points and from those through which no light grey
point can be reached.

We provide a logical characterisation of CoPa-bisimularity too. The notion
of CoPa-bisimulation is reminiscent of that of the Equivalence with respect to
Stuttering for transition systems [9, 22], although in a different context and with
different definitions as well as different underlying notions. The latter, in fact, is
defined via a convergent sequence of relations and makes use of a different notion
of path than the one of CS used in this paper. Finally, stuttering equivalence
is focussed on CTL/CTL∗, which implies a flow of time with single past (i.e.
trees), which is not the case for structures representing space.

The paper is organised as follows: after having settled the context and offered
some preliminary notions and definitions in Section 2, in Section 3 we present
CM-bisimilarity. Section 4 deals with CMC-bisimularity. Section 5 addresses
CoPa-bisimilarity. We conclude the paper with Section 6. All detailed proofs
can be found in the Appendix.

2 Preliminaries

In this paper, given a set X, P(X) denotes the powerset of X; for Y ⊆ X we
use Y to denote X \ Y , i.e. the complement of Y . For a function f : X → Y
and A ⊆ X, we let f(A) be defined as {f(a) | a ∈ A}. We briefly recall several
definitions and results on closure spaces, most of which are taken from [20].

Definition 1 (Closure Space – CS). A closure space, CS for short, is a pair
(X, C) where X is a non-empty set (of points) and C : P(X) → P(X) is a

4 CoPa-bisimilarity is stronger than path-bisimilarity (see [18] for details).
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function satisfying the following axioms: (i) C(∅) = ∅; (ii) A ⊆ C(A) for all
A ⊆ X; and (iii) C(A1 ∪A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X. •

It is worth pointing out that topological spaces coincide with the sub-class of
CSs that satisfy the idempotence axiom C(C(A) = C(A). The interior operator

is the dual of closure: I(A) = C(A). It holds that I(X) = X, I(A) ⊆ A, and
I(A1∩A2) = I(A1)∩I(A2). A neighbourhood of a point x ∈ X is any set A ⊆ X
such that x ∈ I(A). A minimal neighbourhood of a point x is a neighbourhood A
of x such that A ⊆ A′ for every other neighbourhood A′ of x. We recall that
the closure operator, and consequently the interior operator, is monotonic: if
A1 ⊆ A2 then C(A1) ⊆ C(A2) and I(A1) ⊆ I(A2).

We have occasion to use the following property of closure spaces5:

Lemma 1. Let (X, C) be a CS. For x ∈ X, A ⊆ X, it holds that x ∈ C(A) iff
U ∩A ̸= ∅ for each neighbourhood U of x. ⊓⊔

Definition 2 (Quasi-discrete CS – QdCS). A quasi-discrete closure space
is a CS (X, C) such that any of the two following equivalent conditions holds:
(i) each x ∈ X has a minimal neighbourhood; or (ii) for each A ⊆ X it holds
that C(A) =

⋃
x∈A C({x}). •

Given a relation R ⊆ X ×X, define the function CR : P(X) → P(X) as follows:
for all A ⊆ X, CR(A) = A ∪ {x ∈ X | a ∈ A exists s.t. (a, x) ∈ R}. It is easy to
see that, for any R, CR satisfies all the axioms of Definition 1 and so (X, CR) is
a CS. The following theorem is a standard result in the theory of CSs [20]:

Theorem 1. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X ×X such that C = CR. ⊓⊔

In the sequel, whenever a CS (X, C) is quasi-discrete, we use C⃗ to denote CR,
and, consequently, (X, C⃗ ) to denote the closure space, abstracting from the spec-

ification of R, when the latter is not necessary. Moreover, we let ⃗C denote CR−1 .
Finally, we use the simplified notation C⃗(x) for C⃗({x}) and similarly for ⃗C(x).
An example of the difference between C⃗ and ⃗C is shown in Figure 3.

Regarding the interior operator I, the notations I⃗ and ⃗I are defined in the

obvious way: I⃗A = C⃗(A) and ⃗IA = ⃗C(A).

In the context of the present paper, paths over closure spaces play an important
role. Therefore, we give a formal definition of paths based on continuous functions
below.

Definition 3 (Continuous function). Function f : X1 → X2 is a continuous
function from (X1, C1) to (X2, C2) if and only if for all sets A ⊆ X1 we have
f(C1(A)) ⊆ C2(f(A)). •
5 See also [32] Corollary 14.B.7.
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(a) (b) (c)

Fig. 3: In white: (a) a set of points A, (b) C⃗(A), and (c) ⃗C(A).

Definition 4 (Index space). An index space is a connected 6 CS (I, C) equipped
with a total order ⩽ ⊆ I × I with a bottom element 0. We often write ι1 < ι2
whenever ι1 ⩽ ι2 and ι1 ̸= ι2, (ι1, ι2) for {ι | ι1 < ι < ι2}, [ι1, ι2) for {ι | ι1 ≤ ι <
ι2}, and (ι1, ι2] for {ι | ι1 < ι ≤ ι2}. •

Definition 5 (Path). A path in CS (X, C) is a continuous function from an
index space J = (I, CJ ) to (X, C). A path π is bounded if there exists ℓ ∈ I
such that π(ι) = π(ℓ) for all ι such that ℓ ⩽ ι; we call the minimal such ℓ the
length of π, written len(π). •

Particularly relevant in the present paper are quasi-discrete paths, i.e. paths
having (N, Csucc) as index space, where N is the set of natural numbers and succ

is the successor relation succ = {(m,n) |n = m+ 1}.
The following lemmas state some useful properties of closure and interior

operators as well as of paths.

Lemma 2. For all QdCSs (X, C⃗ ), A,A1, A2 ⊆ X,x1, x2 ∈ X, and π : N → X
the following holds:

1. ⃗C(A) = A ∪ {x ∈ X | there exists a ∈ A such that (x, a) ∈ R};
2. x1 ∈ ⃗C({x2}) if and only if x2 ∈ C⃗({x1});
3. ⃗C(A) = {x |x ∈ X and exists a ∈ A such that a ∈ C⃗({x})};
4. if A1 ⊆ A2, then ⃗C(A1) ⊆ ⃗C(A2) and ⃗I(A1) ⊆ ⃗I(A2);
5. π is a path over X if and only if for all j ̸= 0 the following holds:

π(j) ∈ C⃗(π(j − 1)) and π(j − 1) ∈ ⃗C(π(j)). ⊓⊔

Lemma 3. Let (X, C⃗) be a QdCS. Then C⃗(x) ⊆ A iff x ∈ ⃗I(A) and ⃗C(x) ⊆ A

iff x ∈ I⃗(A), for all x ∈ X and A ⊆ X. ⊓⊔

In the sequel we will assume a set AP of atomic proposition letters is given and
we introduce the notion of closure model.

Definition 6 (Closure model – CM). A closure model, CM for short, is
a tuple M = (X, C,V), with (X, C) a CS, and V : AP → P(X) the (atomic
proposition) valuation function, assigning to each p ∈ AP the set of points where
p holds. •
6 Given CS (X, C), A ⊆ X is connected if it is not the union of two non-empty
separated sets. Two subsets A1, A2 ⊆ X are called separated if A1 ∩ C(A2) = ∅ =
C(A1) ∩A2. CS (X, C) is connected if X is connected.
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All the definitions given above for CSs apply to CMs as well; thus, a quasi-
discrete closure model (QdCM for short) is a CM M = (X, C⃗,V) where (X, C⃗) is
a QdCS. For a closure model M = (X, C,V) we often write x ∈ M when x ∈ X.
Similarly, we speak of paths in M meaning paths in (X, C). For x ∈ M, we let
BPathsFJ,M(x) denote the set of all bounded paths π in M with indices in J ,
such that π(0) = x (paths rooted in x); similarly BPathsTJ,M(x) denotes the set
of all bounded paths π in M with indices in J , such that π(len(π)) = x (paths
ending in x). We refrain from writing the subscripts J,M when not necessary.

In the sequel, for a logic L, a formula Φ ∈ L, and a model M = (X, C,V)
we let [[Φ]]ML denote the set {x ∈ X |M, x |=L Φ} of all the points in M that
satisfy Φ, where |=L is the satisfaction relation for L. For the sake of readability,
we refrain from writing the subscript L when this does not cause confusion.

3 Bisimilarity for Closure Models

In this section, we introduce the first notion of bisimilarity that we consider,
namely CM-bisimilarity, for which we also provide a logical characterisation.

3.1 CM-bisimilarity

Definition 7. Given a CM M = (X, C,V), a symmetric relation B ⊆ X × X
is a CM-bisimulation for M if, whenever (x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all S1 ⊆ X such that x1 ∈ I(S1) exists S2 ⊆ X such that x2 ∈ I(S2) and

for all s2 ∈ S2 exists s1 ∈ S1 such that (s1, s2) ∈ B.

Two points x1, x2 ∈ X are called CM-bisimilar in M if (x1, x2) ∈ B for some
CM-bisimulation B for M. Notation, x1 ⇌M

CM x2. •

The above notion is the natural adaptation for CMs of the notion of topo-
bisimilation for topological models [5]. In such models the underlying set is
equiped with a topology, i.e. a special case of a CS. For a topological model
M = (X, τ,V) with τ a topology onX the requirements for a relation B ⊆ X×X
to be a topo-bisimulation are similar to those in Definition 7; see [5] for details.

3.2 Logical characterisation of CM-bisimilarity

Next, we show that CM-bisimilarity is characterised by an infinitary version of
Modal Logic, IML for short, where the classical modal operator 3 is interpreted
as closure and is denoted by N—for “near”. We first recall the definition of
IML [15], i.e. Modal Logic with infinite conjunction.

Definition 8. The abstract language of IML is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi | NΦ
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where p ranges over AP and I ranges over a collection of index sets.
The satisfaction relation for all CMs M, points x ∈ M, and IML formulas Φ

is recursively defined on the structure of Φ as follows:

M, x |=IML p ⇔ x ∈ V(p);
M, x |=IML ¬Φ ⇔ M, x |=IML Φ does not hold;
M, x |=IML

∧
i∈I Φi ⇔ M, x |=IML Φi for all i ∈ I;

M, x |=IML NΦ ⇔ x ∈ C([[Φ]]M). •

Below we define IML-equivalence, i.e. the equivalence induced by IML.

Definition 9. Given CM M = (X, C,V), the equivalence relation ≃M
IML⊆ X×X

is defined as: x1 ≃M
IML x2 if and only if for all IML formulas Φ the following holds:

M, x1 |=IML Φ if and only if M, x2 |=IML Φ. •

It holds that IML-equivalence ≃M
IML includes CM-bisimilarity.

Lemma 4. For all points x1, x2 in a CM M, if x1 ⇌M
CM x2 then x1 ≃M

IML x2. ⊓⊔

The converse of the lemma follows from Lemma 5 below.

Lemma 5. For a CM M, it holds that ≃M
IML is a CM-bisimulation for M. ⊓⊔

From this lemma we immediately obtain that x1 ≃M
IML x2 implies x1 ⇌M

CM x2, for
all points x1, x2 in a CM M. Summarizing, we get the following result.

Theorem 2. For every CM M it holds that IML-equivalence ≃M
IML coincides with

CM-bisimilarity ⇌M
CM . ⊓⊔

4 CMC-bisimilarity for QdCMs

Definition 7 defines CM-bisimilarity in terms of the interior operator I; however,
conceptually it is striking that CM-bisimilarity is defined in terms of interior
rather than in terms of closure. In the case of QdCMs, an alternative formulation,
exploiting the symmetric nature of the operators in such spaces, can be given as
we will see below.

Definition 10. Given a QdCM M = (X, C⃗,V), a symmetric relation B ⊆ X ×
X is a closure-based CM-bisimulation for M if, whenever (x1, x2) ∈ B, the
following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all x′

1 such that x1 ∈ C⃗(x′
1) exists x

′
2 with x2 ∈ C⃗(x′

2) and (x′
1, x

′
2) ∈ B. •

The above definition is justified by the next lemma.

Lemma 6. Let M = (X, C⃗,V) be a QdCM and B ⊆ X ×X a relation. It holds
that B is a CM-bisimulation iff B is a closure-based CM-bisimulation. ⊓⊔
As noted above, when dealing with QdCMs, we can exploit the symmetric nature
of the operators in such spaces. Recall in fact that, wheneverM is quasi-discrete,
there are actually two interior functions, namely I⃗(S) and ⃗I(S). It is then nat-
ural to exploit both functions for the definition of a notion of CM-bisimilarity
specifically designed for QdCMs, namely CMC-bisimilarity, presented below.
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4.1 CMC-bisimilarity for QdCMs

Definition 11. Given QdCM M = (X, C⃗,V), a symmetric relation B ⊆ X×X
is a CMC-bisimulation for M if, whenever (x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all S1 ⊆ X such that x1 ∈ I⃗(S1) exists S2 ⊆ X such that x2 ∈ I⃗(S2) and

for all s2 ∈ S2, exists s1 ∈ S1 with (s1, s2) ∈ B;

3. for all S1 ⊆ X such that x1 ∈ ⃗I(S1) exists S2 ⊆ X such that x2 ∈ ⃗I(S2) and
for all s2 ∈ S2, exists s1 ∈ S1 with (s1, s2) ∈ B.

Two points x1, x2 ∈ X are called CMC-bisimilar in M, if (x1, x2) ∈ B for some
CMC-bisimulation B for M. Notation, x1 ⇌M

CMC x2. •

For a QdCM M, as for CM-bisimilarity, we have that CMC-bisimilarity ⇌CMC

on M is a CMC-bisimulation itself, viz. the largest CMC-bisimulation for M,
thus including each CMC-bisimulation for M. Also for CMC-bisimilarity, a for-
mulation in terms of closures is possible.

Definition 12. Given a QdCM M = (X, C⃗,V), a symmetric relation B ⊆ X ×
X is a closure-based CMC-bisimulation for M if, whenever (x1, x2) ∈ B, the
following holds:

1. for all p ∈ AP we have x1 ∈ V(p) in and only if x2 ∈ V(p);
2. for all x′

1 ∈ C⃗(x1) exists x′
2 ∈ C⃗(x2) such that (x′

1, x
′
2) ∈ B;

3. for all x′
1 ∈ ⃗C(x1) exists x′

2 ∈ ⃗C(x2) such that (x′
1, x

′
2) ∈ B. •

Remark 1. Note the correspondence of criterium (3) of Definition 12 and cri-
terium (2) of Definition 10. Recall that in the context of QdCMs we have that

x1 ∈ C(x′
1) if and only if x1 ∈ C⃗(x′

1) if and only if x′
1 ∈ ⃗C(x1)—see Lemma 2(2).

The above definition was proposed originally in [15], in a slightly different form,
and resembles (strong) Back-and-Forth bisimulation of [19], in particular for the
presence of condition (3). Should we have deleted that condition, thus making
our definition more similar to classical strong bisimulation for transition sys-
tems, we would have to consider points v12 and v22 of Figure 4a bisimilar where
X = {v11, v12, v21, v22}, C⃗(v11) = {v11, v12}, C⃗(v12) = {v12}, C⃗(v21) = {v21, v22},
C⃗(v22) = {v22}, V(w) = {v11},V(b) = {v21}, and V(g) = {v12, v22}, for the
atomic propositions g, b, and w. We instead want to consider them as not be-
ing bisimilar because they are in the closure of points that are not bisimilar,
namely v11 and v21. For instance, v21 might represent a poisoned physical loca-
tion (whereas v11 is not poisoned) and so v22 should not be considered equivalent
to v12 because the former can be reached (by poison aerosol) from the poisoned
location while the latter cannot.

The next lemma shows the interchangability of Definitions 11 and 12.

Lemma 7. Let M = (X, C⃗,V) be a QdCM and B ⊆ X × X a relation. It
holds that B is a CMC-bisimulation if and only if B is a closure-based CMC-
bisimulation. ⊓⊔

9



v11 v12

v21 v22

(a)

u11 u12 u13

u21 u22

(b)

Fig. 4: v12 and v22 are not bisimilar (a); u11 ⇌CM u21 but u11 ̸⇌CMC u21 (b).

The following proposition follows directly from the relevant definitions, keeping
in mind that for QdCSs the interior operator I coincides with the operator I⃗.

Proposition 1. For x1, x2 in QdCM M, if x1 ⇌M
CMC x2, then x1 ⇌M

CM x2. ⊓⊔

As can be expected, the converse of the proposition does not hold. A counter ex-
ample to Proposition 1 is shown in Figure 4b. Here, X = {u11, u12, u13, u21, u22},
C(u11) = {u11, u12}, C(u12) = {u12, u13}, C(u13) = {u13}, C(u21) = {u21, u22},
C(u22) = {u22}, and V(g) = {u11, u21}, V(b) = {u12, u13, u22}, and V(w) =
{u13}, for the atomic propositions g, b, and w.

It is easy to see, using Definition 10, that the symmetric closure of relation
B = {(u11, u21), (u12, u22)} is a CM-bisimulation. Thus, we have u11 ⇌CM u21.
Note, the checking of the various requirements does not involve the point u13

at all. However, there is no CMC-bisimulation containing the pair (u11, u21). In
fact, any such relation would have to satisfy condition (2) of Definition 12. Since

u12 ∈ C⃗(u11) we would have (u12, u21) ∈ B or (u12, u22) ∈ B. Since u13 ∈ C⃗(u12),

similarly, we would have that (u13, u21) ∈ B or (u13, u22) ∈ B, because C⃗(u21) =

{u21, u22} and C⃗(u22) = {u22}. However, u13 ∈ V(w) and neither u21 ∈ V(w),
nor u22 ∈ V(w), violating requirement (1) of Definition 12, if (u13, u21) ∈ B or
(u13, u22) ∈ B.

4.2 Logical characterisation of CMC-bisimilarity

In order to provide a logical characterisation of CMC-bisimilarity, we extend
IML with a “converse” of its modal operator. The result is the Infinitary Modal
Logic with Converse (IMLC), a logic with the two modalities N⃗ and ⃗N expressing
proximity. For example, with reference to the QdCM shown in Figure 5a—where
points and atomic propositions are shown as grey-scale coloured squares and the
underlying relation is orthodiagonal adjacency7—Figure 5b shows in black the
points satisfying N⃗black in the model shown in Figure 5a.

7 In orthodiagonal adjacency, two squares are related if they share a face or a vertex.
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(a) (b) (c)

Fig. 5: A model (a). In black the points satisfying N⃗black (b), and those satis-

fying ζ⃗black[white] (c)

Definition 13. The abstract language of IML is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi | N⃗ Φ | ⃗N Φ.

where p ranges over AP and I ranges over a collection of index sets.
The satisfaction relation for all QdCMs M, points x ∈ M, and IMLC formu-

las Φ is defined recursively on the structure of Φ as follows:

M, x |=IMLC p ⇔ x ∈ V(p);
M, x |=IMLC ¬Φ ⇔ M, x |=IMLC Φ does not hold;
M, x |=IMLC

∧
i∈I Φi ⇔ M, x |=IMLC Φi for all i ∈ I;

M, x |=IMLC N⃗ Φ ⇔ x ∈ C⃗([[Φ]]M);

M, x |=IMLC
⃗N Φ ⇔ x ∈ ⃗C([[Φ]]M). •

IMLC-equivalence is defined in the usual way:

Definition 14. Given QdCM M = (X, C⃗,V), the equivalence relation ≃M
IMLC⊆

X × X is defined as: x1 ≃M
IMLC x2 if and only if for all IMLC formulas Φ the

following holds: M, x1 |=IMLC Φ if and only if M, x2 |=IMLC Φ. •

Next we derive two lemmas which are used to prove that CMC-bisimilarity and
IMLC-equivalence coincide.

Lemma 8. For x1, x2 in QdCM M, if x1 ⇌M
CMC x2 then x1 ≃M

IMLC x2. ⊓⊔

For what concerns the other direction, i.e. going from IMLC-equivalence to CMC-
bisimilarity, we have the following result.

Lemma 9. For a QdCM M, ≃M
IMLC is a CMC-bisimulation for M. ⊓⊔

With the two lemmas above in place, we can establish the correspondence of
CMC-bisimilarity and IMLC-equivalence.

Theorem 3. For a QdCM M it holds that ≃M
IMLC coincides with ⇌M

CMC. ⊓⊔
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Remark 2. In previous work of Ciancia et al., versions of the Spatial Logic for
Closure Spaces, SLCS, have been defined that are based on the surrounded opera-
tor S and/or the reachability operator ρ (see e.g. [18, 15, 4, 14]). A point x satisfies
Φ1 S Φ2 if it lays in an area whose points satisfy Φ1, and that is delimited (i.e., sur-
rounded) by points that satisfy Φ2; x satisfies ρΦ1[Φ2] if there is a path rooted in
x that can reach a point satisfying Φ1 and whose internal points—if any—satisfy
Φ2. In [4], it has been shown that S can be derived from the logical operator ρ;
more specifically, Φ1 S Φ2 is equivalent to Φ1∧¬ρ(¬(Φ1∨Φ2))[¬Φ2]. Furthermore,
for QdCM, ρ gives rise to two symmetric operators, namely ρ⃗—coinciding with
ρ—and ⃗ρ—meaning that x can be reached from a point satisfying Φ1, via a path
whose internal points satisfy Φ2. It is easy to see that, for such spaces, N⃗ Φ ( ⃗N Φ)
is equivalent to ⃗ρΦ[false] (ρ⃗ Φ[false]) and that ρ⃗ Φ1[Φ2] ( ⃗ρΦ1[Φ2]) is equivalent

to a suitable combination of (possibly infinite) disjunctions and nested ⃗N (N⃗ );
the interested reader is referred to [16]. Thus, on QdCMs, IMLC and ISLCS—the
infinitary version of SLCS [18]—share the same expressive power.

5 CoPa-Bisimilarity for QdCM

CM-bisimilarity, and its refinement CMC-bisimilarity, are a fundamental start-
ing point for the study of spatial bisimulations due to their strong links to
topo-bisimulation. On the other hand, they are rather fine-grained relations for
reasoning about general properties of space. For instance, with reference to the
model of Figure 6a, where all black points satisfy only atomic proposition b while
the grey ones satisfy only g, the point at the center of the model is not CMC-
bisimilar to any other black point. This is because CMC-bisimilarity is based
on the fact that points reachable “in one step” are taken into consideration,
as it is clear also from Definition 12. This, in turn, gives bisimilarity a sort of
“counting” power, that goes against the idea that, for instance, all black points
in the model could be considered spatially equivalent. In fact, they are black and
can reach black or grey points. Furthermore, they could be considered equiva-
lent to the black point of a smaller model consisting of just one black and one
grey point mutually connected—that would in fact be minimal. In order to relax

(a)

Zone 1 Zone 2 Zone 3 Zone 4

(b)

Fig. 6: A model (a); zones in paths (b).

such “counting” capability of bisimilarity, one could think of considering paths

12



instead of single “steps”; and in fact in [18] we introduced such a bisimilarity,
called path-bisimilarity. The latter requires that, in order for two points to be
equivalent, for every bounded path rooted in one point there must be a bounded
path rooted in the other point and the end-points of the two paths must be
bisimilar.

As we have briefly discussed in Section 1, however, path-bisimilarity is too
weak. A deeper insight into the structure of paths is desirable as well as some,
relatively high-level, requirements over them. For that purpose we resort to a
notion of “compatibility” between relevant paths that essentially requires each
of them be composed of a non-empty sequence of non-empty, adjacent “zones”.
More precisely, both paths under consideration in a transfer condition should
share the same structure, as follows (see Figure 6b):

– both paths are composed by a sequence of (non-empty) “zones”;
– the number of zones should be the same in both paths, but
– the length of “corresponding” zones can be different, as well as the length

of the two paths;
– each point in one zone of a path should be related by the bisimulation to

every point in the corresponding zone of the other path.

This notion of compatibility gives rise to Compatible Path bisimulation, CoPa-
bisimulation, defined below.

5.1 CoPa-bisimilarity

Definition 15. Given CM M = (X, C,V) and index space J = (I, CJ ), a
symmetric relation B ⊆ X × X is a CoPa-bisimulation for M if, whenever
(x1, x2) ∈ B, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) in and only if x2 ∈ V(p);
2. for all π1 ∈ BPathsFJ ,M(x1) such that (π1(i1), x2) ∈ B for all i1∈ [0, len(π1))

there is π2 ∈ BPathsFJ ,M(x2) such that the following holds: (x1, π2(i2)) ∈ B
for all i2 ∈ [0, len(π2)), and (π1(len(π1)), π2(len(π2))) ∈ B;

3. for all π1 ∈ BPathsTJ ,M(x1) such that (π1(i1), x2) ∈ B for all i1∈(0, len(π1)]
there is π2 ∈ BPathsTJ ,M(x2) such that the following holds: (x1, π2(i2)) ∈ B
for all i2 ∈ (0, len(π2)], and (π1(0), π2(0)) ∈ B.

Two points x1, x2 ∈ X are called CoPa-bisimilar in M (x1, x2) ∈ B for some
CoPa-bisimulation B for M. Notation, x1 ⇌M

CoPa x2. •

CoPa-bisimilarity is strictly weaker than CMC-bisimilarity, as shown below:

Proposition 2. For x1, x2 in QdCM M, if x1 ⇌M
CMC x2, then x1 ⇌M

CoPa x2. ⊓⊔

The converse of Proposition 2 does not hold; with reference to Figure 7, with
V(b) = {x11, x21, x22} and V(g) = {x12, x23}, it is easy to see that the symmetric
closure of B = {(x11, x21), (x11, x22), (x12, x23)} is a CoPa-bisimulation, and so

x11 ⇌CoPa x21 but x11 ̸⇌CMC x21 since x12 ∈ V(g) and C⃗(x21) ∩ V(b) = ∅.

13



x11 x12

x21 x22 x23

Fig. 7: x11 ⇌CoPa x21 but x11 ̸⇌CMC x21.

5.2 Logical characterisation of CoPa-bisimilarity

In order to provide a logical characterisation of CoPa-bisimilarity, we replace the
proximity modalities N⃗ and ⃗N of IMLC by the conditional reachability modalities
ζ⃗ and ⃗ζ. Again with reference to the QdCM shown in Figure 5a, Figure 5c shows
in black the points satisfying ζ⃗ black[white], i.e. those white points from which
a black point can be reached via a white path. We thus introduce the Infinitary
Compatible Reachability Logic (ICRL).

Definition 16. The abstract language of ICRL is defined as follows:

Φ ::= p | ¬Φ |
∧
i∈I

Φi | ζ⃗ Φ1[Φ2] | ⃗ζ Φ1[Φ2].

where p ranges over AP and I ranges over a collection of index sets.
The satisfaction relation for all CMs M, points x ∈ M, and ICRL formulas Φ
is defined recursively on the structure of Φ as follows:

M, x |=ICRL p ⇔ x ∈ V(p);
M, x |=ICRL ¬Φ ⇔ M, x |=ICRL Φ does not hold;
M, x |=ICRL

∧
i∈I Φi ⇔ M, x |=IRL Φi for all i ∈ I;

M, x |=ICRL ζ⃗ Φ1[Φ2] ⇔ path π and index ℓ exist such that π(0) = x,
π(ℓ) |=ICRL Φ1, and π(j) |=ICRL Φ2 for j ∈ [0, ℓ)

M, x |=ICRL
⃗ζ Φ1[Φ2] ⇔ path π and index ℓ exist such that π(ℓ) = x,

π(0) |=ICRL Φ1, and π(j) |=ICRL Φ2 for j ∈ (0, ℓ]. •
Remark 3. With reference to Remark 2, we note that, clearly, ζ⃗ can be derived
from ρ⃗, namely: ζ⃗ Φ1[Φ2] ≡ Φ1 ∨ (Φ2 ∧ ρ⃗ Φ1[Φ2]) and similarly for ⃗ζ Φ1[Φ2].

Also for ICRL we introduce the equivalence induced on M:

Definition 17. Given CM M = (X, C,V), the equivalence relation ≃M
ICRL⊆ X×

X is defined as: x1 ≃M
ICRL x2 if and only if for all ICRL formulas Φ, the following

holds: M, x1 |=ICRL Φ if and only if M, x2 |=ICRL Φ. •
Lemma 10. For x1, x2 in QdCM M,if x1 ⇌M

CoPa x2 then x1 ≃M
ICRL x2. ⊓⊔

The converse of Lemma 10 is given below.

Lemma 11. For QdCM M, ≃M
ICRL is a CoPa-bisimulation for M. ⊓⊔

The correspondence between ICRL-equivalence and CoPa-bisimilarity is thus es-
tablished by the following therorem.

Theorem 4. For every QdCM M it holds that ICRL-equivalence ≃M
ICRL coincides

with CoPa-bisimilarity ⇌M
CoPa. ⊓⊔
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6 Conclusions

In this paper we have studied three main bisimilarities for closure spaces, namely
CM-bisimilarity, its specialisation for QdCMs, CMC-bisimilarity, and CoPa-
bisimilarity.

CM-bisimilarity is a generalisation for CMs of classical topo-bisimilarity for
topological spaces. We can take into consideration the fact that, in QdCMs, there
is a notion of “direction” given by the binary relation underlying the closure
operator. This can be exploited in order to get an equivalence—namely CMC-
bisimilarity—that, for QdCMs, refines CM-bisimilarity. Interestingly, the latter
resembles Strong Back-and-Forth bisimilarity proposed by De Nicola, Montanari
and Vaandrager in [19].

Both CM-bisimilarity and CMC-bisimilarity turn out to be too strong for ex-
pressing interesting properties of spaces. Therefore, we introduce CoPa-bisimilarity,
that expresses a notion of path “compatibility” resembling the concept of stut-
tering equivalence for transition systems [9]. For each notion of bisimilarity we
also provide an infinitary modal logic that characterises it.

Note that, in the context of space, and in particular when dealing with notions
of directionality (e.g. one way roads, public area gates), it is essential to be able
to distinguish between the concept of “reaching” and that of “being reached”.
A formula like ζ⃗ (rescue-area ∧ ¬( ⃗ζ danger-area)[true])[safe-corridor] ex-
presses the fact that, via a safe corridor, a rescue area can be reached that cannot
be reached from a dangerous area. This kind of situations have no obvious con-
terpart in the temporal domain, where there can be more than one future, like
in the case of branching time logics, but there is typically only one, fixed past,
i.e. the one that occurred8. The “back-and-forth” nature of CMC-bisimilarity
and CoPa-bisimilarity, conceptually inherited from Back-and-Forth bisimilarity
of [19], allows for such distinction in a natural way.

In this paper we did not address the problem of space minimisation explicitly.
In [15] we have presented a minimisation algorithm for ⇌CMC

9. We plan to inves-
tigate the applicability of the results presented in [21] for stuttering equivalence
to minimisation modulo CoPa-bisimilarity.

Most of the results we have shown in this paper concern QdCMs. The investi-
gation of their extension to continuous or general closure spaces is an interesting
line of research. In [7] Ciancia et al. started this by approaching continuous mul-
tidimentional space using polyhedra and their representation as so-called sim-
plicial complexes for which a model checking procedure and related tool have
been developed. A similar approach is presented in [28], although the underlying
model is based on an adjacency relation and the usage of simplicial complexes
therein is aimed more at representing objects and higher-order relations between
them than at the identification of properties of points / regions of volume meshes
in a particular kind of topological model.

8 There are a few exception to this interpretation of past-tense operators, e.g. [26, 31].
9 The implementation is available at https://github.com/vincenzoml/MiniLogicA.
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A Proofs of results in Section 2

A.1 Proof of Lemma 1

Lemma 1 Let (X, C) be a CS. For x ∈ X, A ⊆ X, it holds that x ∈ C(A) iff
U ∩A ̸= ∅ for each neighbourhood U of x.

Proof. Suppose x ∈ X and A ⊆ X satisfy x ∈ C(A). Let U be a neighbourhood
of x. Thus x ∈ I(U). Working towards a contradiction, assume U ∩ A = ∅.
Then A ⊆ U and C(A) ⊆ C(U) by monotonicity of C. Hence C(A) ⊇ C(U), i.e.
C(A) ⊇ I(U), and therefore C(A)∩I(U) = ∅. However, x ∈ C(A) and x ∈ I(U),
thus x ∈ C(A) ∩ I(U).

Suppose x ∈ X and A ⊆ X satisfy x /∈ C(A). Then x ∈ C(A) = I(A). Note
A ∩A = ∅. Thus, A is a neighbourhood of x disjoint of A. ⊓⊔

A.2 Proof of Lemma 2

Lemma 2 For all QdCSs (X, C⃗), A,A1, A2 ⊆ X,x1, x2 ∈ X, and function π :
N → X the following holds:
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1. ⃗C(A) = A ∪ {x ∈ X | there exists a ∈ A such that (x, a) ∈ R};
2. x1 ∈ ⃗C({x2}) if and only if x2 ∈ C⃗({x1});
3. ⃗C(A) = {x |x ∈ X and exists a ∈ A such that a ∈ C⃗({x})};
4. if A1 ⊆ A2, then ⃗C(A1) ⊆ ⃗C(A2) and ⃗I(A1) ⊆ ⃗I(A2);
5. π is a path over X if and only if for all j ̸= 0 the following holds:

π(j) ∈ C⃗(π(j − 1)) and π(j − 1) ∈ ⃗C(π(j)).

Proof. We prove only Point 5 of the lemma, the proof of the other points being
trivial. We show that π is a path over X if and only if, for all j ̸= 0, we have
π(j) ∈ C⃗(π(j − 1)). Suppose π is a path over X; the following derivation:proves
the assert:

π(j)

∈ [ Set Theory ]

{π(j − 1), π(j)}

= [Definition of π(N) for N ⊆ N ]

π({j − 1, j})

= [Definition of Csucc ]

π(Csucc({j − 1}))

⊆ [ Continuity of π ]

C⃗(π(j − 1))

For proving the converse we have to show that for all sets N ⊆ N \ {0}
we have π(Csucc(N)) ⊆ C⃗(π(N)). By definition of Csucc we have that Csucc(N) =
N∪{j | j−1 ∈ N} and so π(Csucc(N)) = π(N)∪π({j | j−1 ∈ N}). By the second

axiom of closure, we have π(N) ⊆ C⃗(π(N)). We show that π({j | j − 1 ∈ N}) ⊆
C⃗(π(N)) as well. Take any j such that j−1 ∈ N ; we have {π(j−1)} ⊆ π(N) since

j − 1 ∈ N , and, by monotonicity of C⃗ it follows that C⃗({π(j − 1)}) ⊆ C⃗(π(N))

and since π(j) ∈ C⃗(π(j − 1)) by hypothesis, we also get π(j) ∈ C⃗(π(N)). Since
this holds for all elements of the set {j | j − 1 ∈ N} we also have π({j | j − 1 ∈
N}) ⊆ C⃗(π(N)).

The proof for π(j − 1) ∈ ⃗C(π(j)) is similar. ⊓⊔

A.3 Proof of Lemma 3

Lemma 3 Let (X, C⃗) be a QdCS. Then C⃗(x) ⊆ A iff x ∈ ⃗I(A) and ⃗C(x) ⊆ A iff

x ∈ I⃗(A), for all x ∈ X and A ⊆ X.

Proof. We have the following derivation:

x ∈ I⃗(A)
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⇔ [ Def. of I⃗; Set Theory ]

x ̸∈ C⃗(A)

⇔ [ Def. of C⃗ ]

x ̸∈ A and there exixts no a ∈ A such that (a, x) ∈ R

⇔ [ Logic ]

x ∈ A and for all x′ ∈ X we have that if (x′, x) ∈ R then x′ ∈ A

⇔ [ Set Theory ]

⃗C(x) ⊆ A

Symmetrically we obtain x ∈ ⃗I(A) if and only if C⃗(x) ⊆ A. ⊓⊔

B Proofs of results in Section 3

B.1 Proof of Lemma 4

Lemma 4 For all points x1, x2 in a CM M, if x1 ⇌CM x2 then x1 ≃IML x2.

Proof. Let x1, x2 ∈ X be such that x1 ⇌CM x2. We proceed by induction on
the structure of Φ to prove x1 |= Φ iff x2 |= Φ. We only consider the case
for NΦ′, the others being straightforward. Suppose x1 |= NΦ. Then by definition
of satisfaction, x1 ∈ C[[Φ]].

We verify that x2 ∈ C[[Φ]] making use of Lemma 1. From this x2 |= NΦ is
immediate: Let S2 be a nbh of x2. Since x1 ⇌CM x2, exists a neighbourhood S1

of x1 such that for each point s′1 ∈ S1 a point s′2 ∈ S2 exists such that s′1 ⇌CM s
′
2.

Because x1 ∈ C[[Φ]], by Lemma 1 it holds that S1 ∩ [[Φ]] ̸= ∅. Let x′
1 ∈ S1 ∩ [[Φ]].

Since x′
1 ∈ S1 we can pick x′

2 ∈ S2 such that x′
1 ⇌CM x′

2. Because x′
1 ∈ [[Φ]] we

have x′
1 |= Φ. By the induction hypothesis, we know that x′

1 ⇌CM x
′
2, and so we

get x′
2 |= Φ as well. Thus x′

2 ∈ [[Φ]] and x′
2 ∈ S2 ∩ [[Φ]] as was to be shown. ⊓⊔

B.2 Proof of Lemma 5

Lemma 5 For a CM M, it holds that ≃M
IML is a CM-bisimulation for M.

The proof of this lemma has been inspired by the proof of an analogous result
for topo-bisimulation in [6]. For this proof we need an auxilliary definition.

Definition 18. Given a CM M, define for x, y ∈ X the IML-formula δx,y as
follows: if x ≃IML y, then δx,y is set to true; otherwise, δx,y is such that x |=
δx,y and y |= ¬δx,y. For a point x of M its formula χ(x) is given by χ(x) =∧

y∈X δx,y. •

The following lemma shows some useful properties of χ.
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Lemma 12. For all CMs M = (X, C,V), x, x1, x2 ∈ X and S ⊆ X, the follow-
ing holds:

1. M, x |= χx;
2. M, x2 |= χx1

if and only if x1 ≃IML x2;
3. S ⊆ [[

∨
s∈S χs]].

Proof. Points (1) and (2) follow directly from the relevant definitions. For what
concerns Point (3) we proceed with the following derivation:

y ∈ S

⇒ [S ⊆ X and Point (1) above ]

M, y |= χy

⇔ [ Definition of [[·]] ]

y ∈ [[χy]]

⇒ [ y ∈ S ]

y ∈
⋃

s∈S [[χs]]

⇔ [
⋃

s∈S [[χs]] = [[
∨

s∈S χs]] ]

y ∈ [[
∨

s∈S χs]] ⊓⊔

Another ingredient for the proof of Lemma 5, is the property that, for a point x
of a CM M and formula Φ ∈ IML it holds that

x ∈ I[[Φ]] iff x |= ¬N¬Φ . (1)

To see this, observe that [[Φ]] = [[¬Φ]]. Consequently, x ∈ I[[Φ]] iff x /∈ C[[Φ]] iff
x /∈ C[[¬Φ]] iff x ̸|= N¬Φ iff x |= ¬N¬Φ.

We are now ready for proceeding with the proof of Lemma 5.

Proof. Let M = (X, C,V). Suppose x1 ≃IML x2. As to property (1) of Defini-
tion 7, let p ∈ AP. Because x1 ≃IML x2, we have x1 |= p ⇐⇒ x2 |= p, i.e.
x1 ∈ V(p) ⇐⇒ x2 ∈ V(p).

In order verify property (2), let S1 ⊆ X be a nbh of x1, thus x1 ∈ I(S1).
Put S2 = {s2 | ∃s1 ∈ S1 : s1 ≃IML s2}. By definition of S2, if s2 ∈ S2 then
exists s1 ∈ S1 such that s1 ≃IML s2. Therefore it suffices to verify that S2 is a
neighbourhood of x2, i.e. x2 ∈ I(S2).

Put Φ =
∨

s1∈S1
χ(s1). (i) We claim that S2 = [[Φ]]: If s2 ∈ S2, then s2 ≃IML s1

for some s1 ∈ S1. Thus s2 |= χ(s1) and therefore s2 ∈ [[Φ]]. If s2 /∈ S2, then
s2 ≃IML s1 for no s1 ∈ S1. Thus s2 ̸|= χ(s1) for all s1 ∈ S1 and s2 ̸|= Φ. Hence
s2 /∈ [[Φ]]. (ii) We claim that x1 |= ¬N¬Φ: It holds that S1 ⊆ [[Φ]] by definition
of Φ and Lemma 12(3). Thus, I(S1) ⊆ [[Φ]] and I(S1) ∩ [[Φ]] = ∅. So, x1 has
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a neighbourhood, viz. S1, missing [[Φ]], and therefore, by Lemma 1, x1 /∈ C[[Φ]],
x1 /∈ C[[¬Φ]], x1 ̸|= N¬Φ, and x1 |= ¬N¬Φ. Because x1 ≃IML x2, it follows
that x2 |= ¬N¬Φ. Therefore, by the property (1) above, x2 ∈ I([[Φ]]). Thus,
x2 ∈ I(S2). ⊓⊔

C Proofs of results in Section 4

C.1 Proof of Lemma 6

Lemma 6 Let M = (X, C⃗,V) be a QdCM and B ⊆ X ×X a relation. It holds
that B is a CM-bisimulation iff B is a closure-based CM-bisimulation.

Proof. (if ) Assume that B is a CM-bisimulation in the sense of Definition 7. Let
x1, x2 ∈ X such that (x1, x2) ∈ B. We verify condition (2) of Definition 10. Thus,

let x′
1 ∈ X such that x1 ∈ C⃗(x′

1); i.e. x
′
1 ∈ ⃗C(x1) by Lemma 2(2). For S2 := ⃗C(x2)

we have x2 ∈ I⃗(S2) by Lemma 3. By condition (2) of Definition 7, with the roles
of x1 and x2, and of S1 and S2 interchanged, exists a subset S1 ⊆ X such that
x1 ∈ I⃗(S1) and for each s1 ∈ S1 exists s2 ∈ S2 such that (s1, s2) ∈ B. In

particular, exists x′
2 ∈ S2 = ⃗C(x2) such that (x′

1, x
′
2) ∈ B. Thus exists x′

2 ∈ X

such that x2 ∈ C⃗(x′
2) and (x′

1, x
′
2) ∈ B.

(only if ) Assume that B is a closure-based CM-bisimulation in the sense of
Definition 10. Let x1, x2 ∈ X such that (x1, x2) ∈ B. We verify condition (2)

of Definition 7. Suppose subset S1 ⊆ X is such that x1 ∈ I⃗(S1). By Lemma 3

we have ⃗C(x1) ⊆ S1. Let S2 := ⃗C(x2). Then x2 ∈ I⃗(S2), again by Lemma 3.

By the reformulation of condition (2) of Definition 10 in terms of ⃗C, exists for

each x′
2 ∈ ⃗C(x2) a point x′

1 ∈ ⃗C(x1) such that (x′
1, x

′
2) ∈ B. Since S2 = ⃗C(x2) it

follows that for each s2 ∈ S2 exists s1 ∈ S1 such that (s1, s2) ∈ B. ⊓⊔

C.2 Proof of Lemma 7

Lemma 7 Let M = (X, C⃗,V) be a QdCM and B ⊆ X ×X a relation. It holds
that B is a CMC-bisimulation iff B is a closure-based CMC-bisimulation.

Proof. Clearly, requirements (1) of Definition 11 and (1) of Definition 12 are
equivalent. In view of the correspondence of criterium (3) of Definition 12 and
criterium (2) of Definition 10 mentioned in Remark 1 on page 9, one can prove,
along the same lines as in the proof of Lemma 6, that requirements (2) of Defi-
nition 11 and (3) of Definition 12 are equivalent. Symmetrically, one shows the
equivalence of requirements (3) of Definition 11 and (2) of Definition 12. ⊓⊔

C.3 Proof of Lemma 8

Lemma 8 For all points x1, x2 in a QdCM M, if x1 ⇌CMC x2 then x1 ≃IMLC x2.
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Proof. Let M = (X, C,V). We verify by induction on the structure of the for-
mula Φ that x1 |= Φ if and only if x2 |= Φ for x1, x2 ∈ X such that x1 ⇌CMC x2.

The cases for proposition letter p ∈ AP, negation ¬Φ, and conjunction
∧

i∈I Φi

are straightforward.

For the case of N⃗Φ we will exploit condition (3) of Definition 12. Suppose

x1 ⇌CMC x2 and x1 |= N⃗Φ. Then x1 ∈ C⃗[[Φ]] by Definition 13. Thus exists x′
1 ∈ X

such that x′
1 |= Φ and x1 ∈ C⃗(x′

1). By definition of C⃗ and ⃗C, we also have

x′
1 ∈ ⃗C(x1). Since x′

1 ∈ ⃗C(x1) and x1 ⇌CMC x2 we obtain, from condition (3) of

Definition 12, that x′
2 ∈ ⃗C(x2) exists such that x′

1 ⇌CMC x′
2. From x′

1 |= Φ, we

obtain x′
2 |= Φ by induction hypothesis for Φ. Therefore, x′

2 ∈ [[Φ]] and x2 ∈ C⃗[[Φ]],
which implies x2 |= N⃗Φ.

The case for ⃗NΦ is similar and is proven with appeal to condition (2) of

Definition 12. Suppose we have x1 ⇌CMC x2 and x1 |= ⃗NΦ. Then x1 ∈ ⃗C[[Φ]]
by Definition 13. Thus x1 ∈ ⃗C(x′

1) for some x′
1 ∈ X such that x′

1 |= Φ. Note,

x′
1 ∈ C⃗(x1). Therefore, by condition (2) of Definition 12, exists x′

2 ∈ C⃗(x2) such
that x′

1 ⇌CMC x
′
2. By induction hypothesis, x′

2 |= Φ since x′
1 |= Φ. Hence x′

2 ∈ [[Φ]].

Now x2 ∈ ⃗C(x′
2) and therefore x2 ∈ ⃗C[[Φ]], i.e. x2 |= ⃗NΦ. ⊓⊔

C.4 Proof of Lemma 9

Lemma 9 For a QdCM M, it holds that ≃M
IMLC is a CMC-bisimulation for M.

Proof. Let M = (X, C,V). Define, for points x, y ∈ X, the IMLC-formula δx,y as
follows: if x ≃IMLC y, then δx,y is set to true; otherwise, δx,y is such that x |= δx,y
and y |= ¬δx,y. Next, put χ(x) =

∧
y∈X δx,y. Note, for x, y ∈ X, it holds that

y ∈ [[χ(x)]] if and only if x ≃IMLC y.

Suppose x1 ≃IMLC x2 for x1, x2 ∈ X. It is immediate that condition (1) of
Definition 12 is fulfilled: For p ∈ AP we have x1 |= p if and only if x2 |= p. Thus,
x1 ∈ V(p) if and only if x2 ∈ V(p).

For condition (2) of Definition 12, let x′
1 ∈ C⃗(x1). Since x1 ∈ ⃗C(x′

1) and

x′
1 ∈ [[χ(x′

1)]] it holds that x1 |= ⃗Nχ(x′
1). By assumption x2 |= ⃗Nχ(x′

1). Hence,

for some x′
2 ∈ X we have x2 ∈ ⃗C(x′

2) and x′
2 ∈ [[χ(x′

1)]]. Thus x′
2 ∈ C⃗(x2) and

x′
1 ≃IMLC x

′
2.

For condition (3) of Definition 12, we reason symmetrically. If x′
1 ∈ ⃗C(x1) then

x1 ∈ C⃗(x′
1) and x1 |= N⃗χ(x′

1). So, x2 |= N⃗χ(x′
1) and x2 ∈ C⃗(x′

2) for some x′
2 ∈ X

such that x′
2 ∈ [[χ(x′

1)]]. For x
′
2 we have x′

2 ∈ ⃗C(x2) and x′
1 ≃IMLC x

′
2. ⊓⊔

D Proofs of results in Section 5

In the sequel, we letRrt denote the reflexive and transitive closure of (symmetric)
binary relation R.
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D.1 Proof of Proposition 2

Proposition 2 For all points x1, x2 in QdCM M, if x1 ⇌M
CMC x2, then x1 ⇌M

CoPa

x2.

Proof. Suppose x1 ⇌CMC x2. Then, by there exists a CMC-bisimulation B ⊆
X×X such that (x1, x2) ∈ B. By Lemma 13 below we know that Brt ⊆ X×X is
a CoPa-bisimulation and since B ⊆ Brt we have (x1, x2) ∈ Brt, i.e. x1 ⇌CoPa x2.

Lemma 13. For all QdCMs (X, C⃗,V) and relations B ⊆ X ×X the following
holds: if B is a CMC-bisimulation, then Brt is a CoPa-bisimulation.

Proof. We have to prove that Brt satisfies the conditions of Definition 15, under
the assumption that B is a CMC-bisimulation. We consider only condition 1 and
condition 2, since the proof for condition 3 is similar. Suppose (x1, x2) ∈ Brt.
For what concerns condition 1 there are three cases to consider:

1. x1 = x2: trivial;
2. (x1, x2) ∈ B: in this case x1 ∈ V(p) if and only if x2 ∈ V(p), for all p ∈ AP

since B is a CMC-bisimulation;
3. there are y1, . . . , yn ∈ X such that y1 = x1, yn = x2 and for all i ∈ {1, . . . , n−

1} we have (yi, yi+1) ∈ B: in this case yi ∈ V(p) if and only if yi+1 ∈ V(p) for
all i ∈ {1, . . . , n − 1} since B is a CMC-bisimulation and so also x1 ∈ V(p)
if and only if x2 ∈ V(p), for all p ∈ AP.

For what concerns Condition 2, let π1 any path in BPathsF(x1) such that
(π1(i1), x2) ∈ Brt for all i1 < len(π1), and assume len(π1) > 0—the case
len(π1) = 0 being trivial by choosing π2 such that π(i2) = x2 for all i2. By

Lemma 2(5) we know that π1(i1) ∈ C⃗(π1(i1 − 1)) for all i1 = 1, . . . , len(π1).
We build π2, such that len(π2) = len(π1), as follows. We let π2(0) = x2; since

(π1(0), π2(0)) = (x1, x2) ∈ Brt and π1(1) ∈ C⃗(π1(0)), there is, by Lemma 14

below, η ∈ C⃗(π2(0)) s.t. (π1(0), η) ∈ Brt. We let π2(1) = η and we proceed in

a similar way for defining π2(i2) ∈ C⃗(π2(i2 − 1)) for all i2 < len(π2), ensuring
that for all such i2, (π1(0), π2(i2)) ∈ Brt.

Now, by hypothesis and since π2(0) = x2 by definition, we know that
(π1(len(π1) − 1), π2(0)) ∈ Brt and (π1(0), π2(0)) ∈ Brt, and, by symmetry of
(B and thus of) Brt, also (π2(0), π1(0)) ∈ Brt. By construction of π2, we have
also (π1(0), π2(len(π2)−1)) ∈ Brt. Thence, by transitivity of Brt, we finally get
(π1(len(π1) − 1), π2(len(π2) − 1)) ∈ Brt. But then, by Lemma 2(5) we know

that π1(len(π1)) ∈ C⃗(π1(len(π1) − 1)) and so, again by Lemma 14, we know

that there exists ξ ∈ C⃗(π2(len(π2) − 1)) such that (π1(len(π1)), ξ) ∈ Brt. We
define π2(len(π2)) = ξ; so (π1(len(π1)), π2(len(π2))) ∈ Brt and, noting that,
again by Lemma 2(5), the resulting function π2 is continuous, i.e. it is a path,
we get the assert.

Lemma 14. For all QdCMs M = (X, C⃗,V), CMC-bisimulation B and (x1, x2) ∈
Brt the following holds: for all x′

1 ∈ C⃗(x1) there exists x′
2 ∈ C⃗(x2) such that

(x′
1, x

′
2) ∈ Brt
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Proof. There are three cases to consider:

1. x1 = x2: trivial;
2. (x1, x2) ∈ B: in this case the assert follows directly from the fact that B is

a CMC-bisimulation, Lemma 7, and B ⊆ Brt;
3. there are y1, . . . , yn ∈ X such that y1 = x1, yn = x2 and for all i ∈ {1, . . . , n−

1} we have (yi, yi+1) ∈ B: in this case—by applying the same reasoning as

for case (2) above—we have that for all y′i ∈ C⃗(yi) there is y′i+1 ∈ C⃗(yi+1)
with (y′i, y

′
i+1) ∈ B ⊆ Brt, for all i ∈ {1, . . . , n − 1}; the assert then follows

by transitivity of Brt.
⊓⊔

D.2 Proof of Lemma 10

Lemma 10 For all points x1, x2 in a QdCM M = (X, C⃗,V), if x1 ⇌CoPa x2 then
x1 ≃ICRL x2.

Proof. We proceed by induction on the structure of formulas and consider only
the case ζ⃗Φ1[Φ2], the case for ⃗ζΦ1[Φ2] being similar, and the others being trivial.
So, let us assume that for all x1, x2, if x1 ⇌CoPa x2, then M, x1 |= Φ if and only

if M, x2 |= Φ and prove the assert for ζ⃗Φ1[Φ2].

Suppose that M, x1 |= ζ⃗Φ1[Φ2]. This means there exist π, ℓ s.t. π(0) =
x1,M, π(ℓ) |= Φ1 and, for j ∈ {ι | 0 ≤ ι < ℓ} we have M, π(j) |= Φ2. If ℓ = 0,

then, by definition of ζ⃗, we know that M, x1 |= Φ1 and, by the I.H. we get that

also M, x2 |= Φ1 and, again by definition of ζ⃗ we get M, x2 |= ζ⃗Φ1[Φ2]. Suppose
now that ℓ > 0, and let path π1 be defined as follows:

π1(i1) =

{
π(i1), if i1 ≤ ℓ,
π(ℓ), if i1 > ℓ.

Clearly, π1 ∈ BPathsF(x1), len(π1) = ℓ, M, π(len(π1)) |= Φ1 and, for j ∈
{ι | 0 ≤ ι < len(π1)} we have M, π1(j) |= Φ2. Let B be a CoPa-bisimulation
such that (x1, x2) ∈ B; such a B exists since x1 ⇌CoPa x2. In the sequel, we
will construct a path π2 ∈ BPathsF(x2) such that π2(0) = x2 and we also have
M, π2(len(π2)) |= Φ1 and for all i2 ∈ {ι | 0 ≤ ι < len(π2)} we have M, π2(i2) |=
Φ2 thus showing that M, x2 |= ζ⃗Φ1[Φ2] (see Figure 8).

Let M0 = 0, x21 = x2. Now let M1 be the greatest m1 such that m1 ≤
len(π1) and (π1(i1), x21) ∈ B for all i1 ∈ {ι |M0 ≤ ι < m1}, recalling that
(π1(M0), x21) ∈ B by hypothesis. Moreover, since (π1(M0), x21) ∈ B and B
is a CoPa-bisimulation, by condition 2 of Definition 15, there exists π21 ∈
BPathsF(x21) such that (π1(M0), π21(i2)) ∈ B for all i2 ∈ {ι | 0 ≤ ι < len(π21)}
and (π1(M1), π21(x22)) ∈ B, where x22 = π21(len(π21)). Furthermore, since
M, π1(M0) |= Φ2, by the I.H. we get that also M, π21(i2) |= Φ2 for all i2 ∈
{ι | 0 ≤ ι < len(π21)}.

For j > 1, letMj be the greatestmj such thatmj ≤ len(π1) and (π1(i1), x2j)
∈ B for all i1 ∈ {ι |Zj−1 ≤ ι < zj} recalling that (π1(Mj−1), x2j) ∈ B by
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M0 M1 M2 M3

j=1 j=2 j=3

x1

x2=x21 x22 x23

p21 p22 p23

J=3

Fig. 8: Example of schema for the Proof of Lemma 10, for J = 3. Relation B
is shown as blue segments.

definition of π2j−1. Moreover, since (π1(Mj−1), x2j) ∈ B and B is a CoPa-
bisimulation, by condition 2 of Definition 15, there exists π2j ∈ BPathsF(x2j)
such that (π1(Mj−1), π2j(i2)) ∈ B for all i2 ∈ {ι | 0 ≤ ι < len(π2j)} and
(π1(Mj), π2j(x2(j+1))) ∈ B, where x2(j+1) = π2j(len(π2j)). Furthermore, since
M, π1(Mj−1) |= Φ2, by the I.H. we get that also M, π2j(i2) |= Φ2 for all
i2 ∈ {ι | 0 ≤ ι < len(π2j)}.

Finally, letting J be the greatest j as above, since M, π1(MJ) |= Φ1, by the
I.H. we get that also M, π2J(len(π2J)) |= Φ1.

We note that π2j(0) = π2(j−1)(len(π2(j−1))) for j = 1 . . . J . Thus we can
build the following path π2:

π2(n) =



π21(n), if n ∈ [0, len(π21)),
...

π2j(n−
∑j−1

i=1 len(π2i)), if n ∈
[∑j−1

i=1 len(π2i),
∑j

i=1 len(π2i)
)
,

...

π2J(n−
∑J−1

i=1 len(π2i)), if n ≥
∑j

i=1 len(π2i).

Clearly, π2 ∈ BPathsF(x2) since π2(0) = π2,1(0) = x2 because π21 ∈ BPathsF(x2)
and π2J is bounded. Moreover, by construction, M, π2(i2) |= Φ2 for all i2 ∈
{ι | 0 ≤ ι < len(π2)} and M, π2(len(π2)) |= Φ1. Thus M, x2 |= ζ⃗Φ1[Φ2]. ⊓⊔

D.3 Proof of Lemma 11

Lemma 11 For a QdCM M it holds that ≃M
ICRL is a CoPa-bisimulation for M.

Proof. We have to prove that the conditions of Definition 15 are fullfilled. We
consider only condition 2, since the proof for conditions 3 is similar and that of
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condition 1 is trivial. We proceed by contradition. Suppose condition 2 is not sat-
isfied; this means that there exists π̄ ∈ BPathsF(x1) such that (π̄(i), x2) ∈≃ICRL

for all i ∈ {ι | 0 ≤ ι < len(π̄)} and, for all π ∈ BPathsF(x2), having considered
that π(0) = x2 ≃ICRL x1, the following holds:
(π̄(len(π̄)), π(len(π))) ̸∈≃ICRL or there exists hπ such that 0 < hπ < len(π) and
(x1, π(hπ)) ̸∈≃ICRL. Let set I be defined as

I = {π ∈ BPathsF(x2) | there exists hπ such that 0 < hπ < len(π)
and (x1, π(hπ)) ̸∈≃ICRL}

and, for each π ∈ I, let ΩI
π be a formula such that M, x1 |= ΩI

π and
M, π(hπ) ̸|= ΩI

π—such a formula exists because (x1, π(hπ)) ̸∈≃ICRL.
Let furthermore set L be defined as

L = {π ∈ BPathsF(x2) | (π̄(len(π̄)), π(len(π))) ̸∈≃ICRL}

and, for each π ∈ L, let ΩL
π be a formula such that M, π̄(len(π̄)) |= ΩL

π and
M, π(len(π)) ̸|= ΩL

π—such a formula exists because (π̄(len(π̄)), π(len(π))) ̸∈≃ICRL.
Note that I ∪ L = BPathsF(x2) by hypothesis. Clearly, M, x1 |=

∧
π∈I Ω

I
π

and, since (π̄(i), x2) ∈≃ICRL for all i ∈ {ι | 0 ≤ ι < len(π̄)}, we also get
M, π̄(i) |=

∧
π∈I Ω

I
π for all i ∈ {ι | 0 ≤ ι < len(π̄)}—recall that π̄(0) = x1.

Also, M, π̄(len(π̄)) |=
∧

π∈L ΩL
π .

Thus, we get M, x1 |= Ψ , where Ψ is the formula ζ⃗(
∧

π∈L ΩL
π )[

∧
π∈I Ω

I
π].

On the other hand, M, x2 ̸|= Ψ , since, for every path π ∈ BPathsF(x2), π(hπ)
does not satisfy

∧
π∈I Ω

I
π for some hπ with 0 < hπ < len(π)—by construc-

tion of
∧

π∈I Ω
I
π—or π(len(π)) does not satisfy

∧
π∈L ΩL

π—by construction of∧
π∈L ΩL

π . In conclusion, we have found a formula, Ψ , such that M, x1 |= Ψ
whereas M, x2 ̸|= Ψ and this contradicts x1 ≃ICRL x2.

27


