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level (i.e., the life cycle strategies) and to predict their consequences in terms of population dynamics
[11, 12, 20, 28]. Reliable models can support decision making in pest management tactics and strategies
to improve the effectiveness of pest control decisions. The capability to predict population dynamics
and evaluate scenarios of pest control in agro-ecosystems under a variety of environmental conditions
can reduce the number and the cost of control intervention, improving crop yield and quality as well
as the health and sustainability of crop production.

Plant pests, including insects, mites and nematodes, cannot internally regulate their body temper-
ature, therefore phenological events, as well as the change in physiological age, depend on ambient
temperatures to which they are exposed. These poikilotherm organisms require a certain amount of
heat to develop. Measuring the amount of heat accumulated over time provides a physiological time
scale that is biologically more accurate than chronological time [12]|. For poikilotherm organisms tem-
perature is also considered the main driving variable for mortality and fecundity. Dependency on other
environmental driving (e.g., the influence of relative humidity on survival) and control (e.g., the effect
of strong rain or wind in the oviposition behavior) variables can also be considered in poikilotherm
population models [17, 33].

Physiologically-based demographic models for structured populations [20, 28] have been considered
for their capability to describe the temporal dynamics of population abundance and support decision
making in pest management. A wide review of recent publications on stage structured population
models can be found in [32]. These demographic models have been applied in literature to describe the
population dynamics of plant pests, some examples can be found in [3, 17, 19, 25, 27]. More recently
they have also been used in pest risk assessment of invasive alien species and to comparative evaluate
risk scenarios and the efficacy of risk reducing options [13, 30, 34].

Phenological models are by far the most widely used tools in pest control decision support. They are
often stage-structured models and predict the time of significant events in an organism development
through the cumulative flux of the individuals into each stage (in terms of percentage of development
completion for each stage). However in their more common and basic version phenological models do
not consider population abundance. In these models the development process is driven by temperature,
and the reliability of model prediction is strictly dependent on time and spatial resolution of data input
[29]. Model application to IPM programs should consider that the habitat structure could have a strong
influence on the temperature. Therefore, the design of the grid of meteorological stations requires the
consideration of spatial variability in environmental driving variables.

However, to increase forecasting accuracy and precision of phenological models, components of the
agroecosystem other than abiotic driving variables should be taken into account. Among them the
plant phenology plays a major role since the availability of resources is a key factor influencing the main
physiological and behavioural traits of the pest populations. Host plant resource follows a complex
spatio-temporal dynamics across the landscapes leading to the need of including the habitat structure
in the phenological models [29].

Both demographic and phenological temperature-dependent structured population models can be de-
scribed by systems of partial differential equations (PDEs) |5, 11, 12, 20, 28|. In these models the
influence of temperature on the components of the life history strategies (e.g., development, mortality
and fecundity) is described by temperature-dependent rate functions.

Stage structured physiologically-based demographic models are powerful tools able to describe the
change in population abundance both in time and age. This provides opportunity for interpreting the
impact of pest population on both natural and cultivated plants, since population abundance is the
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major driving force acting on the host plants [19]. However, to obtain information on the abundance in
stage-structured models, the definition of the initial conditions in terms of distribution of individuals
between and within the stages is needed. Obtaining this information often requires a monitoring
effort that exceeds the resources available in many Integrated Pest Management (IPM) programs.
Furthermore, the reliability of population density estimation is also a factor highly impacting on the
uncertainty associated to model output.

Phenological model instead, share some advantages with respect to the more sophisticated and com-
plex physiologically-based demographic models. They can be computed starting from a fixed initial
condition (usually the 100% of individuals in the overwintering stage at a specific point in time, e.g.
January 1%!), and the phenological dynamics can be derived, in the simplest case, considering stage-
specific development rate functions only and a time series of temperature. The recruitment is also
present in the model, but it is expressed in terms of the adult development and allows the production
of a single egg for each adult, so keeping constant the number of individuals in time. From now on, this
simple model based only on development rate functions, and with initial condition of overwintering
individuals having physiological age zero, will be denoted by MO.

However, the advantages offered by simple phenological models in terms of easy of parameterization
should be considered together potential limitations deriving from the use of development rate functions
only. In this paper we explore these limitations comparing the performance of M0 with a more complete
formulation of the phenological model which includes element of biological realism. To this aim we
introduce three different alternative formulations of the model M0 (that can also be combined together):

- Phenological model M1. This formulation accounts for the age distribution of individuals which
exit the overwintering phase. We assume this distribution is kept also in the individuals emerging
from the diapause period when temperature and other environmental conditions trigger the
development process. To the best of our knowledge, the age distribution at the beginning of the
development is usually disregarded in phenological models but it can potentially have important
influence on population phenology.

- Phenological model M2. In this formulation the fecundity is introduced by considering various
oviposition rates and profiles modifying the input flux in the eggs stage. The fecundity is function
of both the temperature and the age of the adult female. The influence of temperature is described
by a parabolic function, widely used in literature on modelling oviposition rate [16, 35, 10, 21,
17]. To account for the adult age, we compare various fecundity profiles ranging from adults
immediately reproductive after emergence with a peak of oviposition in the first part of their life
to reproductive profiles characterized by a pre-oviposition period and a peak of oviposition late
in the adult stage.

- Phenological model M3. In this formulation the mortality is introduced considering a temperature-
dependent mortality rate function characterized by a minimum in the range of optimal temper-
ature and a bath-tube profile [36]. This pattern is common in poikilotherm organisms with low
mortality values in a suitable temperature interval and increasing mortality outside the interval,
for higher and lower temperatures.

The four model formulations are numerically analyzed to explore the effects of fecundity, mortality,
and distribution of the initial condition over the physiological age, on the pest phenology. Then, we
consider an application to a specific pest, the codling moth, for which data on adult dynamics have
been collected in a specific location of Northern Italy. The comparison with field data allows to best
point out the differences of the various formulation of the phenological model.
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The paper is organized as follow: in Section 2 a continuous-time model of stage-structured population
dynamics is presented; models M0, M1, M2, and M3 are compared in Section 3 using a set of general
biodemographic functions, realistic for the biology of pests, but not calibrated for a specific pest; in
Section 4, an application to the codling moth is considered. Finally, in Section 5 some concluding
remarks can be found.

2. The mathematical model

The phenological model is based on a system of partial differential equations that allows to obtain
the temporal dynamics of a stage-structured population and the distribution of the individuals on
physiological age within each stage. Let

¢'(t, z)dz = number of individuals in stage 7 at time ¢ with age in (z,z + dz),

1 =1,2,...,s, where s is the number of stages. Stages from 1 to s — 1 are immature stages, and stage
s represents the reproductive stage (adult individuals). The variable ¢ denotes the chronological time
while x is a developmental index which represents the physiological age indicating the development
over time [5, 6, 7, 12]. The functions ¢'(¢,z) allow to obtain the number of individuals in stage i at
time ¢:

1
Ni(t) = /0 & (t, 2)da.

We consider a stochastic approach which allows to take into account the variability of the development
rate among the individuals [6, 7]. The dynamics is described in terms of the forward Kolmogorov
equations [15, 9]

LA [u‘(tw - a%ﬂ +m ()¢ =0, t>1t, 2 € (0.1), M
00 -] _=r, 2
A
[_U Oz } a=1 : o
¢'(to,x) = ¢' (), (4)

where i = 1,2, ...s, v'(t) and m’(t) are the specific development and mortality rates assumed indepen-
dent of the age =, quS’(x) are the initial distributions, while o* are the diffusion coefficients, assumed
time independent. The boundary condition at x = 0 assigns the input flux into stage ¢, while the
boundary condition at £ = 1 means that the output flux from stage i is due only to the advective
component v(t)¢'(t, 1) [5]. The terms F*(t), when i > 1, are the individual fluxes from stage i — 1 to
stage ¢ and are

Fi(t) = v Y () 1t 1), i>1, (5)

while the term F!(¢) is the eggs production flux. We consider three different formulation of the
reproduction term:
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e Fecundity dependent on the adult temperature-dependent development. It can be either model
MO or M1, where the term F(t) is given by

FL(t) = v5(t). (6)

The adults produce eggs through their development and each adult gives rise to a single egg
during the whole physiological life. This results in a constant input flux in each stage. It is
worthwhile to note that this formulation does not take into account a different eggs production
with respect to the physiological age.

e Fecundity dependent on physiological age. In this case (which can be included in model M2) we
consider the age-dependent flux

1
Fi(t) = /0 f(z) (¢, ) de, (7)

where f describes the oviposition profile with respect to the physiological age. Also with this
formulation it is possible to rescale to one the number of eggs produced by each adult female.
Note that in this case no temperature dependence is present. However, it is known that the eggs
production is influenced by temperature, and in a different way with respect to (6). For this
reason, we want to deal with a flux which depends on both temperature and physiological age.

e Fecundity dependent on physiological age and on temperature. In this case (also included in
model M2) F(t) is given by

1
FL(t) = b(T(1)) /0 f(z) (¢, z) de, (8)

where b(7'(t)) is the temperature function depending on the chronological time trough the tem-
perature 7. With this choice, we are able to describe a fecundity rate which varies with both
temperature and physiological age.

In the two last cases (model M2), choosing appropriately the profile of the function f it is possible to
account for a pre-oviposition period in the fecundity function avoiding the introduction of a further
stage that increases the number of differential equations and then the complexity of system (1).

3. Analysis of models M0, M1, M2, M3

In this section we explore the effects on the outcomes of different formulation of the phenological
model. For the purpose of exploring the effects of fecundity, mortality, and age distribution of the
initial condition in phenological models, we refer to a generic poikilotherm species characterized by
a stage-structured population dynamics dependent on three biodemographic functions (development,
mortality and fecundity) and composed by s = 4 stages: eggs (i = 1), larvae (i = 2), pupae (i = 3)
and adults (¢ = 4). To run the model we need to specify some parameters and functions involved in
system (1)—(4). In next subsection, we explicit a functional form for each biodemographic function.
Then, we will present the comparison of the four models using these biodemographic functions.

3.1. Biodemographic functions and age distribution of the initial condition in physiological models

Biodemographic functions reported in this section are not calibrated on data of a particular species,
but they are realistic for a poikilotherm species.



QO J oy U WP

Y OYOYOYOY oYUl Ul U U U1 U U U U Ul BB BB DR DSDWWWWWWWWWWLWNDNDNDNDNDNDNdDNdDNdNNNRERrRrRRRRRRRE
G WN P OWOWOJOU P WNEFEF OWOL-JoU P WNEF OWOW-JOUd WNEF OWOW-JOUd WNE OWOOWwJoyUld WDNEPEP O

144

145

146

147

148

149

150

151

152

153

0-3 T T T
- = —Eggs PN

—~ 025+ |77 Larvae s N .
- Pupae and Adults e A
3 ’ '
~— ’l \

L 1 4
% 0.2 R \
— , 1
= ! ‘
= 0.15r ’ .
S )/ '
g / !
g 01} ; '
— 4
> K o\
) P 1
< 005} A~ N\

//, ,r/”"’
O 4 1 1
0 10 20 30 40
T(()C)

Figure 1: Development rate (1/days) as function of temperature (°C') for the four biological stages of the population.

3.1.1. Development

For all the stages, we consider a Briére-1 function [4], already used to describe the development rate
function of pest populations [14, 18, 26|
® {aT(T — T )W =T, T <T <Ty o)
v =

0, otherwise.

In (9), a is an empirical constant, T,, and Ty; are the lower and the lethal temperature thresholds.
This nonlinear model involves three parameters and it reproduces a sharp decline above the optimal
temperatures, an asymmetry about the optimal temperatures and an inflection point. Other analytical
forms for the development rate function can be found in [23, 31].

In the numerical simulations, the values of the parameters reported in Table 1, for equation (9), has
been considered. The corresponding development rate functions for the four stages as function of
temperature are illustrated in Figure 1.

1=1 1=2 1=3 1 =4

a 1.5-107% 4-10° 5-107® 5-.107°
T, (°C) 9 9 9 9
T (°0) 38 38 38 38

Table 1: Parameters of the stage-specific development rate function in (9) for the four stages: eggs (i = 1), larvae (i = 2),
pupae (¢ = 3) and adults (i = 4).
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3.1.2. Fecundity

Fecundity can be function of either temperature or physiological age or both. Here we consider different
oviposition profiles with respect to the physiological age of an adult. To express analytically the
fecundity as function of the physiological age, we need to know some quantities strictly connected
to the shape of the fecundity rate function: the age x, at which the pest has the maximum eggs
production, and the physiological age x. at which an adult has already produced the 99% of the mean
total number of eggs n, laid by an individual at a fixed temperature.

We consider here the function f appearing in (7) and (8), proportional to a beta density function
f(a) = az’(1 - )7, (10)

where the parameters a, 3, 7 are estimated such that

Te 1
f(z) > f(z) Vo € [0,1], /0 f(z)dx = 0.99n,, /0 f(z)dz = ne. (11)

Function (10) is defined on the interval [0, 1] and it seems suitable to describe the fecundity as func-
tion of physiological age. Different oviposition profiles, corresponding to different values of z, and z.,
are reported in Figure 2. In Figure 2(a), individuals entering in the adult stage become immediately
reproductive and the peak of oviposition is in the first part of the adult physiological age. It represents
a case with no pre-oviposition period. In the cases of fecundity represented in Figures 2(b) and 2(c),
adults start later in physiological age to produce eggs. The initial period in which they do not produce
eggs can be seen as a pre-oviposition period. This way to model the fecundity rate is useful in case
of existence of both pre-oviposition and reproductive adults having the same development function
without introducing a further stage of pre-oviposition adults. Fecundity profiles like the ones reported
in Figures 2(a) and 2(b) also allow to include an eventual post-oviposition period for the adult stage.
In the profile 2(c) the peak of the oviposition is strongly delayed, and it is suitable to empathize the
effects of a late reproduction or a long pre-oviposition period.

It is also possible to consider a dependence of the fecundity function on temperature, as in (8) where
b(T) is the temperature profile. A possible expression can be given by the parabola [17, 21]

1 T-T,—"1Th
b(T) = T

0, otherwise,

2
) ) TLSTSTL+2TO7 (12)

where T7, and T7,+ 2Ty are temperature thresholds for the egg production, determining the temperature
range in which eggs are laid, while the optimal temperature is T7,+7Tp. Usually, the temperature interval
of eggs production is enclosed in the temperature interval of positive development of adults [T, Ths].

In the numerical simulations, parameters values of the oviposition profile obtained with n. = 100 are
reported in Table 2, while for the temperature profile we choose

T, =18.3°C, Ty =6.5°C.
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Figure 2: Different oviposition profiles (qualitative).

z, =02, 2.=06 z2,=06, z.=08 z,=0.8, z.=0.95

« 2.86245 - 104 2.3949016 - 10° 2.190076 - 10°
B 1.8 13.9 10.2
v 7.2 9.27 2.55

Table 2: Parameters of the oviposition profile for different values of z. and z. obtained for n. = 100.

3.1.3. Mortality

The mortality rate is described by a bathtub shaped function [36]: this allows to have a small mortality
rate for a favorable range of temperatures, and mortality rate that rapidly increases outside this interval.
The common expression chosen for the mortality rate for all the stages is

m(T) = p(b+cT +d(T. - T)"), (13)

where ¢ = 0.005, b = 0.00015, ¢ = 0.07, d = 0.002, while the parameter T, is considered different for
each stage. The assumed values are reported in Table 3, while the corresponding profiles are shown
in Figure 3. It is worthwhile to note that in our simulations, the mortality has effect only after a
fixed date (e.g., May 1% in temperate regions), corresponding to a date in which the individuals have
overcame the diapausing stage.

T,(°C) 22 20 18 23

Table 3: Parameter 7. of the stage-specific mortality rate function in (13) for the four stages: eggs (i = 1), larvae (i = 2),
pupae (i = 3) and adults (i = 4).

3.1.4. Initial conditions

Different initial conditions (4) will be considered by defining the distribution of individuals along
physiological age in each stage at the initial time tq. If the initial time is January 1%, only the
overwintering stage will have non zero value. In the following we will consider this case, starting the
simulation from January 1%!. In Figure 4 we can see different choices for the initial distribution with
respect to the physiological age. In the first case, individuals are equally distributed in the first half
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Figure 4: Initial distributions with respect to the phisiological age of individuals in the overwintering stage.

of the physiological age; this means that overwintering individuals enter diapause when young, then
they will need a long period to complete the development in the overwintering stage. In the second
case, individuals are equally distributed on the whole interval of the physiological age, modeling a
situation in which individuals enter diapause at any age of the overwintering stage. In the third
case, individuals are equally distributed in the second half of the physiological age; this means that
overwintering individuals have already reached a certain percentage of maturation in the stage before
enter diapause, or are next to the stage exit. Finally, we consider also a non uniform distribution on
the whole interval [0, 1] obtained with a symmetric beta function.

3.2. Comparison of population dynamics under different models

We decided to analyze separately the different models M1, M2, M3, to better understand the effects
of variations in the initial condition and changes due to the introduction of mortality and fecundity.
Combination of different models (that is, joint variation in mortality, fecundity and initial condition)
are not considered here, but the effects on the dynamics can be easily guessed.

First of all, we investigate the role of the initial distribution, corresponding to model M1 for different
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Figure 5: Temperatures for the year 2011 of a weather station in Colognola ai Colli (North of Italy). Day 0 corresponds
to January, 1°°. Solid and dotted horizontal lines represent fecundity and adult development temperature thresholds,
respectively.

intial conditions and comparing the obtained models with model M0 that has fecundity equal to adult
development and initial condition of 100 pupae with physiological age zero. Then, we compare the
three different formulations (6), (7) and (8) of the fecundity rate, corresponding to model M2, where
the initial condition is set to 100 individuals equally distributed on the physiological age for the pupal
stage, and equal to 0 for the other stages. In all cases, we do not consider the mortality effects,
then m’(t) = 0, i = 1,...,4. Finally, again starting from an initial condition of 100 pupae equally
distributed on the physiological age, we consider the effect of the mortality analyzing model M3.

The study is relative to a temperate climate region that require a diapause during the winter season.
We suppose that the pupal stage is the overwintering stage and that the end of diapause is May 1°t.

For the numerical simulations we use a set of hourly temperatures from a weather station in Colognola
ai Colli in the north of Italy for the year 2011 (Figure 5).

3.2.1. Model M1

The results of the numerical simulations obtained from different initial conditions are shown in Fig-
ure 7 in the Appendix, where the cumulative input flux entering in a stage, as a percentage of the
total population, has been represented. Phenological dynamics for different distributions of the initial
condition are compared with the dynamics obtained for model M0 where all the initial individuals
have physiological age zero (blue dotted line). All the distributions represented in Figure 4 have been
considered. Each curve is non decreasing (regression to a previous stage is not allowed), starts from
0% and ends at 100%, corresponding to the situation in which all the individuals have been already
moved from the previous stage to the current. Different generations are evident in the figure. The
most anticipated curve for larvae, pupae and adults (green dashed-dotted line), is relative to the initial
condition uniformly distributed in the second half of the physiological age. The individuals exit from
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diapause when they have reached at least the 50% of the development in the overwintering stage and
thus the time required to change the stage is lesser than in the other cases. The next two curves are
relative to the distribution of the initial stage over the whole physiological age interval. The adult
dynamics obtained with the beta distribution of the initial condition (magenta continuous line) crosses
the dynamics relative to the uniform distribution of the initial condition over the interval [0,1] (light
blue continuous line). More delay is observed for the curve with a uniform distribution of the initial
condition over the first half of the physiological age (red dashed line) because the individuals exit from
diapause when young and thus more time is required to change stage with respect to the distributions
of the initial condition previously considered. The most delayed curve is, obviously, the one with ini-
tial condition of individuals of age zero which require more time to complete the development in the
overwintering stage.

The larger gap among the different curves is in the first adult generation, while the gap tends to
decrease in the next generations of each stage. Starting from the pupal stage, the effects of different
initial conditions are more evident for the flux in the next stage, that is on the first fly of the adult stage
after the winter season. The effects decrease for the first egg and larval generations, then the gap among
different curves remain approximately constant for all the generations of each stage. Quantitatively,
for the adult stage, there is a gap of approximately 24 days between model M1 with initial condition
uniformly distributed over the interval [0.5,1] of the physiological age and model M0. For the egg stage
the gap is approximately 14 days between model M1 with initial condition beta distributed over [0,1]
and model M0. Considering the curves obtained for an initial condition uniformly distributed over [0,1]
(light blue continuous lines) and an initial condition beta distributed over [0,1] (magenta continuous
line), we notice that, except for the adult first generation, the outcomes are similar. Then, there are
no considerable differences in the dynamics with respect to a uniform or a symmetric non uniform
distribution over the whole physiological age interval. The only difference is the slope of the first adult
generation.

The comparison among different distributions of the initial condition are reported in Table 4.

Initial condition Effect

u.d. [0.5,1] In advance w.r.t. M0
u.d. [0,1] In advance w.r.t. MO and delayed w.r.t. initial condition
u.d. [0.5,1]

Simmetric Beta In advance w.r.t. M0, similar to initial condition u.d. [0, 1],
change in the slope of the 1% generation for the stage after
the overwintering

u.d. [0,0.5] In advance w.r.t. MO, delayed w.r.t. all the other cases

Table 4: Comparison among dynamics behaviour for different cases of distribution of initial condition in model M1 (u.d.
means “uniformly distributed”, and w.r.t. means “with respect to”).

3.2.2. Model M2

In Figures 8-10 in the Appendix, starting from an initial condition of pupae uniformly distributed
over the interval [0,1], we represent the normalized incoming flux in each stage for various fecundity
profiles (equations (6), (7) and (8)) and compare them to model M0. Different generations are evident
in the graphs. To better show the gap among different curves, we enlarge, as an example, the second
generation of the larval stage.

11
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We note that the first adult generation is equal for each fecundity formulation, while starting from the
first eggs generation there are differences in the outcomes. In detail, with the oviposition profile (2(a))
(Figure 8), the dynamics of the model (7) (blue dashed line) are in advance with respect to the ones of
model (6) (light blue continuous line) and model M0 (green dashed-dotted line), and the gap is up to
approximately 10 days and 19 days respectively on the second larval generation. With the oviposition
profile (2(b)) (Figure 9) model (6) is in advance in the first part of the dynamics and delayed in the
second part with respect to model (7), but the gap is, in general, smaller than in the previous case.
Morevoer, model MO is always delayed with respect to the other models and, also for M0, the gap is
smaller than in the case of oviposition profile (2(a)). In case of oviposition profile (2(c)) (Figure 10),
the dynamics of the model (7) is delayed with respect to that of model (6), and the delay is up to
approximately 10 days in the first part of the dynamics for the second larval generation. In this case,
MO is initially delayed for the first generation, similar in the second generation and in advance in the
third generation with respect to model (7).

Independently of the oviposition profile, the population dynamics obtained using model (8)) with a
temperature dependent fecundity (red dotted-line line) has a little delay with respect to the dynamics
of the population obtained using model (7) with a fecundity only dependent on physiological age (blue
dashed line). To summarize the results obtained, comparisons among different models are reported in
Table 5.

Mod. Prof. 2(a)

(6) Delayed w.r.t.  mod.
(7), (8), difference of
some days. In advance

Prof. 2(b) Prof. 2(c)

In advance in the first In advance w.r.t. mod.
part of the dynamics, (7), (8), differences of
delayed in the second some days. In advance

w.r.t. model MO. part w.r.t. mod. (7), w.r.t. model MO.
(8). In advance w.r.t.
model M0.

In advance w.r.t. mod.
(8), small differences be-
tween (7), (8). In ad-
vance w.r.t. model MO.

In advance w.r.t. mod.
(8), small differences be-
tween (7), (8). In ad-
vance w.r.t. model MO.

In advance w.r.t. mod.
(8), small differences be-
tween (7), (8). Switch-
ing position from ad-
vanced to delayed on
the 24 generation w.r.t.
model MO.

Delayed w.r.t.  mod.
(7), small differences be-
tween (7), (8). In ad-
vance w.r.t. model MO.

Delayed w.r.t. mod.
(7), small differences be-
tween (7), (8). In ad-
vance w.r.t. model MO.

Delayed w.r.t.  mod.
(7), small differences be-
tween (7), (8). Switch-
ing position from ad-
vanced to delayed on
the 2"¢ generation w.r.t.
model MO.

Table 5: Comparison among dynamics behaviour for different cases of the fecundity function in model M2 (w.r.t. means

“with respect t0”). See Figures 8 10 in the Appendix.
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3.2.3. Model M3

In this section, we introduce the mortality, in addition to a fecundity dependent on temperature and
physiological age with profile 2(a). Using an initial condition of 100 pupae uniformly distributed over
the physiological age interval [0, 1] and applying the mortality starting from May 1%, the dynamics are
in advance with respect to the dynamics obtained with the fecundity equal to adult development of
model M1 (Figure 11) and the gap is of the order of some days in the second generation of the larval
stage. This is justified by the fact that if the individuals cannot die, and more time is required before
all individuals change the stage.

4. Application to a case study: the phenology of the codling moth

To further explore the consequences of different phenological model formulations, we consider a case
study of a key pest in apple orchards, the codling moth Cydia pomonella (lepidoptera: Tortricidae)

[8].

As stated in 2], phenological models have been already used to predict many phenological events related
to the development of the different stages of the codling moth and to regulate pesticide treatments to
control the codling moth.

We show how the introduction of fecundity in a phenological model and the change in the distribution
of the initial condition can usefully modify the dynamics to better describe the behaviour of real field
data than the basic phenological model M(0. An unpublished dataset of population dynamics limited
to the adult stage collected in an apple orchard located in Gambellara (Ravenna), a flat region of
Italy, during the year 2017 is considered. The experimental field was not treated with insecticides to
avoid effect on pest population phenology and dynamics. A set of hourly temperatures from the closest
weather station of San Pietro in Vincoli (Ravenna), approximately 5 Km far from Gambellara, is used.

We consider in our model formulation, four stages (s = 4); the initial population is placed in the larval
stage which is the overwintering stage. As development rate functions, for all the stages, we choose
Lactin functions [24]:

Toaz — T
exp(pT) — exp (meaz - mamA> y T < Thaas

0, T > Thaz-

o(T) = (14)

Parameters of the development rate functions are estimated by means of a least square method using
the data obtained in lab condition at individual level in 1] and estimated values are reported in Table
6.

1=1 1=2 +1=3 =4

p 0.173 0.151  0.160 0.119
Tinaz (°C)  36.759 37.094 37.763 42.905
A 5.771  6.628  6.238  8.353

Table 6: Parameters of the stage-specific development rate function in (14) for the four stages of Cydia pomonella: eggs
(i = 1), larvae (i = 2), pupae (i = 3) and adults (i = 4).

The fecundity function depends on both the physiological age and the temperature. The parameters
in formulas (10) and (12) are estimated from data in [1]. In particular, we chose the oviposition profile

13
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corresponding to Figure 2(b), that allows to take into account a pre-oviposition period, as indicated
by the experimental data. We set & = 1 and we fit the parameters 3, ~ in (10) by imposing the
constraints in (11) with n, = 1. Then we used the data on the mean number of eggs laid by a female
at different constant temperatures (Tg,n¥), k = 1,..., N, ([1] and reported in Table 7) to estimate
parameters T, Ty in (12). Finally, we find « in (10) that solve the problem

min i: (/01 f(x)b(Ty,)dx — n’;)g.

a>0

T, (°C) 20 25 27 30
nk  48.846 89.250 66.316 20.182

Table 7: Mean number of eggs laid by a female at different constant temperatures 7} obtained in lab condition at
individual level [1, pag. 235].

We obtain:
a=2.064 - 109, B =139, v=9.267, T, =17.755°C, Ty = 6.499 °C.

The effects of mortality are here neglected, because reliable data for estimating mortality rate function
for all the stages are not available.

The results of the numerical simulations are shown in Figure 6 and compared with field data (marked
with grey points).

As reported in [22], we set the initial conditions such that the codling moth overcomes the winter
as a full-grown diapausing larva. We start from model M1, with fecundity(6), and initial population
composed by 100 individuals uniformly distributed in the second half of the physiological age of the
overwintering larval stage. The simulated dynamics (dashed lines in Figure 6) present an advance
for the first and second generations. Then, to delay the second generation, we introduce a fecundity
dependent on temperature and physiological age (equation (8)): the dependence on temperature is
of the form (12), while the dependence on physiological age is of the type represented in Figure 2(b)
to take into account the pre-oviposition period of such species [1]. In this way we are considering a
combined use of model M1 (uniformly distribution on the second half of the physiological age) and
M2 (fecundity (8)), obtaining the dashed-dotted line in Figure 6. However, in both cases the slope of
the first and second adult generations of the field data is not well reproduced. Then, to change the
slope, we modify the initial condition by considering 100 larvae uniformly distributed in all the interval
of the physiological age in the previous cases: we are still considering model M1 (dotted line) and a
combination of M1 and M2 with fecundity (8) (solid line). The simulated dynamics (dotted and solid
lines) show a satisfactory fit for both the first and second generations since they move forward with
respect to the previous cases (dashed and dashed-dotted lines). Simulations show that a change in the
distribution of the initial population over physiological age produces both a shift and a slope change
in the adult dynamics of Cydia pomonella, while the introduction of the fecundity further delays for
some days the adults.

5. Concluding remarks

In this paper we analyze various formulations of phenological models describing time variation of the
stage structure of a poikilotherm population. The aim is to compare model performance in relation

14



QO J oy U WP

Y OYOYOYOY oYUl Ul U U U1 U U U U Ul BB BB DR DSDWWWWWWWWWWLWNDNDNDNDNDNDNdDNdDNdNNNRERrRrRRRRRRRE
G WN P OWOWOJOU P WNEFEF OWOL-JoU P WNEF OWOW-JOUd WNEF OWOW-JOUd WNE OWOOWwJoyUld WDNEPEP O

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

0.8

0.6

0.5

aclnlis

04

03

i

80 100 120 140 160 180 200
time (days)

Figure 6: Cumulative percentage of individuals entering in the adult stage for the pest Cydia pomonella . Dashed line:
model M1 with fecundity (6) equal to adult development, and uniform initial distribution of overwintering individuals
on the second half of the physiological age. Dotted line: model M1 with fecundity (6) and uniform initial distribution of
overwintering individuals on the whole interval of the physiological age. Dashed-dotted line: model M2 with fecundity (8)
dependent on temperature and on physiological age (with profile 2(b)), and uniform initial distribution of overwintering
individuals on the second half of the physiological age. Solid line: model M2 with fecundity (8) dependent on temperature
and on physiological age (with profile 2(b)), and uniform initial distribution of overwintering individuals on the whole
interval of the physiological age. Temperatures of a weather station in San Pietro in Vincoli (Italy) of the year 2017.
Day 0 corresponds to January, 1°¢.

to assumptions and processes on which the model is built. In particular, starting from the basic
formulation in which only temperature-development rate function is considered and all the individuals
of the initial population have physiological age zero, we investigated the effect of the introduction of
fecundity and mortality rate functions, as well as the change in the initial conditions in terms of age
distribution of the individuals entering in the overwintering stage. The reference phenological model for
this analysis is obtained as a simplification of the demographic model for stage structured populations
presented in [5]. The model, described by a system of partial differential equations, is driven by the
ambient temperature and describes the time variation of the percentage of individuals in each stage,
thus it does not require any knowledge of the number of individuals in each stage at a certain point
in time to initialize the model, as it is needed for the physiologically-based demographic model. The
basic formulation of the phenological model takes into account the development rate functions and a
fecundity one to one (each adult generates an egg) with a fecundity rate equal to the adult development
rate. The absence of mortality guarantees that the number of individuals remains constant over time.
Then in the model are introduced more complex formulations of the fecundity rate function and a
mortality rate function is added. The mortality is applied only after the overwintering termination.

We observe that the introduction of the fecundity as a function of the adult physiological age and
temperature can anticipate or postpone the dynamics depending on the oviposition profile with respect
to the physiological age (Figure 2). The profile of the fecundity rate function is an important biological
trait of a species and in many cases is known from rearing and lab observation of the adult females. The
general pattern emerging from our numerical experiments is that, when considering a fecundity profile
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with peak corresponding to a young physiological age, the dynamics are anticipated with respect to
those obtained using model M( and model M1 with initial condition uniformly distributed over [0, 1].
If the peak is located in the middle of the physiological age interval, the dynamics are always in
advance with respect to those obtained from model M0, while they are delayed in the first part and
then in advance in the second part with respect to those obtained from model M1 with initial condition
uniformly distributed over [0, 1]. Finally, when the peak corresponds to a older physiological age, the
dynamics are always in advance with respect to model M0, and there is a switch in the trend from
advanced to delayed with respect to model M1 with initial condition uniformly distributed over [0, 1].
If the fecundity also depends on temperature, a little delay in the dynamics is observed with respect
to the dynamics obtained considering a fecundity only dependent on physiological age.

The proper definition of a fecundity profile has also to account for the existence and duration of a pre-
and/or a post-oviposition period. Describing these two periods and the fertile period by means of a
single distribution allows to reduce the number of stages of the structured population (reducing the
number of differential equations). The introduction of the mortality generally anticipates the dynamics
since less individuals require less time to leave the current stage than the whole population. Unfortu-
nately, experimental or field data on mortality rates are not often available. In case of unavailability,
the mortality function cannot be calibrated and sensibly introduced in the model.

The consideration of the age distribution of the initial population at January 1!, which corresponds
to the age distribution of the overwintering stage, leads to important changes in the phenology of
the simulated population. If the initial population density is concentrated towards the beginning of
the overwintering stage, more time is required to develop and we observe a delayed pattern in the
phenology, while if the initial population is composed by older individuals towards the end of the
stage, the observed phenology is anticipated (Figure 7). For multi-voltine species the effect of the age
distribution at the beginning of the overwintering is evident in the phenological pattern in the first
generation appearing after the overwintering period. After the first generation this effect is negligible.

The analysis carried out shows the relevance of introducing supplementary factors in a basic phenolog-
ical model. When elements of biological realism like fecundity, mortality and initial age distribution
are introduced, the model output changes. This gives rise to the issue about on when and how to
consider the additional elements. In most of the cases phenological models used in decision support for
pest control are only based on the development rate and a one-to-one fecundity, in order to keep the
population constant. Our results suggest that improvements in model performance can be obtained
not only modifying the development rate functions but also considering information available on other
components of the life history strategies. Data on the fecundity and mortality rate functions are avail-
able for many species, and their importance in both phenological and population dynamics models
suggests to put more effort in their estimation in lab as well as in natural conditions. Among the three
biological traits considered in this paper the distribution of the initial condition over the physiological
age appears to be the most important one. However, this biological trait is usually not well known and
only generic indications are reported in literature, with no quantitative estimation even of the interval
of the distribution.

The importance of fecundity, mortality and age distribution in the overwintering stage has to be
considered for the purpose of model definition and calibration in pest management. In fact, differences
of many days in the events of pest phenology can be obtained changing the forms of the fecundity, the
mortality or the distribution of the initial condition. This can lead to very different decision in the
implementation of control strategies.
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Figure 7: Cumulative percentage of individuals entering in the four stages (eggs, larvae, pupae, adults). Comparison
among the model M0 with all the initial individuals having physiological age zero (blue dotted line) and model M1
for different initial distributions with respect to the physiological age of individuals in the initial stage. Green dashed-
dotted line: uniformly distributed in the interval [0.5,1]. Light blue continuous line: uniformly distributed in [0, 1].
Magenta continuous line: symmetric beta-distribution in [0, 1]. Red dashed line: uniformly distributed in [0,0.5]. Day 0
corresponds to January, 1°¢.

Acknowledgements

Support by INAAM-GNFM is gratefully acknowledged by CS.

This research has been supported by “Fondazione Cariplo” and “Regione Lombardia” under the project:
“La salute della persona: lo sviluppo e la valorizzazione della conoscenza per la prevenzione, la diagnosi
precoce e le terapie personalizzate”. Grant Emblematici Maggiori 2015-1080.

The authors would like to thank Tommaso del Viscio (CNR-IMATTI) for technical support.

Appendix A. Dynamics of models M0, M1, M2, M3

In this appendix we report the figures for the comparison of the different dynamics obtained considering
models M0, M1, M2, M3.
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Figure 8: Cumulative percentage of individuals entering in the four stages (eggs, larvae, pupae, adults). Light blue
continuous line: model (6), fecundity equal to adult development (model M1). Blue dashed line: model (7), fecundity
dependent on physiological age with the profile (2(a)) (combination of M1 and M2). Red dotted line: model (8), fecundity
dependent on temperature and on physiological age with profile (2(a)) (combination of M1 and M2). In these three cases
we consider an initial condition of 100 pupae with physiological age uniformly distributed over [0,1]. Green dashed-
dotted line: model M0. Temperatures of a weather station in the North of Italy for the year 2011. Day 0 corresponds to
January, 1°%.
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Figure 9: Cumulative percentage of individuals entering in the four stages (eggs, larvae, pupae, adults). Light blue
continuous line: model (6), fecundity equal to adult development (model M1). Blue dashed line: model (7), fecundity
dependent on physiological age with the profile (2(b)) (combination of M1 and M2). Red dotted line: model (8), fecundity
dependent on temperature and on physiological age with profile (2(b)) (combination of M1 and M2). In these three cases
we consider an initial condition of 100 pupae with physiological age uniformly distributed over [0,1]. Green dashed-
dotted line: model M0. Temperatures of a weather station in the North of Italy for the year 2011. Day 0 corresponds to
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Figure 10: Cumulative percentage of individuals entering in the four stages (eggs, larvae, pupae, adults). Light blue
continuous line: model (6), fecundity equal to adult development (model M1). Blue dashed line: model (7), fecundity
dependent on physiological age with the profile (2(c)) (combination of M1 and M2). Red dotted line: model (8), fecundity
dependent on temperature and on physiological age with profile (2(c¢)) (combination of M1 and M2). In these three cases
we consider an initial condition of 100 pupae with physiological age uniformly distributed over [0,1]. Green dashed-
dotted line: model M0. Temperatures of a weather station in the North of Italy for the year 2011. Day 0 corresponds to
January, 1°.
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Figure 11: Cumulative percentage of individuals entering in the four stages (eggs, larvae, pupae, adults) with model (8),
fecundity dependent on temperature and on physiological age (with profile shown in Figure 2(a)). Initial condition of
100 pupae with physiological age uniformly distributed over [0,1]. Blue dashed line: model with mortality. Light blue
continuous line: model without mortality. Temperatures of a weather station in the North of Italy for the year 2011.
Day 0 corresponds to January, 1°°.
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