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Abstract

JACK, standing for Jusl Anather Concurrency Kil, it a new environment inlegrating
a set of verification tools, supported by a graphical intreface offering facilitics to use
these tonls separately or in combinalion. The environment proposes several funclion-
alities for the design, analysis and verification of concurrent systems specified using
process algebra. Tools exchange information thiough a text format called Fc2. Users
are able to graphically layout theit specifications, that will be automatically converted
into the Fc2 format and then minimised wilh respect to varinus kinds of equivalences.
A branching time and action based logic, ACTL, is used to describe the propestics
that a specification must satisly, and model checking of AGTL formulac on the sprc.
ification is priformed in finear time. A translator fiomy Natural Language to ACTL
formulac is providad, in order Lo simplify the job of desciibing specification properlics
by ACTL formulas. A descriplion of the graphical interface is given together with its
funclionalities and the exchange format used by the tools.

1 Introduction

When the verification of system propertics is an important issue, automatic tools are
needed. Some verification environments are now available which can be used to verify
propertins of reactive systems, specified by means of lerms belonging Lo process algebrae
and modelled by means of finite state Labeled Transition Systems (antomala), with re-
spect o hehavioural relations and logical properties (Bolognesi and Caneve, 1939; Cleave.
land et al., 1989; Madclaine and Vergamini, 1990a; van Eijk, 1991, Godskesen ot al,, 1089,
Fernandez et al., 1992).

llecently a new verification environment, JACK, {(De Micola et al, 1993) was defined to
deal with reactive syltems, The purpose of JACK is to provide a general environment
that offers a series of funclionalities, ranging from the specification of reactive systems lo
the verification of behavioural and logical properties. It has been built beginning with a
pumber of separately developed tools that have been successively integrated.

*A part of the work describad in the paper war carried out while the anthor was visiting the [sfituln ot
Elabornsione dedl'Informarioneof GNR in Piss ax part of the fellowship progeam 1992793 of the European
Research Gonsortinm for Informatics and Mathematics.

$The work desctibed was partially peeformed in the context of the LAMBRUSCO praject, suppotted
by the CMI Finalized Projret far Information Systeme and Patallel Computation, unitd aperativa 111 -

Univertity La Sapienza, flome.



JACK covers much of the formal software development process, tncluding the formaliza-
ton of requirements (Fantechi et al,, 1994), rewriting techniques (De Nicola et al., 1990),
behavioural equivadence proofs (Tnverardi et al., 1992; De Nicola and Vaandrager, 1990),
graph transformations (Roy and de Simone, 1990), logic vedifications (De Nicola et all,
1992). The logical properties are specified by an action based temporal logic, ACTI, de-
fined i (De Nicola and Vaandrager, 1990), wich is highly suitable to express safety amd
liveness properties of reactive systems modelled by Libelled “Iransition Systemns,

The main functionalities of JACK are sununarized below.

L NL2ACTL, s genvrator of ACTL formulae, that produces an ACTL formula starting
from a natural language sentence: NL2ACTL helps in the formalization of informal
systems requirements;

2. Behavioura) equivalence verification by both rewsiting on terms and on equivalence
algorithms for finite state L'TS: a process algebra term rewriting laboratory, Cnrau,
that can be used Lo prove equivalences of terms through equational reasoning has
been integrated in JACK together with the AUTo/MAUTO/AVTOGAYD toal set
developed at INRIA; these tools can be used for the automatisation of the specifica-
tion and verification of process algebra terms in finite state cases. Specifications ire
given following the syntax of some process algebra (Avrof/hlavto), or by means
of a graphical tool (AuToGrari) that allows the user to draw automata that are
translated into process algebra tenms. AUTO/MAUTO can then be used for formal
verification and automata analysis,

3. Model checking of properties expressed in ACTL on a reactive system modelled by a
finite stave LTS adinear time model checker, AMC, for the action based logic ACTL.
has been delined to prove the satisliability of ACTL formulae and consequently the
properties of systews.

1. Analysis of concurrent systems with respect to various concurrency semantics (in-
terleaving, partial order, multiset...): a parametric tool, the PisatooL, has been
developed that allows the user to observe many different aspects of i distributed sys-
tewy, such as the tewmporal ordering of events and their causal and spatial relations.

The paper is vrganized as follows: Section 2 presents an overview of the syntax and
semantics of the CCS/MEnE process algebra used to describe reactive sytems in JACK,
and of the ACTL ogic. An intraduction to formal verification tools is given in Section 3.
Section 4 gives u description of the integration project and the graphical interface of the
system. Finally, in Section 5 the JACK interface is described (with an overview of the
components of the JACK envicontnent).

2 Background

2.1 Preliminaries

We first introduce te concept of Labelled “Transition System, on which reactive systems
are modelled and ACTL fonmutae are interpreted,

Definition 2.1 (Labelled Transition System) A Labelled Transition System is a {-
tuple
A=(Q, g, Actu (T). ), where:

o Qs a finite set of states. We let q,r, 3, ... runge over stales;
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o g ts the initial stute;

o Aet is a finite set of observable actions und v 15 the unobservable action. We let
a,b,... range over Aet, aond o, 3, ... runge over Acty {r};

s RCQx Actu{r) x Qs the lransition relation. 8

Note 2.2 For A C Act, we let A, denote the set AU {r).

Far A C Act,, we let R{q) denote the set {¢': there exists o € A such that (g, 0,9y ¢ 1t).
We will also use the aclion name, instead of the correspanding singleton denotation, as
subscripl. Moreover, we use R(s) to denote R qp, (). y
For A, 81 C Act,, we let Af1) denote the set A = (AN BY. Often, we simply write g =0 4
for (q.o, g€ R 0

Definition 2.3 Given an LTS A = (Q, 4o, ActL {v}, 1), we have that:

a path in A (s o finile or infinile sequence gy, g2, ... of stales, such that g,y € H(y,).

.
The set of paths starting from u stute g i3 denoted by 1{y). We let a0’ 00 rangre
over paths;

o a path o € (g} is called mazimal if it is infinite or if it 4s finite and its last state
has no successor states (e, R{y') = ¥);

o if o is infinite, then we definefo] = w; ifo = ¢y, 4y, ..o g, then we definefo] = n—1.

Moreover, if{o| 2 i =1, we will denote by o(i) the i** stute in the sequence. L

2.2 Vrocess Algebrae

Process algebrae are syntaxes for the description of parallel and communicating process
Here we give a brief presentation of CCS/MenE process algebra, (Austry and Bowdul,
1984; Boudo!, 1985), which is used by the JACK system for the description of reactive
systems. For simplicity, we descaribe the subset of Mroe that corresponds to the CCH
process algebra, following R. Milner (Miluer, 1989). Moreover, we adapt the syntiax wsml
in the AvTo/Mauto tools (see section 5) wnd restrict it to their rules W puatantes

ER

the satishability of some finitary conditions of the underlying semantic model, namely
automata {de Simone and Vergaming, 1989).

4 2.2.1 The Meue Syntax

The Meue syntax is based on a set of actions that processes can perfonm and on st
of operators expressing process behaviors and process combinations. The Avro/Mavio
CCS/Menge syntax permits a two - layered design of process terms: the fst level iy
related to the sequentiol regular process description; the second to a network of paradiel
sub-processes, supporting communication and action visibility filters.
The syntax starts from a set of labels Actas atomic signal names ranged over by alplanu
H M H HP Lo
eric stiings; such names represent emitted sipnals i they are tenminated by the "
chiaracter, or received ones i they are tenminated by "7 7 denotes Ui apecial sction not
belonging to Act, symbolising the unobservable action (to model internal process comniu
nications); we let Act, = ActU {r)} to denote the full set of actions that & provess can
petform.
The following syntax is related to the definition of regular sequential processes: 1 denutes
a sequential process, while a matches any clenent of Act ;) Vs label denoting & process

variable;



Ron= stop | a:ll ) R4 R
letrec (XN = R{nnd X = R} ) in X

Here, [0 ] denotes an optional and repeatable part of the syntax. \We now explain the
COCS/MEnE sequential part semantics:

o stop is the process without behavior;

v o JUis the action prefix operator;

s\ = RObounds the process variable X to the process It
o 10 IUis the non deterministic choice operator,

¢ The let ree construct allows recursive definitions of process variables.,

Fhee second level of process tern definition is used lo design networks of parallel sub
cormponents denoted here by P, where R is a sequential regular process:

o= ROp PRI} PNa | Plafb) | av P |
let {XN =P and XN =R)) in X

s |l is the parallel operator;

" s . - .
+ P\ais the action restriction operator, meaning that a can only be perfonned within
a communication;

¢ Pla/b]is the substitution operator, renaming b into a.

¢ a+ I”is the ticking operator, driving process 1 by performing action a simultancously
with any behavior of . This means Uhat any time that process P performs an action
s ction,

then process a « P performs in paraliel both this action and action a.

+ The let construct bounds non recursive definitions of process variables.

The Fignre 1 shows the structural operational semantics of some CCS/MEnE operators
previously described, in terns of labelled transition systems (Plotkin, 1981): note that the
COS/MenE paraliel operator operational rules are those of the CCS parallel operator,
whereas the MEUE parallel operator, instead, has an additional rule allowing product of
actions that are not necessarily co-names (i.e. aland a?)

Operator Operational rules
a: [
o I a: P -Z.p
PiQ = . r__ _u___
PaQ - P4 Qo
P Q-2
riaQ 4 ’

PHQ-=1rQ PIQ-=riq PiQ = rpq

Figure 1: Operational semantics of some My operators
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2.3 Bistmulation Semantics

We give here the definition of the bisiinulation equivalence over I'I'Ss, due to Park, (Park,
1931).

Delinition 2.1 (Bisimulation) Givercan LTS A = (Q, qu, ActU {r}, 1), « biximulbition
over Q % Q is u binary symmetric relation R such that, for any (p,q) ¢ Q =« Q, we have
pRq iJ:

Va € Act, ,(p L. p' = (]q',q N 4 A p"R_q'))
We note by ~ the largest such relation, that is the union of all bistmdations definable aver

5.

Observational bisimulations, firstintroduced by Milner (Milner, 1939), are defined throuph
the notion of an unobseevable action 1, considered as a silent step in the system beliav.
ior. To abstract unobservable moves during observation, we shall use the weak Urausition

relation defined as follows:

Definition 2.2 (The Weak Relation)

oy

Va € Acl, == =5 L=t

Weak bisimulation is then defined upon this refation, and called the weak —. We denote
the largest one by ==, Hraaching bisimulation, first introduced in (Van Glabbeek and
Weijland, 1984) and denoted by~g, is a particular observational bisimulation refining the
notion of unobservable moves taking into account the internal nondetecininisu. Its scheme
is given by:

Definition 2.3 (Branching Disimulation) A branching bisimulation is a binary sym.
metric relation R C Q x Q such that pRq iff:

Va € Act,, (p 2. P o=
(a=rApRyYyor (Ig,...,q0, such that
(1)qa=m Ll G —— o' and
()vict o on, pRa 'Ry

Bisimulations are used to minimise transition systems, as they define a minimal canonical
form, and also to compare systems. Two systems are considered equivalent if amd only
if their respective initial states are related within some bisimulation over the product of
the disjoint union of the sets of states of the two systems to compare. Verification with
automata widely uses these concepts, for instance, to check partial properties of systems
and to compare an implementation with a particular specification.

2.4 The ACTL Logic

We now define the temporal, action-based and pure branching time logic ACTL (De Nicola
and Vaaundrager, 1990); a logic of this type is appropriale to express properties of LTS
because its operators are based on actions. Morcover, ACTL is a temporal branching time
logic, as it has both operators for quantification over paths and linear lime operators.
ACTL is a purc branching time logic because in its syntax cach linear operator must be
preceded by a branching one, and vice versa; this implies that only branching tine prop-
erties arce expressible. Furthermore, ACTL has an auxiliary caleulus of actions crbeddaed.

Here below we present the action caleulus:



Definition 2.1 (Action formulae syutax and scmuntics) Given u set of observable
actions Act, the language A (Act) of the uction formulue on Act is defined as follows:

xu=alblnxlxvx
where b ranges over Act.
The satisfaction relution = for action formuluc 1s defined as follows:
al=d always;
af=b f a=1;
a = ~x if notal=x;
wls xV X alxoera )= X
6]
From now on, we let ff abbreviate the action formula 8 and y A Y abbreviate the action
forula ~{~x VvV ')

Given an action formula y, the set of the actions satislying x can be characterized as
follows.

Definition 2.5 (s : AF(Act) = 24) We define the function x 1 AT (Act) - 27 gy
Jollows:

o K(t) = Act;
o 1) = (b)‘
¢ o) = gt

slx v x) = s&x)uax)- 8]

-

Theorem 2.6 Let x € AF(Act); then n(x) = {a € Act: a )= x}.

Sketeh of the proof: “Uhe prool of this Theorem can be given by structural induction on
X 8}

Definition 2.7 (ACTL syuntax) ACTL s a branching time terporal logic of state for-
mulue {denoted by ¢ ), in which a path quantifier prefizes an arbitrary path formula (denoted
by x). The syntar of ACTL formulue is given by the grammar below:

b

it

vl A S| Exfidx

x _\’x.,’)|,\',(,5]¢1_\U‘,')l¢f'_‘U,\‘%"

it

where X, x' range over action formulae, £ and A ure path quantifiers, and X and U are
nert and until operufors respectively, 8]

We now deseribe the conditions under which a state s (a path o) of an UU'S satisfies an
ACTL formula ¢ (a path formula x), written s = ¢ (o }= 5).

Definition 2.8 (ACTL semnntics) The satisfuction velution for ACTL formulae is de-
finted in the following way:

=t always;

skrdnd f s)= ¢ and s f= ¢

3 }:l e l]] nol 3 ﬁf- b

sk Er iff  there exists a path o € 1(s) such that o }= 5;
s k= Ax iff for all murimal paths o G 1H(3), o = x;

o= XNy¢ iff Jol 21 and 0(2) € Kyolo(1)) and o(2) )= 4,
g = N iff Mol 21 and o(2) € Hy,y(a(1)) and o(2) = s

o= U iff there exists i 2 1 such that a(i) }= ¢,
and for all 1 < j <9 —1:

0(3) 1= i 0 (5 + 1) € Ry, ()
o f= b Uped Wl there exists 1 202 such that a(n) }= 4,

b,
o(i) € Ryyloli— 1)) and for all 1 € § S0 -2
U(] -+ l) € ]l’,‘(“)‘(d(]’)).

Several useful modalities can be defined, starting from the basic ones. We write:

. ['3..\;_\9‘; for ~ AN, and AN for ~EX these are called the weak nert opera-
Lors.,

o EFgfor E(t,U¢), and AP for AU ); these are called the cvcntually operatons,
o BC for ~AF=g, and AGH for = E oy these are called the always operators.
x> lor E(e gUg ) i x £ f1

<> g, for E(e gUd),

s for ~ < x > i

o for <> g

3 Tormal Verification Tools
Formal verification for reactive systems usually consists of two important stapes:
1. the system design specification stage;
2. the properties checking stage.
The tools have been built following this scheame, Here below we thaas descnibae specification
tools and properties checking tools.
3.1 Specification ‘Tools

These tools offer functionalities to build @ process specilication. They wie often provess
alpebra syntax compilers and make it possible to compositionally design a process tem,
by first specifying the sub tecms separately and then pulling just the sub term process
natnes in a higher tenn. This can be done in two ways:

+ by allowing the designer to enter a specification in a textuid forg

o by offering sophisticated graphical procedures to constiuel a provesy specification.
The tool then automatically translates the drawings into a process tenin,



At this level, other functionalities can be offered such as:
rolerm o rewriting;

¢+ linite-state conditions checking.

4.2 Property Checking Tools

Logics have been intensively vsed to check the behavioural and logical properties of pro-
prams. In particular, in the concurrent systems area, temnporal (or modal) logics have
been introduced in order to be able to express properties in a logical fanguage that per-
wits system beliavior to be described and to verify these propertics on some systenm mode]
(e A Kreipke stineture or a transition system) (Fmerson, 1990; Hennessy and Milner,
PORS, Hen-Adh et al, 1981, Kozen, 1983). These logics are such that il a property holds in
asystem, then that system is a maodel for the formula representing the properlty.
Another approach to system verification has been studied. This approach is based on au-
tomata observations and analysis: properties are also expressed as automata, and equiv.
alence notions such as hisimulation are used (o check whether a give
some (un)desiced property or not,

In both cases

nosystem possesses

» methods automatization has played an nportant role. Due to computability
problems, automatic methods can only be proposed for finitely represented systems. Model
checking is the name for automatized verification with logics. For the autamata based
methods, a set of alporithins on graphs, such as bisimulation equivalence checking, forms
the kernel of verification tools based on transition systeins.

In the next section, we will present the JACK system and the "ghue” of the tools integra-
lion project: the Fc?2 automata description formal.

4 The JACK Integration Project

The idea behind the JACK environment was o put together different specification and
verification tools developed separately at two research sites: IEI-CN R in Haly and INRIA
in France,

A first experiment in building verilication tools, starting from existing ones, is described in
(De Nicola et al., 1992). Following this first attempt, we have developed an environment
based on the links proposed in (De Nicola et al., 1992), and on new links that exploit

the Fc2 format (Madelaine and de Simone, 1993) (see Figure 2). We had the following
objectives:

¢ to provide an environment in which a user can choose between several verification
tools; this environment will have a simple, user-friendly graphic interface;

* tocreate a peneral system for inanaging any tool that has an input or output based
on e2 format files, Such tools can be easily added to the JACK system, thus
extending its potentiality. In this sense, the Fe2 format acts as a system “glue”.

Mow, we brielly introduce the tools that are used in the JACK systemn, dividing them into
specification tools and verification tools.
4.1 Specification Tools

4 Avrocrary (INRTA)

This is a geaphic specification tool for the design of parallel and comumunicaling processes
(Roy and de Simone, 1989) that provides functionalitios for a compositional development of

Egrrivatencae
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Figure 2: The integration project

aspecification. Asa general rule, a window is a process specification. Process construction
starts from automata which represent single sequential processes. Processes surm.umh:«l
by boxes are said to be nefworks and are used to hide information on low-level details of a
specification and to represent parallcl composition. If two networks are drawn at lhle same
level, they can synchronise the signals they emit, and thus representing cm.nnmmc;mn;;
processes. There is no need for a network to be fully S'm(iﬁcd'. it could sm\!)ly be an
emply box. [t is suflicient to specify its external synchronisation signals, and this permits
a top-down approach in the AUTOGRAPI specification process. - ‘

Another featurc of AutoGrarit is the automata interactive exploration: starting fmu} an
initial state, an user can just unfold the paths (s)heis interested in. /\U'r()(:.u/\l‘n -pmvinh‘-s
several output formats in which a graphical specilication can be Granslated, fncluding Fe?,
the MauTo syntax [or terms and Postsceipt.

4.1.2  Auto/Mavuto (INRIA)

MauTo (de Simone and Vergamini, 1939) (a generalisation of /-\U‘I‘()) is a tool for both
the specification and the verification for concurrent systems described }yy process algebrac.
Actually MavTto can deal with Mene (Austry and Boudol, 1934), CCS (Milner, I‘JB?),
LOTOS (150, 1987) and Esteren (Berry and Cosserat, 1984) process alpebrae (while
AuTo was just designed for the first two).

MAUTO is a command interpreter manipulating two classes of vbjects: the ; .
algebrae specifications and that of specification automata. Each :\]gc\)(al(ﬁ:\”)' spucuﬁa:rl
process is called term. During the specification stage, the user deals with the terms in

ass of process

the MAyTo environment; lers are parsed and syntax errors are n:;mrlml.. In l.h«:. parsing
stage it is detecled whether terms represent finite state systeins or nc{( (just hm.lc: state
systems can be studied). Sufficient synlactic conditions are slu‘dlcd in (Mf«lel.\me and
Vergamini, 1990b). The user can then translate a term (the main spccxﬁcatm.n ‘t”"'. or
another one) into cither the Fc?2 format, or the Avrocrari format to praphically view
the specification, or into other formats suitable as inpuls for various ul.lutr lrmls., to carry
on with the next specification and verification phases. Many transhation funclions from



algebraic objects into automata are also available, so that the user can enter tye Mauto

verification framework. This will be descibed in the Verilication ‘Tools section,

4.1.3 0 NL2ACTL, an automatic trunslator from Natural Lungunge to Temporal
Logic (IEI-CNI)

NL2ACTL, a prototype translhator from Natural Language expressious to Temporal Logic
formulae, has been developed and integrated in JACK, in order to test the use of Natural
Language in a friendly interface to make the expression of propertics in the logic easier for
the user. NL2ACTL deals with sentences expressing the occurrence of actions performed
by reactive systemws. A precise semantic meaning in terms of ACTL formulae is associated
with each sentence. If this semantics is not ambiguous, an immediate ACTL translation
is provided; otheowise, an dialog with the user is started in order to solve the ambiguity.
In fact, in our experience in the specification and verification of propertics using temporal
logics, we have found that imprecisions (tequently oeeur in the passage from the informal
expression of properties in natural language to their formulation in temporal logies, due to
the inherent ambiguities in many natural language expressions. We have thus attempted
to identify a solution to this problem in the current state of the art in Natural Launguage
Processing, looking for a formal method, that can help to generate lugic formulae, which
correspond as closely as possible to the interpretations an ACTL expert would give of the
informal requirements.

NL2ACTL has been developed using a general development environment, PGDE, aimed
at the construction, testing and debugging of natural fanguage grammars and dictionar-
ies, which pecmits us to build an application recognizing natural langunpe sentences and
producing their semantics (Marino, 1989).

4.2 Verification Tools
42,1 Avra/Mavro (HNRIA)

As we stated above, AuTo/MAUTO can also be used in verification, because it permits
automata to br reduced in various ways. Commands allow process algebra tenm verification
of partial properties based on observations of underlying automata.

Further automata analysis is available, such as abstraction, minimisation, and dixgnostics
on equivalence failure.

Using Mauro in the vecification phase, the user can manipulate the automata with respect
to abstraction criteria, or can perforn their minimisation and/or comparison with respect
to behaviour, or can produce diagnostics of equivalence checkings,

The verification principle can be generalised as follows. First define an implementation of
a system as a process algebra term involving several comnunicating processes running in
parallel. Then translate the term into a global automaton capturing all its possible com-
putations. For partial property verificalion, define properties with abstraction criteria':
abstracting the global autematon helps to verify whetlier the expressed property is satified
by the implementation. Users can also define a specification with respect to the desired
external behavior, using abstiacted actions. The plobal system is abstacted to meet the
bnplenrentation: the answer is given by bishimulation checking between the implamentation
and the specification.

"utuitively, 20 abatraction criterion is 1 collection of abrtract actions, which are rstional expreossions
over the concrete set ol actiow; this i 4 way Lo eapress path propertics with 3l the cxpreasive power of

rativnal cxpressiong.
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4.2.2 Phe ACTL Model Checker (JEI-CNIY)

AMC, the model checker for ACTL logic formulae, permits the validity of an ACTIL
formula to be verified on a labelled transition system in a lncar time.  Whenever an
ACTL formula o does not hold, the wodel checker produces a path from the L1 (calied
a counterexmmple) given in input, which falsifies o, and provides wselul infonnation on
how to modily the LTS to satisly the formula .

This model checker allows the satisfiability of ACTL formulae on the model of a resctive
system to be verified. Requirements can also be maintained and enhanced, on the hasis of
the results of the verification stage: on the basis of the concrete model of the system and
the formalization of requirements (a fist of Lemporal logic formulae), the verification of the
latter on the former - by means of the model checker - may provide uselul information.
Model checking for ACTL can be perforned with time complexity O((JQ] 4 |~—{) % {])
where ¢ is the ACTL formula to be checked on an LTS that has [Q] states and |—] arcs,

4.2.3 Curian (IEI-CNR)

Criap is a system based on rewriting strategies (De Nicola et al., 1990; De Nicola et al.,
1991). The input, which is supplied to the system interactively, can be LOTOS (150,
1987) or CCS (Milner, 1989) specifications. It is possible to sinulate the operational
behaviour of a process as well as automatically prove the bisimulation equivadence of v
finite processes, The bisimulation equivalences considered are the observational, trace,
and branching ones. Itis also possible Lo define user-driven proof strategios, although no
{acility for this is explicitly available. However, u strategy to prove the equividence of twa
CCS processes by transforming one process tenn into the other by means of axiomaltic
transformation is provided.

1.2.4 PisaToor (IEI-CNR)

The PisaToou (Iaverardi et al,, 1992; Inverardi et al., 1993a) is a system for specilication
verification that accepts specifications written in CCS and is parametric with respect to
the properties the user wants to study. "This means that the wser can choose a process
observation function from a library of functions.

The PisaToot represents the processes internally by the so-called ertended trunsition
systems (Inverardi et al, 1993b), i.c., transition systems lubelled on nodes by regulag
expressions {Boudol and Castellani, 1988; Tarjan, 1981h; Tarjan, 1981a) that encode all
the computations leading to the node from the starting state.

After the tool has converted a process into this type of internal representation, the wser
is able to select an observation function to study interleaving, causality, locality and so
on; ‘The process equivalences are checked through the alporithm of {Paige and Tarjan,
1987) and the implemented equivalence observalions are the strong, weak, hranching and
teace ones. A library of observations {or studying truly concurtent aspucts of distibuted
systetns is provided; moreover, expert users can define their own observitions. Pl ool
is equipped with a window-based interface that makes the observation Gisks easy

4.2.5 Companion Tools: Fceroon/Hocaan (INRRIAY

These tools ofler bisimulation minimisation procedures for systems described as o single
transition system (Ferood), or networks of transition systems {Bowsli, 1991 Bouali and
de Stimone, 1992). Hoccar is actually interfuced with Mavro which calls it whenever @
bisimulation minimisation has to be performed on asingle transition system, Phe inteface
uses the Fe2 format (see below), Foroot works with a variety of static netwaky of



parallel and communicating processes using symbolic techniques: it alfows global system
computation and bisimulation minimisation of such networks, The algorithms are based
on a symbolic representation of global transition systeias by weans of & Hinary Decision
Dingram (BDD), allowing the analysis of “very”™ large systems with a reasonable cost in
tecins of time and space, These two ools currently deal with strong, weak and branching
bisimulation, but other equivalences and preorders can casily be added.

4.3 The Fc2 format

Bach tool is presumed to have its own iaput and output format, The Fc2 format is a
common formit adopted by many verification tools to describe input and ontput data, Its
main purpose is to enable commnnication between tools in a standardized way: for instance
when linking specification tools to property checking tools. MHistorically, the Fe2 syntax
started with the efforts of some verification tool designers (o be able to estabilish links
between their tools, This cooperation was based on the simplest exchangeable objects,
namely automata. So, the original provided syntax described Uhese olijects. It hias now
been adopted by several tool makers and has been enriched in order to generalise the kind
of objects that can be described. The dlass of objects ranges over networks of {ransducers
covering most kinds of input/output objects that can be given or generated by a verification
tool in the domain of finite state concurrent systems. The format is organised as follows:

4.3.1 Fe? Objects and Labels

The FcZ objects are: vertices, edges and nets, A net s a graph containing a finite number
of vertices and edges. Bach object has a label. Objects are presented in tables, An Fe?
file is this a table of nets; each net has a table of vertice; each vertice has a table of edyges,
Fach object has a label. A label is a record of informations, each being preceded by a
fickd wame. The field names are: struce, behav, logic, hook. These fields are used to
assign semantical information to objects. For instance, the field behav of an edge stands
for the action Tabel of the underlying transition. Fach piece of informnation is a string
o is composed using a set of predefined operators of various atity to express simple sot
constructs,

4.3.2 Fe? Nets

Nets in the Fo2 format can be:

Loassingle BTG5 the net is just a table of verlices representing the set of states of the
LTS, and for each state vertex the set of transitions starting frow that state form
the edge table. The minimum information label is the action name of each transition
piven theough the feld bohav,

2. asynchronised vector of nets; in the fickd struct of the net, the structure of the net is
piven, listing the set of sub-nets put in parallel and composing the current net, The
verlex table is reduced to an unigue clement (state) from which all synchronisation
constraints between Lhe subi-nets are expressed as edges from this state to itsell,
having as label the synchronisation action set;

J. a transducer; this is a generalisation of the synchronised veclor of nets, where the
nel has several states; from each stale, a specific sel of synchronisation constraints
are piven, reaching other states;
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The format is more concrete than process algebra, Moreover, it enables the description
of different views of parallelism and synehronisation, Tn Gret, b finite state systems Ui
s algebrae are also representable by the Fo? format,

can he reprosented by proce

5 The JACK Interface

In order Lo test our integration ideas, we have developed an user - fricadly intetluce
(Figure 3) to the different tools composing the JACICsystem. Theinterface is designed in
an object-oriented style where objects are either term specification files or Fe2 description
files. . '
This interface has heen developed using the Tel/ Tk Tanguage facilities for the CH,'.\(Amn
and manipulation of graphical widgets linked (o a interactive function calls mechanisin
through mouse and keyboard events.

The interface is basically composed by two objects area, one for term files and one for Fe?
files.
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Figure 3: The JACK general control panel.
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5.1 Term Piles Manipulation

Terins are given in a textual form with the syntax adopted by Mauro?. In JACK there

is w terin specification area management (see Figure 3), that s a st of files containing
. . . . *

term specifications. A set of commands is associated with this area:

¢ term file management commands for loading/removing a file path name from the
path nawme list, for viewing the contain of a preselected file;

“shortcut” commands allowing the user to send a specific function of a particular
teol. For example, if one wants to get the underlying automaton of a given term, a
“shorteut” operation is available in the interface, calling MavTO in a batch mode, so
not visible to the user, getting directly the result, without entering in a full session;

+ connnands starting a tool session initialised with some preselected term file: further
work is then available within that session as a normal use of the called tool, This
feature is provided for Pisal'oot, Crran, Mauro.

5.2 Pc2 Piles Manipulation

Fe? files represent essentially either a single automalon or a network of automata. When
automata are translated into the Fe2format, they can be submitted to the various tools
of the JACK system. Like for terms, JACK provides a 1'¢?2 file management area {sce
Figure 3), that has associated the following commands:

¢« Fe2 Ble management commands to load/remove a file path name from the list and
to view the contain of a preselected file;

-

shorteut commands, which are basically abstraction/reduction of the (global) au-
tomaton: a graphical panel offers to the user different choices regarding bisimula-
tion equivalences and a simplified edition area to set up abstraction criteria. When
a choice is made, then either HoGcar machinery is called if no abstraction criteria
is given, or else Mavro s called which anyway calls Hocean to perform efliciently
minimisations. Of course tool exccutions are not visible from the user, who deals
Just with the output ¥'c?2 fles;

.

commands to start tool sessions initialised with a preselected 1°C2 hile. 10is the case
for ANMC, Mavro, HOGGAR, AuTOGRAYN.

5.3 Other Integrated Graphical Interfaces

In JACK, some of the integrated tools have theic own graphical interface,

Itis the case for Avrocrari which has a menu for the selection of its functions and
manipulates graphical objects through a window hicrarchy,

ftis also the case for HoGGar which has a small interface for the selection of FC? files
and options before processing.

We have built, during the development of JACK, also a graphical interface for AMC:
this interface allows interactive session of the model checker making ist use easier. For
instance, an automatic command of sclect/load Fe? files is included, avoiding the typing
of commands to the user. ‘The same for ACTL formulae, which are saved in a history
fist after submission. The history list can be displayed and the user can select one ot its

3 : N N .
Not all the integrated tools dealing with terms currently accept this syntax. However, we shall provide
teanshation functions from the Mauto syntax to these othes syntazcs
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clement to re-apply it or to slightly modifly it and apply the new one. Other praphical
supports are aviilable for formulae files and formulae shorteuts management.

5.4  Concluding Remarks

Collowing {De Nicola et al., 1992), JACK ollers natural strategies using somne of the
differents tools it contains, The specification problem is made easier by Avrocraru.
Designing graphically networks of connunicating processes save effort and is lesy enor-
prone than writing terms by hand.

Perms are then automatically generated from specifications. Avrocraru provides also
the translation of such a graphical design into an [Fe?2 file.

The Fc? file can be submitted to Mavro, AMC, or Peroorn/Hocaan. The way tsdois
submitting the file for transition system computation, abstracton, minhmisation (o olfe
a reduced model for model checking andfor further automata analysis.

When results can be saved as I'C2 files, then graphical display can be performed within
Aurrocrari,

6 Conclusions and FFurther Work

Woe have presented the integration project for the JACK environment for the specifieation
and verification of concurrent and communicating systems specificd by process alpebra
terms and modelled by finite Labelled transition Systems.

JACK is a set of integrated tools coming {rom the research teams ot IRI-CHIUand THIUAL
The integration is realised with a graphical interface and conmunication medinm betwesn
the tools; this medivmn is based on text files describing semantical objects (avwtumaty,
networks of automata), as input/output of the tools, using the I'c2 syntax.

Several directions for future works:

-

Improve the graphical interface in order to enrich the set of funclionalities a user
can have as shorteuts, saving from ool session callings and command typings.

Enrich tool links: tool results like AMC failure path dingnostics should be dis-
playable within Avrocrari. This can be achieved by deseribing the path using
the P2 syntax. More generally, increasing as snuch as possible tool cosperation by

-

Tetting o tool interpreting results and diagnostics when possible,

Experiment on several case studies (toy or real life examples) and improve the iu-

terface on user demand.

-

Compare our environmemt with other verification environiments,
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INFINITE (ALMOST PERIODIC) WORDS, FORMAL LANGUAGES
AND DYNAMICAL SYSTEMS

Soluinon MARCUS and Gheorghe PAUN

fustitute of Mathematics of the Romanian Academy of Sciences
PO Box t - 764, 70700 Bucuresti, ROMANIA

Abstract. Motivated by recent topics in the study of dynamical systems (as well as by
topics in mathematical analysis), we investigate various modes of assoviating a language of
AL
linite words to an infinite word.

Considering the finite subwords of a given infinite word and the infinite words that can
be associated to a formal language seems to be a very natural topic. Besides the intrinsic
interest, s topic s stimulated by some tecent develspments in the study of dynamical
systems, mainly of the dynamical system (X, 1) called shift, where X is the set of states, 71
i o mapping from X into X, the states in .V being infinite words on the alphabet (0,1}, while
the mapping T associates to cach infinite word w = ayugay. .., 4; € {0,1},¢ > 1, the iufinite
word T{w) = aguya, .o (e, ay ds shilted ioto ay, ay is shifted Tnto ay, cte). A particular
unportance have the infinite words that are almost periodic: w is ahnost periodic if for any
linite subword & ol it we can portion o into subwords oy, 0y, 1y, (e, w = 1 100y ool
cqual length such that every one of the subwords 1, includes a copy of the subword «.

Let us remind that the concept of abinost periodicity was introduced, in the fickl of
miathematicab analysis, by Harald Bolir, in o series of papees published i Acte Mathematica
(vol. 45 = 47, 1925 - 1927), under the following form: a continuous function f : R — R
{where RUis the set of real numbers) is alimost periodic if for any ¢ > 0 there exists a
positive number §(¢) such that any real compact interval of fength §(z) contains a number
() with the property [[(xr -+ 1)) = f{r)] < ¢ foc any £ € R A systematic presentation of
almost periadic functions is due to J. Favard 1], The concept of alnost periodicity proved
it dtmportance i celestial mechanics, An important contribution in this field is due w .
Toeplitz [14]. For further aspeets, more related o our concern here, see K. Jacobs, [6] (p-
106 and p. 213 = 216). Particolarly, fetus call attention on the fuct that the fumous infinite
word Thue-Morse ([13, [9)) wpar = 01101001 ... (we start from 0 and we iteratively apply
the morphism A(0) = 01, A1) = 10) and the Mephisto-Waltz word [6] 001001110, .. (in the

first step we write U5 in the second step we write U1 in tse thind step we repeat what we

wrote at the preceding two steps and then we repeat again the same expression by replicing
0 with 1 and I with 0; at the n-th step we repeal what we wrote at the preceding no- |
steps, then we write the same expression by replacing 0 with 1 oand T owith 0) are abinos
periodic, For the suke of completeness and becanse we shall use this fact below, we prove
this assertion for wpar (in a simple way, dilferent from that in [G}).

Lemma 1. The Thue-Morse infinite word is ahinost periodic.

Proof. Let x be afinite subword of weag. Let i be the smallest inteper with te prapeny
that 1 is a subword of A*(0). (It exists, becanse h{0) is a prelix of APY0), henve of wpyy,
for all 1 2 1.} Write wpay as a sequence of words of length two, wpyy = o0y 0 We have
xr; € {01,10) for all § 2 1 (hence vach x; contains one oceurrence of 0}, Beeause wyy
Wt (wopag) = (e ) (e} () oL the partition of wry into the words I (e ), W (o), ...
proves the almost periodicity of the Thue-Morse word (note that the Jenpgth of cach 5" (r,)
15 20%1), S

Basically, starting from an infinite word w = wyagny .. over some given alphaber A
(ni € A for each 1= 1,2,...) we can construct a langnage {(of finike words) by "catting”
parts of w in a systematic way. "The most naloral such ways are (1) Lo take the prefises ol
w, (2) to take all (finite) subwords of w and (3) to consider a partition of w. The first two
cases lead to o unique language associated with the infinite word, in the thivd one we can
obtain infinitely many languages, corresponding Lo the infinitely many possible partitions
of an infinite word (more precisely, we can oblain a non-denumerable set of Lguapes,
including finite languages and languages which are not recarsively enumerable); morcover,
every langnage can fead to an infinite word {by concatenading its words) tu inlinitely niny
ways. .

An interesting vanant of (2) is to consider those subwords of w with & given property,
fur instance, to appear infinitely many Umes in w.

e is worth mentioning here the natural anadogy between the sun ol series, i nadben
tical analysis, and the concatenation of the words of a language. [n both cases we are fueed
with the property of conunutativity. Numerical series are comnmtalive when the terms e
of the same sign, but semiconvergent series iy have any real owmber (oo and =00 too)
as their sum (following a theorem by Ricmann), We may ask ander what conditions on £, all
infinite words obtlained by concatenation of all words in [, have i similar strocture, "Simila
structure” could mean, for example, periodicity or almost periodicity, or the propeity thit
each finite subword occurs infinitely many Gmes, ctes At the lmit, we may ol umlder what
cotulitions dillerent ordering in concatenation may keep invariant the indinite word obbained.
We may also ask what could be bere the corresponding theorem of that due o Rivmann fo
semiconvergent numerical series. We do not consider here such questions, but we investipate
the first two ways mentioved abiove of wsociating o language oan inlinite wond,

Fiest, some notions and notation. As usual, A7 i the frec monoid gencrated by A, L] s
the length of 2, A is the crnpy word and A = A0 = {0} A Lnguage £L0C A b valled thin
([10]) i for cach n 2 0 we have card{r & L] lef = 0} <1 (L containg abl nwost ome wiond
uf c;xch l(:ngth). '['hu sel ()[ p!’c“:(c:s (*iHl!\V(N'll)‘. n':ipl:r(ivx'lyl Mt“‘l.!l':s’) of 1Y \vnuf r || l‘v!n.(-'«‘
Ly Pref(r) (Sub{z), Suf{r), respectively); the same notations Pref amd Sub ace sed Do
finite prefixes and finite subwords of infinite words and are extended in the obvions wiy to
languages.

Given an alphabet A, we denote by A% the set of all infinite words over A Then, fin
wE AT w =gy, a € AL 0= 1,2, 00, we denote

sfw) = a, a0, 120

(the shift of lenght 1 in w).
We denote by FLL PSS L tie families of languages of e forms Pre f(w), Sub(w)

tively, for w an infinite word.
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