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Abstract: Different configurations for the Weather Research and Forecasting (WRF) model were 

evaluated to improve wind and temperature fields predictions in the Northern Sahara and the 

Mediterranean basin. Eight setups, associated with different combinations of the surface layer 

physical parameters, the land surface model, and the grid nudging parameters, were considered. 

Numerical simulations covered the entire month of November 2017. Model results were compared 

with surface data from meteorological stations. The introduction of the grid nudging parameters 

leads to a general improvement of the modeled 10 m wind speed and 2 m temperature. In particular, 

nudging of wind speed parameter inside the planetary boundary layer (PBL) provides the most 

remarkable differences. In contrast, the nudging of temperature and relative humidity parameters 

inside the PBL may be switched off to reduce computational time and data storage. Furthermore, it 

was shown that the prediction of the 10 m wind speed and 2 m temperature is quite sensitive to the 

choice of the surface layer scheme and the land surface model. This paper provides useful 

suggestions to improve the setup of the WRF model in the Northern Sahara and the Mediterranean 

basin. These results are also relevant for topics related with the emission of mineral dust and sea 

spray within the Mediterranean region. 

Keywords: WRF model; nudging technique; natural aerosols emission; mineral dust; sea spray 

 

1. Introduction 

The proper assessment of wind and temperature near the Earth’s surface (over sea and ground) 

is very important for many applications, including human comfort, wind energy, wave modeling, 

coastal meteorology, cyclone forecasting, and aerosols studies. In particular, the latter topic is 

important for a wide range of fields, since aerosols are a key component of the atmosphere, playing 



Atmosphere 2020, 11, 259 2 of 22 

 

a pivotal role from global to local scales in climatology [1], oceanic biogeochemical cycles [2], cloud 

microphysics [3], cyclone development [4], air quality [5], visibility [6], and human health [7], to cite 

just a few examples. 

Aerosol particles are derived from both continental and oceanic sources, and they can be of 

either natural or anthropogenic origin. They are mainly emitted by fossil fuel and biomass 

combustion; by deserts and seas, mainly during windy conditions; and occasionally by volcano 

eruptions. Despite huge uncertainties [8], sea spray is the largest single source of aerosol mass 

injected into the atmosphere at the global level, followed by desert dust [9]. The aerosol transport is 

strongly dependent on the meteorological conditions, in particular wind speed and direction.  

It is important to point out that the simulation of the emission and transport of aerosol particles 

depends crucially on the accuracy of the simulated meteorology and on the precision of the surface 

layer (SL) schemes over land and ocean. Desert dust particles are produced by wind erosion and soil 

resuspension; sea spray aerosol is produced by a complex interaction between wind and waves. From 

the modeling point of view, the aeolian erosion in semi-arid regions occurs when a threshold value 

of the surface friction velocity is reached; this value depends on the soil moisture and the type of 

surface layer scheme that is implemented in numerical models [10, 11], while for sea spray, a critical 

value of about 4 m s−1, at which waves break to dissipate the excess of energy, may be considered 

[12]. The variability of sea spray production is mainly attributed to wind, but sea surface temperature 

also plays a key role as demonstrated using comprehensive satellite data [13].  

Despite the efforts of the scientific community, numerical modeling of desert dust and sea spray 

transport is still challenging due to the high uncertainties related to emission features, and to the 

simulation of ambient conditions, mainly wind speed, which is one of the main drivers of both 

processes (e.g., [14, 15]). 

From the point of view of meteorological modeling, coupling land surface models (LSMs) with 

SL physics parameterizations is fundamental to providing an accurate characterization of surface 

fluxes, which depend crucially on land and water surface features.  

Building improved forecast of wind speed and temperature fields has been the subject of a 

number of previous works [16] concerning different geographical areas and motivations—e.g., 

agrometeorological predictions and damage warning systems. 

This paper aims at analyzing the capability of the Weather Research and Forecasting (WRF; 

http://www2.mmm.ucar.edu/wrf/users/) model to reproduce the wind speed and temperature fields 

in a numerical domain covering the Northern Sahara Desert and the Mediterranean basin. The 

perspective is to improve the simulation of the emissions of mineral dust and sea spray in the 

framework of the WRF–Chem model [17] in the context of regional earth system modeling [18, 19].  

In the present paper, among the large number of LSMs, SL modules, and (grid or spectral) 

analysis nudging strategies that are actually available within the WRF numerical weather prediction 

system, we search for the configuration that provides the optimal meteorological forecasts for wind 

speed and temperature. A traditional approach to consider for improving model performance is four-

dimensional data assimilation (FDDA) or nudging technique. The dynamical downscaling is based 

on a Newtonian relaxation method that preserves the features of the large-scale gridded analysis 

field. In this context, an important part of this work consists in evaluating the FDDA grid-nudging 

for horizontal wind speed, temperature, and relative humidity. Tran et al. [20] have performed 

nudging sensitivity tests with both observational and analysis nudging recommending that 

observational nudging be applied to surface temperature and wind to improve WRF performance in 

simulating the inversion layer structure. 

Comparison of simulations with experimental data will indicate the most suitable configuration 

for the WRF model in the above-mentioned numerical domain. It is important to mention that 

alternative approaches to nudging may be considered such as the statistical postprocessing method 

named generalized linear model and parameter correction [16].  

Saharan dust outbreaks over the Mediterranean basin have been mainly observed during the 

spring and autumn months [21]. Generally, in October and November, the intensity of the dust 

episodes over the western and central Mediterranean [22] is higher than in the rest of the year. For 
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this reason, in order to evaluate the model response, surface observations of hourly wind speed and 

temperature from 1 to 30 November 2017 at 23 weather stations were used. This period was chosen 

because it was mainly characterized by high wind conditions in the area of interest and data 

availability. Data were provided by the University of Toulon and by the University of Wyoming 

(http://weather.uwyo.edu/index.shtml).  

The paper is organized as follows: Section 2 describes materials and methods utilized for this 

study, including the description of the numerical setup and of the used dataset; in Section 3, results 

and discussions are presented; finally, in Section 4, the conclusions of the study are drawn. 

2. Materials and Methods 

2.1. Model Setup 

The simulation domain (Figure 1) covers the Northern Sahara and Mediterranean basin with 250 

points in the West–East direction and 150 points in the South–North direction. The horizontal grid 

spacing is 20 km. Simulations are made for the entire month of November 2017, starting at 0000 UTC 

1 November and ending at 2300 UTC 30 November. 

Initial and boundary conditions of temperature, horizontal wind, and relative humidity are 

downloaded from NCAR/NCEP Final Analysis from Global Forecast System (FNL from GFS– 

ds083.2), which are produced every 6 h with 1° resolution 

(http://www2.mmm.ucar.edu/wrf/users/download/free_data.html). 

Eight different setups were considered: (i) the first four reflecting different combinations of land 

use categories and physical parameters describing the land surface model and the surface layer 

scheme; and (ii) the last four representing different arrangements of the nudging parameters. 

2.1.1. Preprocessing WPS 

The Weather Research and Forecasting model version 3.9.1.1 and the corresponding version of 

the WRF Preprocessing System (WPS) are used in the present research. The function of the WPS is to 

define the WRF grid, generate terrestrial information for WRF, and incorporate reanalyses or 

forecasts from another model (large-scale forcings) into the WRF grid system. The resulting time-

dependent (analysis) fields consist of 3D wind, potential temperature, and water vapor, and a 

number of additional 2D surface fields.  
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Figure 1. The model domain and the network of meteorological stations in the Northern Sahara and the 

Mediterranean basin.Although some new land cover classifications have been developed and 

incorporated in the WRF model [23], by default, the WPS/geogrid program interpolates land use 

categories from Moderate Resolution Imaging Spectroradiometer (MODIS) IGBP 21-category data 

[24, 25]. It is possible anyway to select an alternative set of land use categories based on the U.S. 

Geological Survey (USGS) land-cover classification. It is important to remark that the MODIS-based 

data contain 21 categories of land use, which are not a subset of the 24 USGS categories [26]. 

2.1.2. Land Use Categories and Physical Parameterizations 

As shown in Table 1, the first four runs reflect different combinations of land use categories and 

physical parameters for: (i) the WPS preprocessor (MODIS-21 or USGS-24 land use); (ii) the surface-

layer scheme (sf_sfclay_physics); and (iii) the Land-Surface Model (sf_surface_physics). The Mellor–

Yamada–Nakanishi-Niino (MYNN-level 2.5) turbulent kinetic energy parameterization 

(bl_pbl_physics) is used to describe the planetary boundary layer (PBL) [27] for all configurations. 

The MY and MY1 runs (Table 1) differ in the land-use datasets; this will allow investigating the 

sensitivity of the model with respect to the WPS land use categories. The NOAH and RU runs (Table 

1) differ in the Land-Surface Model: two schemes are tested—the Noah LSM with Multi-

Parameterization options (Noah-MP) [28,29] and the Rapid Update Cycle (RUC) LSM [26,30]. The 

Noah-MP LSM provides multiple options to parameterize the different processes determining the 

interaction between land and atmosphere, including a layer and a specific subgrid parameter 

describing the vegetation canopy and the vegetated/bare ground patterns to account for the influence 

of vegetation on the radiation transfer and the surface and energy budget [29]. The RUC LSM solves 

the energy and moisture budgets with 9 layers for soil, snow cover, and vegetation [26].  

The NOAH/RU and MY/MY1 runs differ in the surface layer physics parameterizations. Two 

surface layer schemes are tested, the revised MM5 model [31] and the MYNN-2.5 model [27]. These 

two schemes are employed to determine friction velocity and other exchange coefficients for the 

calculation of surface heat and moisture fluxes in the selected LSMs. These fluxes provide a lower 

boundary condition for the vertical transport in the PBL that is parameterized with the Mellor–

Yamada–Nakanishi–Niino (MYNN) level 2.5 model [27]. 

Besides the PBL parameterization, the following physical options are common in all 

configurations. The Rapid Radiative Transfer Model (RRTMG) for both shortwave (ra_sw_physics = 

4) and longwave (ra_lw_physics = 4) radiation is used [32], and the two-moment cloud microphysics 

scheme of Morrison et al. [33] is used (mp_physics = 10) for the description of the microphysics 

processes. Finally, since the grid spacing is greater than 10 km, the Kain–Fritsch scheme [34] is 

selected (cu_physics = 1) for the cumulus parameterization.  

Table 1. Physical parameterization employed in the first four setups of WRF runs. 

  sf_sfclay_physics sf_surface_physics 

Run WPS Land use Option number Model Option number Model 

MY MODIS 5 MYNN  3 RUC 

MY1 USGS 5 MYNN  3 RUC 

NOAH MODIS 1 MM5 similarity  4 Noah-MP 

RU MODIS 1 MM5 similarity  3 RUC 

2.1.3. Nudging 

The second set of four simulations consists in applying the analysis grid-nudging technique for 

horizontal wind speed, temperature, and relative humidity [35]. There is an alternative nudging 

strategy based on spectral technique, mainly valid for the upper troposphere [36]. The dynamical 

downscaling is based on a solution that retains the large-scale features (from the large-scale forcing), 

while the small-scale features are developed by the model. We will examine grid nudging in the 

downscaling of NCEP/NCAR data with the WRF model. The influence of nudging on the predicted 
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variables is investigated by gradually introducing nudging parameters in the MY1 configuration, 

which has been chosen as the base model arrangement for testing the different nudging strategies. 

Table 2 illustrates the different combinations of analysis grid-nudging. The different 

combinations consist in varying the variables that are nudged in the first ten levels or in the PBL, 

while nudging is always active above it. The variables are (i) horizontal wind speed (u, v); (ii) 

temperature (T), and relative humidity (Q). This may be realized switching on or off the following 

WRF namelist variables: if_zfac_uv, if_zfac_t, if_zfac_q, if_nopbl_nudging_uv, if_nopbl_nudging_t, 

and if_nopbl_nudging_q.  

Namely, the configuration N0 is equivalent to the default nudging configuration. N1 corresponds to 

no nudging in the PBL for u, v, T, and Q. For N2, only horizontal winds are nudged at all vertical 

levels, while no nudging is conducted for T and Q within the PBL. Finally, N3 corresponds to a total 

nudging. 

Table 2. Different arrangements of nudging parameters for (i) horizontal wind speed (u, v); (ii) 

temperature (T), and relative humidity (Q). 

Runs (u, v)  (T, Q) 

N0 No nudging in the first ten levels No nudging in the PBL 

N1 No nudging in the PBL No nudging in the PBL 

N2 Nudging in the PBL No nudging in the PBL 

N3 Nudging in the PBL Nudging in the PBL 

PBL—planetary boundary layer. 

2.2. Global Surface Observational Dataset 

Surface observations of hourly wind speed and temperature from 1 to 30 November 2017 at 23 

meteorological stations were used. Figure 1 shows the location of the meteorological aviation 

reporting (METAR) (excluding FRIO) stations in the simulated domain with acronyms by the 

International Civil Aviation Organization, while the coordinates (lat, lon, elev) are reported in Table 

3. Source areas of Saharan dust located between Algeria and Tunisia contribute to dust outbreak 

episodes over the Mediterranean basin [37–39]. Therefore, 13 of the 19 weather stations in Northern 

Africa considered in the present study are located between Algeria and Tunisia (Table 3).  

Apart from the data of the FRIO meteorological station, which were provided by the 

Mediterranean Institute of Oceanography of the University of Toulon (https://www.mio.univ-

amu.fr/?lang=en), all the measurement data were obtained from the University of Wyoming web site 

(http://weather.uwyo.edu/index.shtml). These weather stations utilize the World Meteorological 

Organization-approved METAR format, which is a standard common format for reporting weather 

information for aviation meteorology every 30 min or 1 h. 

2.3. The Statistical Method for the Model Performance Evaluation 

The model performance evaluation [40] of WRF was assessed comparing the simulated 10 m 

wind speed and 2 m temperature with observational data. A set of four statistical indexes, i.e., the 

mean bias (MB), the mean absolute error (MAE), the root mean square error (RMSE), and the 

correlation coefficient (COR), were estimated for simulated and observational values according to the 

equations in Table 1A. In addition, for selected stations, a direct comparison between time series 

model outputs and observational data is shown. Finally, to make a synthesis of all results, the Taylor 

diagrams [41] are depicted. 

Table 3. Acronym and position (lat, lon, elev) of the meteorological aviation reporting (METAR) 

stations. 

Stations in the Northern 

Sahara 

Country ICAO station 

name 

Latitude Longitude Altitude 

(m) 

Bou Saada Algeria DAAD 35.33N 4.20E 461 
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Dar El Beida Houari Algeria DAAG 36.72N 3.25E 25 

Constantine El Bey Algeria DABC 36.28N 6.62E 694 

Tilrempt Hassi Algeria DAFH 32.93N 3.32E 774 

Tiaret Algeria DAOB 35.25N 1.43E 1127 

Bechar Ouakda Algeria DAOR 31.62N 2.23W 773 

Adrar Touat Algeria DAUA 27.88N 0.28W 263 

El Golea Algeria DAUE 30.57N 2.87E 397 

Touggourt Sidi Mahd Algeria DAUK 33.12N 6.13E 85 

Laghouat Algeria DAUL 33.77N 2.93E 765 

Habib Bourguiba Tunisia DTMB 35.77N 10.75E 2 

Tunis Carthage Tunisia DTTA 36.83N 10.23E 4 

Gabes Tunisia DTTG 33.88N 10.10E 5 

Tan-Tan Civ Mil Morocco GMAT 28.43N 11.15W 200 

Er Rachidia Rma Morocco GMFK 31.95N 4.40W 1045 

Ouarzazate Morocco GMMZ 30.92N 6.90W 1140 

Alexandria  Egypt HEAX 31.20N 29.95E 7 

Mersa Matruh Egypt HEMM 31.33N 27.22E 30 

Tripoli Mitiga Libya HLLM 32.89N 13.28E 11 

Stations in the 

Mediterranean basin 
     

Pantelleria Italy LICG 36.82N 11.97E 191 

Decimomannu Italy LIED 39.35N 8.97E 28 

Luqa Malta LMML 38.85N 14.48E 91 

Frioul France FRIO 43.26N 5.29E 40 

ICAO—International Civil Aviation Organization. 

3. Results and Discussion 

3.1. Analysis of the Model Output for the Northern Sahara 

First, the results are presented as overall statistics of all the meteorological stations located in the 

Northern Sahara and listed in Table 3. Then, the three METAR stations that may be considered as the 

most representative of the dust area sources are discussed in detail. 

3.1.1. Overall Statistics 

In Table 4, we have reported the overall statistics calculated considering the 2 m temperature for 

the whole set of Sahara METAR stations. In terms of MB, a remarkable distinction is evident between 

runs with and without nudging. The positive mean biases (up to 0.88 K) indicate an overestimation 

of the predicted 2 m temperature for the simulations with no nudging (MY, NOAH, RU, and MY1), 

whereas the negative mean biases (up to 0.47 K) identify an underestimation of the predicted surface 

temperature for the simulations with nudging (N0, N1, N2, and N3). In terms of MAE and COR, there 

are no substantial differences between the simulations, since the values are in the ranges [2.12–2.37] 

K and [0.86–0.89], respectively, although the nudging simulations appear more skillful. The most 

remarkable difference is evident when considering the RMSE, for which the simulations with 

nudging (N0-N3) show lower values, with the lowest RSME value of 8.51 K in N0. 

Table 4. Summary of the overall statistics between predicted and measured 2 m temperature at 

meteorological aviation reporting (METAR) stations in the Northern Sahara. 

Runs MB (K) MAE (K) RMSE (K) COR 

MY 0.11 2.33 9.80 0.87 

NOAH 0.88 2.28 9.70 0.86 
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RU 0.52 2.37 10.32 0.86 

MY1 0.14 2.33 9.81 0.87 

N0 −0.27 2.12 8.51 0.89 

N1 −0.32 2.14 8.64 0.89 

N2 −0.46 2.27 9.36 0.89 

N3 −0.47 2.24 9.31 0.89 

MB – mean bias; MAE – mean absolute error; RMSE – root mean squared error; COR – correlation coefficient. 

Other important considerations can be drawn: (i) the comparison between the MY and MY1 

temperature statistics (Table 4) suggests no substantial differences by switching from MODIS to USGS 

land use dataset for WPS preprocessing; (ii) NOAH (sf_surface_physics = 4) is slightly better compared 

to RUC (sf_surface_physics = 3) (lower RMSE), but has higher MB; (iii) as surface layer physics, the 

MYNN [27] similarity scheme (MY) performs slightly better than the MM5 similarity [31] scheme (RU) 

in predicting 2 m temperature. The overall statistical analysis of the model runs shows that the nudged 

run (N0) is the best model configuration for predicting surface temperature in the Northern Sahara, 

having the highest COR (0.89) and the lowest temperature MAE (2.12 K) and RMSE (8.51 K). 

The overall statistical analysis for the 10 m wind speed is depicted in Table 5. One may identify 

a larger variation (between min and max) of the statistical parameters compared to the temperature. 

Again, in terms of MB, a little underestimation of the predicted surface wind speed is evident for the 

simulations with nudging (i.e., N0, N1, N2, and N3) while the greatest overestimation occurs for the 

NOAH run with MB = 0.92 m s−1. The better performance of the runs with nudging is apparent when 

considering MAE and RMSE and the correlation. 

Table 5. Summary of the statistics between predicted and measured 10 m wind speed at 

meteorological aviation reporting (METAR) stations in the Northern Sahara.  

Runs MB (m s−1) MAE (m s−1) RMSE (m s−1) COR 

MY -0.18 1.58 4.82 0.51 

NOAH 0.92 1.92 7.02 0.52 

RU -0.06 1.60 4.99 0.48 

MY1 0.12 1.65 5.27 0.51 

N0 -0.03 1.51 4.45 0.59 

N1 -0.08 1.46 4.23 0.61 

N2 -0.46 1.42 3.94 0.64 

N3 -0.51 1.46 4.08 0.64 

MB—mean bias; MAE—mean absolute error; RMSE—root mean squared error; COR—correlation coefficient. 

Like for Table 4, similar considerations may be drawn analyzing Table 5: (i) little differences are 

observed between the MY and MY1 runs for all statistical indexes, with better results for the MY case 

(MODIS IGBP 21-category); (ii) NOAH run gives the overall worst results; (iii) the predicted wind 

speeds, from the different model runs with nudging, have higher correlations with the observations 

compared to the model setups with no nudging, with COR values in the range of 0.59–0.64 (down to 

0.48 for the models without nudging). The highest COR (0.64) and the lowest wind speed MAE (1.42 

m s−1) and RMSE (3.94 m s−1) suggest that the nudged run with N2-setup is the recommended 

configuration for predicting surface wind speed in the Northern Sahara.  

3.1.2. Time Series and Statistical Analysis on Selected Stations 

Further insights are given analyzing the time series and statistics of 2 m temperature and 10 m 

wind speed in three METAR stations that may be considered as representative of the dust area 

sources. The selected METAR stations (DTMB, DAUK, and DAOB) are located in the northern region 

of Sahara Desert (Figure 1 and Table 3), between the Atlas Mountains (DAOB) and the coast of 

Tunisia (DTMB), while DAUK is located in an internal desert area of Algeria.  
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Figure 2 shows the time series of the predicted 2 m temperature (red continuous line) compared 

with the respective measurements (black circles).The time series span the whole month of November 

2017, and each panel refers to each configuration as described in the legend.  

Since DTMB is a coastal station, it may be subject to local circulation systems not properly resolved 

by a 20 km grid. The daily–night temperature cycle is well reproduced by all simulations with the 

best results for the nudged runs. In particular, the run N3 gives the best statistics in this station as 

can be seen in Table 2A (Appendix A). 

These results are confirmed by analyzing the 10 m wind speed in Figure 3. It is evident how the 

introduction of the nudging produces a better modulation of the 10 m wind speed (in particular N3), 

especially for the maximum values, as confirmed by statistical indexes reported in Table 3A 

(Appendix A). 

Figure 4 shows the 2 m temperature comparison at DAUK station in an internal region of Algeria 

(Table 3). Again, the day/night temperature oscillations are well reproduced, especially by the 

nudged runs, and the best results are obtained for N3 as shown in Table 4A (Appendix A). 

The 10 m wind speed at DAUK is shown in Figure 5. In the second part of the month, the measured 

data present many periods with constant, low wind speed (at around 2 m s−1), indicating anticyclonic 

conditions with weak pressure gradients. As depicted in Table 5A (Appendix A), the best results are 

for the nudging configuration N2.  

 

Figure 2. Time series of temperature (T) observed at DTMB meteorological station versus T predicted 

by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 
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Figure 3. Time series of wind speed observed at DTMB meteorological station versus wind speed 

predicted by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 

 

Figure 4. Time series of temperature (T) observed at DAUK meteorological station versus T predicted 

by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 
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Figure 5. Time series of wind speed observed at DAUK meteorological station versus wind speed 

predicted by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), N3 (h) simulations. 

 

Figure 6. Time series of temperature (T) observed at DAOB meteorological station versus T predicted 

by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), N3 (h) simulations. 
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Figure 7. Time series of wind speed observed at DAOB meteorological station versus wind speed 

predicted by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 

Finally, in Figures 6 and 7, we have reported the comparison of temperature and wind speed for 

DAOB station, which is located in the Atlas Mountains at 1127 m above sea level (Table 3). Diurnal 

excursions are very high since measured temperatures reach 0 °C at night and 25 °C during the day 

(Figure 6). This behavior is only reproduced by the nudged runs, with the best statistical results again 

from N2 configurations (Table 6A Appendix A). The improvement is remarkable for both runs N2 

and N3 (Figure 6).  

The wind speed statistical analysis shown in Table 7A in Appendix A and in Figure 7 again confirms 

N2 as the best configuration. It is important to point out in Figure 7 that during the first week of the 

month, all simulations underestimate the wind speed while the comparison improves in the rest of 

the month. 

3.2. Analysis of the Model Output for the Mediterranean Basin  

First, the results are presented as overall statistics over all the meteorological stations located in 

the Mediterranean basin and listed in Table 3. Then, the results for each station in the Mediterranean 

basin are discussed in detail. 

3.2.1. Overall Statistics 

In Table 6 we have reported the overall statistics calculated considering the 2 m temperature 

measured at the three METAR stations (LICG, LIED and LMML) and the University of Toulon station 

denoted as FRIO in Table 3. 

The analysis of Table 6 shows that the nudged runs (N0-N3) provide the overall best results for all 

statistical indexes. It is evident that the gradual inclusion of nudging improves the model 

performances. The MAE is reduced from 1.82 K of the MY1 run and to 1.54 K of the N3 run; 

analogously, the RMSE changes from 5.20 K (MY1) to 3.85 K (N3); and finally, the correlation 

coefficient increases from 82% (MY1) to 89% (N3). 
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Table 6. Summary of the statistics between predicted and measured 2 m temperature at 

meteorological stations in the Mediterranean basin.  

Runs MB (K) MAE (K) RMSE (K) COR 

MY 0.68 1.76 5.01 0.82 

NOAH 1.05 1.72 5.52 0.82 

RU 0.89 1.83 5.42 0.81 

MY1 0.74 1.82 5.20 0.82 

N0 0.68 1.74 4.74 0.85 

N1 0.72 1.73 4.74 0.84 

N2 0.52 1.67 4.72 0.84 

N3 0.62 1.54 3.85 0.89 

MB—mean bias; MAE—mean absolute error; RMSE—root mean squared error; COR—correlation coefficient. 

Other considerations can be drawn: (i) comparisons between the MY and MY1 temperature statistics 

show no substantial differences when switching from MODIS to USGS land use WPS categories; (ii) 

the two surface layer schemes—that is the MM5 similarity scheme (RU) and the MYNN scheme 

(MY)—perform quite similarly in predicting 2 m temperature with the employed model set up with 

the MAE and RMSE of the RU case slightly higher than MY. 

A remarkable conclusion is that the gradual introduction of nudging parameters from N0 to N3 

run leads to lower-temperature MAE and RMSE compared to the reference case with no nudging 

(i.e., MY1) by 4.4–15.4% and 8.8–26%, respectively. Thus, N3 is the best model setup for predicting 2 

m temperature in the Mediterranean basin, having the highest COR (0.89) and the lowest MAE (1.54 

K) and RMSE (3.85 K). 

Considering the overall statistics for the 10 m wind speed (Table 7), similar considerations may 

be drawn, as it is still evident that the inclusion of nudging improves in a robust way all the statistical 

indices. In particular, MAE is reduced from 1.82 m s−1 of the MY1 run to 1.61 m s−1 of the N1 run; 

analogously, RMSE passes from 6.18 m s−1 (MY1) to 4.78 m s−1 (N1); finally, the correlation coefficient 

increases from 0.70 (MY1) to 0.78 (N1). 

Table 7. Summary of the statistics between predicted and measured 10 m wind speed at 

meteorological stations in the Mediterranean basin.  

Runs MB (m s−1) MAE (m s−1) RMSE (m s−1) COR 

MY −0.01 1.79 6.31 0.71 

NOAH 0.68 2.02 7.32 0.68 

RU 0.72 2.03 7.79 0.68 

MY1 0.12 1.82 6.18 0.70 

N0 −0.13 1.59 4.79 0.77 

N1 −0.04 1.61 4.78 0.77 

N2 0.00 1.66 5.02 0.78 

N3 0.05 1.65 4.93 0.78 

MB—mean bias; MAE—mean absolute error; RMSE—root mean squared error; COR—correlation coefficient. 

No substantial differences are observed comparing the 10 m wind statistics between the NOAH 

and RU case and between the MY and MY1 case (Table 7). Therefore, employing either of the two 

LSMs (i.e., Noah-MP and RUC) and land use datasets (i.e., USGS and MODIS) is almost the same for 

predicting 10 m wind speed in the Mediterranean basin considering the above-mentioned model 

configurations. 

As a surface layer scheme, the MYNN scheme performs better than the MM5 similarity scheme 

in predicting 10 m wind speed with the selected model set up, with the MAE and RMSE of the MY 

run lower than the RU case by 0.24 and 1.48 m s−1, respectively. 
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N0 and N1 are the best model setups for predicting 10 m wind speed in the Mediterranean basin, 

having the lowest wind speed MAE (up to 1.61 m s−1) and RMSE (up to 4.79 m s−1). Introducing the 

nudging of horizontal wind speed in the PBL (i.e., N2 run) and total nudging (i.e., N3 run) leads to 

no substantial changes, with wind speed MAE and RMSE higher than the N0 and N1 runs by up to 

0.07 and 0.24 m s−1.  

The predicted temperature and wind speed from the different model runs with nudging have 

slightly higher correlations with the observations compared to the ones with no nudging, with COR 

values in the range of 0.83–0.89 for the runs with nudging versus 0.77–0.82 for the ones with no 

nudging. Therefore, introducing nudging parameters leads to an overall improvement of the 

predicted surface temperature and wind speed in the Mediterranean basin for the model 

configurations that have been tested here. 

3.2.2. Time Series and Statistical Analysis on Selected Stations 

Further insights may be obtained analyzing the time-series and the statistics of two specific 

surface stations in the Mediterranean basin. The first station that is considered is localized at Luqa 

Malta (METAR code LMML). 

Figure 8 shows the temporal evolution of measured and modeled 2 m temperature. A reduced 

night/day variation typical of maritime conditions is apparent. This behavior is reproduced pretty 

well by all configurations, especially by the nudged run N3, and well represented in the statistical 

analysis depicted at Table 8A in Appendix A. Some cold outbreaks are not reproduced in any 

configurations; this is probably a consequence of the coarse resolution that does not allow one to 

properly resolve the small island. 

The wind speed is shown in Figure 9. Maximum values are much better reproduced by nudged runs, 

as confirmed by statistical analysis in Table 9A in Appendix A. 

The other station analyzed in this Section is placed at the Island of Frioul, few kilometers offshore 

Marseille in southern France. Data are provided by the Mediterranean Institute of Oceanography of 

the University of Toulon.  

 

Figure 8. Time series of temperature (T) observed at LMML meteorological station versus T predicted 

by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 
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Figure 9. Time series of wind speed observed at LMML meteorological station versus wind speed 

predicted by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 

 

 

Figure 10. Time series of temperature (T) observed at FRIO meteorological station versus T predicted 

by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 
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Figure 11. Time series of wind speed observed at FRIO meteorological station versus wind speed 

predicted by MY (a), MY1 (b), NOAH (c), RU (d), N0 (e), N1 (f), N2 (g), and N3 (h) simulations. 

Time evolution of 2 m temperature (Figure 10) is very well reproduced by all configurations except 

for the third week of the month, where only the N2 run is able to reproduce the day/night variation, 

as confirmed by the statistical analysis reported in Table 10A in Appendix A, RMSE in particular.This 

result supports the idea that the best results from grid-nudging are obtained when (T, Q) are not 

nudged within the PBL [35, 42, 43], as it is the case with the N2 run. 

The wind speed is shown in Figure 11. It is remarkable that in November 2017, at least five events 

occurred with wind speed greater than 24 m s−1, with a peak of 31 m s−1 in the second week. All the 

configurations provide good results, but it does not seem that the nudged runs are able to improve 

the reproduction of the peaks. Under these severe wind conditions (112 km h−1), in the WRF model, 

the isftcflx option should be activated, which provides alternative surface-layer options for high-

wind ocean surface, as discussed by Green and Zhang [44]. Table 11A in Appendix A shows anyway 

that, like in many other cases, the N3 run produced the best statistics for the whole month. 

3.3. Global Statistics 

To make a synthesis of the results, we have depicted the Taylor diagrams [41] for wind speed (Figure 

12a) and temperature (Figure 12b). These diagrams have been calculated considering the whole 

experimental dataset and may be considered as a synthesis of the global results. Figure 12a provides 

a summary of the relative skill of different model setups in the simulation of the spatial pattern of 

mean wind speed. The azimuthal angle represents the Pearson correlation coefficient, for which it is 

evident that the configurations (with nudging) N2 and N3 give the best results. The same 

considerations may be reported for the centered RMSE (distance from blue lines). 

Figure 12b shows a summary of the global temperature statistics. It is evident that in this case, 

the Taylor diagram reports a minor scatter between all model configurations with the best results for 

the N0 setup, confirming the considerations reported above. 
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Figure 12. Taylor diagrams for (a) wind speed and (b) temperature for the whole dataset. The dashed 

line represents correlation, the radial distance (black line) from the origin represents the normalized 

standard deviation, and the semicircles (blue line) centered at the observed (Obs) marker represent 

the centered root mean square error. 

4. Conclusions 

This paper aims at analyzing the optimal configuration for the WRF model in reproducing the 

wind speed and temperature fields in a numerical domain that includes the Northern Sahara and the 

Mediterranean basin. This is important for the assessment of the emissions of mineral dust and sea 

spray in the Mediterranean region. 

A series of simulations for the whole month of November 2017 was performed with the WRF 

model, version 3.9.1. Eight different setups were considered, the first four reflecting different 

combinations of the physical parameters describing the surface layer scheme and the land surface 

model, and the last four representing different arrangements of the nudging parameters. The model 

results were compared with the near-surface temperature and wind speed data downloaded from 

the global surface observational dataset available at the University of Wyoming web portal, and with 

an additional dataset provided by the Mediterranean Institute of Oceanography of the University of 

Toulon. In this way, the resulting distribution of meteorological stations covers the Northern Sahara 

and the Mediterranean basin. The results of the comparison are presented both in terms of overall 

statistics and for some selected stations.  

The overall statistics for surface wind speed reveal that (i) the introduction of analysis grid-

nudging produces a consistent improvement for all statistical indices that have been considered; (ii) 

nudging of horizontal wind speed (u, v) inside the planetary boundary layer (PBL) provides sensible 

differences, with the best overall results (iii) for the N2 run (nudging only for wind and in the PBL). 

The overall statistics analysis for 2 m temperature shows only a slight improvement of the nudged 

runs and that the nudging or no-nudging strategies of temperature (T) and relative humidity (Q) 

inside the PBL do not provide significant differences. 

When considering selected stations, three in the Sahara and two in the Mediterranean basin, we 

have either N2 or N3 as best run for near-surface temperature and wind. This means that it is 

convenient to nudge the horizontal wind inside the PBL, but not the temperature. This study reveals 

and confirms that the introduction of analysis grid-nudging produces better results, especially for the 

surface wind speed. Another important conclusion is that the nudging of T and Q parameters inside 

the PBL should be switched off in order to avoid direct nudging at the levels that are close to the 

surface, where the analysis biases and errors are largest. 

Furthermore, we would like to remark that the analysis grid-nudging is the optimal option for 

studies that involve the transport of natural aerosols. In this context, follow-up papers are planned, 
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which will be focalized on (i) dust transport from the Sahara to the Mediterranean region and (ii) the 

effects of sea-spray aerosols on the dynamics of Medicanes. 
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Appendix A 

Table 1A. Statistical indexes formulas for predicted (pred) and observed (obs) values.  

�� =
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MB—mean bias; MAE—mean absolute error; RMSE—root mean square error; COR—correlation coefficient. 

Table 2A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface temperature (Temp) at Habib Bourguiba (Tunisia); meteorological aviation 

reporting (METAR) station code = DTMB. 

Temp-DTMB MAE (K) RMSE (K) COR 

RU 1.90 6.21 0.86 

NO 1.62 4.64 0.86 

MY 1.84 5.48 0.87 

MY1 1.90 5.78 0.87 

N0 1.83 4.96 0.92 

N1 1.82 4.92 0.91 

N2 2.03 5.87 0.91 

N3 1.39 3.24 0.91 

Table 3A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface wind at Habib Bourguiba (Tunisia); meteorological aviation reporting (METAR) 

station code = DTMB. 

wind-DTMB MAE (m s−1) RMSE (m s−1) COR 

RU 1.88 8.03 0.43 

NO 1.88 7.38 0.54 

MY 1.73 6.41 0.58 

MY1 1.73 6.48 0.57 
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N0 1.35 4.04 0.77 

N1 1.32 3.96 0.77 

N2 1.29 3.73 0.79 

N3 1.27 3.63 0.78 

Table 4A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface temperature (Temp) at Touggourt Sidi Mahd (Algeria); meteorological aviation 

reporting (METAR) station code = DAUK. 

Temp-DAUK MAE (K) RMSE (K) COR 

RU 2.14 7.72 0.93 

NO 2.47 9.16 0.92 

MY 1.82 5.96 0.93 

MY1 1.88 6.26 0.93 

N0 1.37 3.50 0.95 

N1 1.35 3.54 0.95 

N2 1.51 4.02 0.95 

N3 1.32 3.22 0.94 

Table 5A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface wind at Touggourt Sidi Mahd (Algeria); meteorological aviation reporting 

(METAR) station code = DAUK. 

wind-DAUK MAE (m s−1) RMSE (m s−1) COR 

RU 1.27 2.77 0.60 

NO 1.96 7.11 0.64 

MY 1.30 2.82 0.62 

MY1 1.32 2.90 0.64 

N0 1.08 1.88 0.72 

N1 1.03 1.72 0.75 

N2 1.11 1.91 0.76 

N3 1.11 1.96 0.75 

Table 6A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface temperature (Temp) at Tiaret (Algeria); meteorological aviation reporting (METAR) 

station code = DAOB. 

Temp-DAOB MAE (K) RMSE (K) COR 

RU 2.05 6.47 0.92 

NO 2.21 7.56 0.92 

MY 2.18 6.84 0.91 

MY1 2.17 6.81 0.91 

N0 1.67 4.09 0.95 

N1 1.64 3.92 0.95 

N2 1.51 3.43 0.96 

N3 1.67 4.43 0.96 
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Table 7A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface wind at Tiaret (Algeria); meteorological aviation reporting (METAR)station code = 

DAOB. 

wind-DAOB MAE (m s−1) RMSE (m s−1) COR 

RU 1.39 3.23 0.66 

NO 1.40 3.30 0.67 

MY 1.38 3.02 0.69 

MY1 1.40 3.12 0.68 

N0 1.20 2.48 0.76 

N1 1.17 2.29 0.78 

N2 1.27 2.50 0.81 

N3 1.28 2.52 0.83 

Table 8A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface temperature (Temp) at Luqa (Malta); meteorological aviation reporting (METAR) 

station code = LMML. 

Temp-LMML MAE (K) RMSE (K) COR 

RU 1.48 4.14 0.75 

NO 1.35 3.75 0.77 

MY 1.43 3.68 0.77 

MY1 1.42 3.59 0.78 

N0 1.36 3.30 0.80 

N1 1.32 3.38 0.79 

N2 1.27 3.30 0.80 

N3 1.21 2.77 0.84 

Table 9A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient (COR) 

for surface wind at Luqa (Malta); meteorological aviation reporting (METAR) station code = LMML. 

wind-LMML MAE (m s−1) RMSE (m s−1) COR 

RU 1.51 4.07 0.66 

NO 1.60 4.53 0.66 

MY 1.25 2.69 0.72 

MY1 1.37 3.31 0.69 

N0 1.13 2.25 0.74 

N1 1.07 2.07 0.76 

N2 1.10 2.28 0.74 

N3 1.13 2.40 0.74 

Table 10A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface temperature (Temp) at Frioul (France) station denoted as FRIO. 

Temp-FRIO MAE (K) RMSE (K) COR 

RU 1.30 2.55 0.92 

NO 1.30 2.56 0.91 

MY 1.24 2.35 0.92 

MY1 1.42 2.98 0.91 

N0 1.39 3.00 0.91 

N1 1.41 3.09 0.90 

N2 1.10 2.21 0.90 

N3 1.22 2.38 0.93 
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Table 11A. Mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient 

(COR) for surface wind at Frioul (France) station denoted as FRIO. 

wind-FRIO MAE (m s−1) RMSE (m s−1) COR 

RU 2.37 10.00 0.86 

NO 2.39 10.12 0.86 

MY 2.55 12.46 0.87 

MY1 2.46 11.08 0.87 

N0 2.30 9.87 0.89 

N1 2.26 9.52 0.90 

N2 2.27 9.31 0.90 

N3 2.21 8.90 0.90 
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