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We theoretically investigate the mapping of the supercurrent distribution in a planar
superconductor-normal-superconductor junction in the presence of a perpendicular magnetic field
via the scanning gate microscopy technique. We find that the distribution of counter-propagating
supercurrents aligned in Josephson vortices can be mapped by the change of the critical current
induced by the tip of the scanning probe, if the flux in the junction is set close to maxima of the
Fraunhofer pattern. Instead, when the magnetic field drives the junction to a supercurrent mini-
mum in the Fraunhofer pattern, the superconducting phase adapts, and the tip always increases the
supercurrent. The perpendicular magnetic field leads to the formation of Josephson vortices, whose
extension for highly transparent junctions depends on the current circulation direction. We show
that this leads to an asymmetric supercurrent distribution in the junction and that this can be re-
vealed by scanning gate microscopy. We explain our findings on the basis of numerical calculations
for both short- and long-junction limits and provide a phenomenological model for the observed
phenomena.

I. INTRODUCTION

The supercurrent in superconductor-normal-
superconductor (SNS) Josephson junctions is carried by
quasiparticles forming Andreev bound states (ABS) in
the normal region. Upon application of a perpendicular
magnetic field in SNS junctions for which the self field
of the supercurrent can be neglected1–3, the vector
potential of the field induces a spatial gradient of the
superconducting phase difference. This in turn intro-
duces a spatial variation of the supercurrent, leading to
formation of negative and positive current regions, and
ultimately to the formation of supercurrent vortices.
As such, vortices correspond to a complete loops of
the current and carry no net transport of supercurrent.
They are refereed to as Josephson vortices4. An increase
in magnetic field leads to the formation of subsequent
vortices5, and accordingly the critical current of the
junction exhibits a Fraunhofer oscillation pattern.

The experimental confirmation of the formation of
Josephson vortices was obtained by scanning tunneling
microscopy6, and their manipulation was performed by
magnetic force microscopy7. Moreover, the change of
the magnetic interference pattern from Fraunhofer to
SQUID-like when the density of states is tuned from bulk
to edge states in quasi-ballistic junction8 was used for in-
direct determination of the supercurrent distribution9–13.

Here we theoretically explore the possibility of a direct
visualization of the supercurrent distribution and the as-
sociated formation of Josephson vortices by a combina-
tion of critical current measurements and the scanning
gate microscopy (SGM) technique. Our idea exploits the
fact that in novel planar SNS junctions13–27 the normal

semiconducting regions between the superconductors re-
mains exposed, which opens the possibility for the appli-
cation of the SGM technique. The latter technique has
been successfully used for over two decades for imaging
of normal current flow.

Indeed, in normal systems SGM is a widely used
technique which relies on measuring the conductance
changes when a biased atomic force microscope tip
scans over the device28, inducing a repulsive potential
in the two-dimensional electron gas (2DEG) of the sam-
ple and affecting the trajectories of the propagating
electrons. SGM allows for the demonstration of, e.g.,
magnetic focusing29 or branched electron flow30–32 in
heterostructures33–36 and monolayers37–41.

Here we theoretically predict that the SGM technique
enables spatial imaging of the supercurrent in a Joseph-
son junction realized in a ballistic 2DEG and allows
the identification of positive and negative supercurrent
streams that contribute to the formation of Josephson
vortices. However, in contrast to non-superconducting
devices, the transport properties and the supercurrent
distribution in a SNS junction are controlled by the su-
perconducting phase difference. We show that SGM al-
lows for the visualization of the supercurrent distribution
by measuring the critical current of the junction provided
that an external transverse magnetic field is set near the
Fraunhofer maxima, i.e., when there is an even number
of Josephson vortices and the phase is uniquely defined
despite changes of SGM tip position. Moreover, we show
that the supercurrent vortices in a ballistic junction are
inherently nonsymmetric, which in turn results in the
asymmetry of the supercurrent flowing across the junc-
tion, which can be revealed by the SGM technique. We
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test our findings in an experimentally viable regime of
short and long junctions, paving the way to study the
Josephson vortex structure and supercurrent distribution
in a variety of planar SNS devices, for which a standard
Fraunhofer pattern is currently observed. Furthermore,
the proposed method of supercurrent visualization can be
applied to systems such as common 2DEGs where scan-
ning tunneling microscopy is not possible due to surface
oxidization42,43.

The outline of this paper is as follows. We first in-
troduce the system in Sec. II. In Sec. III, we present
the results for the short-junction regime. Phenomeno-
logical analysis of supercurrent probing is presented in
Sec. III. A, while in Sec. III. B we explain the asymme-
try of the Josephson vortices. Finally, in Sec. IV, we test
the robustness of our results beyond the short-junction
limit and summarize our results in Sec. V.

II. THE INVESTIGATED SYSTEM

FIG. 1. Illustration of the considered system. The grey color
depicts the superconducting contacts. Between them there is
the normal region whose surface is scanned by the SGM tip
(purple). With the orange stream-plot we show an exemplary
supercurrent distribution with a Josephson vortex denoted
with the green arrow.

We study a planar SNS junction composed of two su-
perconducting leads connected through a semiconducting
region in the ballistic regime, in the presence of a mag-
netic field oriented perpendicular to the junction plane—
see Fig. 1. The junction dimensions are defined by the
width (W ) and the length (L) of the semiconducting
region. In experimental realizations, such planar junc-
tions have been defined in InAs13–18,44,45, HgTe19, bP20,
graphene46–49, InSb21 or InAsSb22,50 quantum wells, and
InSb nanoflakes23–25 interfaced with aluminum or nio-
bium superconducting contacts. The supercurrent (visu-
alized in orange in Fig. 1) carried by the quasiparticles
in the semiconductor is disturbed by the repelling poten-
tial of a negatively charged SGM tip (purple in Fig. 1)
scanning above the surface of the semiconductor.

III. SHORT-JUNCTION REGIME

We start with calculations in the short-junction ap-
proximation, i.e., in the regime where the length of the
normal scattering region is much shorter than the super-
conducting coherence length, L � ξ = ~vF /∆, with vF
the Fermi velocity in the semiconductor and ∆ the su-
perconducting gap. This corresponds to the case where
the dwell time of quasiparticles inside the normal region
τdw is much smaller than the time ~/∆ it spends inside
the superconductor.51

Between the superconducting contacts, the Andreev-
reflected electrons and holes create a set of bound states,
whose energies can be determined52 from a matching con-
dition SA(E)SN (E)Ψin = Ψin where Ψin = (Ψe,Ψh) are
the complex amplitudes of the electron and hole waves
incident on the junction defined in the basis of normal
region scattering modes. SA(E) describes an Andreev
reflection process at the NS interface

SA(E) = ζ(E)

(
0 r∗A
rA 0

)
, (1)

with ζ(E) =
√

1− E2/∆2 + iE/∆. Taking the outgoing
modes as time-reversed partners of the incoming states
and assuming that Andreev reflection does not mix the
scattering modes, we can write

rA =

(
i1 0
0 ie−iφ1

)
, (2)

with φ the superconducting phase difference and 1 the
identity matrix spanning on the basis of the scattering
modes.

The scattering properties for electrons and holes in the
normal part are captured in the block-diagonal matrix

SN (E) =

(
S(E) 0

0 S∗(−E)

)
, (3)

where S(E) (S∗(−E)) corresponds to the electron (hole)
scattering block. Taking advantage of the short-junction
approximation, i.e. S(E) = S(E = 0) ≡ s, we arrive at
the eigenproblem53(

s† 0
0 sT

)(
0 r∗A
rA 0

)
Ψin = ζ(E) Ψin, (4)

whose solution yields the set of ABS eigenenergies and
wave functions.

The supercurrent is obtained from the positive energy
ABS,52

I = − e
~
∑
Ei>0

tanh

(
Ei

2kBT

)
dEi
dφ

, (5)

and consequently, the critical current is Ic = maxφ(I).
The scattering matrix is obtained for the normal region

of the junction described by the Hamiltonian

HN =

(
~2k2

2m∗
− µ+ Vtip(x, y)

)
σ0+α(σxky−σykx). (6)
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The last term corresponds to Rashba spin-orbit coupling,
µ is the chemical potential, and σ0 is an identity matrix
acting on the spin degree of freedom.

The impact of the tip positioned at (xtip, ytip) on
the scattering of quasiparticles is included through the
Vtip term in the Hamiltonian Eq. (6) that induces a
Lorentzian potential island54 in the 2DEG

Vtip(x, y) =
V0

1 +
(x−xtip)2+(y−ytip)2

d2

, (7)

where we take V0 = 100 meV as the effective potential
magnitude (corresponding to a negative voltage on the
tip) and d = 50 nm its width54.

We discretize the Hamiltonian Eq. (6) which results
in a set of onsite and hopping elements that are used
to describe the system on a square computational mesh.
We use a lattice constant δx = δy = 10 nm. The
orbital effects of the magnetic field are included via
Peierls substitution of the hopping elements tnm →
tnm exp

[
−ie/~

∫
Adl

]
where the integral is taken over

the hopping direction. We adopt the vector potential in
the Landau gauge A = (0, xB, 0). For the sake of sim-
plicity, we neglect the Zeeman interaction at this stage,
whose impact will be included explicitly in long-junction
calculations in the following. The electron scattering ma-
trix S(E = 0) of the normal region is obtained using the
Kwant package55. In the scattering matrix calculation,
to take into account the electrons incident on the nor-
mal region, we consider normal, semi-infinite leads and
assume zero magnetic field within them to account for
the screening effect.

For definiteness, we adopt the material parameters cor-
responding to InSb56, i.e., effective mass m∗ = 0.014m,
with m the bare electron mass. We assume a wide junc-
tion with W = 1000 nm, L = 200 nm, set the chemical
potential to µ = 40 meV and take α = 50 meVnm. The
choice of such chemical potential guarantees population
of the junction with a large number of modes necessary
to obtain the Fraunhofer pattern. We perform calcula-
tions assuming a zero temperature limit (T = 0). The
critical current maps are obtained via adaptive sampling
of the parameter space using Adaptive library57. The
code used for the calculations is available in an on-line
repository58.

The critical current versus the flux in the junction
Φ = BLW and the tip coordinate across the junction xtip
(with ytip = 0) is shown in Fig. 2. When the tip is outside
the junction area (|xtip| > W/2) the critical current ex-
hibits the usual Fraunhofer pattern with the periodicity
of a single flux quantum Φ0 = h/2e. For small magnetic
fields, Φ < Φ0, for which the critical current without the
tip is on the central (first) lobe of the Fraunhofer pattern,
Ic decreases as the tip approaches the center of the junc-
tion. For a stronger magnetic field, we observe the for-
mation of a pattern of lobes with quenched or increased
current emerging from the Fraunhofer pattern as the tip
is moved from the edge of the junction to its center. To
better understand the physics behind this observation,
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FIG. 2. Critical current versus flux and tip position (with
ytip = 0) obtained in the short-junction limit.

we now construct a phenomenological model of the SGM
Ic response.

A. Phenomenological model of the SGM response

The critical current of a Josephson junction in a mag-
netic field can be obtained by tracing the influence of
the gauge-invariant phase difference on the supercurrent
distribution in the normal part. In a phenomenological
model we can thus write13

Ic = max
φ

∫ W/2

−W/2
JS(x, xtip) I (γ(x)) dx, (8)

where the integral is carried out over the junction width.
JS is the local supercurrent density per unit length across
the junction without the magnetic field, constant along
the y-direction and suppressed with a Lorentzian func-
tion at the tip position xtip,

JS(x, xtip) = J0

(
1− 1

1 + (x− xtip)2/d2

)
. (9)

The supercurrent is modified by the current-phase rela-
tionship I (γ(x)), which can be analytically expressed52

for a junction with transmission coefficient τ as,

I (γ(x)) =
τ sin(γ(x))√

1− τ sin2(γ(x)/2)
, (10)

where γ(x) is the gauge-invariant local phase shift due
to the vector potential A and the superconducting phase
difference59,

γ(x) = φ+
2π

Φ0

∫ (x,L)

(x,0)

A · dl. (11)

The current-phase relation given by Eq. 10 is skewed
for transmittive junctions (τ ' 1). This is in con-
trast to the case of junctions in the tunneling regime
(τ � 1), where the current-phase relation simplifies to
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FIG. 3. (a) Supercurrent distribution across the junction cal-
culated for junctions with different transparency (τ) obtained
for constant superconducting phase difference φ = −0.5π. (b)
Change in critical current obtained in the short-junction cal-
culations (red) and the phenomenological model for various
transparencies of the junction. The results are obtained for
Φ = 1.5Φ0.

the term sin(γ). Setting the junction transparency to a
constant value and inspecting the supercurrent density
at given x positions in the junction in a non-zero mag-
netic field (the phase difference in an external magnetic
field depends on the x position through Eq. (11) with
γ = φ+ 2πΦx/Φ0W ), we calculate the supercurrent dis-
tribution across the junction, as depicted in Fig. 3(a).
We observe that for τ = 0.6 the supercurrent distri-
bution is almost sinusoidal. On the other hand, when
the transmission probability is increased, the distribu-
tion gets more skewed.

The short-junction calculations shown above were ob-
tained for a system in which the only scatterer is consti-
tuted by the tip of the SGM. In the phenomenological
model, this translates into a high junction transparency.
If we consider a ballistic junction with τ = 1, Eq. (10) be-
comes I (γ(x)) = sin(γ(x))/4| cos(γ(x)/2)|. Let us first
neglect the tip influence and plot J = J0I(γ(x)) for φ
set to obtain the maximum supercurrent at a given mag-
netic field value. The resulting supercurrent distribution
across the junction width versus magnetic field is plotted
in Fig. 4. At zero magnetic field (Φ = 0) the supercur-
rent distribution is constant. When the magnetic field is
increased, the vector potential induces a spatially depen-
dent phase shift across the junction, and consequently
the supercurrent becomes position–dependent. When
Φ = nΦ0 (with n an integer), the amount of positive
and negative current in the junction is equal. The re-
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FIG. 4. Supercurrent distribution J = J0I(γ(x)) across the
junction without the tip obtained in the phenomenological
model for τ = 1 versus magnetic field. The current is ob-
tained for the phase difference value φ that maximizes the
supercurrent in the junction.

sulting critical current is zero, and thus a minimum of
the Fraunhofer pattern is obtained. An increase of the
magnetic field is accompanied by an increasing number
of positive and negative supercurrent regions in the junc-
tion (as can be seen in the map Fig. 4) and the number
of zero crossings (that corresponds to the Josephson vor-
tices).
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FIG. 5. (a) Critical current versus position of the SGM tip
across the junction and magnetic flux. (b) Critical current
cross-sections for two values of the tip position marked with
arrows in panel (a).

The critical current obtained in the phenomenologi-
cal model against the magnetic field and in the presence
of the tip is presented in Fig. 5. In panel (a) we see
a similar oscillatory pattern as obtained in the short-



5

junction numerical calculation of Fig. 2 (note also the
good agreement between the black and red curves shown
in Fig. 3(b)). In Fig. 5(b) we plot cross-sections of Ic ver-
sus the magnetic field for two positions of the tip. When
the tip is far from the junction center (xtip = 600 nm),
we observe the usual Fraunhofer pattern as obtained from
the integration of the supercurrent distribution of Fig. 4
over the x direction. On the other hand, when the tip
is located at the center of the junction, i.e. xtip = 0, the
height of the lobes is modified depending on their order.
An even-odd pattern is obtained, in which odd maxima
are suppressed and the even ones are amplified. Further-
more, the periodicity of the positions of the minima with
flux quanta is lost.60

To understand how the SGM mapping affects the crit-
ical current, let us focus on supercurrent cross-sections
obtained in the presence of the tip for four values of the
magnetic field, as presented in Fig. 6.

For a weak magnetic field Φ = 0.5Φ0 [Fig. 6(a)], we
obtain the main supercurrent lobe with an indentation
at the position of the tip (xtip = 0), as the tip induces
a region of density depletion in the junction. Note that
the supercurrent value depends on the phase difference φ
in Eq. (8). Its maximal value is obtained for φ = 0.5π.

The supercurrent distribution for the flux Φ = Φ0,
such that Ic exhibits the first minimum without the
tip, is shown in Fig. 6(b). The amount of positive and
negative current is the same, independent of φ, as ob-
tained by considering the magnetic field corresponding
to an integer multiple of the flux quantum in Eq. (8),

i.e.
∫W/2
−W/2 I(γ(x))dx = 0 with γ(x) = φ + 2πxn/W for

integer n. When the SGM tip is positioned at the center
of the junction, the phase sets to φ = −0.676π. Conse-
quently, the tip cuts off a part of the negative current and
by that increases the total critical current. Importantly,
here the phase is free to adjust to maximize the super-
current, which results in the negative lobe following the
tip position—see Fig. 6(c) obtained for xtip = 200 nm.
As a result, for flux values set to a Fraunhofer minimum,
independent on the tip position, the presence of the SGM
always increases the critical current—see the red curve in
Fig. 7(a).

On the other hand, at each Fraunhofer maximum,
where the number of positive and negative lobes is un-
equal, there is a unique value of the phase difference φ
that assures the maximal critical current by setting the
supercurrent distribution with one extra positive lobe
with respect to the number of negative ones. The tip
increases Ic if it blocks the negative supercurrent flow,
while it decreases the critical current when it suppresses
the positive supercurrent lobe—see Figs. 6(d,e). The
magnitude of the change of the critical current is propor-
tional to the amount of the suppressed current. This
phenomenon links the SGM critical current measure-
ment to the supercurrent distribution across the junction
and allows to depict the supercurrent flow [c.f. black
curve in Fig. 7(a) with Fig. 6(d)] along with its asym-
metric distribution. The latter results in breaking of

Ic(xtip,Φ) = Ic(−xtip,Φ) symmetry in the map Fig. 5(a).
The features in the map are rather more symmetric with
condition Ic(xtip,Φ) = Ic(−xtip,−Φ) reflecting the skew-
ness of the supercurrent distribution inherent to trans-
parent junctions.

We remark that for junctions with limited trans-
parency, the skewness of the supercurrent distribution is
less pronounced, as can be seen in Fig. 3(a). Accordingly,
the asymmetry in the critical current versus tip position
is less visible, and the distribution becomes more sym-
metric when τ decreases, as can be seen in Fig. 3(b).
Results for opaque junction are given in the appendix.

The aforementioned phenomena allow to connect the
regions of strongly amplified (suppressed) critical current
in the map of Fig. 5(a) obtained outside of the Fraunhofer
minima with the regions of negative (positive) supercur-
rent distribution in the junction. On the other hand, the
process of phase adjustment for flux values close to inte-
ger values of the flux quantum is reflected in the strong
superconducting phase modulation induced by the tip,
visible in Fig. 7(b).

B. Probing Josephson vortices and supercurrent
distribution asymmetry

The supercurrent distribution obtained in the phe-
nomenological model nicely reproduces the features of
the supercurrent maps obtained in the short-junction ap-
proximation. In Figs. 8(a,c,e) we show supercurrent
maps for three values of the magnetic field61. Panel (a)
is calculated for a flux near the first Fraunhofer maxi-
mum with Φ = 0.5Φ0, for the phase difference resulting
in the maximal supercurrent. Panels (c) and (e) are ob-
tained at the first Fraunhofer minimum and the second
maximum, respectively, where we observe the formation
of Josephson vortices.

In an experimentally viable situation, when the critical
current is measured in a current-bias configuration, the
phase adjusts to provide the maximal supercurrent—at
the Fraunhofer minima we always observe a supercurrent
increase [Fig. 8(d)] by the tip. On the other hand, at
Ic maxima, the structure of the Josephson vortices is
visualized by the SGM [Fig. 8(f)] in agreement with the
results of Sec. III.A.

Importantly, we observe that in the array of Josephson
vortices, the clockwise and anticlockwise vortices have a
different spatial span, as can be seen in Fig. 8(e). In the
limit τ = 1, the current abruptly changes sign in the left
part of the junction, while on the right it varies smoothly
[see the black curve in Fig. 3(a)]. This is mirrored in the
asymmetry of the vortices. The vortex on the left-hand
side of the map Fig. 8(e) is compressed. On the other
hand, for positive x, the supercurrent increases smoothly
as it goes through zero, resulting in an expanded vortex
on the right-hand side of Fig. 8(e). As for the short-
junction calculation, the asymmetry in the supercurrent
vortices is reflected in the critical current measured, as
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FIG. 6. Supercurrent distribution across the junction in the presence of the SGM tip, as obtained from Eq. (8). ytip = 0. (a)
xtip = 0 nm, Φ = 0.5Φ0, φ = 0.5π. (b) xtip = 0 nm, Φ = Φ0, φ = −0.676π. (c) xtip = 200 nm, Φ = Φ0, φ = 0.89π. (d)
xtip = 0 nm, Φ = 1.5Φ0, φ = −0.5π. (e) xtip = 0 nm, Φ = 2.5Φ0, φ = 0.504π.
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FIG. 7. (a) Change in critical current versus tip position
across the junction with respect to the critical current ob-
tained in the absence of the SGM tip (Ic0) for two values
of the flux as obtained in the phenomenological model. (b)
Phase difference that results in maximal supercurrent versus
flux and tip position across the junction.

visible in the map of Fig. 2 as well as in the cross-section
presented in Fig. 5(b) with the red curve.

We notice that the asymmetry in counterpropagating
vortices has been reported by V. P. Ostroukh et al.3 for
a square vortex lattice. Here, however, for a linear array
of vortices, we demonstrate that the asymmetry bears an
important consequence for the distribution of the super-
current flowing between the superconducting contacts—
the current streams are also not symmetric and shifted
in the x direction, i.e., the supercurrent flowing in the di-
rection parallel (antiparallel) to the y direction is shifted
towards positive (negative) x-direction.

IV. BEYOND THE SHORT-JUNCTION
APPROXIMATION

The length of the normal part can be of the order of
hundreds of nanometers13–15,18,20,21,25, due to fabrication
techniques or the requirements of the SGM method itself,
i.e., the fact that the SGM tip has to be able to fit be-
tween the superconductors, setting a lower bound to the
length of the normal part. This combined with a large
induced gap when using, e.g., Nb as the superconductor
leads to structures that can exceed the short-junction
approximation, i.e., L ' ξ. It is important therefore to
assess whether the discussed effects occur also beyond
that regime.

To this end, we numerically consider a finite system
composed of superconducting leads and a normal, ballis-
tic region (which leads to a creation of a junction with
τ ' 1). The system has a width W and consist of a
scattering region of length L sandwiched between two
superconducting regions, each of length LSC. The whole
system is described by the Hamiltonian

H =

(
HN +HZσz ∆(x, y)σ0
∆∗(x, y)σ0 −HN +HZσz

)
, (12)

where HZ stands for Zeeman term HZ = 1
2gµBB. The

superconducting pairing potential is

∆(x, y) =


∆ if y ≤ −L/2
0 if − L/2 < y < L/2

∆ exp[iφ] if y ≥ L/2
. (13)

We take g = −50, W = 1000 nm and ∆ = 2 meV.
The estimated coherence length is ξ = 330 nm and thus
shorter than the length of the normal region, which we
take as L = 600 nm. At the same time, it is also
shorter than the assumed length of the superconduct-
ing leads LSC = 400 nm, allowing the evanescent quasi-
particle wave functions to vanish in the superconduct-
ing segments. We calculate the energy spectrum of the
junction, performing an exact diagonalization of Eq. (12)
discretized on a square lattice. The tip is introduced in
a similar manner as in the short-junction calculations,
and the supercurrent is calculated from Eq. (5) taking
into account the 300 lowest positive energy eigenstates.
Zeeman interaction and orbital effects of the field are in-
cluded only in the normal region.
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FIG. 9. (a) Supercurrent distribution for the magnetic field
set to the second Fraunhofer maximum and φ = −0.5π. (b)
Critical current map versus the tip position for the first Fraun-
hofer maximum. (c) Critical current map versus the tip posi-
tion across the junction and the flux. The results are obtained
in the long-junction regime for ytip = 0.

In Fig. 9(a) and (b) we show the supercurrent distribu-
tion and the corresponding critical current map obtained

with the SGM tip for the second Fraunhofer maximum.
The supercurrent exhibits similar features as found for
the short-junction [Fig. 8(e)] with a clear anisotropy in
the supercurrent and Josephson vortices. Most impor-
tantly, for elongated junctions, the vortices form in a
linear array at the half length of the junction. The SGM
mapping as shown in Fig. 9(b) not only determines the
supercurrent flow between the superconducting contacts
(seen as the change in the critical current for ytip = 0)
but also the distribution of the supercurrent along the
junction due to the quasiparticles flowing from the leads
and circulating around the vortices.

Finally, in Fig. 9(c) we show the critical current as
a function of the flux in the junction and the horizon-
tal coordinate of the SGM tip (we set ytip = 0). We
observe that the Fraunhofer minima are no longer ob-
tained for integer multiples of the flux quantum, as ex-
pected for elongated junctions62. Most importantly, we
obtain a very clear critical current modulation as the tip
scans across the sample that can be used to determine
the supercurrent distribution together with its asymme-
try despite the relaxation of the limits of short-junction
approximation.

It should be noted that in very elongated junctions,
where the length of the normal region becomes compa-
rable to the Josephson penetration depth, the non-local
electrodynamics starts to play a role affecting the super-
current distribution and also the formation of a Fraun-
hofer pattern63–65. A study of these effects is beyond
the scope of this work, since SNS junctions realized on
2DEGs have typical Josephson penetration lengths of the
order of several microns1.

V. SUMMARY AND CONCLUSIONS

We theoretically studied scanning gate microscopy
imaging of supercurrent flow in planar superconductor-
semiconductor-superconductor Josephson junctions. We
considered a case where the perpendicular magnetic field
induces a spatial variation of the supercurrent and in-
duces Josephson vortices. For systems in both short- and
long-junction regimes, we found that the repelling poten-
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tial of the SGM tip allows to visualize the supercurrent
distribution and Josephson vortices via critical current
measurements. This is possible provided that the flux in
the junction is set outside of Fraunhofer minima for the
case without the tip. When the flux is set to a critical
current minimum, the superconducting phase difference
adapts in such a way that the tip always leads to an in-
crease of the supercurrent. These results are valid both
for transmissive (τ ' 1) and tunnel (τ � 1) SNS junc-
tions.

Furthermore, for highly transmissive junctions (τ ' 1)
we found that the scanning gate microscopy critical cur-
rent maps reveal an asymmetry in the supercurrent dis-
tribution, which is caused by the asymmetry between
the clockwise and counterclockwise Josephson vortices
in transparent junctions. This effect should be already
present in recently developed planar junctions where the
transmission coefficient takes high values of τ ' 0.915,25.

Our results were obtained assuming a short-junction
regime and supported by a phenomenological model,
where the tip suppresses a phase-dependent current in
the junction. Extension beyond the short-junction limit
was implemented to confirm the robustness of our find-
ings.
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Appendix: Phenomenological model in the tunneling
limit

In the tunneling limit, when τ is much smaller than 1,
the current phase relation Eq. (10) can be approximated
by I = sin(γ(x)). This results in a symmetric supercur-
rent distribution in the junction as shown in Fig. 3(a)
with the green-dashed curve. Here we provide results for
the tunneling case that complement the phenomenologi-
cal analysis done in the main text.

The supercurrent distribution presented in Fig. 10
shows formation of positive and negative supercurrent re-
gions. When Φ = nΦ0 (with n an integer), the amount of
positive and negative current in the junction is equal—a
complete cycle of supercurrent is formed. The result-
ing critical current is zero, and so a minimum of the
Fraunhofer pattern is obtained. Every time the com-
plete cycle is crossed, the phase jumps by π and the crit-
ical current increases until it reaches the next Fraunhofer
maximum—see Fig. 11.
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in panel (a).

The symmetry in the current distribution shown in
Fig. 10 translates into symmetric features in the SGM
critical current map shown in Fig. 11.

The process of critical current modification operates in
the same manner as for a transparent junction (cf. Fig. 6).
At Fraunhofer minima it is always the negative supercur-
rent region that is suppressed [Fig. 12(b,c)], which results
in an increase of Ic by the tip. At Fraunhofer maxima
[Fig. 12(d,e)] the tip suppresses the supercurrent in its
vicinity decreasing or increasing the critical current, de-
pending on the sign of the suppressed supercurrent. Im-
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φ = 0.5π. (b) xtip = 0 nm, Φ = Φ0, φ = −0.5π. (c) xtip = 200 nm, Φ = Φ0, φ = 0.9π. (d) xtip = 0 nm, Φ = 1.5Φ0, φ = −0.5π.
(e) xtip = 0 nm, Φ = 2.5Φ0, φ = 0.51π.

portantly, as now the supercurrent distribution is sym- metric, so are the critical current features, as show in the
map Fig. 11(a).
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