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Abstract
We reconstruct the innovation dynamics of about two hundred thousand companies by following
their patenting activity for about ten years. We define the technology portfolios of these companies
as the set of the technological sectors present in the patents they submit. By assuming that
companies move more frequently towards related sectors, we leverage their past activity to build
network-based and machine learning algorithms to forecast the future submissions of patents in
new sectors. We compare different prediction methodologies using suitable evaluation metrics,
showing that tree-based machine learning algorithms outperform the standard methods based on
networks of co-occurrences. This methodology can be applied by firms and policymakers to
disentangle, given the present innovation activity, the feasible technological sectors from those that
are out of reach.

1. Introduction

In this work, we quantify the relatedness between a firm and a technology sector in different ways, namely
using standard methods based on co-occurrences networks and supervised machine learning algorithms (Tac-
chella et al (2021), Albora et al (2021)). In order to compare such assessments, we develop an out-of-sample
prediction framework based on the assumption that, on average, the next technology sector in which a firm
will patent will be among the ones that are more related to its present patenting portfolio. In this way, we
can build and study the technological adjacent possible of innovative firms, this concept being originally intro-
duced by Kauffman (1996) and subsequently mathematically formalized in Tria et al (2014) and Loreto et al
(2016). We find that machine learning algorithms not only show better prediction performances but allow
for a two-dimensional representation of technology sectors that we call Continuous Technology Space (CTS).
The CTS can be used to visualize the patenting portfolio of companies and to design strategic investments and
acquisitions.

The question regarding the nature of the link between the performance of firms and their internal alloca-
tion of resources (Penrose 1959) and capabilities (Teece et al 1994) has fueled the interest of economics and
management scholars for a long time, since opening the black box of corporate strategy would be key to gain
insight into the determinants of corporate heterogeneity and hence a better understanding of markets and their
evolution. To the best of our knowledge, these analyses are all aimed at finding explanatory variables for the
present performance and not at forecasting future activity. On the contrary, the approach known as Economic
Fitness and Complexity (Tacchella et al (2012), Sbardella et al (2018)), widely applied at both country and
regional level, naturally focuses on forecasting, which represent a natural and scientifically sound framework
to validate and falsify the different approaches (Tacchella et al 2018, Albora et al 2021, Tacchella et al 2021).
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The aim of the present paper is to apply the EFC forecasting methods at firm level, and in particular to the
bipartite network of firms and the technology sectors in which they show patenting activity.

One of the main problems for the economic literature is to empirically track the capabilities and the strate-
gic choices of companies. Unfortunately, these elements are generally intangible, so the empirical literature
often struggles to find instruments to keep up with the theoretical richness of the debate. One of the more
easily measurable footprints left behind by the strategic decision-making of firms is diversification, i.e. the
scope of activities (both at technological and productive level) to which internal resources are devoted. This
has been recognized early by scholars, who have often focused their efforts in this direction to reconcile theory
with empirical evidence (Penrose 1960, Gort 1962, Berry 1971). Though diversification is interesting in and of
itself, perhaps the more interesting question regards the degree of complementarity (or relatedness) between
the various elements included in the portfolio of activities in which businesses engage. Notable early efforts
to address this aspect have been proposed by Rumelt (1974) and Rumelt (1982). Both studies examine diver-
sified manufacturing firms and focus on the link between profitability and the degree of correlation between
the business units of the same firms. From this, they test the hypothesis that greater profitability correlates
with expansion mainly in areas that share a competence or basic resource. Teece et al (1994) have built on
the above intuition by employing plant-level data classifying establishments according to the standard four-
digit SIC industrial codes relative to the industrial sectors in which they operate and measuring the relatedness
between sectors through the frequency of their co-occurrence within the same productive plant, that is two
sectors are related if many plants produce both. The hypothesis underlying this approach is the so-called sur-
vivor principle (Teece et al 1994), i.e. the assumption that economic competition eventually drives inefficient
organizational forms out of the market, thus promoting the co-occurrence of activities that are well integrated
with one another because of complementarities in technological capabilities they require. In virtue of the sur-
vivor principle, efficient combinations of activities should occur with a significantly higher frequency than one
would expect if activities were paired randomly. Indeed, the authors find that internal coherence matters, as
firms that diversify tend to add activities that are related to at least a part of their existing portfolio. More recent
analyses confirmed this hypothesis (Rahmati et al 2020, Buccellato 2016, Lo Turco and Maggioni 2016).

Production is not the only aspect of corporate strategy in which building coherent portfolios of related
activities has been shown to matter (for example in Gort (1962), Rumelt (1974), Berry (1971) the manufac-
turing sector is considered). Indeed, in the last twenty years, the empirical analysis of the innovative output
of firms as measured by patents has gained increasing popularity (Rycroft and Kash 1999). It is worth noting
that patent data have become in general a workhorse for the literature on technical change over the past few
decades due to the growing availability of machine-readable patent documents and widespread access to suffi-
cient computing power (Youn et al 2015). All the above have played a pivotal role in fueling this trend spurring
scholarly (e.g. Hall et al (2001)), institutional (e.g. PATSTAT, REGPAT) and corporate (e.g. Google Patents)
efforts aimed at constructing comprehensive collections of patent-related documents. Increasing data availabil-
ity has in turn allowed researchers to inquire into the nature of patented inventions, their role in explaining
the technical change, their reciprocal connections, and their link to the inventor-and applicant-specific char-
acteristics (Strumsky et al 2011, 2012, Youn et al 2015). One of the characteristics of patent documents, which
historically has lent itself more to economic analysis, is the presence of codes associated with the claims con-
tained in the patent applications. These are used to mark the boundary of the commercial exclusion rights
demanded by inventors. To allow evaluation by patent office examiners, claims are classified based on the
technological areas they impact according to classifications (e.g. the IPC classification (Fall et al 2003)), which
consist of a hierarchy of six-digit codes that associate progressively finer-grained definitions of technological
areas to codes lower in the hierarchy. Mapping claims to classification codes allows for localize patents and
patent applications within the technology space. Taking advantage of the increasing availability of patent data,
several studies (Jaffe et al 2000, Leten et al 2007, Joo and Kim 2010, Rigby 2015) have found significant empir-
ical evidence suggesting that evidence that relatedness in the composition of R & D activities has implications
for the ability of firms to innovate successfully.

Within this stream of literature, a well-known study (Breschi et al 2003) has recovered the methodology
proposed by Teece et al (1994) and built upon it to investigate whether firms tend to diversify their innova-
tive efforts in a coherent fashion by patenting in technological fields that share a common knowledge base
with the technological fields in which they innovated in the past. In particular, the authors have analyzed the
technological diversification of firms through the co-occurrences between technology codes.

In another well-known paper, Nesta and Saviotti (2006) have studied corporate knowledge coherence in the
US pharmaceutical industry showing that both the scope and the coherence of the knowledge base ‘contribute
positively and significantly to the firm’s innovative performance’, as measured by the number of patents it
produces weighted by the number of citations received.
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Some authors of the present paper introduced the concept of ‘coherent diversification’ (Pugliese et al
2019b), showing that firms that diversify (i.e., expand their technological portfolios by patenting in a rela-
tively large number of technological sectors) in a coherent way (i.e., by preferring related sectors to unrelated
ones) on average show a higher performance in terms of labor productivity.

In Yan and Luo (2017), the authors present a method for choosing an optimal compromise between the
explanatory power of the diversification and the removal of the weak links in a network of technology codes.

Finally, we mention the work by Kim et al (2021), whom have studied the relatedness between technology
codes in Korean firms, finding that ‘firms are more likely to develop a new technology when they already have
related technologies’.

2. Results

The data we will use in this study is the matrix representation of the temporal bipartite company-technology
network. In particular, we will consider 643 technology sectors embedded in the patents submitted by 197944
firms in 12 years. In practice, we will use 12 Vy matrices that link the layer of firms with that of technology codes,
where y ranges from 2000 to 2011. In the following, we will interchangeably use the terms technological code,
sector, or simply technology to express the same concept, since the codes written in the patents do represent
technology sectors and so, in this sense, technologies.

The matrix element Vy
f ,t quantifies the patenting activity of firm f in the technology field t during year y.

In particular, it is the number of patents submitted by the given firm in that sector. Note that this number
can be fractional, since (usually) more than one code is present in each patent and (rarely) a single patent
could be submitted by more than one applicant firm. In these cases, the unitary weight corresponding to one
patent is split among the sectors and/or the applicants. Note that it may also happen that the same invention
is linked to multiple patent application documents. In this case, each group of documents in the PATSTAT
database is called ‘Patent Family’ according to primary citations among them (OECD 2001). Referring to the
same inventions, these families are associated with the same technology codes, and they are counted as single
patents. In summary, each matrix element Vy

ft is obtained as follows: we assign to each patent (or family of
patents), in a given year y, one unit of weight. This is then divided into equal shares between all the observed
(firm f-technology t) pairs and, finally, the matrix V is built by summing element-wise these contributions.
The construction process is explained in more detail and a numerical example in the supplementary infor-
mation (https://stacks.iop.org/JPCOMPLEX/3/035002/mmedia). The starting data is obtained by matching
the AMADEUS database (https://amadeus.bvdinfo.com), that covers over 20 million firms with European reg-
istered offices, with the Patstat (www.epo.org/searching-for-patents/business/patstat) database about patent
submissions. More details can be found in the Methods section and in Pugliese et al (2019b).

The matrix element Vy
f ,t gives a quantification of the patenting activity of firm f in the technology t. How-

ever, in the EFC framework, one usually deals with binary matrices; our choice is to use different thresholds
T to define the 12 binary matrices My, one for each year from 2000 to 2011, and to compare a posteriori the
effect of using different values of T. In formulas, the binarizing procedure reads

If T = 0 →My
ft =

⎧⎪⎨
⎪⎩

1 if Vy
ft > T

0 if Vy
ft = T

If T > 0 →My
ft =

⎧⎪⎨
⎪⎩

1 if Vy
ft � T

0 if Vy
ft < T.

So the element My
f ,t is equal to 1 if a firm f submits more than T patents with technological code t in the year

y, and 0 otherwise. We point out that in the economic complexity framework one usually binarizes the export
(or, if patents are considered, the innovation activity) matrix using Balassa’s Revealed Comparative Advantage
(Balassa 1965, Hidalgo et al 2018, Pugliese et al 2019a). Since in this case the V matrix is very sparse, the effect
of RCA is practically negligible so we preferred to use the Vy

ft elements for clearer interpretability.
These M matrices can be used to train different algorithms to calculate our predictions about their temporal

evolution. In order to have an out-of-sample forecast, we use data from 2000 to 2009 for the training phase
and to obtain a score matrix S2011 which will represent the relatedness between companies and technologies;
in other words, we expect that a higher value of the matrix elements S2011

f ,t is connected to a higher probability
for firm f to patent in technology code t in the year 2011.

We point out that both the matrices V and M are highly autocorrelated in time: if a firm does submit patents
with a given technological code in a year y, it is likely that it will also be in the year y + δ, and vice versa. As a
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Figure 1. Schematic representation of the data processing. The V matrices represent the yearly bipartite networks that link firms
and technologies; each element Vf,t represents how much a technology t is present in the patenting activity of firm f. The element
Mf,t of M matrices instead, gives us the binary information about whether a technology t is made by a firm f or not, that is if Vf,t

exceeds or not a threshold T. The dark green elements are the potential activations and the red circles in 2011 matrices are the
realized activations (i.e. those elements that were 0 in all training years and then, in 2011, become 1: a new technology for that
firm). Also, the distinction between training and test set is shown.

consequence, we focus our attention on those matrix elements that we call potential activations: the elements
of M that are 0 in all training years (from 2000 to 2009). Then, we will check whether in the test year (2011)
this element remains equal to 0 or becomes 1. We will call this last case a realized activation: a firm enters (that
is, starts patenting) in a technological sector which is new to this firm. In figure 1 we represent a numerical
example clarifying how we managed the V and the M matrices, the division of the data in training and test set,
and the definitions of both potential and realized activations.

Our forecast exercise permits to compare different prediction algorithms using the test year 2011. So we
will compute one score matrix S2011 for each algorithm and we will compare it with M2011 (obtained by bina-
rizing the empirical V2011), and quantify the prediction performance as in usual supervised classification tasks
(Kotsiantis et al 2007).

In order to obtain the prediction scores, we use different algorithms to evaluate the relatedness (Hidalgo
et al 2018) between a firm and a technology. In the case of co-occurrences based networks, an intermediate
step is to assess the similarity between technology codes. Here we list the tested algorithms by category, leaving
a more detailed discussion for the methods section.

• Benchmarks: we use a quasi-trivial random and autocorrelation-based predictions as benchmarks. The
first is a random model where we fix the diversification of the firm df =

∑
t Mf,t, i.e. the number of the

technology codes in its patents. The second is a benchmark model that takes into account the temporal
autocorrelation of the M matrices: the scores S are equal to the mean of Vy

ft in all the training years (i.e.
with y ∈ [2000, 2009] ).

• Networks: the standard economic complexity approach usually starts from the evaluation of normalized
co-occurrences; in the simplest case

By
t,t′ =

∑
f

My
f ,tM

y
f ,t′

that is, t and t′ are similar if many firms patent in both sectors. Different normalizations lead to the prod-
uct space, or in this case, the Technology Space (Hidalgo et al 2007), the Taxonomy Network (Zaccaria
et al 2014), and the micro-partial network, based on the paper of Teece et al (1994). In all these cases, net-
work B represents a projection of the bipartite network M into the space of technology codes, and each
element Bt,t′ represents the proximity/similarity between the two technology codes. In order to obtain a
measure of the relatedness between a firm f and a target technology t, to be used as a prediction score,
one then computes the coherence (Pugliese et al 2019b) using equation (2). Other approaches, such as
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the density normalization introduced by Hidalgo et al (2007), perform sensibly worse. More details are
provided in the methods section.

• Machine learning: since our prediction exercise can be expressed as a supervised classification exercise,
we can use the random forest (RF) algorithm (Breiman 2001, Albora et al 2021), and what we call the
CTS. The first is a popular machine learning algorithm based on decision trees, while the CTS is based on
the studies of Tacchella et al (2021), and it is a projection on the space of the technology codes obtained
from the scores obtained with the RF, which can be seen as a high dimensional representation of the codes
themselves. This is done by using a variational auto encoder (Kingma and Welling 2013) followed by the
t-SNE dimensionality reduction algorithm (Van der Maaten and Hinton 2008). In this way, we are able
to make the results of the RF, in a sense, more interpretable. As better specified in the methods, the RF
scores can be seen as a high dimensional representation of the technology codes (one dimension for each
firm). In order to visualize this space, the t-SNE dimensionality reduction algorithm is applied, which
results in the CTS. Note that in order to produce prediction scores from the CTS one has to compute
a coherence or density measure as in the network-based approaches. The use of RF somehow hides the
reason why a company is close to a technology code, in other words, where the relatedness results come
from. However, by applying t-SNE to the prediction scores one can obtain a visual representation of the
relative position of the codes in this new space we define. Now the motivation behind our relatedness
assessment, and the consequent forecast, becomes (hopefully) more interpretable: the company is close
to a given technology if it is already patenting in close technologies. This is visible as a diffusion process
only if a low-dimensional representation is adopted. We point out that this is not an explanation of how
the RF works, which is beyond the scope of the paper, but a posteriori justification of our results that,
being represented in a two-dimensional plane, can provide insights into companies’ innovation strategy.

Two types of RF are used, the non-cross validated (RF) and the cross validated one (RF_CV). With
the cross validation, we remove a portion of firms at a time from the training, and then we use them
in the test. The starting rationale is that the algorithm produces its predictions by using two pieces of
information: the similarity between technologies and its ability to recognize a firm. By cross-validating
the RF we try to force the algorithm to use the former, and not the latter (Albora et al 2021).

2.1. Prediction results
Here we compare the relatedness assessments of the co-occurrences based networks with the machine learning
algorithms, showing how the latter are able to give better prediction results. The results are shown in figure 2.

In order to compare the various prediction methods from various viewpoints, we adopted different metrics
to quantify the goodness of a prediction (these metrics are discussed in detail in Methods section):

• Area under the PR curve: the area under the curve in the precision-recall plane. The latter is obtained
by varying the threshold that identifies the value above which the scores are associated with positive
predictions;

• Precision@100: the fraction of the largest 100 elements of the score matrix S2011 that are actually
activated;

• mPrecision@10: for each firm, we consider the largest 10 scores and we compute the fraction of realized
activations; then we average over the firms.

In figure 2 we report the scores of the previous metrics for different values of the threshold parameter T;
the results are consistent even if one varies such threshold (or uses the RCA to binarize).

We start noticing that the random benchmark is surpassed by all the different approaches, showing that all
are able to compute a measure of similarity that is able to grasp links between the technology codes.

Also the autocorrelation benchmark is outperformed but in the mPrecision@10 case. In particular, it per-
forms better when T increases, because the number of zeros in both the training and the test matrices increases
(that is, the number of potential activations, the green elements in figure 1, that are not realized).

In the area under the PR curve and Precision@100, the only network-based algorithm that manages to
overcome the CTS is the Taxonomy. In particular, it is interesting to observe how this network exceeds the
Technology Space. We can argue that for the technology codes, a network based on the taxonomy principle,
i.e. how firms move from low-complexity to high-complexity technologies only after developing the necessary
skills (Zaccaria et al (2014)) shows a better prediction performance that a proximity-based one, i.e. a network
where two technologies have a high link if they need the same capabilities (Hidalgo et al 2007).

The micro-partial approach does not show a competitive performance despite being quite popular in both
academic and corporate applications (Smith and Linden 2017).

In any case, the superiority of the RF_CV and of the RF with respect to both benchmarks and density-based
approaches (networks and CTS) is evident. Although the other algorithms are able to give prediction scores
able to overcome the benchmark models (especially for T = 0), clearly these are not able to fully highlight the
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Figure 2. Comparison of the prediction results obtained by different approaches, using three different evaluation metrics and
two binarization thresholds. RF outperforms all other approaches in all perspectives. Regarding the area under the PR curve, the
second bests are the Taxonomy Network and the Continuous Technological Space.

non-linear relationships among the technological portfolios of firms and the technological sectors they will
move to.

In figure 3 we compare the frequency distributions of the scores of both the realized and the not realized
activations for the RF (y-axis) and Technology Space (x-axis). In order to make them comparable, both scores
are rescaled using the respective maxima and minima. The red line is the bisector, shown for further reference.
From the left figure, it emerges that the RF assigns, on average, higher scores to those potential activations which
will be actually realized in two years. On the contrary, the possible but not realized activations show similar
distributions; this is due to the much greater number of true negatives which is present in both approaches.
Note that, as expected, the scores given to the not realized activations are lower than the realized ones.

Finally, it is also important to point out that in the present study, true positives are more significant than
true negatives. This has a twofold rationale:

• The high class imbalance implies that a performance measure such as accuracy is not adequate for the
problem. The majority of the elements of our matrices are equal to zero and therefore an accuracy mea-
sure would consider only the overwhelming number of true negatives. Even if we made a prediction in
which we assume that all the elements of the matrix will be zeros we would get an accuracy higher than
99%. More in detail, the percentage ratio between elements equal to 1 and 0 is about 0.2% for T = 0 and
0.08% for T = 1.

• For a firm, it is more interesting to know which technologies are close to it than those it is already active
in (i.e. which technologies it can successfully activate in the future), rather than knowing which ones it
will not do in the future (which is often trivial information, due to a totally different scope, for instance).

2.2. Continuous Technology Space
Even if the prediction performance of the RF algorithm vastly outperforms the other approaches, its practical
feasibility in policymaking could be limited by its low interpretability. From a policy perspective, indeed, it is
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Figure 3. Comparison of the RF and Technology Space scores with a 2D histogram plot. In each figure, the bins’ color represents
the number of data points within each bin. The left figure is referred to the realized activations, i.e. those elements that are always
0 during the training years (from 2000 to 2009) and then become 1 in the test year (2011). The red line is the bisector. The realized
activations’ scores obtained with the RF are, on average, higher than those obtained with the Technology Space. The right figure is
referred to the not realized activations, i.e. elements that also in 2011 are zero: here, the distributions are roughly similar.

not easy to justify a strategic decision such as investing or not in a technological sector on the basis of a quasi-
black box algorithm. In order to provide a visual tool to inform and justify strategic decisions, we introduced
the continuous Projection Space (Tacchella et al 2021), that uses the scores obtained from the machine learning
algorithms to build a two-dimensional and, as such, easy interpretable space to visualize and describe the
temporal evolution of bipartite networks. The key idea is to interpret the scores matrix obtained with the RF
as a matrix of coordinates of technology codes in a high-dimensional space. These embeddings are then made
representable by applying suitable dimensionality reduction techniques; in this case, t-SNE (Van der Maaten
and Hinton (2008)). Note that here we are using the term ‘interpretable’ in a policy perspective: in this sense,
machine learning algorithms are a black box in the sense that, for a policymaker, the origin of our results is not
clear a priori (for instance, a company being close to a technology code). However, by applying t-SNE to the RF
scores one can obtain a visual representation of the relative position of the codes in this new space we define.
Now the motivation behind our relatedness assessment, and the consequent forecast, become (hopefully) clear:
the company is close to a given technology if it is patenting in the close technologies. This is visible as a diffusion
process only in a low-dimensional representation. We point out that this is not an explanation of how the RF
works, which is beyond the scope of the paper, it is just an a posteriori justification of our results that, being
representable in a two-dimensional plane, can provide insights about companies’ innovation strategy (e.g.,
exploration vs exploitation).

Here we apply this methodology—which is fully described in the Methods section— to the firm-technology
network; the result is a plane in which each technology sector is a point, and similar sectors are close. In
figure 4(a) the different colors correspond to IPC macro-categories, i.e. the first of the 4 digits that define the
classification codes. We point out that, differently in network-based representations, here the similarities are
simply represented by the spatial proximity between technology codes. The use of Euclidean distances instead
of topological ones permits to use of a wider range of tools, for instance, clustering and anomaly detection
algorithms. A visual inspection of the CTS permits to obtain a number of insights: in figure 4(a) one can observe
that technology codes tend to cluster following the macro-categories; this is a first hint that the positions in
the plane present a certain degree of significance. However, also the departures from the classification reveal
meaningful relationships. In particular, on the upper left one can observe the presence of a dense area where it is
possible to find veterinary medicine close to farm. In the motor vehicles area on the left, we find motor vehicle
technology codes; in particular, there is a red color technology code (A47C) that corresponds to chairs and
seats specially adapted for vehicles, black technology codes colors, corresponding to B60 (considering the first
3 digits), that represent vehicles, light blue technology codes corresponding to the first 3 digits F01 and F02, i.e.
machines and engines, and combustion engineering, and one brown technology code color (G05G), physics
of command systems. Weapons area is associated with weapons technologies: we find principally (considering
the first 3 digits) codes B63 and B64, i.e. ships and aircrafts, C06 associated with explosive chemistry, and F41
and F42, i.e. weapons and ammunition.
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Figure 4. Above: representation of the CTS. Each point is a technology code and each color is associated with the respective macro
category, i.e. the first of the 4 digits. Clusters related to macro categories are evident. Below: comparison between two density
distributions of distances. The first (cyan line) represents the distances between activation codes patented by a company from the
closest code the company used; the second (orange line) is the density distribution of distances between points in the CTS.

The example discussed above can be generalized by comparing two frequency distributions of distances
(see figure 4(b)). The first distribution (cyan line) is relative to the distances between the newly activated codes
and the patenting company (that is, the distance from the closest sector the company patented in); the second
(orange line) is the density distribution of all distances between the points in the CTS. We can see how the
first distribution has a lower mean, evidencing that, on average, firms tend to patent in codes that are relatively
close to what they already do. Obviously, also high distances are present, indicating strategic choices which
lead the firm far from its usual scope.

In order to show a concrete application of the CTS, we show in figure 5 the portion of this
space relative to an American nanotechnology company, Nanotek Instruments Inc., as an example.
In 2002 Nanotek patented three inventions, two based on batteries (https://patentimages.storage.
googleapis.com/f4/d8/3d/d663e43fe48e2b/US6773842.pdf and https://patentimages.storage.googleapis.com/
66/b3/7f/6fa873ae402fbf/US6864018.pdf) and the third is the nano-scaled graphene plates (https://patent
images.storage.googleapis.com/e5/3d/0d/1c25e5f68a77ab/US7071258.pdf). The first two are associated with
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Figure 5. The exploration of the continuous Technological Space by an American nanotechnology company. Starting from the
red sectors, which Nanotek patented in the past, this company moved nearby, patenting in the gold sectors in the next years.

the code H01M, while the third with the codes C08K , C04B, C01B and C22C, which correspond to the gold
points. The red points are the technology codes which Nanotek patented in 2000 and 2001, while, as men-
tioned, the gold ones are those activated in 2002. The black arrows underline the non-random position of
the new technologies, that are close to the ones already present in the patenting activity of the company. This
is because we find that technology codes that have a high similarity are represented close to each other, and
therefore a sort of ‘technological diffusion’ is expected starting from the codes that firms already have in their
portfolios (as shown in figure 4(b)).

3. Discussion

In this work we compare machine learning and network-based approaches to forecasting which will be the
future patenting activity of firms; in particular, their next technological sector of innovation. To the best of
our knowledge, this is the first attempt to assess the relatedness between a firm and a technology sector using
machine learning. In order to compare the various possible measures of relatedness, we analyze a very large
database consisting of about two hundred thousand firms and 643 technology sectors and we develop a fore-
casting exercise using the assumption that, on average, firms will patent in sectors related to their present
technological activity. We find that supervised machine learning techniques RF clearly outperform the stan-
dard methodologies usually adopted in economic complexity, that is, networks of co-occurrences. Our results
are robust with respect to different definitions of what a ‘new’ technological sector is, and if different metrics
to evaluate the prediction performance are adopted. Indeed, RF assigns on average higher activation scores
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to those technologies which will be explored by firms with respect to all network-based approaches. Finally,
we introduce the CTS, which permits to visualize the dynamics of firms during their innovation activity. The
introduction of this approach opens up a number of possible applications and developments. First of all, our
activation scores represent an assessment of the achievability of a given jump to a new technology sector, a
measure of how easy will be to produce innovations in that sector given the present activity of the firm. More-
over, the CTS allows a compact visualization of the past, the present and the possible patenting activity of a
firm. Using these tools, and in the spirit of the ‘adjacent possible’ approach of Kauffman (1996), Tria et al
(2014), it is now possible to quantify how much a firm is exploring the space of technologies or exploiting what
it already does. One can then compare different strategic choices with various measures of performance, both
in terms of profitability and further innovation activity. Furthermore, these measures can be applied to inves-
tigate mergers and acquisitions, and in particular to study whether acquirers prefer to target companies that
are ‘close’ or ‘far’ from their present patenting activity. Finally, following the work of Brummit et al (2020) and
Pugliese et al (2019b), a future research project could be the prediction of some performance-related monetary
variables of firms, such as revenue or labor productivity, from knowledge of firms’ patent activity.

4. Methods

In this section, we describe in more detail the database, algorithms, and evaluation metrics used in the analysis.

4.1. Data
The bipartite firm-technology network is obtained by matching two databases: AMADEUS for firms and
PATSTAT for the technology codes.

4.1.1. Firms
AMADEUS (https://amadeus.bvdinfo.com) contains information about over 20 million companies, mainly
concentrated in the European continent. This database is managed by Bureau van Dijk Electronic Publishing
(BvD) which specializes in providing financial, administrative and budget information relating to companies.
It is compatible with the PATSTAT database for patents as BvD includes the same patent identifiers as the Euro-
pean Patent Office (Pugliese et al 2019b). We mention here one of the well-known problems with AMADEUS,
namely that large companies are fully covered while those with less than 20 employees are under-represented
(Ribeiro et al 2010); however, this is not a severe issue for the present analysis.

4.1.2. Technology codes
The dataset from which we take information about the patent and the technology codes is PATSTAT
(www.epo.org/searching-for-patents/business/patstat). Globally, PATSTAT considers approximately 100 mil-
lion patents registered in about 100 Patent Offices. This information spans from the mid-19th century to
three-four years before the release of the database; this is evident from the quickly decreasing number of patents
in the last available years. As a consequence, we decided to restrict our analysis to a conservative time interval
(2000–2011). A key element is the presence of a set of alphanumeric codes in each patent submission; these
codes can be assigned by the inventors or by the reviewers and represent the technology sector the patent
belongs to. The WIPO (World International Patent Office) uses the IPC (International Patent Classification)
(Fall et al 2003) to assign these technology codes to each patent in such a way as to classify, and better manage,
the inventions presented. The IPC codes define a hierarchical classification consisting of six levels: sections
(that we call macro category), sub-sections, classes, sub-classes, groups and sub-groups. For example, code
Axxxxx corresponds to the ‘Human necessities’ macro category and Hxxxxx to the ‘Electricity’ macro cate-
gory; considering the following digits we have, for example, with A01xxx the sector ‘Agriculture; Hunting’,
and with A43xxx the ‘Footwear’ sector. It is important to note that we discard classes ‘99’ and sub-classes ‘Z’,
as they represent other technologies not classified in other classes or sub-classes, and they are therefore not
well defined.

It may happen that the same invention may be referred to for multiple patent application documents.
In this case, each group of documents in PATSTAT is called ‘Patent Family’ according to primary citations
among them (Publishing et al 2001), which is nothing more than the set of patents presented in different
countries to protect the single invention. Patent families can be built with different criteria (Martı́nez 2011),
but among these, we choose the one related to the ‘Extended family’, also called IN-PADOC. This corresponds
to the category considered in such a way as to associate the inventions with the widest possible technological
spectrum. Once patents are assigned to firms, we can assign them the corresponding technology codes and
build the firm-technology bipartite network, and its adjacency matrix Vy, one for each year y. The matrix
element represents the number of the patent submitted by the firm in the technology sector. Note that this
number may be fractional since more than one code is usually present in the same patent: for instance, if a
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firm submits only one patent with three technology codes, the three nonzero elements of the corresponding
row of Vy will be equal to one third. The interested reader can find more details about this data in the results
section and in Pugliese et al (2019b).

4.2. Data processing
The starting database can be represented using the following structure: 12 matrices, one for each year from
2000 to 2011, that link 426983 firms f (rows) to 7456 (six-digits) technology codes t (columns). We chose to
work at a higher aggregation level, and so to compress the technology codes from 6 to 4 digits, summing the
columns corresponding to the 6-digit codes with the same first 4-digits. From the 6 to the 4 digit level the
number of technologies goes from 7456 to 643. This operation leads to both better quantitative results and
shorter computation times (from a qualitative point of view, instead, the results are unchanged).

A key element of both the machine learning and the network-based approaches is to provide an assessment
of the similarity between technology codes; this information can be extracted from the co-occurrences of tech-
nological sectors in the same firms. So we consider only firms that, in the years from 2000 to 2009, make at
least 2 technology codes; these firms are 197944.

This leads to the data mentioned in the main text: 12 V yearly matrices that link 197944 firms and 643
technology codes.

In order to compute the relatedness measures, in the economic complexity literature (Hidalgo et al 2007,
Zaccaria et al 2014, Pugliese et al 2019a) one usually computes the revealed comparative advantage or RCA
(Balassa 1965), and then these matrices are binarized using a threshold equal to 1. As far as exports are con-
cerned this choice of threshold has a natural economic meaning, traceable to the works of Ricardo and Balassa
himself: considering the bipartite country-product network, RCAc,p � 1 means that country c is significantly
competitive in the export of the product p (Hidalgo et al 2007). So the country’s share of that product in its
market is equal to or greater than the product’s share on the world market. However, the economic meaning
of patent submission is different, so the choice of RCA is not straightforward. In this work, we binarize the
matrices V with different values of threshold T, without computing the RCA; in this way, the matrices V are
better interpretable as how much a technology code t is present in the patenting activity of a firm f. We have in
any case check the robustness of our results for different threshold values and the use of RCA.

4.3. Network-based approaches
In this and in the next sections we discuss how to obtain a prediction score matrix S for 2011 from each method
starting from the same training data V and M, relative to the years 2000–2009. The score matrix gives the
model’s estimation of the likelihood that a firm will patent in the given technology sector, and the comparison
between the scores and the actual M2011 using the performance metrics will give an assessment of the models’
performance.

The basic idea of network-based approaches is to compute similarity of technology codes from their co-
occurrences in companies. Introduced by Teece et al (1994), and popularized in the network/complexity
community by Hidalgo et al (2007), the basic quantity is the number of firms that have patented inventions
relating to both codes:

BCO
t,t′ =

∑
f

Mf ,tMf ,t′ . (1)

The idea is that if many firms are active in two technology sectors t and t′ at the same time, this means that
the capabilities, the techniques and, in general, the necessary means to patent in these sectors, are roughly the
same, and so these sectors are, in this sense, similar, or related.

Different scholars presented various ways to normalize the co-occurrences, on the basis of different theo-
retical frameworks or interpretations. In general, we can write:

Bt,t′ =
1

A

∑
f

Mf ,tMf ,t′

C

and discuss the various options for the quantities A and C:

• Simple co-occurrences (Teece et al 1994): for A = 1 and C = 1 one simply counts the number of com-
panies that are active in both sectors. This case corresponds to BCO

t,t′ of equation (1);

• Technology Space (same normalization of the Product Space (Hidalgo et al 2007)): A = max(ut, ut′)
and C = 1, where ut =

∑
f Mf,t is the ubiquity of technology code t, that is, the number of firms active

in that technology sector. Using this type of normalization we give a lower connection weight to those
technology codes done by many firms, which we can consider basic.

• Taxonomy (Zaccaria et al 2014): A = max(ut, ut′) and C = df, where df =
∑

t Mf,t is the diversification
of firm f. The Technology Space, for how it is built, gives a higher score for high complexity technology
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codes (i.e. codes done by few firms) and, as a result, bias towards them. Consequently, it is not possible
to justify the evolution of low-complexity technology codes toward high-complexity ones. Normalizing
also for the diversification we avoid this problem as we penalize low ubiquity scores and low complexity
technology codes are weighted more.

• Micro partial (Teece et al 1994): we compute

BMP
t,t′ =

BCO
tt′ − μtt′

σtt′

with
μtt′ =

utut′

N
,

and

σ2
tt′ = μtt′

(N − ut)(N − ut′)

N(N − 1)
,

where N is the number of companies. Here we use a null model in which the ubiquities of the technolo-
gies are kept fixed and everything else is randomized. This case can be analytically solved: the resulting
distribution for the co-occurrences is hypergeometric with mean μtt′ and variance σ2

tt′ . We call this net-
work micro partial following the notation used by Cimini et al (2022): this null model is microcanonical
in the sense that the degree sequence is exactly fixed and partial because only one layer is constrained.
So the idea is that, if the weight of the link between two technology codes t and t ′ exceeds the expected
value μtt ′ , this means that t and t ′ are highly related with respect to this random case. Furthermore, as
a t-statistic, BMP

t,t′ measures how much the observed link between the two technology codes exceeds what
would be expected if the companies were randomly assigned.

For the latest formulas, we obtain one matrix BNet for each network. In order to consider all years available
in the training data, we used as M matrix in the previous formulas a total matrix obtained by summing the V
matrices from the years 2000 to 2009, using all the 197944 firms, and then binarizing this sum.

Based on the network used, we get a BNet which we use in the coherence equation from Pugliese et al
(2019b):

S2011
f ,t =

∑
t′

M2009
f ,t′ BNet

t′t , (2)

where M2009
f ,t′ is the M matrix obtained by binarizing the V2009 matrix. In practice, t is highly coherent with the

patenting activity of firm f if f is active in many sectors highly connected with t. On the contrary, if a sector
is far from what a firm actually does, we will assign it a lower activation score. Note that this equation differs
from the density equation of the Product Space (Hidalgo et al 2007); we use coherence instead of density since
we have found a better predictive performance.

4.4. Random forest
RF (Breiman 2001) is a tree-based machine learning algorithm that we use to better capture the non-linear links
between technology codes. In particular, we use this binary classification algorithm to determine whether or
not a technology code will appear in the patenting portfolio of a particular company in the future starting from
the knowledge of the technology codes in which the firms patented in the last training year.

In general, during the training of a supervised machine learning algorithm, an input data X matrix is passed.
Because our problem is a supervised one, each vector (row) of the matrix is associated with a label presented
in a different input y. To give an example, X can be the matrix where each row is a flattened handwritten digit,
and each element of the row is the intensity of a pixel; in this case, y will be the label corresponding to the digit,
and that must be associated, in order to be recognized, to all those present in X. Once the model is trained,
one gives new samples Xtest and the model is able to make associate a prediction ytest (in this case, a digit), to
each sample.

In our case, we train one RF for each technology code: we want the RF to learn which typologies of port-
folios are associated with each code after two years. So, as samples matrix X we use the matrix obtained by
concatenating, or stacking vertically, the V matrices from the year 2000 to 2007, and as y we use one column at
a time (and therefore one technology code at a time) of the matrix obtained by concatenating the matrices M
from the year 2002 to 2009. In this way, each row is a firm in a year from 2000 to 2007, that has 643 features. We
associate this sample to the respective label in y, that is, if after 2 years the technology code associated with the
element in y is active, or not. In such a way, we associate the codes of each portfolio with the possible presence
of the target code in the future.

12



J.Phys.Complex. 3 (2022) 035002 (17pp) M Straccamore et al

Figure 6. We show how the score matrix S2011 is obtained by the RF by combining the predictions of different decision trees.

From a practical viewpoint, we use the ‘RandomForestClassifier’ from the ‘sklearn.ensemble’ python
library (Pedregosa et al 2011), called in this way:

RandomForestClassifier.fit(V2007
2000,

−→
M2009

2002),

where V2007
2000 are the vertically stacked matrices and with the vector symbol over M we indicate that one column

is used at a time, that is, we train one RF for each technology code. The delay of 2 years is used to insert a depen-
dence on time, as we want to produce forecasts about the innovative development of firms. We optimized the
RF parameters as described in the supplementary information; the results shown here refer to: number of trees
= 50, min_samples_leaf = 4; max_depth = 40 and method = ‘entropy’. The use of all available companies
in the training is computationally demanding, so we used only the top 10 000 most diversified firms (10KHD
firms). If we use more firms for the training we get a saturation of the forecast performances (see the supple-
mentary information). The fact that firms with higher diversification should be used is due to the fact that
these provide better coverage of the possible technologies and the possible combinations among them.

After fitting the data, that is, training the machine learning model, we obtain the S2011 scores by using the
V2009 matrix as Xtest in a predicting phase. The command line reads

S2011 = RandomForestClassifier.predict_proba(V2009)

and this associates a probability to activate the target technology to each firm in 2009. In figure 6 we schemat-
ically represent how S2011 is obtained from the RF, the latter being represented by a set of differently trained
decision trees.

In this paper, we also compare the approach described above with a cross-validated RF, for which we use the
same optimized parameters and, in order to provide a consistent comparison of the results, the same training
and test sets. In this respect, note that the Xtest should always produce a prediction for all the 197944 firms
(including the 10KHD firms used in the training). In the cross-validation framework, we train k = 4 different
RFs, using the technique called k-fold cross validation, that is we separate into k = 4 groups both the 10KHDs
used for the training and the 197944-10KHDs used for the test. Then, in training each RF we remove one of
the 4 groups of 10KHD companies. The test is instead performed on the removed group from the 10KHD
companies along with 1/4 of the 197944-10KHD firms used for the test. This is performed 4 times, each time
removing a different set of firms. In the end, we will have prediction scores for all companies by merging the
scores produced by the four RFs.

The idea behind the use of cross validation is the following. During the training, the RF basically learns two
pieces of information: to recognize the portfolio of a company and the similarity among technologies. Even if
we are more interested in the latter, the learning of the two cannot be avoided. However, we can try to force the
algorithm to use the similarities in the test phase: if we give a new company in the Xtest, the RF cannot recognize

13



J.Phys.Complex. 3 (2022) 035002 (17pp) M Straccamore et al

it and so it is forced to use the similarities to produce its predictions. This procedure, even if computationally
more demanding, leads to better results, as shown in figure 2.

4.5. Continuous Technology Space
RF shares with most the machine learning algorithms an intrinsic difficulty of interpretation, i.e. the rationale
behind how the input is connected to the output is not evident. In this respect, network approaches (note:
if made sparse by a suitable filter) are more clear, since the coherence or density-based approach are clearly
visualizable: a technology is coherent with a firm’s portfolio if has a lot of heavy connections with what the
firm already does. In order to restore the interpretability of networks and keep the predictive performance of
machine learning, Tacchella et al (2021) propose the Continuous Projection Space, which here we reformulate,
with suitable modifications, as the CTS.

To compute the CTS we start from the RF CV method but, in X, only the first 2K HD firms are used, because
we have a saturation of the scores: using more firms does not change the scores and increases the computational
time.

Another difference with the RF CV is that the predictions are obtained using as Xtest the same 2K HD firms
used for the training (i.e., in the CTS X = Xtest; however, we use k-fold CV to avoid overfitting problems). At the
end we obtain a scores matrix of shape [N × years] × [#t], where N is the number of companies (N = 2000),
years = 10 and #t = number of technology codes = 643; in total, this scores matrix has shape 20 000 × 643.

Each column of the score matrix represents the likelihood that each company (rows) will patent each
technology code (columns). We can then argue that two sectors are similar if the RF predicts that the same
companies will (or will not) produce patents in these sectors. In this sense, the columns of the score matrix can
be seen as the coordinates in a high-dimensional space for each technology code, where the number of dimen-
sions is given by the number of companies multiplied by the number of training years (in this case, 20 000).
In order to provide better interpretability to the relatedness assessment, one should find a low-dimensional
visualization of this high-dimensional representation. Obviously, it is impossible to visualize this continu-
ous space of technologies in such a high dimensionality; so we project these points in a lower dimension by
combining a variational—autoencoder neural network (Kingma and Welling 2013), to reduce the dimension
from 20 000 → 150, and then t-SNE (Van der Maaten and Hinton 2008), to reduce the embedding space from
150 → 2 dimensions, finally obtaining the CTS, that we show in figure 4(a). Now the similarity between tech-
nology codes is simply given by the relative distance in this 2 − D space, and it is easy to understand and
visualize how firms move from the codes already present in their portfolios to the ones that are immediately
close, as shown in figure 5.

Now we want to use the idea of a coherent diffusion in this low dimensional space to produce forecasts; in
practice, to obtain a score matrix S2011 to compare with the possible activations of 2011. We start by computing
a similarity matrix for the CTS, which for the sake of simplicity we keep calling B. We use the distances between
technology codes on the CTS and Gaussian kernels:

Bi,j =
e−‖yi−yj‖2/2σ2

i∑
k e−‖yi−yk‖2/2σ2

i
,

where yi is the coordinate of the ith technology code in the CTS (i.e. in the 2 − D space). The σi is the standard
deviation of the Gaussian kernel related to the technology code ith; this parameter can be set differently for
each i code, through a binary search process in which the number of first neighbors is fixed. As we can see in
figure 4(a), there are codes in dense areas and codes in less dense areas, so the idea is to assign a high sigma
value to the codes in less dense areas and low sigma values in more dense areas in order to keep the interaction
with the number of first neighbors constant. The binary search process is described in the supplementary
information where we also show that the best optimal value of nearest neighbors is 75.

After the similarity matrix B is obtained, one can compute the score matrix S2011 from the coherence
equation equation (2):

S2011
f ,t =

∑
t′

M2009
f ,t′ Bt′,t .

The number of nearest neighbors is calculated out of sample using the four-fold cross validation as in the case
of the RF CV: we use 3/4 of the companies to determine the number of nearest neighbors that maximize the
area under the PR curve and then we calculate the scores using the equation (2) for the remaining companies.

Note that the CTS is, as the network approaches, density-based: the more a firm surrounds a technology
sector, the more likely it will be part of its patenting activity in the near future.
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4.6. Benchmark models
In order to understand the effective goodness of our forecast results, a comparison with some relatively trivial
benchmark models is required. We used two benchmark models:

• The first consists of simple randomization of the technology codes. In practice, we shuffle the columns
of the M2009 matrix in the calculation of equation (2). The B used is that calculated with the Technology
Space network starting from the not randomized M2009 (using the other networks there is no significant
change in the metric scores). In this way, the diversification of firms is preserved.

• The second benchmark model checks the hypothesis that the simple temporal autocorrelation of the
bipartite networks can explain the observed dynamics. In this case, we use the mean of the Vs matrices
from 2000 to 2009, V (all the years used in the training) of the test firms as score matrix S2011, that is,
element-wise:

S2011 = V.

In this way, we check if the number of patents done in the past can forecast the number of patents done
in the future by the same company in the same technology sector. As shown in figure 2, this benchmark
model can outperform some of the density-based approaches.

4.7. Prediction performance metrics
In order to compare the goodness of the predictions of the different approaches, we use standard evaluation
metrics, widely used for classification tasks in supervised machine learning (Hossin and Sulaiman 2015). As
different metrics capture different aspects of the prediction problem, only the comparison between various
measures of performance can provide a global view of the effectiveness of a forecasting approach.

The elements that we want to predict are the possible activations, that is, those elements of M2011 that were
always zero in 2000–2009. The 0s are called negatives, and the 1s are called positives. The elements equal to
1 that are correctly predicted are called true positives (TP); and similarly one can define the false positives
(FP), the true negatives (TN) and the false negatives (FN) as, respectively, the 0s predicted as 1s, the correctly
predicted 0s, and the 1s predicted as 0s.

To evaluate the predictions done with the different approaches, we have used three performance metrics:

• Area under the PR curve: this indicator is equal to the area in the precision-recall plane. Precision is
defined as TP(τ)

TP(τ)+FP(τ) , while recall is equal to TP(τ)
TP(τ)+FN(τ) . These quantities are close to 1 if FP and FN

are respectively minimized. Note that in order to compute precision and recall one has to specify the
scores’ binarization threshold τ , that is, the number above which the score is associated with a positive
prediction (1). The PR curve is defined by varying the τ parameter because for different values of τ we
obtain different precision and recall values. The last step is the computation of the area under this curve,
which is independent of the threshold τ .

• Precision@100: to compute this indicator we focus on the top 100 score elements in S2011: if the model is
correct, many of these possible activations should become realized activations. The Precision@100 is the
ratio between the number of these 100 that are true positives (that is, correctly predicted realized activa-
tions), and 100, i.e. the number of elements that we are considering. This represents a global assessment,
that considers the score matrix as a whole.

• mPrecision@10: while the Precision@100 provides a global measure of the precision of the approach, we
would like to have a measure of our average predictive performance for each firm. To do this, we evaluate
the mPrecision@10. We consider the 10 highest scores for each row, i.e. for each firm, and compute the
fraction of true positives. Then we average over the firms. Since most of the firms do not show at least 10
realized activations, the global number is far from 1. We have computed the mPrecision also restricting
ourselves only to the firms with 10 or more realized activations, finding similar qualitative results.

Acknowledgments

We thank Lorenzo Napolitano for providing the patent data used for this work and Andrea Tacchella for
insightful discussions. All the authors acknowledge the CREF project ‘Complessità in Economia’.
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