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Abstract

Lehmann and Magidor’s rational closure is acknowledged as a landmark in the

field of non-monotonic logics and it has also been re-formulated in the context of

Description Logics (DLs).

We show here how to model a rational form of entailment for expressive DLs,

such as SROIQ, providing a novel reasoning procedure that compiles a non-

monotone DL knowledge base into a description logic program (dl-program).

1 Introduction

One of the main non-monotonic formalism, namely Lehmann and Magidor’s rational

closure [23], is acknowledged as a landmark for non-monotonic reasoning due to its

logical properties. Rational closure, that falls under the more general class of the ratio-

nal entailment relations [23], has been proposed in the context of Description Logics

(DLs) [1], starting from basic DLs, such as ALC [4, 8, 10, 12, 3, 19, 18], and re-

formulated for low-complexity DLs, as EL⊥ [13, 16], as for expressive ones, up to

SROIQ [2].

Here we show an implementation of a rational entailment relation for an expres-

sive DL such as SROIQ [20]. The main contribution of this paper is that we re-

formulate the decision procedure for rational closure by compiling a non-monotone

DL knowledge base into a description logic program (dl-program) [14]. Dl-programs

have been proposed to combine DLs with Answer Set Programming [15], an estab-

lished approach to implement non-monotonic reasoning for rule-based languages. In

this way our approach can be easily be implemented on top of existing reasoners sup-

porting dl-programs, such as DLV 1.

1http://www.dlvsystem.com.

1

http://arxiv.org/abs/2107.06075v1
http://www.dlvsystem.com


We proceed as follows. In section 2 we briefly present the logical systems we will

refer to in the definition of our method, which is worked out in section 3. Eventually,

in section 4 we briefly recall related work and then we conclude.

2 Preliminaries

For the sake of completeness and ease the reading, we introduce here a minimum of

basic notions.

2.1 Description logic programs

Normal logic programs. Assume a first-order vocabulary Φ = 〈P, C〉, with C a set of

constants {a, b, . . .} and P a set of predicates {p, q, . . .}, and let X be a set of variables

{x, y, . . . }. A term t is either a variable from X or a constant from C, and an atom is

an expression p(t1, . . . , tn), where p is a n-ary predicate in P and each ti is a term. A

literal l is an atom or its negation (via connective ¬), while a negation-as-failure literal

(NAF-literal) is of the form not l, where l is a literal. A rule r is an expression of the

form (m ≥ k ≥ 0)
a← b1, . . . , bk, not bk+1, . . . , not bm , (1)

where a, b1, . . . , bm are literals. Intuitively, a rule has to be read as ‘if we know that

b1, . . . , bk are true, but we are not aware that bk+1, . . . , bm are true, then we can con-

clude a’. We indicate by H(r) (head of r) the literal a, by B+(r) (positive body of

r) the set {b1, . . . , bk} and by B−(r) (negative body of r) the set {bk+1, . . . , bm}. A

normal program P is a finite set of rules, while a positive program P is a finite set of

rules in which B−(r) = ∅ for every rule r.

As usual, atoms, literals, rules and programs are considered ground if they do not

contain any variable. The Herbrand Universe of a program P (HUP ) is the set of all

the constants that appear in P , while the Herbrand Base of P (HBP ) is the set of all

the literals that can be constructed from the predicates in P and the constants in HUP .

A ground instance of a rule r is obtained substituting every variable occurring in r with

a constant symbol in HUP , and, given a programP , ground(P ) is the set of all ground

instances of rules in P .

From the semantics point of view, an interpretation I of a program P is a consistent

subset of HBP , i.e. I ⊆ HBP and there is no atom a such that both a and ¬a are in

I . The truth value of a literal l is true, false, or unknown in I iff, respectively, l ∈ I ,

¬l ∈ I , or {l,¬l} ∩ I = ∅, where ¬¬a is a. The satisfiability of a program P is

reduced to the satisfiability of its rules expressed in ground form: that is, I is a model

of a program P iff it is a model of ground(P ), i.e. if B+(r) ⊆ I and B−(r) ∩ I = ∅,
then H(r) ∈ I for every rule in ground(P ).

In case of a positive program P , the answer set of P is the least model of P with

respect to set inclusion: the fact that P is positive guarantees the uniqueness of its

answer set [14]. If P is not positive, the notion of answer set is defined via the so-called

Gelfond-Lifschitz transformation (see, e.g. [15]). Specifically, consider a program P
and an interpretation I ⊆ HBP . The Gelfond-Lifschitz transformation of P relative
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to I gives back a positive program P I , and it is obtained from ground(P ) with the

following procedure:
• delete from ground(P ) every rule r s.t. B−(r) ∩ I 6= ∅; and

• from the remaining rules delete the negative part of the body.
In this way, we end up with a positive program P I , and I is an answer set for P iff

I is the answer set for the positive ground program P I . We indicate with ans(P ) the

set of the answer sets of a program P . Eventually, we define a cautious (resp., brave)

consequence relation |=c (|=b) as follows: P |=c l (P |=b l) iff the literal l is true in

any (some) answer set of P .

Example 2.1. Let P a program composed of the following rules:

feline(a) ←

feline(b) ←

big(b) ←

docile(x) ← feline(x), not big(x) .

Consider the interpretation I = {feline(a), feline(b), big(b), docile(a)}. Then P I

is defined as follows:

feline(a) ←

feline(b) ←

big(b) ←

docile(a) ← feline(a) .

It is straightforwardly verified that I is the least model of P I and, thus, I is an (indeed,

it’s unique) answer set of P .

Description logics. We shall refer here to an expressive DLs, namely SROIQ (for

more details about it, we refer the reader to [20]). The SROIQ signature is composed

of a set of concept namesAt = {A,B, . . .}, a set of role names S = {R,S, . . . }, and

a set O of individuals {a, b, . . .}. The set of roles is R = S ∪ {R− | R ∈ S} ∪ {U},
where R− is the inverse of a role R (R−− is R) and U is the universal role. We can

also compose the roles in R into finite chains such as R1 ◦ . . . ◦ Rn. The set C of

SROIQ concepts is defined inductively as:

(i) At ⊆ C;

(ii) ⊤,⊥ ∈ C;

(iii) if {a1, . . . , an} ⊆ O, then {a1, . . . , an} ∈ C;

(iv) if C,D ∈ C, then C ⊓D,C ⊔D,¬C ∈ C;

(v) if C ∈ C, R ∈ R, then ∃R.C, ∀R.C,≥n R.C,≤n R.C, ∃R.Self ∈ C.
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Condition (iii) indicates that the enumerated sets of individuals (nominals) can be used

also in the TBox as concepts. An interpretation is a pair 〈∆I , ·I〉, where ∆I is a

nonempty set, called domain, and the interpretation function ·I assigns to every in-

dividual a member of the domain ∆I , to every concept name a subset of ∆I , and to

every role name a subset of ∆I ×∆I . The function ·I is extended to all the concepts

and roles in the following way:

• {o1, . . . , on}I = {oI1 , . . . , o
I
n};

• (C ⊓D)I = CI ∩DI ;

• (C ⊔D)I = CI ∪DI ;

• (¬C)I = ∆I/CI ;

• (∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI};

• (∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI → y ∈ CI};

• (≥n R.C)I = {x ∈ ∆I | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≥ n};

• (≤n R.C)I = {x ∈ ∆I | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≤ n};

• (∃R.Self)I = {x ∈ ∆I | (x, x) ∈ RI};

• (R−)I = {(a, b) | (b, a) ∈ R};

• (U)I = ∆I ×∆I ;

• (R1 ◦ . . . ◦ Rn)
I = {(a, b) | ∃x1, . . . , xn−1.(a, x1) ∈ RI

1 , (x1, x2) ∈ RI
2 , . . .,

(xn−1, b) ∈ RI
n}.

where #S is the cardinality of set S ⊆ ∆I . A DL knowledge base L is a triple

〈A, T ,R〉, where A is an ABox, containing information about the individuals, T is

a TBox, containing information about the relations between the concepts, and R is a

RBox, containing information about the roles. The kind of axioms contained in the

ABox, the TBox, and the RBox are described in the table below, with their respective

semantics (n ≥ 1).

Axiom Name Sintax Semantics

ABox Concept membership axiom C(a) aI ∈ CI

Role membership axiom R(a, b) (aI , bI) ∈ RI

TBox Concept inclusion axiom C ⊑ D CI ⊆ DI

RBox Role inclusion axiom R1 ◦ . . . ◦Rn ⊑ S (R1 ◦ . . . ◦Rn)I ⊆ SI

Transitivity Trans(R) RI is transitive

Functionality Fun(R) RI is a function

Reflexivity Ref(R) RI is reflexive

Irreflexivity Irr(R) RI is irreflexive

Simmetry Sym(R) RI is symmetric

Asimmetry Asy(R) RI is asymmetric

Disjointness Dis(R, S) RI and SI are disjoint
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A RBox has further to comply with an additional syntactical restriction: that is, a

RBox has to be regular, which essentially prevents a RBox from containing cyclic

dependencies among roles that are known to lead to undecidability [21]. For ease of

presentation we do not include the definition here and refer the reader to [20, Definition

2] instead. We use C = D as a shorthand of the concept inclusion axiom ⊤ ⊑ (¬C ⊔
D) ⊓ (¬D ⊔C). With |= we denote the classical, monotonic, consequence/entailment

relation, which is defined as usual.

Note also that every ABox axiom can be reformulated as an equivalent TBox ax-

iom. In particular, C(a) can be reformulated as {a} ⊑ C, while R(a, b) is equivalent

to {a} ⊑ ∃R.{b}. Consequently, in what follows we will not consider ABoxes.

Description logic programs. A description logic program (dl-program) is composed

of a pair K = 〈L, P 〉, where L is a DL knowledge base and P is a set of dl-rules [14],

which we are going to specify next. The DL knowledge base L is defined over a

vocabulary composed of a set of concept names At, a set of role names S, and a set

O of individuals, while P is defined over a vocabulary Φ = 〈P, C〉, with C a set of

constants and P a set of predicates, and with X a set of variables. We assume that the

predicative part of the two formalisms are independent, that is At ∪ S is disjoint from

P, while the same domain of individuals is shared, that is HUP ⊆ C ⊆ O.

Dl-programs use the notions of dl-query and dl-atom to be used in rule bodies to

express queries to the DL knowledge base L. That is, a dl-query Q(t) can have various

forms, but to what concerns us, it is sufficient to consider the following ones:

• a concept membership axiom C(t) (so, t = t);

• a role membership axiom R(t1, t2) (so, t = 〈t1, t2〉).

On the other hand, a dl-atom is an expression of form2

DL[S1 ⊎ p1, . . . , Sm ⊎ pm;Q](t)

with m ≥ 0, where each Si is either a concept or a role (Si ∈ C ∪ R), and each pi
is a predicate symbol from P, unary if Si is a concept, binary otherwise, and Q(t) is

a dl-query. The operator ⊎ is functional to the updating of the DL knowledge base L
with factual information obtained from the activation of the rules in the program. That

is, each Si ⊎ pi indicates that the extension of Si is increased by the extension of pi.
Now, a dl-rule r is of the form (1), where any literal b1, . . . , bm ∈ B(r) may be a

dl-atom and a dl-program is a pair K = 〈L, P 〉, where L is a DL knowledge base and

P is a set of dl-rules.

From a semantics points of view, for an interpretations I ⊆ HBP , we say that I is

a model of a ground literal or dl-atom l under L (I |=L l) iff

• if l ∈ HBP , then I |=L l iff l ∈ I;

2The definition given here is again simpler than the original one, as we consider only the form strictly

required for our proposal.
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• if l is a ground dl-atom DL[λ,Q](c), where λ = S1 ⊎ p1, . . . , Sm ⊎ pm, then

I |=L l iff L(I;λ) |= Q(c), where L(I;λ) = L∪
⋃m

i=1
Ai(I), with, for 1 ≤ i ≤

m, Ai(I) = {Si(e) | pi(e) ∈ I},

As usual, an interpretation I is a model of a ground dl-rule r iff I |=L l for all

l ∈ B+(r) and I 6|=L l for all l ∈ B−(r) implies I |=L H(r). I is a model of a

dl-program K = 〈L, P 〉 (written I |= K) iff I |=L r for all r ∈ ground(P ). We say

that K is satisfiable if it has a model.

Let KB = 〈L, P 〉 be a dl-program. The strong dl-transform of P w.r.t. L and I
(denoted sP I

L) is the set of all dl-rules obtained from ground(P ) by deleting

• every dl-rule r s.t. I |=L l for some l ∈ B−(r);

• from the remaining dl-rule r all literals in B−(r).

Note that (i) 〈L, sP I
L〉 has only monotonic dl-atoms and no NAF-literals anymore; and

(ii) a positive dl-program, if satisfiable, has a least model [14]. Now, a strong answer

set of K = 〈L, P 〉 is an interpretation I ⊆ HBP s.t. I is the least model of 〈L, sP I
L〉.

We denote with anss(K) the set of the strong answer sets of K. l is a cautious (brave)

consequence of K, indicated as K |=s,c l (K |=s,b l) iff l is true in every (some) strong

answer of K.

Note that given a dl-programK = 〈L, P 〉 and an answer set I of K, I is a minimal

model of K [14].

Example 2.2. Consider a dl-programK = 〈L, P 〉. Let L = 〈T 〉, with

T = {{a} ⊑ Cat, {b} ⊑ Feline,{b} ⊑ Big} ,

and consider a dl-program P composed of the following rules:

feline(x) ← DL[Cat](x)

docile(x) ← DL[Feline ⊎ feline;Feline](x), not DL[Big](x) .

It can easily be shown that K has an unique answer set

I = {feline(a), docile(a)} .

In fact, I is the least model of the following set sP I
L of dl-rules:

feline(b) ← DL[Cat](b)

feline(a) ← DL[Cat](a)

docile(a) ← DL[Feline ⊎ feline;Feline](a) .

2.2 Rational Closure for ALC

For convenience, we recap here some salient notions related to rational closure (RC)

for DLs, specifically for the DL ALC (see, e.g. [9]).

Remark 1. We remind that ALC concepts are inductively defined as (i) At ⊆ C; (ii)

⊤,⊥ ∈ C; (iii) if C,D ∈ C, then C ⊓D,C ⊔D,¬C ∈ C; (iv)] if C ∈ C, R ∈ R, then

∃R.C, ∀R.C ∈ C.
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Now, a defeasible concept inclusion axiom is of the form C ⊏
∼ D, where, without

loss of generality, C and D are assumed to be atomic concepts or their negation. The

expressionC ⊏
∼ D has to be read as ‘if an individual falls under the conceptC, typically

it falls also under the concept D’. A defeasible DL knowledge base is a pair L =
〈T ,D〉, where T (the TBox) is a finite set of concept inclusion axioms of the form

C ⊑ D, where C,D are ALC concepts, and D (the DBox) is a finite set of defeasible

concept inclusion of the form C ⊏
∼ D.

We next briefly describe the decision procedure for RC for ALC, referring in par-

ticular to the one presented in [3], that in turn has been obtained by refining the one pre-

sented in [9]. ConsiderL = 〈T ,D〉. The first step of the procedure is to assign a rank to

each defeasible axiom inD. The rank of the defeasible axioms indicates, in case of con-

flictual information, which axiom is associated to more specific premises, and has the

priority over the axioms associated to more general premises. Central to this step is the

exceptionality procedure Exceptional(·) (see below). The procedure makes use of

the notion of materialisation, to reduce concept exceptionality checking to entailment

checking, were the materialisation of D is defined as D := {¬C ⊔D | C ⊏
∼ D ∈ D}.

Procedure Exceptional(L)

Input: A DL knowledge base L = 〈T ,D〉
Output: E ⊆ D

1 E := ∅;

2 foreach C ⊏
∼ D ∈ D do

3 if T |=
d
D ⊑ ¬C then

4 E := E ∪ {C ⊏
∼ D}

5 return E

The ranking of the defeasible axioms is done via the ComputeRanking(·) procedure.

In short, the ComputeRanking(·) takes as input L = 〈T ,D〉 and gives back a new

semantically equivalent knowledge base L = 〈T ∗,D∗〉 (with T ⊆ T ∗ and D∗ ⊆ D),

where possibly some defeasible information inD has been identified as strict and added

to T . Also, a sequence of⊆-ordered subsets ofD (E0, . . . , Ei−1), with increasing level

of specificity. That is, in case of potential conflicts, the axioms in a set Ej , j ≥ 0, have

the priority over the axioms in any Ei, 0 ≤ i < j. Now, by considering the ranking

E0, . . . , Ei−1, we can define a ranking function r that associates to every defeasible

concept inclusion in D a number, representing its level of exceptionality: that is,

r(C ⊏
∼ D) =

{

j if C ⊏
∼ D ∈ Ej and C ⊏

∼ D /∈ Ej+1

∞ if C ⊏
∼ D ∈ Ej for every j .

Similarly, we may associate a rank to a concept C in the following way: consider the

result (L∗ = 〈T ∗,D∗〉, E = (E0, . . . , En)) of ComputeRanking(·). Then

r(C) =

{

j if T ∗ |=
d
E j ⊑ ¬C and T ∗ 6|=

d
Ej+1 ⊑ ¬C

∞ if T ∗ |=
d
E j ⊑ ¬C for every j .

7



Procedure ComputeRanking(L)

Input: A DL knowledge base L = 〈T ,D〉
Output: L∗ = 〈T ∗,D∗〉 and an exceptionality ranking E

1 T ∗ := T ;

2 D∗ := D;

3 repeat

4 i := 0;

5 E0 := D∗;

6 E1 := Exceptional(〈T ∗, E0〉);
7 while Ei+1 6= Ei do

8 i := i+ 1;

9 Ei+1 := Exceptional(〈T ∗, Ei〉);

10 D∗
∞ := Ei;

11 T ∗ := T ∗ ∪ {C ⊑ D | C ⊏
∼ D ∈ D∗

∞
};

12 D∗ := D∗ \ D∗
∞;

13 until D∗
∞ = ∅;

14 E := (E0, . . . , Ei−1);
15 return (L∗ = 〈T ∗,D∗〉, E);

Note that r(C ⊏
∼ D) = r(C). Now, we will say that C ⊏

∼ D is entailed by the rational

closure of a DL knowledge base L (denoted L ⊢rat C
⊏
∼ D) iff r(C) < r(C⊓¬D) [23,

Theorem 5.17]). Finally, the procedure RationalClosure(·) determines whether

L ⊢rat C ⊏
∼ D. We recall that the defined entailment relation is indeed as so-called

rational consequence relation [23], i.e. satisfies the following properties:

(REF) L ⊢rat C
⊏
∼ C Reflexivity

(LLE)
L ⊢rat C

⊏
∼ F L |= C = D

L ⊢rat D
⊏
∼ F

Left Logical Equival.

(RW)
L ⊢rat C

⊏
∼ D L |= D ⊑ F

L ⊢rat C
⊏
∼ F

Right Weakening

(CT)
L ⊢rat C

⊏
∼ D L |= C ⊓D

⊏
∼ F

L ⊢rat C
⊏
∼ F

Cut (Cumulative Trans.)

(OR)
L ⊢rat C

⊏
∼ F L ⊢rat D

⊏
∼ F

L ⊢rat C ⊔D
⊏
∼ F

Left Disjunction

(RM)
L ⊢rat C

⊏
∼ F L 6⊢rat C

⊏
∼ ¬D

L ⊢rat C ⊓D
⊏
∼ F

Rational Monotony

We refer the reader to [3] for further explanations and details and limit our presentation

to a concluding example.
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Procedure RationalClosure(L, α)

Input: L = 〈T ,D〉 and a query α = C ⊏
∼ D.

Output: true if L ⊢rat C
⊏
∼ D, false otherwise

1 (L∗ = 〈T ∗,D∗〉, E = (E0, . . . , En)) := ComputeRanking(L);
2 i := 0;

3 while T ∗ |=
d
Ei ⊓ C ⊑ ⊥ and i ≤ n do

4 i := i + 1;

5 if i ≤ n then

6 return T ∗ |=
d
Ei ⊓ C ⊑ D;

7 else

8 return T ∗ |= C ⊑ D;

Example 2.3. Assume a DL knowledge base 〈T ,D〉 with

T = { Cat ⊑ Feline, T iger ⊑ Feline, T iger ⊑ Big,BigFeline = Feline ⊓Big }

D = { Feline ⊏
∼ Agile, Feline ⊏

∼ Docile, BigFeline ⊏
∼ ¬Docile } .

By applying the ranking procedure, we end up with

r(Cat) = r(Feline) = 0

r(Feline ⊏
∼ Agile) = r(Feline ⊏

∼ Docile) = 0

r(T iger) = r(Feline ⊓Big) = 1

r(BigFeline ⊏
∼ ¬Docile) = 1 .

So, for instance, we can conclude that

K ⊢rat Cat ⊏
∼ Docile ,K ⊢rat Cat ⊏

∼ Agile ,K ⊢rat Cat ⊏
∼ ¬Big

K ⊢rat T iger
⊏
∼ ¬Docile ,K ⊢rat Cat ⊏

∼ ¬T iger .

3 Rational entailment for DLs via dl-programs

In this section we show that, starting from a non-monotone DL (SROIQ) knowledge

base L = 〈T ,R,D〉, we can compile L into a dl-program K = 〈〈T ∗,R〉, P 〉 such

that the conditions for rational consequence relations are preserved. So, consider a

defeasible SROIQ knowledge base L = 〈T ,D〉. Our approach consists of two

steps: a ranking step and a compilation step.

Ranking step. To L we apply the procedure ComputeRanking(L) described in

Section 2.23 and, thus, we end up with a new defeasible DL knowledge base L∗ =
〈T ∗,R,D∗〉 that correctly separates the strict and the defeasible information contained

3Of course, Exceptional(·) and, thus, ComputeRanking(·), can be applied to a DL SROIQ knowl-

edge base L as the classical entailment relation for SROIQ is decidable.
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in the original pair L = 〈T ,R,D〉, and a ranking value r(C ⊏
∼ D) for every defeasible

axiom C ⊏
∼ D ∈ D∗.

Note that in order to adapt the proceduresExceptional(·) and ComputeRanking(·)
to SROIQ it is sufficient to consider also R into the ranking procedure: the inputs of

both the procedures is a DL knowledge base L = 〈T ,R,D〉 instead of L = 〈T ,D〉,
and line 3 in Procedure Exceptional(·) is modified from T |=

d
D ⊑ ¬C to

T ∪ R |=
d
D ⊑ ¬C. The set R comes out untouched from the ranking proce-

dure, since D is the only ranked set, and the only possible new strict information is of

the form C ⊑ D, with C and D concepts, hence it can affect only the content of T .

Hence, starting from a knowledge base 〈T ,R,D〉 we end up with a ranked knowledge

base 〈T ∗,R,D∗〉.

Dl-program compilation step. Given L∗ = 〈T ∗,R,D∗〉 from the ranking step, we

now compile the defeasible information inD∗ into a a set of dl-rules P , which together

with T ∗,R defines then the final dl-programK = 〈〈T ∗,R〉, P 〉.
To alleviate the reading, let L = 〈T ,R,D〉 := 〈T ∗,R,D∗〉; that is, we assume

that 〈T ,R,D〉 has already been ranked via the previous ranking step. Now, define a

signature Φ = 〈P, C〉 with C = O, while P is composed of the predicates (c, d, e, . . . )
representing at the level of programs the concept names in T ∪D, i.e. for each concept

C inAt we have an unary predicate c representing it in the rules. We will use the same

name with or without the uppercase initial letter to indicate if it is a concept in DL (e.g.,

Male) or a predicate in P (e.g., male), respectively. Let us also recall that for each

C ⊏
∼ D ∈ D, C and D are either atomic concepts or their negation. Given the ranking

of the defeasible axioms in D, let

Dk = {C ⊏
∼ D | C ⊏

∼ D ∈ D and r(C ⊏
∼ D) = k}

be the subset of D composed of the axioms with rank value k. Now, define the set

ADk
= {C | C ⊏

∼ D ∈ Dk}

as the set of all the antecedents of the defeasible axioms of rank k. Moreover, we

consider also the set of the consequents of the defeasible axioms

CD = {D | C ⊏
∼ D ∈ D} .

Now, for every axiom C ⊏
∼ D ∈ D of rank k, we create a pair of rules of the form4

d(x) ← DL[λ;C](x),

not DL[λ;
⊔

{C′ | C′ ∈ ADm
, with m > k}](x),

not ¬d(x) (2)

¬d(x) ← DL[λ;¬D](x) . (3)

4We assume to simplify double negation: that is, for a concept name F , ¬¬F is F , and similarly, for a

logic program predicate f , ¬¬f is f . See also Example 3.1 later on.
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Additionally, for all C ∈ ADm
with m > 1, we also consider a rule

¬c(x)← not DL[λ;C](x) . (4)

In all rules above, λ = {E⊎ e,¬E⊎ ¬e | E ∈ CD}. Note that the size of the grounding

of the compiled dl-program is polynomially bounded by the size of the defeasible DL

knowledge base.

The intuitive meaning of the rule (2) is the following: assume we have an individual

a that is an instance of concept C, which is the antecedent of the defeasible axiom

C ⊏
∼ D of rank k; if a is not an instance of any other D-antecedent that is more

exceptional than C, i.e. not DL[λ;
⊔

{C′ | C′ ∈ ADm
, with m > k}](x) holds, and

d(a) is consistent with our knowledge base, then we can conclude d(a).
On the other hand, the purpose of rule (3) is to update P , in case we derive in L that

the conclusion of a defeasible axiom is negated and, thus, the defeasible axiom cannot

be applied. λ is necessary to update the DL-base L with the conclusions drawn at the

program level.

Finally, rules of form (4) impose that the individuals we are dealing with are as

typical as possible. That is, if we are not aware that an exceptional premise apply to

them (any concept in ADm
, with m > 1), then we assume that it doesn’t apply (e.g., if

we note that a is a bird, but we are not aware that it is a penguin, then we presume that

it is not a penguin). In the following, we illustrate our technique via an example.

Example 3.1. Assume we have a DL vocabulary withAt = {B,P, F, I, F i,W, Preyins,

Preyfish}, S = {Prey}, and O = {a, b}, were the symbols stand for; B 7→ bird,

P 7→ penguin, F 7→ flies, I 7→ insect, Fi 7→ fish, W 7→ has wings, Preyins 7→ eats

insects, Preyfish 7→ eats fishes, while Prey is the relation preys on.

The DL base L = 〈T ,D〉 is composed of

T = { {a} ⊑ B, {b} ⊑ P, P ⊑ B, I ⊑ ¬Fi,

Preyins = ∀Prey.I ⊓ ∃Prey.⊤,

P reyfish = ∀Prey.F i ⊓ ∃Prey.⊤ }

D = {B ⊏
∼ F, P ⊏

∼ ¬F,B ⊏
∼ Preyins, P ⊏

∼ Preyfish,B ⊏
∼ W } .

Now, it can be verified that the ranking step returns the following ranking of axiomsD:

D0 = { B ⊏
∼ F,B ⊏

∼ Preyins,B ⊏
∼ W }

D1 = { P ⊏
∼ ¬F, P ⊏

∼ Preyfish } .

Therefore, AD0
= {B }, AD1

= {P }, CD = {F,¬F, Preyins, Preyfish }. The
compilation step proceeds now as follows. We define a vocabulary Φ = 〈P, C〉 with C =
{a, b}, while P is composed of predicates that represent at the program level the DL
atomic concepts and roles: that is, P = {b, p, f, i, f i, w, preyins, preyfish, prey}.
The program P , resulting from the compilation step, is composed of the following
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rules:

f(x) ← DL[λ;B](x), not DL[λ;P ](x), not ¬f(x)

¬f(x) ← DL[λ;¬F ](x)

preyins(x) ← DL[λ;B](x), not DL[λ;P ](x), not ¬preyins(x)

¬preyins(x) ← DL[λ;¬Preyins](x)

w(x) ← DL[λ;B](x), not DL[λ;P ](x), not ¬w(x)

¬w(x) ← DL[λ;¬W ](x)

¬f(x) ← DL[λ;P ](x), not f(x)

f(x) ← DL[λ;F ](x)

preyfish(x) ← DL[λ;P ](x), not ¬preyfish(x)

¬preyfish(x) ← DL[λ;¬Preyfish](x)

¬p(x) ← not DL[λ;P ](x) ,

with

λ = { F ⊎ f,¬F ⊎ ¬f,W ⊎w,¬W ⊎ ¬w,Preyins ⊎ preyins,

¬Preyins ⊎ ¬preyins, Preyfish ⊎ preyfish,¬Preyfish⊎ ¬preyfish } .

Now, note that the only answer set to the program P is the interpretation

I = {f(a), preyins(a), w(a),¬p(a),¬f(b), preyfish(b)} .

In fact, I is the least model of the grounded positive program P I

f(a) ← DL[λ;B](a)

preyins(a) ← DL[λ;B](a)

w(a) ← DL[λ;B](a)

¬f(b) ← DL[λ;P ](b)

preyfish(b) ← DL[λ;P ](b)

¬p(a) ← .

So, we obtain the intuitive conclusions that, if we are aware about an individual that it

is just a bird, we can conclude that, presumably, it flies, eats insects and has wings. On

the other hand, if we are informed that it is a penguin, we can conclude that it doesn’t

fly and eats fishes.

As well known and already noted in [8], having nominal concepts may end up in having

multiple extensions, i.e., in our context, we may have multiple strong answer sets as

shown with following simple example.
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Example 3.2. Consider a knowledge base L = 〈T ,D〉, with

T = { {a} ⊑ ∃R.{b}, C = D ⊓ ∀R.¬D }

D = { ⊤ ⊏
∼ C } .

By applying our method we obtain the following program P

c(x) ← DL[λ;⊤](x), not ¬c(x)

¬c(x) ← DL[λ;¬C](x) .

Now, it can be verified that from the dl-programK = 〈L, P 〉 we obtain now two strong

answer sets: namely,

I = { c(a),¬c(b) }

I ′ = { c(b),¬c(a) } .

Nevertheless, the main result of this paper is that each strong answer set defines a ratio-

nal consequence relation. In fact, we consider the content of the DL base updated with

the content of an answer set I by means of the operator ⊎. That is, we define a con-

sequence relation |=P I where, K = 〈L, P 〉 |=P I C(a) iff the DL base L augmented,

using ⊎, with the content of a strong answer set I of K, entails C(a). Specifically, we

can show that

Proposition 3.1. GivenK = 〈L, P 〉, were L contains a SROIQ TBox and a SROIQ RBox,

P is the result of compiling L into dl-rules, and a strong answer set I of K. Then the

consequence relation |=P I satisfies the following properties:5

REFDL 〈L, P 〉 |=
P I C(a) for every C(a) ∈ L

LLEDL

〈L ∪ {D(b)}, P 〉 |=
P I C(a) L |= D = E

〈L ∪ {E(b)}, P 〉 |=
P I C(a)

RWDL

〈L, P 〉 |=
P I C(a) L |= C ⊑ D

〈L, P 〉 |=
P I D(a)

CTDL

〈L ∪ {D(b)}, P 〉 |=
P I C(a) 〈L,P 〉 |=

P I D(b)

〈L, P 〉 |=
P I C(a)

ORDL

〈L ∪ {D(b)}, P 〉 |=
P I C(a) 〈L ∪ {E(b)}, P 〉 |=

P I C(a)

〈L ∪ {(D ⊔ E)(b)}, P 〉 |=
P I C(a)

RMDL

〈L, P 〉 |=
P I C(a) 〈L,P 〉 6|=

P I ¬D(b)

〈L ∪ {D(b)}, P 〉 |=
P I C(a)

Due to space limits, here we omit the proof.

Proof. (Sketch) The proofs for REFDL, LLEDL are RWDL are straightforward, con-

sidering the set-theoretic semantics of DLs.

5For ease of comprehension, we write concept assertions as D(b) in place of the equivalent inclusion

axiom {b} ⊑ D in expressions like L ∪ {D(b)}.
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In what follows, given the strong answer set I , the expression IDL indicates the

obvious translation of the answer set into the DL base L, so that 〈L, P 〉 |=P I C(a) iff

L ∪ IDL |= C(a).
For CTDL, if I is an answer set for both 〈L, P 〉 and 〈L ∪ {D(b)}, P 〉, then we

have L ∪ {D(b)} ∪ IDL |= C(a) and L ∪ IDL |= D(b), and, since every classical DL

consequence relation |= satisfies CT , we haveL∪IDL |= C(a), i.e. 〈L, P 〉 |=P I C(a).
For ORDL, if I is an answer set for both 〈L ∪ {D(b)}, P 〉 and 〈L ∪ {E(b)}, P 〉, it

must be an answer set also for 〈L ∪ {(D ⊔E)(b)}, P 〉: since |= is monotonic, it is not

possible to derive fromL∪{(D⊔E)(b)} some element of the set B−(r) of some r in P
that could not be derived fromL∪{D(b)} orL∪{E(b)}; hence a rule can be eliminated

from P only if also L ∪ {D(b)} or L ∪ {E(b)} would eliminate it. Given the validity

of OR for |=, we have that L∪{D(b)}∪IDL |= C(a) and L∪{E(b)}∪IDL |= C(a)
imply L ∪ {(D ⊔ E)(b)} ∪ IDL |= C(a), i.e. 〈L ∪ {D(b)}, P 〉 |=P I C(a).

For RMDL, assume 〈L, P 〉 |=P I C(a) and 〈L, P 〉 6|=P I ¬D(b). It is sufficient to

show that the answer set I must be an answer set also for 〈L ∪ {D(b)}, P 〉. Assume

the opposite, i.e. I is not an answer set for 〈L ∪ {D(b)}, P 〉. Then, there must be in

P a rule r associated to a defeasible axiom with rank equal to k s.t. not α ∈ B−(r),
where α is some literal s.t. L 6|= αDL and L ∪ {D(b)} |= αDL (αDL is the translation

of α into the DL-language). In such a case, r must have been a ground rule of form

e(c)←DL[λ;C](c), not DL[λ;
⊔

{C′ |

C′ ∈ ADm
, with m > k}](c), not¬e(c) .

α cannot be ¬e(c), since from the activation of the rule we would have 〈L, P 〉 |=P I

e(c)DL, and consequently 〈L, P 〉 |=P I ¬D(b), which contradicts the hypothesis. As a

consequence,α must be the dl-atom of the form not DL[λ;
⊔

{C′}](c). But then again,

the activation of the rule for the individual c under 〈L, P 〉 implies that the individual

c is ranked at the value k.6 Having every C′ a higher ranking value than k, and so

also
⊔

{C′}, we can conclude 〈L, P 〉 |=P I ¬
⊔

{C′}(c), from which, again, we have

〈L, P 〉 |=P I ¬D(b), contrary to hypothesis. This concludes the proof.

4 Related work

Several non-monotonic DLs exist, but somewhat related to our proposal are [4, 26,

8, 10, 12, 3, 19, 18, 13, 16, 2, 25, 5, 6, 16, 17], as they address the application of

the preferential semantics [23]. As far as we know, [5, 6, 2] are the only works that

consider also a DL as expressive as SROIQ. [5, 6] propose a language, associated to

a preferential semantics, that is more expressive than the one presented here, allowing

the representation of many forms of defeasibily. However, at the moment such a logic

is still missing a mature entailment relation. Bonatti [2] defines a semantic construction

that extends rational closure to SROIQ: the previous proposals [19, 13, 3] rely on the

disjoint model union property, that does not hold for a DL as expressive as SROIQ,

6The rank of an individual a is the rank of {a}, i.e. r({a}).
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while Bonatti proposes an alternative construction based on stable rankings, that is

applicable for every DLs. We are not aware of any approach that relies on Dl-programs,

but [16, 17] propose an ASP-based decision procedure for the DL SROEL, relying on

a Datalog encoding of the DL knowledge base.

5 Conclusions

The introduction of rational monotonicity into the field of dl-programs allows the use

of a non-monotonic formalism that at the same time satisfies important logical proper-

ties and gives back intuitive conclusions. From the implementation point of view, our

proposal allows to compile the decision procedures into dl-programs and, thus, it can

be implemented on top of existing reasoners supporting dl-programs such as DLV.

Future work. We believe that two aspects are particularly urgent. Firstly, a compar-

ison with the semantic characterisation of rational closure for SROIQ in [2].

Also, we would like to address the computational complexity of our approach. So

far, we know that computing the rankings can be done in polynomial number of calls

(see, e.g. [9, 13]) to an oracle deciding SROIQ entailment (the latter is complete for

2NEXP [22]). It remains to be seen whether, by reasoning similarly as done in [14],

in which it has been shown that w.r.t. SHOIN the existence of answer sets, cautious

and brave reasoning problems are complete for PNEXP,7 the same problems are complete

for P2NEXP w.r.t. our SROIQ setting, i.e. solvable in polynomial time by relying on an

oracle for 2NEXP.

Eventually, from the inferential point of view rational closure has some well-known

weaknesses: while there can be intuitive, desirable conclusions that cannot be de-

rived [24], it remains an important basic construction that can be extended into richer

entailment relations such as those proposed in [11, 12, 7, 18]. Future work will be

partly dedicated to extending the present method to some of these entailment relations.
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