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Abstract
Wildlife abundance estimation is one of the key components in conservation biology. Bayesian frameworks are widely used 
to adjust the potential biases derived by data collected in the field, as they can increase the precision of model parameter as 
a consequence of the combination of previous pieces of knowledge (priors) combined with data collected in the field to pro-
duce an a-posteriori distribution. Capture-recapture is one of the most common techniques used to assess animal abundance. 
However, the implementation with camera traps requires that animals present unique phenotypic traits for individual-based 
recognition. The crested porcupine Hystrix cristata is a semi-fossorial rodent with a continuous, but patchily distribution 
across Italy. Despite the species does not present evident individual-specific phenotypic traits, the information gathered using 
presence-only data obtained from camera traps, opportunistic observations, and road-killing events could be used to provide 
a rough estimate of the species abundance within an area. The main purpose of the present research was hence to provide the 
first preliminary estimate of the abundance of the crested porcupine in central Italy using presence-only data obtained from 
the above different monitoring methods. The results obtained estimated an average minimum number of 1803 individuals (SD 
= 26.89, CI 95% = 1750–1855) within an area covering about 17,111 km2. Since the porcupine is considered as “potentially 
problematic” because of damages to croplands and riverbanks, assessing its abundance is even more important to delineate 
adequate conservation and management actions to limit the potential trade-off effects over human activities.

Keywords  Agricultural areas · Bayesian methods · Crested porcupine · Hystrix cristata · Population abundance · Tuscany 
region

Introduction

Estimating the abundance of wild species is a key issue in 
animal ecology. Because humans cannot constantly observe 
and/or monitor animals, assessing wildlife abundance is dif-
ficult and the field methods used to achieve this goal may be 
prone to bias (Iijima 2020). Block count and aerial surveys 
are some of the most common methods used to assess the 
abundance of wild species. Nevertheless, it is conceivable 
that data obtained from direct counts may contain notable 
variation depending on population dynamic and distribu-
tion, in turn, linked to the biological and ecological features 
of the target species (e.g., reproduction, migration) (Iijima 
2020). Bayesian analyses are frequently used to overcome 
the potential imprecisions derived by field-work data collec-
tion (Iijima 2020). Modeling using Bayesian statistical infer-
ences can increase the precision of model parameter because 
of the combination of previous knowledge (known as priors) 
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with data collected in the field to produce a-posteriori dis-
tribution (McCarthy and Masters 2005; Martin et al. 2013; 
Morris et al. 2015). Capture-recapture is one of the most 
common methods used to assess animal abundance and it is 
frequently implemented with Bayesian analyses (i.e., spa-
tially explicit capture-recapture models) (Efford 2004; Royle 
et al. 2014) to estimate the number of individuals inhabiting 
an area (Royle et al. 2017; Romairone et al. 2018). Although 
capture-recapture methods were originally developed to 
mark individuals, this approach can be extended without 
the need to physically capture animals (Royle et al. 2017). 
For example, throughout the use of camera traps, individual-
based recognition can be done for those species present-
ing specific phenotypic traits in the form of stripes or spots 
(e.g., tigers, leopards) (Royle et al. 2017). Nevertheless, for 
species in which such traits are absent or hardly recogniz-
able, individual identification is impractical and potentially 
prone to considerable biases. In these cases, assessing spe-
cies abundance at a site without individual recognition could 
be less reliable and requires the use of alternative analyses. 
These so-called presence-only data are often collected dur-
ing opportunistic surveys and are generally stored in online 
data bases and/or museums (Dorazio 2014). These data can 
be gathered using different opportunistic (e.g., road-killing 
events, citizen-science platforms) and/or systematic moni-
toring methods (e.g., radio-telemetry, camera traps) (Abadi 
et al. 2012; Wilson et al. 2016). However, the main limit is 
that they do not take into account for the errors in the detec-
tion of individuals (Chen et al. 2013). In spite of this limita-
tion, analyses of presence-only data are partially motivated 
by the difficulties and expenses of conducting planned sur-
veys of wild populations (Dorazio 2014) and could be used 
to provide a rough abundance estimate of those species, like 
crested porcupines Hystrix cristata, in which the absence 
of specific phenotypic markers do not allow for an accurate 
individual-based recognition.

The crested porcupine in Italy is strictly protected under 
the National Law 157/1992, whereas at the European level 
it is included within the Annex II of the Bern Convention 
(1979) and the Annex IV of the “Habitat” Directive 1992/43/
EEC. Before 1970, in the Italian Peninsula, it was present 
only in the central-southern regions facing the Tyrrhenian 
coast, and in the southern areas facing the Adriatic Sea 
(Toschi 1965). In Italy, the species is well and continuously 
distributed in the central regions (including Tuscany), while 
both north and southward presents a much more fragmented 
distribution (Mori et al. 2021). Nonetheless, to the best of 
our knowledge, to date information regarding its abundance 
at both small and large scale are still widely lacking. Factors 
including the abandonment of rural areas favored the spe-
cies expansion because of the increase of woodland habitats, 
particularly suitable for porcupines especially for food and 
denning (Monetti et al. 2005; Lovari et al. 2013; Mori et al. 

2014a, 2017; Mori and Fattorini 2019). In addition, although 
agricultural habitats are generally avoided, extensive culti-
vations may provide important food resources (especially 
during the warmer months) (Lovari et al. 2013; Mori et al. 
2014a), as long as they are intermixed with patches of natu-
ral or semi-natural vegetated areas (Torretta et al. 2021). 
As a consequence, although crop damages are occasionally 
reported (Laurenzi et al. 2016), the crested porcupine is 
widely considered as one of the main agricultural pests and 
is frequently subjected to poaching (Laurenzi et al. 2016; 
Cerri et al. 2017). Therefore, assessing the species abun-
dance (especially in highly human-altered habitats) assumes 
remarkable importance to delineate adequate management 
and conservation strategies.

Using presence-only data obtained from camera traps, 
opportunistic observations, and road-killing events, here we 
present the first attempt to provide a rough estimate of the 
crested porcupine abundance within a highly agricultural 
environment in central Italy.

Materials and methods

Study area and data collection

The study was carried out in the Tuscany region (central 
Italy), within an area of approximately 18,073 km2. Such an 
area was defined through a 100% Minimum Convex Polygon 
(100% MCP) and starting from the coordinates identifying 
camera trap locations and independent opportunistic obser-
vations of porcupines (Fig. 1).

For what concerns camera-trapping, we used independent 
presence-only data collected from previous studies realized 
in the whole Tuscany region during the year 2013. Because 
in these studies cameras were placed to detect multiple spe-
cies and researches were not tailored to specifically address 
porcupine abundance (data available on www.​inatu​ralist.​org, 
and published works: e.g., Mori et al. 2014b; Franchini et al. 
2017; Mori and Menchetti 2019; Viviano et al. 2021), there 
is a mismatch in terms of number of cameras placed in each 
province. Overall, we used information obtained from 134 
cameras located in nine provinces: Arezzo (n = 19), Flor-
ence (n = 19), Grosseto (n = 67), Livorno (n = 3), Lucca (n 
= 6), Massa Carrara (n = 1), Pisa (n = 4), Pistoia (n = 1), 
and Siena (n = 14). Because cameras were distributed across 
the whole region (Fig. 1), the average distance between them 
was of about 74,749 m (Standard Deviation (SD) = 41,887 
m). Cameras were placed along trails and/or in the near 
proximity of denning sites at a height of 30–50 cm above the 
ground, activated 24 h per day, and checked every 15 days to 
download data and check for their functionality. The overall 
monitoring effort was of 4319 camera-trap/night recording 
an average number of 38 (SD = 22) porcupine independent 
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records per camera. To be defined as an independent event, 
images of porcupines were filtered considering a time span 
of 30 min. between pictures at the same site (Meek et al. 
2014).

Data on independent opportunistic observations (reported 
in 2013) were obtained from both iNaturalist (https://​www.​
inatu​ralist.​org/) and Ornitho (https://​www.​ornit​ho.​it/) plat-
forms, and from direct sightings reported by local people. 
Overall, 24 observations were reported in six provinces: 
Arezzo (n = 1), Grosseto (n = 18), Pisa (n = 1), Pistoia (n 
= 1), Prato (n = 1), and Siena (n = 2). Individuals identi-
fied through camera traps and/or independent opportunistic 
observations were all classified as adults or sub-adults based 
on body size (Mori personal communications).

Carcasses of 27 road-kill individuals (n = 8 males, n = 
12 females, and n = 7 sex-unidentified individuals) were 
opportunistically collected in two provinces: Grosseto (n = 
18) and Siena (n = 9) during the year 2013 (Fig. 1). Indi-
viduals were classified as adults (n = 13), sub-adults (n = 
13), and young (n = 1) based on body measurements and 
tooth eruption (Mori and Lovari 2014).

Spatial analyses

Spatial analyses were conducted using the QGIS Software 
(v. 3.18). Two buffers of 180 and 4896 m, respectively, 
were applied to each coordinate representing independent 
opportunistic observations and camera trap locations. The 
decision to apply such buffer sizes was taken considering 

the minimal and maximal dispersal distance known for 
both adult and sub-adult crested porcupines in central Italy 
(Mori and Fattorini 2019). Within each buffer, we counted 
the number of points representing either independent cam-
era trap positive detections and/or independent opportun-
istic observations. Those buffers including only one point 
were considered as representative of only one individual 
roaming in the buffer area. On the contrary, more points 
falling within the same buffer were considered as spatially 
autocorrelated. Therefore, to avoid potential pseudo-rep-
lication biases, only one individual was assumed to roam 
within the buffer area.

For what concerns the habitat composition analyses, 
we used the 100% MCP calculated for each area (see “Sta-
tistical analyses” section and Fig. 2 for details) and we 
extracted the percentage of each land cover class starting 
from the Corine Land Cover 2012 (CLC) (EEA 2018) of 
the Tuscany region (excluding all the islands) and repre-
sented through a 100-m raster layer. We then re-classified 
the original CLC categories into five macro-habitat cat-
egories: agricultural areas, urban areas, canopy-covered 
and open areas (i.e., woodlands, forests, shrublands, grass-
lands), water bodies, and cliffs, glaciers, and coastal areas 
(Table 1). Canopy-covered and open areas were considered 
as “suitable habitats,” agricultural areas as “moderately 
suitable habitats,” while urban areas, water bodies, and 
cliffs, glaciers, and coastal areas as “unsuitable habitats” 
(Monetti et al. 2005; Lovari et al. 2013; Mori et al. 2014a, 
2017; Mori and Fattorini 2019; Torretta et al. 2021).

Fig. 1   Location of the study 
area (Tuscany region) with 
the relative camera trap (blue 
dots), independent opportunis-
tic observation (red dots), and 
road-killing (pink triangles) 
coordinates. Road-kill individu-
als were collected in the only 
provinces of Grosseto and Siena
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Statistical analyses

To estimate the abundance of porcupines in each moni-
toring area (A1, A2, and A3 — see Online Resources, 
“Results” section, and Fig. 2 for details) we used a simple 
Bayesian model with just one parameter and considering 
only the surfaces covered by suitable and moderately suit-
able habitats for porcupines. The choice to divide the whole 
study area into three main areas was taken to best account 
for the spatial mismatch in terms of camera-trap locations 
and opportunistic observations, which may have strongly 
biased the calculation of the prior distribution and, conse-
quently, the posterior one. Our count data, C, which indicate 

the likelihood, come from a Poisson distribution expressed 
through a parameter λ:

λ represents the expected number of porcupines in the 
area surveyed and is calculated from the number of animals 
counted (or estimated) within each monitoring area, N, and 
the proportion of the area surveyed, a:

The prior for N is represented by a Gamma distribution 
with parameters S (shape) and R (rate):

C ∼ Poisson (�)

� = N × a

Fig. 2   (a) The 100% Minimum Convex Polygons (100% MCPs) 
applied to coordinates representing camera trap locations and inde-
pendent opportunistic observations in the northern area of the prov-
inces of Grosseto and Siena (A1 = 2044 km2) and road-killing sites 
(A1.1 = 278 km2). (b) The 100% MCP size comparison between A1 
and the area covering the whole provinces of Grosseto and Siena (A2 

= 6376 km2). (c) The 100% MCP size comparison between A2 and 
the whole study area (A3 = 18,073 km2). Porcupine presence data 
indicate coordinates of camera trap locations and independent oppor-
tunistic observations in the southern area of the provinces of Gros-
seto and Siena (light blue dots) and in the central/northern area of the 
whole study area (purple dots)

Table 1   Percentage of habitat composition obtained from the Corine 
Land Cover 2012 (CLC) map (EEA 2018) in the area defined by 
road-killing sites (A1.1), in the northern area of the provinces of 

Grosseto and Siena (A1), in the whole provinces of Grosseto and 
Siena (A2), and in the whole study area (A3) (see Fig. 2 for further 
details)

Canopy-covered and open areas include woodlands, forests, shrublands, and grasslands

Habitat A1.1 (278 km2) A1 (2044 km2) A2 (6376 km2) A3 (18,073 km2)

Agricultural areas 32.38 45.45 57.06 50.31
Urban areas 1.47 2.3 1.69 4.61
Canopy-covered and open areas 66.15 52.21 40.75 44.37
Water bodies 0.00 0.01 0.15 0.47
Cliffs, glaciers, and coastal areas 0.00 0.03 0.35 0.24
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The Gamma distribution represents the conjugate prior 
distribution for a Poisson likelihood. Consequently, even the 
posterior distribution will be a Gamma distribution.

To obtain a better rough estimate of the number of porcu-
pines inhabiting the suitable and moderately suitable habi-
tats of the whole monitoring area (A3 — Fig. 2c), the analy-
sis was divided into three steps (i.e., repeated for each of the 
three different monitoring areas) and using first a mathemati-
cal approach (to assess for the relationship among likeli-
hood, prior, and posterior distributions), and then a compu-
tational one (to assess the goodness-of-fit of each model), 
through the implementation of the Software R (v. 4.0.1) (R 
Development Core Team 2021) in JAGS (Plummer 2003) 
using the “jagsUI” package (Kellner and Meredith 2021):

	A1.	 Mathematical approach: we used a 100% MCP to cal-
culate the area defined by each coordinate represent-
ing independent opportunistic observations and cam-
era trap locations in the northern area falling within 
the provinces of Grosseto and Siena (A1 — Fig. 2a). 
Another 100% MCP was used to calculate the area 
defined by each coordinate representing the recovery 
sites of each road-kill porcupine (A1.1 — Fig. 2a) fall-
ing within the same larger area (i.e., A1 — Fig. 2a). λ 
was calculated starting from the number of road-kill 
porcupines multiplied by the ratio between A1 and 
A1.1 (which expresses the proportion of the area sur-
veyed) and only considering the surface covered by 
suitable and moderately suitable habitats for the spe-
cies. We then created a vector defining the interval 
input, i.e., the minimum and the maximum number 
of crested porcupines estimated within the northern 
area of the provinces of Grosseto and Siena (i.e., A1), 
obtained from the two buffers (i.e., 180 and 4896 m, 
respectively) applied to those coordinates representing 
both camera trap locations and independent opportun-
istic observations defining A1. The minimum value 
obtained from the interval was subtracted to λ, while 
the maximum value was added to the same. This was 
done in order to obtain a rough estimate of the range 
of individuals inhabiting A1. Since the number of indi-
viduals obtained from λ may be overestimated while 
the range of individuals obtained from the two buffers 
is most likely underestimated, using this approach we 
partially reduced such a bias. Thereafter, we calcu-
lated the mean and the standard deviation of the range. 
These data were used as input information to define 
both the shape and rate of the prior distribution. The 
combined information obtained from the likelihood 
and prior distribution were then used to produce the 
posterior distribution.

N ∼ Gamma (S,R)
		    Computational approach: the model was run in 

JAGS using three chains, 20,000 iterations, zero burn-
in, and one thinning. The diagnostic plot used to assess 
the goodness-of-fit of the model was visualized using 
the diagPlot function, implemented in the “wiqid” 
package (Meredith 2017). The goodness-of-fit of the 
model was then evaluated considering the Rhat index, 
which represents the scale reduction factor indicating 
convergence between chains (Gelman et al. 2004; Gel-
man and Hill 2007; Kruschke 2014) and the MCEpc 
value, which expresses the error in the mean estimation 
(percentage value) compared to the target distribution 
(Lunn et al. 2013). Step-by-step calculations are pro-
vided in the Online Resource 1.

	A2.	 Mathematical approach: we used a 100% MCP to 
calculate the area defined by each coordinate repre-
senting independent opportunistic observations and 
camera trap locations in the whole area including the 
provinces of Grosseto and Siena (A2 — Fig. 2b). The 
new λ was calculated starting from the average number 
of individuals estimated within A1 (posterior distribu-
tion obtained from the first-step analysis) multiplied 
by the ratio between A2 and A1 (proportion of area 
surveyed) and only considering the surface covered 
by suitable and moderately suitable habitats for the 
species. We then created a vector defining the range 
which, in turn, refers to the minimum and maximum 
number of crested porcupines estimated within the 
southern area of the provinces of Grosseto and Siena 
(Fig. 2a — light blue dots), obtained from the two 
buffers applied to those coordinates representing both 
camera trap locations and independent opportunistic 
observations. As done in step 1, the minimum value 
of the range was subtracted to the λ, while the maxi-
mum value was added to the same. Subsequently, we 
calculated the mean and the standard deviation of the 
range. These data were used as input information to 
define both the shape and rate of the prior distribution 
and implemented with the information obtained from 
the likelihood to obtain the posterior distribution.

		    Computational approach: the model was run in 
JAGS using three chains, 20,000 iterations, zero burn-
in, and one thinning. The diagnostic plot was visual-
ized using the diagPlot function, implemented in the 
wiqid package (Meredith 2017), and the goodness-of-
fit of the model was assessed based on both the Rhat 
index (Gelman et al. 2004; Gelman and Hill 2007; 
Kruschke 2014) and the MCEpc value (Lunn et al. 
2013). Step-by-step calculations are provided in the 
Online Resource 2.

	A3.	 Mathematical approach: we used a 100% MCP to 
calculate the area defined by each coordinate repre-
senting independent opportunistic observations and 
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camera trap locations in the whole monitoring area 
(A3 — Fig. 3c). As done in step 2, the new λ was 
calculated starting from the average number of indi-
viduals estimated within A2 (posterior distribution 
obtained from the second-step analysis) multiplied 
by the ratio between A3 and A2 (proportion of area 
surveyed) and only referring to the surface covered 
by suitable and moderately suitable habitats for the 
species. We then created a vector defining the range 
which, in turn, refers to the minimum and maximum 
number of crested porcupines estimated within the 
remaining monitoring area (Fig. 2b — purple dots), 
obtained from the two buffers applied to those coor-
dinates representing both camera trap locations and 
independent opportunistic observations. The mini-
mum value of the range was subtracted to λ, while the 
maximum value was added to the same. Afterward, we 
calculated the mean and the standard deviation of the 
range. These data were used as input information to 
define both the shape and rate of the prior distribution 
and implemented with the likelihood information to 
produce the posterior distribution.

		    Computational approach: the model was run in 
JAGS using three chains, 20,000 iterations, zero burn-
in, and one thinning. The diagnostic plot was visual-
ized using the diagPlot function, implemented in the 
wiqid package (Meredith 2017), and the goodness-of-
fit of the model was assessed based on both the Rhat 

index (Gelman et al. 2004; Gelman and Hill 2007; 
Kruschke 2014) and the MCEpc value (Lunn et al. 
2013). Step-by-step calculations are provided in the 
Online Resource 3.

Results

The habitat analysis revealed that, in each area (A1.1, A1, 
A2, or A3), agriculture constituted much of the land covered, 
being preponderant in A2 and A3 while reaching the “sec-
ond place” only in A1 and A1.1. Furthermore, in A1, such 
a value is comparable to the percentage of land covered by 
canopy-covered and open areas (Table 1).

Following the subdivision provided in the “Statistical 
analyses” section, results are presented in three steps:

	A1.	 Within A1.1 (278 km2) we opportunistically collected 
27 carcasses of road-kill porcupines. Starting from 
the mathematical product between these 27 animals 
and the ratio between the area covered by suitable and 
moderately suitable habitats found in A1 (1996.17 
km2) and A1.1 (273.97 km2) (proportion of area sur-
veyed), we obtained a λ corresponding to 197 individu-
als. From the application of the two buffers (180 and 
4896 m, respectively) to each coordinate representing 
independent opportunistic observations and camera 
trap locations falling within A1, we obtained a range 

Fig. 3   The line chart on the left 
shows the trends of the likeli-
hood (black line) and both the 
prior and posterior distributions 
(blue and brown lines, respec-
tively). The bar plot on the right 
(posterior distribution) shows 
the average minimum number 
of porcupines estimated within 
the suitable and moderately 
suitable habitats falling in the 
northern territory of the prov-
inces of Grosseto and Siena (A1 
= 1996.17 km2)
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spanning from 17 to 40 individuals. By subtracting the 
lower value (i.e., 17) to λ and adding the higher one 
(i.e., 40) to the same, we obtained an interval rang-
ing from 180 to 237 individuals. The model output 
obtained from both the mathematical and computa-
tional approach (showing the posterior distribution) 
allowed us to estimate an average minimum number of 
207 porcupines (SD = 15.41, 95% confidence interval 
(95% CI) = 176–237) within the suitable and moder-
ately suitable habitats in A1 (Fig. 3) (see the Online 
Resource 1 for details).

	A2.	 Through the multiplication of the average minimum 
number of porcupines estimated during the first-step 
analysis (i.e., 207 individuals) and the ratio between 
the area covered by suitable and moderately suitable 
habitats found in A2 (6236.37 km2) and A1 (proportion 
of area surveyed), we obtained a new λ corresponding 
to 647 individuals. From the application of the two 
buffers to each coordinate representing independent 
opportunistic observations and camera trap locations 
falling within the southern area of A2 (see Fig. 2a light 
blue points), we obtained a range spanning from 29 to 
50 individuals. By subtracting the lower value (i.e., 
29) to the λ and adding the higher one (i.e., 50) to 
the same, we obtained an interval ranging from 618 to 
697 individuals. The model output obtained from both 

the mathematical and computational approach (show-
ing the posterior distribution) allowed us to estimate 
an average minimum number of 655 porcupines (SD 
= 20.56, CI 95% = 614–695) within the suitable and 
moderately suitable habitats in A2 (Fig. 4) (see the 
Online Resource 2 for details).

	A3.	 Through the multiplication of the average minimum 
number of porcupines estimated during the second-
step analysis (i.e., 655 individuals) and the ratio 
between the area covered by suitable and moderately 
suitable habitats found in A3 (17,111.52 km2) and A2 
(proportion of area surveyed), we obtained a new λ 
corresponding to 1797 individuals. From the applica-
tion of the two buffers to each coordinate representing 
independent opportunistic observations and camera 
trap locations falling within the central and northern 
area of A3 (see Fig. 2b purple points), we obtained a 
range spanning from 42 to 57 individuals. By subtract-
ing the lower value (i.e., 42) to λ and adding the higher 
one (i.e., 57) to the same, we obtained an interval rang-
ing from 1755 to 1854 individuals. The model output 
obtained from both the mathematical and computa-
tional approach (showing the posterior distribution) 
allowed us to estimate an average minimum number of 
1803 porcupines (SD = 26.89, 95% CI = 1750–1855) 

Fig. 4   The line chart on the left 
shows the trends of the likeli-
hood (black line) and both the 
prior and posterior distributions 
(blue and brown lines, respec-
tively). The bar plot on the right 
(posterior distribution) shows 
the average minimum number 
of porcupines estimated within 
the suitable and moderately 
suitable habitats falling in the 
whole area including the prov-
inces of Grosseto and Siena (A2 
= 6236.37 km2)
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within the suitable and moderately suitable habitats in 
A3 (Fig. 5) (see the Online Resource 3 for details).

Discussion

To date, the crested porcupine is classified as “Least Con-
cern” by the International Union for Conservation of Nature 
(IUCN) (Amori and De Smet 2016), despite being almost 
rare in Central African countries (Viviano et al. 2020). Nev-
ertheless, in spite of this classification, data referring to its 
population trend are still widely lacking (Amori and De 
Smet 2016). Following the Resource Dispersion Hypoth-
esis (RDH) (Macdonald 1983; Carr and Macdonald 1986), 
the distribution and quality of resources (e.g., food, shelters, 
partners, and/or sites for reproduction) affect species pres-
ence and distribution at a site. In fact, individuals are more 
inclined to occupy the smallest areas which contain all the 
resources they need (Harestad and Bunnel 1979). In the case 
of the crested porcupine, as reported by Lovari et al. (2013), 
the home-range size of a male may vary from 10.0 to 398.7 
ha while that one of a female range from 18 to 478.15 ha. 
This means that, on average, the home-range of an individual 
(male or female) is of about 226.21 ha. Following these data 
and assuming all individuals as territorials, if we consider 
the surface covered by suitable and moderately suitable habi-
tats in each area, A1 would be expected to host at least 883 

individuals, while A2 and A3 would be expected to host 
2759 and 7571 individuals, respectively, with an average 
minimal density of about 0.44 ind./100 ha for each area. 
Nevertheless, we believe that our estimates (0.10 ind./100 
ha per area) are most closely related to the true number of 
individuals because of four reasons: (i) both intra- and inter-
specific competition, along with the low reproductive rate of 
the species (from one to three births per pair per year, each 
composed by on average one or two porcupettes) (Coppola 
and Felicioli 2021), may play a key role in shaping spe-
cies distribution and abundance at a site; (ii) road-killing 
and poaching events may substantially affect the species’ 
survival capacity; (iii) our analysis included also sub-adult 
individuals which notoriously disperse before settling and, 
hence, do not show a territorial behavior (Mori and Fat-
torini 2019); and (iv) each area is covered by a considerable 
percentage of agriculture. Therefore, because homogene-
ous agricultural areas are considered as non-optimal for the 
species (Torretta et al. 2021), we believe that the carrying 
capacity of each area is lower than expected. However, in 
spite of these considerations, extensive cultivated fields may 
become hospitable for the species as long as they are inter-
mixed with either natural or semi-natural vegetated areas, 
which in turn provide shelters and abundant food resources 
(Lovari et al. 2013; Mori et al. 2014a; Torretta et al. 2021). 
The porcupine is considered as a “potentially problematic 
species” because of damages to croplands, riverbanks, and 
tree debarking (Laurenzi et al. 2016; Lovari and Riga 2016; 

Fig. 5   The line chart on the left 
shows the trends of the likeli-
hood (black line) and both the 
prior and posterior distribu-
tions (blue and brown lines, 
respectively). The bar plot on 
the right (posterior distribution) 
shows the average minimum 
number of porcupines estimated 
within the suitable and moder-
ately suitable habitats falling 
in the whole study area (A3 = 
17,111.52 km2)
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Lovari et al. 2017) and is subjected to persecution by local 
farmers (Cerri et al. 2017). Seeds, fruits, epigeal parts, roots, 
and other underground vegetables constitute the staple of 
the diet of the porcupine in Italy (Zavalloni and Castellucci 
1994; Bruno and Riccardi 1995). However, corn, potatoes, 
pumpkins, sunflowers, and melons are consumed if locally 
available (Mori et al. 2013; Bertolino et al. 2015), thus 
reducing the tolerance of local farmers (Cerri et al. 2017). 
Our data suggest that the density of the species is still rela-
tively low within the monitoring areas. However, the infor-
mation obtained may help managers and conservationists 
to delineate appropriate actions aimed to reduce the poten-
tial negative impacts of porcupines over human activities, 
through the implementation of mitigation measures espe-
cially in those areas characterized by extensively cultivated 
fields and where the stable presence of the species may lead 
to agricultural damages.

Our research represents the first important contribution 
in the assessment of the crested porcupine abundance in a 
highly agricultural environment of central Italy. Further-
more, the Bayesian method we proposed in conjunction 
with spatial analyses (implemented to define the minimum 
and maximum number of individuals roaming within each 
buffer area), to our knowledge, represents the first attempt to 
estimate the abundance of a species using presence-only data 
(i.e., Bayesian model with just one parameter). Specifically, 
it is advantageous being of relatively simple implementation 
thus allowing to obtain a rough estimate of the target species 
abundance within an area, even in the absence of presence/
absence data. Nevertheless, despite the results presented, 
we are aware that our study presents some limitations: (i) as 
stated above to estimate porcupine abundance we used pres-
ence-only data which, compared to presence-absence data, 
does not account for the imperfect detection (i.e., detection 
probability) (Chen et al. 2013) and/or the recovery prob-
ability (in the case of road-kill individuals); (ii) independent 
opportunistic observations were collected from citizen-sci-
ence platforms which, despite their usefulness in the analysis 
of ecological data has already been assessed (e.g., Franchini 
et al. 2021), present several limitations (e.g., absence of a 
survey protocol, unknown sampling effort, no standardiza-
tion, and poor a-priori control over observer quality) (Kery 
and Royale 2020); (iii) the mismatch in the spatial extent 
of camera traps and independent opportunistic observations 
did not allow us to provide stronger ecological inferences, 
especially regarding the potential difference in terms of the 
species abundance at a small-scale level. Indeed, the most 
likely different availability of resources (not evaluated in 
this study) may lead porcupines to be mostly abundant in 
some habitats and to a lesser extent in others; (iv) with-
out being supported by field-data collection and validation, 
the number of porcupines estimated within each area could 
be most likely underestimated and, therefore, needs to be 

considered as a minimum referring value. In this sense, fur-
ther researches involving spatially homogeneous field-based 
monitoring activities among areas and in conjunction with 
more appropriate statistical methods that take into account 
imperfect detection, are strongly suggested to provide further 
and detailed inferences regarding the abundance of the spe-
cies in central Italy.
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