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ABSTRACT
Remote sensing (RS) technologies are extensively exploited by scientists and a vast audience of 
local authorities, urban managers, and city planners. Coastal regions, geohazard-prone areas, 
and highly populated cities represent natural laboratories to apply RS technologies and test 
new methods. Over the last decades, many efforts have been spent on improving Earth’s 
surface monitoring, including intensifying Earth Observation (EO) operations by the major 
national space agencies. They oversee to plan and make operational constellations of satellite 
sensors providing the scientific community with extensive research and development oppor-
tunities in the geoscience field. For instance, within this framework, the European Space 
Agency (ESA) and the Ministry of Science and Technology of China (MOST) have sponsored, 
since the early 2000s, the DRAGON initiative jointly carried out by the European and Chinese RS 
scientific communities. This manuscript aims to provide a synthetic overview of some research 
activities and new methods recently designed and applied and trace the route for further 
developments. The main findings are related to i) the analysis of flood risk in China, ii) the 
potential of new methods for the estimation and removal of ground displacement biases in 
small-baseline oriented interferometric Synthetic Aperture Radar (SAR) methods, iii) the analy-
sis of the inundation risk in low-lying regions using coherent and incoherent SAR methods; and 
iv) the use of SAR-based technologies for marine applications.
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1. Introduction

Coastal areas are particularly exposed to a combination 
of risk factors, such as extreme weather events, climate 
change effects and sea level rise, resulting in the world’s 
most vulnerable regions. In these areas, often highly 
populated, many key civil sectors, e.g. public/private 
infrastructures, cultural/natural heritage and agricul-
ture, are heavily affected by natural and man-made 
hazards (Calò et al. 2015), with severe socio-economic 
consequences. In such fragile environments, Remote 
Sensing (RS) technologies may be profitably exploited 
to detect and monitor changes in Earth’s surface sys-
tematically, efficiently and with reduced costs. Several 
studies showing the power of RS data and methods for 
studying and protecting coastal and river delta regions 
worldwide are present in the scientific literature, for 
instance, see the works (Klemas 2015; Kratzer et al.  

2016; Laignel et al. 2023; Zhao et al. 2022) and refer-
ences therein. Microwave sensors are also becoming 
valuable tools for understanding marine phenomena 
affecting the sea surface (Kerbaol and Collard 2005) 
and inland water (Amadori et al. 2021).

The interest in such topics has motivated the 
European Space Agency (ESA) and the Ministry of 
Science and Technology of China (MOST) to foster 
the development of joint initiatives and fund the 
DRAGON Cooperation Program as an opportunity 
for European and Chinese scientists and stakeholders 
to cross-fertilize their expertise and valorize their 
inherent space mission technologies.

In this work, the participants in the DRAGON 5 
project entitled “Global climate change, sea level Rise, 
Extreme Events and local ground subsidence effects in 

CONTACT Antonio Pepe pepe.a@irea.cnr.it

GEO-SPATIAL INFORMATION SCIENCE                
2024, VOL. 27, NO. 3, 836–853 
https://doi.org/10.1080/10095020.2023.2244006

© 2023 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting 
of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0003-3433-9435
http://orcid.org/0000-0002-7843-3565
http://orcid.org/0000-0003-2829-0903
http://orcid.org/0000-0002-3299-3567
http://orcid.org/0000-0002-3698-908X
http://orcid.org/0000-0002-3310-352X
http://orcid.org/0000-0001-6606-3272
http://orcid.org/0000-0003-1243-8299
http://orcid.org/0000-0003-0553-2682
http://orcid.org/0000-0001-7402-6201
http://orcid.org/0000-0002-4334-0828
http://orcid.org/0000-0002-0174-5894
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2023.2244006&domain=pdf&date_stamp=2024-07-06


Coastal and river delta regions through Novel and 
Integrated remote sensing approacHes” 
(GREENISH) («Global Climate Change 2023, Sea 
Level Rise, Extreme Events and Local Ground 
Subsidence Effects in Coastal and River Delta 
Regions through Novel and Integrated Remote 
Sensing ApproacHes (GREENISH)» s.d.) will provide 
readers with an analysis of conventional and innova-
tive RS methodologies used within the project, and 
related applications in different test sites, showing 
the capability of these technologies for the investiga-
tion of coastal and marine environments.

The manuscript is organized as follows. Section 2 
summarizes the used RS methods and shortly provides 
technical details. Section 3 shows the results of the 
analyses carried out within four primary research 
activities. More specifically, Section 3.1 focuses on 
the research performed in several test sites in China, 
including the study of flooding impact on the coastal 
area of Shanghai. Section 3.2 is devoted to interfero-
metric Synthetic Aperture Radar (SAR) technology 
advancements; mainly, we investigate the capability 
of a recently developed method (Falabella and Pepe  
2022a) for estimating and compensating ground dis-
placement biases in Sentinel-1 interferograms, with 
applications in case studies in Italy and U.S. The 
results of the SAR- and AI-based analyses related to 
flooding risk are shown in Section 3.3, focusing on the 
Venice lagoon area, Italy. Section 3.4 provides insights 
into the potential of SAR-based techniques for marine 
environment investigation. Discussion and conclud-
ing remarks are finally addressed in Sections 4 and 5.

2. Data and methods

2.1. Satellite SAR datasets

Several image datasets acquired by different SAR satel-
lite sensors have been exploited for the research 
experiments performed over the investigated areas. 
Table 1 summarizes the information about the data 
used for every site.

2.2. Conventional and novel SAR technologies

This section is focused on the EO SAR technologies 
mainly exploited in this work, shortly providing infor-
mation on their rationale and application fields. One of 
the most successful SAR-based applications is the detec-
tion and monitoring of ground movements by proces-
sing multi-temporal images through Mt-InSAR 
methods (Berardino et al. 2002; Ferretti et al. 2011; 
Ferretti, Prati, and Rocca 2001; Pepe and Lanari 2006; 
Pepe et al. 2015). Among these, the Small BAseline 
Subset (SBAS) approach (Berardino et al. 2002) proved 
very attractive for detecting displacements of distribu-
ted targets in heterogeneous land cover areas. It relies 
on the computation of a sequence of multi-looked SAR 
interferograms with small perpendicular baselines to 
reduce the impact of decorrelation noise artifacts on 
the deformation measurements (Berardino et al. 2002; 
Pepe et al. 2015). For every analyzed SAR pixel, a system 
of linear equations that relate the ground deformations 
of single interferometric SAR data pairs to those of the 
available time series of acquisitions is solved in the 
Least-Squares (LS) sense by linking independent sets 
of non-fully-connected SAR acquisitions using the sin-
gular value decomposition method (Hooper 2008; Pepe  
2021; Pepe et al. 2015).

Within this context, recently, some problems have 
been highlighted. In particular, a lack of consistency 
that exists among triplets of multi-look SAR interfer-
ograms while ground displacement time-series are 
generated through Small Baseline (SB) InSAR algo-
rithms (Berardino et al. 2002; Pepe and Lanari 2006) 
have been revealed in Falabella and Pepe (2022b). 
Indeed, unlike the random nature of phase triplets, 
some scholars have recently demonstrated that phase 
triplets can be related to systematic physical sources, 
such as soil moisture and/or other localized signals 
that lead to contributions in multi-looked SAR inter-
ferograms. In particular, it has been proven that 
a systematic phase bias is a short-living signal that 
evolves over short periods (Ansari, De Zan, and 
Parizzi 2021). Different methods have been proposed 
to estimate and compensate for such spurious signals 

Table 1. SAR datasets and digital elevation models used for the presented investigations.
Study areas SAR dataset Acquisition Time Scope/Application

Coastal Sites in China 
(Section 3.1)

SRTM DEM 
Tandem-X DEM 
RADARSAT-2 Multi-Look Fine 
RADARSAT-2 Wide 
Sentinel-1A

2000 
2015  

2007–2017 
2018–2021

Analysis of flooding impact on coastal regions

Nevada (USA) 
Southern Italy (Section 3.2)

Sentinel-1A 2020–2021 
2014–2022

Assessment of multi-temporal InSAR time-series precision

Venice Lagoon, Italy 
(Section 3.3)

Sentinel-1A 2017–2021 Analysis of subsidence and land changes detection in areas prone 
to flood risk

Mediterranean Sea region 
(Section 3.4)

ENVISAT ASAR September 2010 Sea current analysis in marine environments
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in the generated time series of ground displacements 
over the last 2 years (Falabella and Pepe 2022b; 
Maghsoudi et al. 2022; Zheng et al. 2022). Expressly, 
here we point out the method proposed in Falabella 
and Pepe (2022b) that benefits from the knowledge of 
phase non-closure signal properties among sets of 
time-redundant networks of interferograms. 
Considering a local (concerning time) approximation 
of a speckle noise model for multi-looked interfero-
grams, it permits us to approximate the (unknown) 
systematic phase bias signal related to a generic inter-
ferogram computed from a couple of SAR images 
acquired at times th and tk as follows: 

Using Equation (1) and assuming that the adopted 
model is time-invariant (i.e. the phase bias depends 
exclusively on the temporal baseline of the considered 
interferogram), and after simple mathematical manip-
ulations, the generic phase triplet relevant to the three 
SAR images collected at times th, tk and tq, respec-
tively, see Figure 1, can be expressed as: 

Note that the temporal baseline of SAR interferograms 
is necessarily a quantized value proportional to the 
atomic repetition time of the considered constellation 
of SAR sensors. For instance, when Sentinel-1A/B 
SAR data are considered, in the twin mode, the value 
of � is equal to 6 days. Then, Equation 2 leads to the 
formulation of the following system of linear 
equations: 

where Z is the incidence-like matrix of the involved 
linear transformation from the N acceleration values 
�V ¼ �vð�Þ;�vð2�Þ; . . . ;�vðN�Þ½ �

T of the systematic 

phase-biased vector and the measured phase triplets 
��bias

tr . The system (3) is hence solved in the LS sense; 
once obtained, the estimates of the phase acceleration 
terms at the different temporal baselines are used to 
compute the phase biases at different temporal baselines 
using the following iterative equation (Falabella and Pepe  
2022b): 

with the initial condition that the phase bias at the 
longest used temporal baseline (e.g. with values longer 
than 90–100 days) of the available SB dataset is almost 
zero. An enhanced version of the developed method, 
also considering the time-variant case, was also devel-
oped and detailed in Falabella and Pepe (2022b), 
where interested readers can find additional details 
on implementing the proposed phase bias compensa-
tion method and relevant experimental results with 
Sentinel-1 SAR data are shown.

Developing and applying coherent and incoherent 
approaches for land cover change detection nowadays 
represent another significant SAR research field. 
Although SAR images have been less exploited than 
optical data, microwave active sensors are very pro-
mising for Change Detection (CD) analyses (Barber  
2015; Bazi, Bruzzone, and Melgani 2006; Mastro et al.  
2022) since they work in all-weather and sunlight 
conditions. These peculiarities and the growing avail-
ability of free-of-charge data collected by several SAR 
constellations (e.g. the twin Sentinel-1A/B sensors) 
make SAR data use very attractive for CD applications.

In this work, CD methods have been complemen-
ted with the InSAR technique for flooding risk ana-
lyses, and the potential of a newly developed Artificial 
Intelligence (AI) method (Mastro et al. 2022) based on 
Random Forest (RF) (Belgiu and Drăguţ 2016; 
Breiman 2001) has been exploited. This methodology 
leverages the capability of several coherent/incoherent 
SAR Change Detection Indices (CDIs) and their 
mutual interaction in a single corpus for rapid map-
ping of surface changes (Mastro et al. 2022). The 
results of such investigations are detailed in Mastro 
et al. (2022) and summarized in Section 3.3. Figure 2 
describes the main steps of the developed interlinked 
approach that combines coherent and incoherent SAR 
descriptors for CD analyses.

The third main research topic addressed here is the 
use of SAR-based techniques for sea state monitoring, 
representing a supporting tool for coastal area protec-
tion. Over the last decade, the scientific community’s 
interest in studying marine parameters exploiting SAR 
has increased. The use of SAR data for oil-spill mon-
itoring (Fiscella et al. 2000; Trivero et al. 2016), ship 
and sea-ice detection (Tello, Lopez-Martinez, and 

Figure 1. Pictorial representation of a generic phase triplet con-
sisting of three multi-looked InSAR phases in the perpendicular/ 
temporal baseline plane. The three interferograms are formed 
from three SAR acquisitions, acquired at different time instants.
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Mallorqui 2005; Zakhvatkina, Smirnov, and Bychkova  
2019) is well established, and it is becoming more and 
more beneficial for understanding marine phenomena 
(Kerbaol and Collard 2005), complementing the tradi-
tional use of optical or multispectral images (Bresciani 
et al. 2021).

We estimate the sea surface current among the 
different marine phenomena by analyzing SAR data. 
The extraction of quantitative sea surface parameters 
relying only on SAR amplitude images is a rather 
complex matter. Many variables are involved in deter-
mining the backscatter, such as the wind vector, 
bathymetry, etc. For this reason, similarly to other 
SAR applications, phase information may provide 
valuable information.

Sea surface current velocity can be estimated using 
two different SAR data processing techniques: the 
Along-Track Interferometry (ATI) (Romeiser et al.  
2014) and the Doppler Centroid Anomaly (DCA) 
method (Zamparelli et al. 2020). Both methods allow 
only to measure the radial component of the sea sur-
face velocity, i.e. the component along the Line Of 
Sight (LOS) of the radar. ATI exploits SAR data pairs 
acquired with the same look-angle but with two 
slightly different acquisition times (Romeiser et al.  
2014). Hence, this technique requires unique sensor 

characteristics, i.e. the possibility of having two SAR 
antennas dislocated along the radar flight track (azi-
muth direction). This way, the radar signal related to 
the same target is collected by the different antennas 
within a short time lag. Accordingly, the targets’ 
movements translate to phase shifts on the interfero-
metric phase difference. The radial component of the 
sea surface currents can be achieved over broad areas 
starting from the use of the spectral analysis and 
specifically the estimation of the local DCA induced 
by the movement of the scattering mechanisms 
(Romeiser et al. 2014; Zamparelli et al. 2020). DCA 
uses a single SAR image based on spectral estimation. 
The goal is to measure the residual Doppler shifts of 
the radar echoes by analyzing the distribution of the 
azimuth Power Spectral Density (PSD) (Madsen  
1989). DCA is obtained by subtracting from the 
Doppler Centroid the term corresponding to 
a “stationary” scene, e.g. the set where all scatterers 
move at the same velocity associated with the Earth 
rotation (Zamparelli et al. 2020); see Figure 3.

More specifically, given a target moving with 
a radial velocity vr, the Doppler Centroid Anomaly 
fDCA can be estimated to derive vr: 

Figure 2. Interlinked risk analysis flowchart.

Figure 3. Block diagram of the DCA method.
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where x and r are the azimuth and range, respectively, 
fDC is the Doppler Centroid (DC) measured from the 
data, fDC0 is the DC corresponding to the stationary 
scene, λ is the sensor wavelength. Hence, the surface 
radial velocity vr, i.e. the component along the LOS, 
can finally be estimated from the DCA described in 
Equation (5) as follows: 

The described technique has often been applied in the 
literature, and typically it is referred to oceanic regions 
(Johannessen et al. 2008), characterized by intensive 
water mass movement. This characteristic allows 
easily separating, from a qualitative point of view, 
components associated with ocean dynamics from 
meteorological inferred sources.

Conversely, the Mediterranean Sea is characterized 
by currents ranging in a much-limited interval com-
pared to the ocean case. Examples of sea surface cur-
rent extraction can be found in the works (Cianelli 
et al. 2012; Zamparelli et al. 2020).

3. Experimental results

3.1. Analyses of coastal regions in China

SAR-based investigations have been carried out over 
selected areas in China (Figure 4). First, the terrain 
elevation changes of newly reclaimed lands of some 
Chinese coastal cities (i.e. Dalian, Ningbo, Tangshan, 
Yancheng, Nantong and Tianjin) have been derived by 

simply comparing the differences of digital elevation 
models available for the studied areas, computed by 
the Shuttle Radar Topography Mission (SRTM) in 
2000 (Rosen et al. 2001), and the Tandem-X 
(Romeiser et al. 2014) mission in 2015. Figure 4 
shows the geographical location of the identified 
areas of interest, where Figure 5 show the spatial dis-
tribution of new lands reclaimed from 2000 to 2015. 
Reclaimed land projects also characterize the coastal 
area of the Shanghai megacity, where further analyses 
have been conducted. Several investigations (Bates 
and De Roo 2000; Pepe and Calò 2017; Pepe et al.  
2016; Tang et al. 2022) have been carried out in recent 
years to track changes and detect ground displace-
ments in the Shanghai district. The relevant results 
have been beneficial in studying the coastal erosion, 
inundation, and sea-level-rise phenomena. For 
instance, the LISFLOOD-FP hydrodynamic model 
(Qin, Wu, and Xiu 2019) was employed to map coastal 
inundation areas along the eastern coast of Shanghai. 
The results demonstrated that over 80% of the flooded 
regions are newly reclaimed lands. The model 
describes the dynamic propagation of waves on flood-
plains using continuity and momentum equations, 
discretized over a grid mesh (Kennish et al. 2010; 
Teatini et al. 2005). Three kinds of information are 
used to run the model: i) a digital elevation model 
describing the height topography of the coastal area, 
ii) the sea-water depth as derived from the Global Tide 
and Surge Reanalysis (GTSR), iii) a set of boundary 
conditions describing the initial state of flood along 
the coast. Seawalls height and the coastal ground 

Figure 4. A map of locations of the large cities on the coast of mainland China investigated in the work (Tang et al. 2022): (1) 
Dalian; (2) Tangshan; (3) Tianjin; (4) Cangzhou; (5) Yantai; (6) Qingdao; (7) Weifang; (8) Lianyungang; (9) Yancheng; (10) Nantong; 
(11) Shanghai; (12) Hangzhou; (13) Ningbo; (14) Wenzhou; (15) Fuzhou; (16) Quanzhou; (17) Shantou; (18) Jieyang; (19) Shenzhen; 
(20) Hong Kong; (21) Guangzhou; (22) Maoming; and (23) Zhanjiang.
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displacements (e.g. the up-down deformations) were 
jointly used to constrain the solution (i.e. the extent 
and height of flooded water column) to consider the 
presence along the coast of seawalls for safeguarding 
and the subsidence which can increase the inundation 
risk (Qin, Wu, and Xiu 2019). The ground displace-
ment time series of Shanghai and its coastal region, 
spanning the time interval between 2018 and 2021, 
were derived by applying the SBAS technique 
(Berardino et al. 2002; Pepe and Lanari 2006) to two 
independent sets of SAR images collected by the 
X-band COSMO-SkyMed (CSK) (descending orbits) 
and the C-band European Copernicus Sentinel-1 (S-1) 
(ascending orbits) sensors. The east-west and up- 
down deformation time series, calculated for every 
coherent point common to both SAR datasets, were 

retrieved using the minimum acceleration multi-track 
InSAR method (Pepe et al. 2016; Shirzaei 2015). To 
study the flooding risk over the selected area, we 
performed several simulations using the LISFLOOD- 
FP mentioned above model. In particular, the coast-
line seawalls of the eastern Shanghai area were divided 
into the 40 segments shown in Figure 6(a). For every 
segment, we computed a distinctive simulation run-
ning the LISFLOOD-FP model. In case of an extreme 
weather event, we assumed that a specific seawall seg-
ment could fail and be destroyed, leading waves to 
overtop the barriers and flood the nearby lands. 
Moreover, we also observed that the southern coast-
line segments of the Pudong district of Shanghai are 
characterized by lower seawall heights and high 
ground deformation rates; accordingly, they have the 

Figure 5. The terrain elevation changes of newly reclaimed land in selected coastal areas, i.e. (a) Dalian, (b) Tangshan, (c) Tianjin, 
(d) Ningbo, (e) Yancheng, (f) Nantong, obtained by comparing SRTM DEM (2000) and TanDEM-X (2015) (Tang et al. 2022).
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highest probability of wave overtopping. At the same 
time, we noted that the number of infrastructures 
potentially subjected to severe flood impacts in the 
southern sector of the coast is more significant than 
in other sectors (Tang et al. 2022). presented a detailed 
analysis on these experiments. The inundation extents 
and depths under the failure scenarios of different 
sections of the seawalls and 100-year return period 
flood were simulated and mapped. The simulations 
(as earlier said) take account of the coastal ground 
subsidence as derived from InSAR analyses. 
Figure 6(b) shows the geocoded map of the mean 
deformation velocity of the eastern Shanghai zone in 
the up-down direction from 2018 to 2021. Figure 6(c) 
shows the inundation extents and depths under the 
failure scenarios of seawall sectors 5–6 and 19–20. The 
inundation depths are divided into five levels repre-
sented by different brightness values on a blue scale. 
As shown in Figure 6(c), after the failure of the seawall 
in sectors 19–20, the eastern coastal areas (including 
a part of Pudong International Airport) would be 
flooded. While after the failure of the seawall in sectors 
5–6, the inundation areas were minimal. The impact 
in terms of coherent structures potentially damaged by 
the inundation was further quantified in the work 
(Tang et al. 2022).

�V ¼ �vð�Þ;�vð2�Þ; . . . ;�vðN�Þ½ �
T Finally, the 

analysis of the land use – land cover changes due to 
the heavy urbanization of the region has been carried 
out. We employed three deep learning models, includ-
ing U-Net, U2 -Net, and Res-UNet (Qin, Wu, and Xiu  
2019), to detect urban building change in Shanghai. 

Ten TSX images acquired in StripMap mode from 
16 October 2015 to 19 August 2016 were used in this 
study. Before training these networks, we pre- 
processed TSX images and generated ten TSX 
Backscatter Intensity Maps (BIMs) and nine 
Coherence Maps (CMs), fed into the network models. 
The BIMs were obtained by conducting multi-looking 
on each Single-Look-Complex (SLC) image with the 
ratio of range and azimuth (2:3). CMs were derived by 
performing interferometry on two SLC images with 
adjacent acquisition time and computing the coher-
ence values of interferograms. The spatial resolution of 
BIMs and CMs is 6 m × 6 m. We divided the BIMs and 
CMs into small non-overlapping patches of 512 × 512 
pixels, forming three training samples and one test 
sample (see Figure 7 for location). Then, the training 
samples were employed to obtain the weight para-
meters of three models, and the test sample was uti-
lized for verifying urban building change detection 
accuracy. The results show that the deep learning 
models and high-resolution SAR image information 
can be used for obtaining reliable urban change results 
(see Figure 8).

The urban change detection maps derived from 
three deep learning models and TSX image informa-
tion are illustrated in Figure 8(a). Res-UNet exhibits 
the best visual performance, with fewer missing/false 
detections when BIMs and CMs are input datasets. In 
contrast, some pixels are mistakenly detected in the 
results of U-Net and U2-Net. The quantitative assess-
ment is listed in Figure 8(b). The reference change 
map shown in Figure 8(c) was derived by interpreting 

Figure 6. (A) Seawall heights for the selected 40 segments in Shanghai; (b) Map of 2018–2021 geocoded mean deformation 
velocity along the up–down direction; (c) Four simulated inundation scenarios with a 100-year return period flood. The red arrows 
indicate where the wave is assumed to overtop (Tang et al. 2022).
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the differences between two SPOT images acquired on 
13 October 2015 and 26 July 2016, with a spatial 
resolution of 1.5 m. Res-UNet achieves the best results 
with the highest Precision (85.46%), Recall (80.55%), 
F1-Score (82.87%), and Accuracy (99.66%) when 
inputting BIMs and CMs data. Therefore, the results 
show that Res-UNet can extract multi-source features 
and performs better than other models.

3.2. Insights on the biased estimates of ground 
displacements with MT-InSAR SBAS method with 
applications in USA and Italy

We estimated the bias affecting the ground displace-
ments computed with the SB MT-INSAR approach by 
exploiting S-1 images acquired over a test site in 
Nevada (USA) from January 2020 to January 2021. 
Figure 9 shows the effect of biased phase 
compensation.

Unfortunately, starting from December 2021, the 
Sentinel-1B sensor malfunctioned, and ESA recently 
announced a move-up to launch a replacement sensor. 
Accordingly, using SAR datasets also including 2022- 
year SAR acquisitions has an impact on the developed 
phase bias compensation method that might suffer in 
the correction of such systematic phase artifacts, espe-
cially with periods of 6 days, even though the algo-
rithm is still capable of reducing the phase bias signals 
moving from different sets of SB interferograms. As 
a further experiment, we applied the summarized 
time-invariant and time-variant phase mitigation 

methods (Falabella and Pepe 2022b) to a SAR dataset 
collected from 14 October 2014 to 13 November 2022, 
over a study area in southern Italy, consisting of 385  
S-1 images (descending orbits). Figure 10(a) shows the 
mean ground displacement velocity of the area. Only 
SAR pixels correctly analyzed and characterized by 
temporal coherence values larger than 0.7 are por-
trayed in the map, where temporal coherence is 
a quality factor (Pepe and Mastro 2017; Pepe, 
Mastro, and Jones 2021), initially introduced in Pepe 
and Lanari (2006) and widely used in the reference 
literature, which quantifies synthetically the agree-
ment between the generated displacement time-series 
and the used multi-look SAR interferograms 
(Falabella and Pepe 2022b; Pepe and Lanari 2006). 
Figure 10(b,c) shows the average mean ground displa-
cement difference between time series obtained with 
SB networks with maximum temporal baselines of 6 
and 148 days without (b) and with (c) the application 
of the developed phase bias compensation method, 
respectively.

To make the average improvement due to phase 
compensation evident, we plot in Figure 11 the aver-
age absolute mean biased ground displacement (con-
cerning the reference SB network with a maximum 
temporal baseline of 148 days) considering the group 
of SAR pixels with temporal coherence values larger 
than 0.7. Red stars refer to the solution obtained with 
the described time-invariant method. In contrast, blue 
triangles refer to the time-variant case.

3.3. Interferometric SAR and change detection 
investigation

In this Section, we address the impacts of floods and 
extreme weather events on coastal region cultural heri-
tage by focusing on the monumental city of Venice, 
Italy, and its lagoon area. The Venice Lagoon repre-
sents the most extensive lagoon system in Italy, one of 
the largest in the Mediterranean Sea, and one of the 
most strategic industrial areas in the country. The city 
of Venice represents a world-known extraordinary 
archeological, architectural, artistic, and cultural heri-
tage masterpiece. The lagoon ecosystem (Kennish et al.  
2010) is characterized by different drivers of change 
(land-based feeding activities, heavy metal extraction, 
ground-water extraction, etc.), causing multiple envir-
onmental impacts on the area (Teatini et al. 2005); the 
subsidence phenomenon of the terrain is one of the 
most important. Flooding events have always occurred 
in the Venice lagoon, mainly resulting from tides, 
seiches, and easterly winds; however, in the last dec-
ades, floods have become increasingly frequent due to 
the impact of climate changes on the sea level rise.

In such a context, RS analyses aimed at map-
ping and monitoring ground subsidence and 
flooding event were performed. Figure 12 shows 

Figure 7. Coverage of TerraSAR-X (TSX) images and locations 
of training and test samples.
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Figure 8. A) Urban change detection maps derived from three deep learning models and TSX image information. (a) and (b) are 
the images before and after the period where changes happened; (c) is the reference change map; (d), (e), and (f) represent the 
prediction results of U-Net, U2 -Net, and Res-UNet, respectively, BIMs are input data; (g), (h), and (i) the prediction results of U-Net, 
U2 -Net, and Res-UNet respectively, BIMs and CMs are input data. B) Comparisons of urban change detection results obtained by 
different models and input datasets.
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the LOS-projected mean displacement map of the 
area obtained by applying the SBAS technique to 
a sequence of 226 S-1 SAR images collected from 
January 2014 to December 2022.

No significant displacement signals were observed 
over Venice; however, within the low-lying lagoon 

terrain, some spot regions are affected by substantial 
subsidence, which, associated with sea level rise, can 
severely impact the area.

Furthermore, CD analyses were carried out. We 
considered the flood event on 12 November 2019 
and used pre- and post-flood SAR images acquired at 

Figure 9. Nevada, USA: Maps of ground deformation velocity differences between the case at 12 and 96 days, where only pixels 
larger than given values of temporal coherence are depicted. (a), (d), (g) Bias considering the original interferograms. (b), (e), (h) 
Bias when the time-invariant correction method is applied. (c), (f), (i) Bias when applying the time-variant correction method. 
Temporal coherence greater than 0.7 (a)–(c), 0.9 (d)–(f), and 0.98 (g)–(i).

Figure 10. Experiments in Italy: (a) Mean displacement velocity map computed applying the SBAS method to a network of 
interferograms characterized by a maximum temporal baseline of 148 days. (b) the bias-uncorrected ground deformation velocity 
differences were mapped using the SB networks at 6 and 148 days. (c) Map of the bias-corrected ground deformation velocity 
differences between the SB networks at 6 and 148 days. Only pixels characterized by temporal coherence larger than 0.7 are 
depicted.
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VV and VH polarizations. Temporal multi-looked 
sigma-nought (�0) maps and Coherence Change 
Indexes (CCI) were used to feed the proposed AI- 
based algorithm to perform CD analyses over 
Venice. CD indices comprise i) the pre-post sigma- 
nought difference (��0, ii) the pre-post coherence 
ratio, and iii) the normalized coherence difference. 
Specifically, we selected a time series of SAR acquisi-
tions, with temporal baselines of ± 6, ±12, and ±18  
days, before (6 November, 31 and 25 October), during 

(12 November), and after (18, 24 and 30 November) 
the flood event. Every SAR image of the time series 
was independently post-processed by applying a de- 
speckling noise filtering algorithm (Zhu, Wen, and 
Zhang 2013). The SLC images were co-registered 
using Enhanced Spectral Diversity (ESD) (Amin  
1993; Mastro and Pepe 2021; Scheiber and Moreira  
2000) considering the 12 November 2019 acquisition 
as a reference: ��0 CDIs were also computed with 
respect to the same image. Readers are referred to 

Figure 11. Average absolute values of mean biased ground displacement computed by differencing ground deformation 
velocities using SB networks at given temporal baseline thresholds and those achieved considering a maximum temporal baseline 
of 148 days. Black continuous line, no corrections applied; red stars, the time-invariant correction applied; and blue triangles, the 
time-variant correction applied. Pixels with temporal coherence values greater than 0.7 have been considered.

Figure 12. Venice lagoon, Italy: 2014–2022 mean deformation velocity map (A). Time series of deformation related to measure 
points (B-E).
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(Mastro et al. 2022) for extensive details on determin-
ing the exploited CDIs and their statistical inference.

The flooded regions detected using the proposed 
method are compared with the delineation maps pro-
duced by the Copernicus EMS (Figure 13). The 
Copernicus EMS generates its delineations by visually 
interpreting satellite images after the flood event. By 
focusing on the zoom views in Figure 13(c,d), which 
show the world-famous historical Piazza San Marco 
of Venice, we can observe the remarkable effective-
ness of the proposed methodology in precisely identi-
fying the flooded pixels. A comprehensive evaluation 
of the CD performances of the proposed method has 
been extensively documented in Mastro et al. (2022). 
The results consistently demonstrated an average F1 
score (Dalianis 2018; Tharwat 2020) exceeding 0.90, 
proving the methodology’s effectiveness in accurately 
identifying significant changes while minimizing false 
alarms.

3.4. SAR data for studying marine environments

This section shows results obtained using the DCA 
technique (see Section 2.2) to point out the relevance 
of such a SAR-related research field for supporting 
coastal environment protection and reducing coastal 
disaster risks.

The case study presented here is situated in 
southern Italy, including the Gulf of Naples with 
the Ischia, Procida and Capri Islands and part of 
the Gulf of Salerno. The choice of this coastal 
study area is related to its peculiarities: a) oceano-
graphic and morphological characteristics, b) 
a highly urbanized coastline, and c) intense 

maritime traffic. These elements have increased 
the interest in the analysis carried out, as they 
can contribute to the study of the sea state and 
could provide interesting insights to support Blue 
Economy strategies.

A data archive composed of 47 ENVISAT-ASAR 
images acquired over ascending orbit in the 2002– 
2010 period has been used for the analysis.

Several images of this area of interest have shown 
the presence of an amplitude signature likely asso-
ciated with currents. Some of the most exciting results 
relating to the estimation of the surface current were 
presented in Jackson et al. (2015) and in Zamparelli 
et al. (2016); furthermore, in Zamparelli et al. (2020) 
and in Zamparelli et al. (2020) is presented 
a methodology which allows quantifying the influence 
of the wind contribution in the surface currents 
derived from the DCA.

Here, the sea surface estimation results obtained for 
the acquisition of 22 September 2010 are reported 
(Figure 14). In panel A (the σ0 image), a pattern is 
discernible in the coastal region north of the Gulf of 
Naples. The estimated Doppler Anomaly map con-
verted to the sea surface (LOS component) velocity 
(vr) is shown in panel B. Redshifts of the estimated sea 
surface velocity component indicate the motion toward 
the radar antenna. In contrast, blueshifts indicate the 
movement away from the radar antenna, being the sea 
surface velocity direction orthogonal to the flight path. 
Here, in the same area of panel A, a red pattern corre-
sponding to a surface current approaching the sensor 
can be observed. Also, another red pattern in the south-
ernmost region, always corresponding to surface cur-
rents approaching the sensor, is visible.

Figure 13. (a) Predicted change masks derived from the proposed methodology and (b) from the Copernicus EMS of Venice city 
area. Both masks are colored in red and superimposed over SAR amplitude images. Yellow boxes are located in the Piazza San 
Marco area and zoomed in panels (c) and (d).
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It is worth noting that the variability of the esti-
mated radial component of the sea surface velocity 
takes values of ±100 cm/s (Zamparelli et al. 2020).

From a comparison of the amplitude images and the 
vr map (panel B), we can appreciate an excellent correla-
tion between the features of sharp change of surface 
displacement and signature likely associated with cur-
rents in the radar backscatter. In particular, the intense 
zonal gradient northern to the Gulf indicates a possible 
switch in the direction of the current water fields. This 
can be related to the passage from the wind-driven coastal 
water circulation to the open ocean thermohaline flow.

We must point out, however, that the DCA is the 
result of many factors, i.e. the sea current, the wind field 
and the sea waves, besides the wave-current and the 
wave-wave interactions (Chapron 2005; Johannessen 
et al. 2008). In the last decades, many efforts have been 
made to estimate the main parameters of the sea state to 
separate each of them. Today, SAR-based applications are 
relatively established for wind derivation at the ocean 
surface (Alpers et al. 2013; Mouche et al. 2012). 
Furthermore, preliminary results obtained in the 
Mediterranean Sea related to the wind field estimation 
through the use of SAR to evaluate wind influence on the 
DCA map are presented in Virginia Zamparelli et al. 
(2020), Signell et al. (2010) and Virginia Zamparelli 
et al. (2023).

Lastly, to show how the DCA technique is increas-
ing scientific interest, we want to mention a recent 
study (Amadori et al. 2021), which presents the feasi-
bility of extracting the surface velocity from DCA in 
lakes. The test case considered is Lake Garda, a large 
and deep lake in northern Italy. This is a challenging 
and innovative issue, as SAR images provide synoptic 
coverage, fine spatial detail, and repeated regular sam-
pling, unlike the data obtained with standard instru-
ments used in lakes.

4. Discussion

Coastal regions are worldwide experiencing unsus-
tainable anthropic pressures, becoming extremely 

vulnerable to natural and human-made hazards. 
Conventional and cutting-edge methods relying on 
active SAR remote sensing prove to be a powerful 
tool for mapping and monitoring surface changes 
affecting coastal/marine environments, with relevant 
implications for designing and implementing environ-
mental protection strategies.

The availability of long sequences of SAR data 
collected by the recently launched constellation, such 
as the Sentinel-1 EU Copernicus satellites, opens to 
comprehensive studies allowing for a deeper under-
standing of the long-term Earth surface processes but 
also poses the challenge of performing more efficient 
SAR data processing. Moreover, the reduced repeti-
tion time of SAR observations (i.e. of 1 week or less) 
permits us to recover in sequences of short baseline 
interferogram tiny signals, which are usually not rele-
vant in interferograms with temporal baselines longer 
than 1 month or so, allowing us to have new indepen-
dent measurements on the state and changes of vege-
tation cover (see Section 3.2), such as the water 
content and soil moisture.

The possibility to complement information derived 
from both the amplitude and phase of SAR data by 
exploiting methods based on artificial intelligence has 
opened the way for the development of new hybrid 
approaches, such as those shown in Section 3.3, allowing 
to improve the analyses and go toward a pre-operational 
use of SAR technologies in disaster risk reduction.

5. Conclusion

This work provides readers with the results of a series 
of heterogeneous experiments based on exploiting 
consolidated and novel SAR technologies over several 
coastal and marine test sites worldwide, pointing out 
the significant methodological and application- 
oriented developments resulting from fruitful coop-
eration among European and Chinese partners. The 
shown activities represent the starting point of further 
analyses that will be performed in the following years, 
primarily aimed at the follows:

Figure 14. Results related to the ascending ENVISAT acquisition of 22/09/2010. Panel a represents the σ0, while panel B is the 
estimated Doppler Anomaly map of the marine area converted into the sea surface velocity LOS component (vr).
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(i) Developing innovative methods for retrieving 
localized signals in sets of multi-look SAR inter-
ferograms and correcting time-correlated phase 
unwrapping mistakes by enhancing the potential 
of the methods described in Section 3.2 for the 
estimation/compensation of phase bias signals.

(ii) Developing and applying AI methodologies 
(De et al. 2017; Liu and Lathrop 2002; Mastro 
et al. 2022) to extract helpful information on 
the state of the Earth’s surface to assess disaster 
conditions and mitigate the associated risk in 
coastal areas.

(iii) Enhancing the exploitation of SAR data for 
observing marine, coastal-maritime and river-
ine systems, emphasizing new SAR data col-
lected at various operational wavelengths.

(iv) Evaluating the potential of the recently launched 
Spanish PAZ satellite operating in X-band for 
various applications and EO studies. PAZ data 
are being tested over the Konya basin, a strategic 
area in Central Turkey, facing several environ-
mental problems and geohazards due to human 
activities and geological settings (Caló et al.  
2017).
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