
Tractable Approximations of LMI Robust
Feasibility Sets

Teodoro Alamo, Member, IEEE , Martina Mammarella, Member, IEEE ,
Fabrizio Dabbene, Senior Member, IEEE , and Mario Sznaier, Fellow, IEEE

Abstract— In this paper, we introduce novel tractable
approximations for robust Linear Matrix Inequality (LMI)
problems. We present various Quadratic Matrix Inequalities
(QMIs) that enable us to characterize the effect of ellipsoidal
uncertainty in the robust problem. These formulations are
expressed in terms of a set of auxiliary decision variables,
which facilitate the derivation of a generalized S-procedure
result. This generalization significantly reduces the conser-
vatism of the obtained results, compared with conventional
approaches.

Index Terms— Linear Matrix Inequalities, Quadratic Ma-
trix Inequality, Robust Semidefinite Programming

I. INTRODUCTION

IT is well known that Linear Matrix Inequalities (LMIs),
play a central role in the analysis and design of control

systems under the presence of uncertainty [1], [2], [3]. In
this context, a robust analysis/synthesis problem consists in
solving a feasibility/minimization problem on the decision
variables, codified in matrix X ∈ X subject to the robust linear
matrix inequality in X , i.e., L(X,w) ≺ 0, ∀w ∈ W, where
w ∈ W represents the uncertainty on the model of the system,
possible disturbances, noise, etc. Set X serves to impose the
dimension, structure, and additional hard constraints on the
decision variable X . This problem, often intractable from
a computational point of view [2], [4], [5] is said to be
of semi-infinite nature because there is a finite number of
decision variables, but an infinite number of constraints. In this
paper, we are interested in characterizing the subset of feasible
solutions SX

.
= { X ∈ X : L(X,w) ≺ 0, ∀w ∈ W } , by a

reduced number of LMIs that do not depend on w.
In the literature, one often encounters formulations in which

L(X,w) depends in an affine way on w, which is constrained
to a polytopic set, i.e. w ∈ W = conv {wk, k = 1, . . . , Nw}.
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In this situation, the original robust constraint on X is equiv-
alent [1] to L(X,wk) ≺ 0, k = 1, . . . , Nw.

These assumptions offer a manageable representation of the
feasible set SX , only when the number of vertices Nw is
not excessively large. For instance, if W represents matrix
interval uncertainty, the number of required vertices explodes
exponentially with the dimension of the uncertain matrices,
and alternative strategies are required [4], [6], [7]. Another
formulation is to consider that L(X,w) exhibits a linear
fractional dependence on w, which is constrained to have a
block diagonal structure [2]. Each block within this structure
is required to have a bounded induced matrix norm, that is

W =
{

diag
[
∆1, . . . ,∆m

]
: σ̄(∆i) < 1, i = 1, . . . ,m

}
.

In this paper we concentrate on a special case of this frame-
work, in which the dependence with respect to w is quadratic
and W is defined as an ellipsoidal set, or as the intersection of
a finite number of such sets. Our choice is driven by several
motivations, which we discuss below. Within the context of
system identification, it is possible, under some assumptions
on the exciting signals and on the noise/disturbances affecting
the system, to employ identification schemes to obtain not
only a central estimate for the system’s parameters, but also an
ellipsoidal bound on them, see, e.g., [8]. Moreover, in order to
address complex, interconnected systems, in which each sub-
system has a set of parameters, it becomes essential to treat
w as an aggregate of all parameters across systems, with W
the intersection of the ellipsoids corresponding to each sub-
system.

The S-lemma [9], [10] provides a powerful tool to convert
robustness conditions into a set of quadratic forms. In [11], see
also [12], an extension to the classical S-lemma to quadratic
matrix inequalities (QMIs) is given. This extension, known as
the matrix S-lemma, serves to provide a tractable sufficient
condition for the implication of the following two QMIs[

I
Z

]⊤
N

[
I
Z

]
⪯ 0 ⇒

[
I
Z

]⊤
M

[
I
Z

]
≺ 0,

where the first QMI represents a bound of the uncertain matrix
variable Z and the second one is the robust constraint to
check. In this paper, we provide a novel QMI representation of
an ellipsoidal set. This innovative representation incorporates
auxiliary variables that significantly reduce the conservative-
ness of the obtained approximation of the feasible set with
respect to the standard matrix S-lemma [11].
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The paper is organized as follows. In Section II we introduce
the problem formulation and we present a motivating example,
in Section III we provide a result based on the classical S-
procedure, on the same lines of the matrix S-Lemma in [11].
This result is exploited in Section IV, where we introduce
two different QMI representations of the uncertainty set W .
In particular, the second representation, based on additional
variables, allows to derive our main result, presented in Section
V. This result is proved to be less conservative than the
classical S-procedure, via analytic and numerical examples,
discussed in Sections VI and VII, respectively.

Notation

Denote the set of symmetric matrices in Rn×n by Sn. Sn
+ =

{ H ∈ Sn : H ⪰ 0 } is the set of semi-positive matrices in
Sn, and Sn

++ = { H ∈ Sn : H ≻ 0 }. The square root of
H ∈ Sn

+ is denoted by H
1
2 , which is the positive semi-definite

matrix satisfying (H
1
2 )2 = H . The notation Tr(H) designates

the trace of the square matrix H . In is the identity matrix in
Sn. A ⊗ B is the Kronecker product of matrices A and B.
Given w ∈

[
w1 . . . wm

]⊤ ∈ Rm, let us denote

wn
⊗

.
=
[
w1In w2In . . . wmIn

]⊤
= w ⊗ In. (1)

II. PROBLEM FORMULATION

In this formulation, we assume that

L(X,w) ∈ Sn, ∀X ∈ X , ∀w ∈ W⊂ Rm,

and a quadratic dependence on the uncertain vector w ∈ W .
That is, we assume that there exists a matrix function M(X)
such that L(X,w) can be rewritten as

L(X,w) =

[
In
wn

⊗

]⊤
M(X)

[
In
wn

⊗

]
, ∀X ∈ X , ∀w ∈ W,

where wn
⊗ is defined in (1). Here, we are interested in

characterizing the subset of feasible solutions

SX
.
= { X ∈ X : L(X,w) ≺ 0, ∀w ∈ W } .

We assume that W is a bounded set that results from the
intersection of a finite collection of quadratically constrained
sets Wi, i = 1, . . . , s. That is, W =

⋂
j=1,...,s

Wj , where, given

Qj ⪰ 0, j = 1, . . . , s, we define

Wj =
{
w ∈ Rm : w⊤Qjw ≤ 1

}
, j = 1, . . . , s.

We notice that boundeness of W is guaranteed if and only if
s∑

j=1

Qj ≻ 0.

A. Motivating example: The discrete Lyapunov equation

Let us consider the following discrete-time system with
affine uncertainty

x+ =

(
A0 +

m∑
i=1

wiAi

)
x = A(w)x,

where x ∈ Rnx and x+ ∈ Rnx are the state and
successor state, respectively. The uncertain vector w =[
w1 . . . wm

]⊤ ∈ Rm is constrained to the ellipsoid

W =
{
w : w⊤Qw ≤ 1

}
, Q ≻ 0. (2)

Given S ≻ 0, we can define the following robust discrete-
time Lyapunov equation for the uncertain system in the
variable P ≻ 0

A(w)⊤PA(w)− P ≺ −S, ∀w ∈ W.

Let us formulate the previous inequality by means of an LMI
on the inverse of P . Denote X = P−1 ∈ Snx

++. The previous
matrix inequality is equivalent to

L(X,w) = −

 X XA(w)⊤ XS
1
2

∗ X 0
∗ ∗ Inx

≺ 0.

Suppose that m = 2 and set n = 3nx, If we introduce the
matrix

M(X) =

 M1,1(X) M1,2(X) M1,3(X)
∗ 0 0
∗ ∗ 0

∈ S(m+1)n,

(3)
with

M1,1(X) = −

 X XA⊤
0 XS

1
2

∗ X 0
∗ ∗ Inx

 ,

M1,2(X) = −

 0 XA⊤
1 0

∗ 0 0
∗ ∗ 0

 ,

M1,3(X) = −

 0 XA⊤
2 0

∗ 0 0
∗ ∗ 0

 ,

the inequality L(X,w) ≺ 0 can be rewritten as the QMI In
w1In
w2In

⊤

M(X)

 In
w1In
w2In

 =

[
In
wn

⊗

]⊤
M(X)

[
In
wn

⊗

]
≺ 0.

With this notation, the set of matrices X ≻ 0 that robustly
satisfy the Lyapunov equation is

SX
.
=

{
X ≻ 0 :

[
In
wn

⊗

]⊤
M(X)

[
In
wn

⊗

]
≺ 0, ∀w ∈ W

}
.

III. THE S-PROCEDURE AND THE QMI REPRESENTATION
OF THE UNCERTAINTY SET W

To provide tractable approximations for set SX , we will
leverage results related to the S-procedure [1], along with a
novel scheme that exploits the structure of the uncertainty set
W . The following lemma is a direct application of the S-
procedure [1, §2.6.3]. The result allows us to bound the set
of feasible solutions SX , provided that the uncertainty set W
can be described, or bounded, by means of the intersection of
a finite number of QMIs with the same structure as the one
used to describe L(X,w).
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Lemma 1: Suppose that W =
⋂

j=1,...,s

Wj . Given X ∈ X ,

suppose that there exists Nj = N⊤
j , and τj ≥ 0, such that, for

every j = 1, . . . , s we have

Wj =

{
w :

[
In
wn

⊗

]⊤
Nj

[
In
wn

⊗

]
⪯ 0

}
, (4)

and M(X)−
s∑

j=1

τjNj ≺ 0. Then,

L(X,w) =

[
In
wn

⊗

]⊤
M(X)

[
In
wn

⊗

]
≺ 0, ∀w ∈ W. (5)

Proof: Suppose that there is ŵ ∈ W such that[
In
ŵn

⊗

]⊤
M(X)

[
In
ŵn

⊗

]
̸≺ 0. (6)

Since ŵ∈Wj , j = 1, . . . , s, we infer from τj ≥ 0 and (4) that

−τj

[
In
ŵn

⊗

]⊤
Nj

[
In
ŵn

⊗

]
⪰ 0, j = 1, . . . , s.

This, along with (6), implies[
In
ŵn

⊗

]⊤M(X)−
s∑

j=1

τjNj

[ In
ŵn

⊗

]
̸≺ 0,

which contradicts M(X)−
s∑

j=1

τjNj ≺ 0. ■

Remark 1: Lemma 1 is similar to the Matrix S-Lemma
presented in [11]. The main differences here are that we
impose a strict inequality in (5) and we do not require a Slater
condition to hold for (4). Note that, since the uncertainty w
is structured, both Lemma 1 and the Matrix S-Lemma yield
only sufficient conditions.

IV. FAMILY OF QMI REPRESENTATIONS OF AN ELLIPSOID

It is clear that, in order to apply Lemma 1, it is necessary
to rewrite, or bound, the uncertainty set W , as a QMI on w
with the same structure as in (4). That is, one should find a
matrix N , or a family of such matrices, satisfying

W =

{
w :

[
In
wn

⊗

]⊤
N

[
In
wn

⊗

]
⪯ 0

}
.

A. Simple QMI for an ellipsoidal set
The following proposition shows that there is a QMI that

exactly characterizes an ellipsoidal uncertainty set

W = {w ∈ Rm : w⊤Qw ≤ 1}.

Proposition 1: Suppose that Q ∈ Sm
+ and define

N =

[
−In 0
0 Q⊗ In

]
. (7)

Then,

W =
{
w ∈ Rm : w⊤Qw ≤ 1

}
=

{
w ∈ Rm :

[
In
wn

⊗

]⊤
N

[
In
wn

⊗

]
⪯ 0

}
.

Proof: Denote Qi,j , i = 1, . . . ,m, j = 1, . . . ,m, the elements
of matrix Q ∈ Sm

+ . From (1) we have

[
In
wn

⊗

]⊤
N

[
In
wn

⊗

]
=


In

w1In
...

wmIn


⊤ [

−In 0
0 Q⊗ In

]
In

w1In
...

wmIn


= −In +

m∑
i=1

m∑
j=1

Qi,jwiwjIn

= (w⊤Qw − 1)In,

which implies
[
In
wn

⊗

]⊤
N

[
In
wn

⊗

]
⪯ 0 ⇔ w⊤Qw − 1 ≤ 0. ■

We notice that this characterization of an ellipsoidal set,
along with Lemma 1, allows us to obtain an approximation of
the original robust problem when the uncertainty is given by
an ellipsoidal set.

Lemma 2: Suppose that W = {w ∈ Rm : w⊤Qw ≤ 1},
where Q ≻ 0, N as in (7), and define

SX
.
=

{
X ∈ X :

[
In
wn

⊗

]⊤
M(X)

[
In
wn

⊗

]
≺ 0, ∀w ∈ W

}
.

Then, X ∈ SX if there is τ ≥ 0 such that M(X)− τN ≺ 0.
Proof: The proof follows directly from Lemma 1 and direct
computations.

In the following we provide a different QMI characterization
of the ellipsoidal set W , based on the introduction of a family
of matrices N̄ . This result is instrumental to the derivation of
a novel, and less conservative, robust LMI characterization.

Theorem 1: Suppose that Q ∈ Sm
+ , H ∈ Sn

++, and Fi ∈
Rn×n, i = 1, . . . ,m are skew-symmetric, i.e., Fi = −F⊤

i . Let
us define

N̄(H,F1, . . . , Fm) =


−H F1 . . . Fm

F⊤
1
...

F⊤
m

Q⊗H

 . (8)

Then,

W =

{
w :

[
In
wn

⊗

]⊤
N̄(H,F1, . . . , Fm)

[
In
wn

⊗

]
⪯ 0

}
.

Proof: Consider the matrix N̄(H,F1, . . . , Fm) given in (8),
and define

SQMI =

{
w :

[
In
wn

⊗

]⊤
N̄(H,F1, . . . , Fm)

[
In
wn

⊗

]
⪯ 0

}
.

It is clear that

N̄(H,F1, . . . , Fm) = N̄(H, 0, . . . , 0) + N̄(0, F1, . . . , Fm).

We now have that[
In
wn

⊗

]⊤
N̄(0, F1, . . . , Fm)

[
In
wn

⊗

]
=

m∑
i=1

wi(Fi + FT
i ) = 0.
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Thus,

SQMI =

{
w :

[
In
wn

⊗

]⊤
N(H, 0, . . . , 0)

[
In
wn

⊗

]
⪯ 0

}

=

{
w :

[
In
wn

⊗

]⊤ [−H 0
0 Q⊗H

] [
In
wn

⊗

]
⪯ 0

}
.

We also have [
In
wn

⊗

]⊤ [−H 0
0 Q⊗H

] [
In
wn

⊗

]

=

[
In
wn

⊗

]⊤
(Im+1⊗H

1
2 )⊤

[
−In 0
0 Q⊗ In

]
(Im+1⊗H

1
2 )

[
In
wn

⊗

]

= H
1
2

[
In
wn

⊗

]⊤ [−In 0
0 Q⊗ In

] [
In
wn

⊗

]
H

1
2 .

From this, and the fact that H
1
2 is non-singular, we infer that

SQMI =

{
w :

[
In
wn

⊗

]⊤ [−In 0
0 Q⊗ In

] [
In
wn

⊗

]
⪯ 0

}
=

{
w : (w⊤Qw − 1)In ⪯ 0

}
=

{
w : w⊤Qw ≤ 1

}
= W. ■

V. TRACTABLE APPROXIMATION OF THE ROBUST
FEASIBILITY SET

The next theorem provides the main contribution of the
paper, which is an LMI inequality, not depending on w,
that provides a less-conservative characterization of the robust
feasibility set of an LMI subject to uncertainty that is bounded
by the intersection of s quadratically bounded sets than the one
provided in [11].

Theorem 2: Suppose that

W =
⋂

j=1,...,s

Wj =
⋂

j=1,...,s

{w ∈ Rm : w⊤Qjw ≤ 1},

where Qj ∈ Sn
+, j = 1, . . . , s. Given X ∈ X , suppose that

there exists Hj ∈ Sn
++, j = 1, . . . , s and skew-symmetric

matrices F1, . . . , Fm such that

M(X)−


−

s∑
j=1

Hj F1 . . . Fm

F⊤
1
...

F⊤
m

s∑
j=1

(Qj ⊗Hj)

 ≺ 0, (9)

Then, L(X,w) =

[
In
wn

⊗

]⊤
M(X)

[
In
wn

⊗

]
≺ 0, ∀w ∈ W.

Proof: Denote N1 as

N1 =


−H1 F1 . . . Fm

F⊤
1
...

F⊤
m

Q1 ⊗H1

 .

If s > 1, for j = 2, . . . , s define Nj as

Nj =

[
−Hj 0
0 Qj ⊗Hj

]
.

The direct application of Theorem 1, provides for j = 1, . . . , s,
the equalities

Wj =
{
w : w⊤Qjw ≤ 1

}
=

{
w :

[
In
wn

⊗

]⊤
Nj

[
In
wn

⊗

]
⪯ 0

}
.

These representations for Wj , along with the application of
Theorem 2 with τj = 1, j = 1, . . . , s, provide the following
sufficient condition for L(X,w) ≺ 0, ∀w ∈ W

M(X)−
s∑

j=1

Nj ≺ 0.

This concludes the proof because the previous expression is
identical to (9) by construction.

We note that, compared to [11], the proposed formulation
makes use of additional skew-symmetric matrices F1, . . . , Fm.
This allows to provide additional degrees of freedom, and thus
substantially decrease the conservatism, as discussed in the
next section and shown in the numerical examples. Of course,
this comes at the cost of increasing the complexity, since the
ensuing optimization problem involves additional variables.
On the other hand, we remark that the problem is still in a
semi-definite programming (SDP) form, and may be solved by
interior-point methods that depend mildly (and, in any case,
polynomially) on the number of optimization variables.

VI. IMPROVEMENT WITH RESPECT TO STANDARD
S-PROCEDURE

We now show that the proposed result provides exact
representations of the robust set SX for some simplified
situations. We also show that for those situations, the standard
S-procedure, i.e., Lemma 2, fails to provide a sharp represen-
tation.

Consider the following robust LMI, where, given r > 0,
the uncertainty w is a scalar subject to the interval constraint
w ∈ [−r, r], i.e.,

M0 + wM1 + wMT
1 ≺ 0, ∀w ∈ [−r, r]. (10)

We remark that both M0 ∈ Sn and M1 ∈ Sn could be
affine functions of a given decision variable X . We do not
make this dependence explicit to simplify the expressions.
Since the dependence on w is affine, the worst-case situations
are obtained at the vertices w = −r and w = r, see, e.g.,
[1], [7]. That is, the robust LMI is satisfied if the following
deterministic LMIs hold

M0 − rM1 − rM⊤
1 ≺ 0, (11)

M0 + rM1 + rM⊤
1 ≺ 0. (12)

Imagine that instead of resorting to this classic vertex result,
we formulate both the original robust LMI and the constraint
w ∈ [w−, w+] as QMIs on the uncertainty w, and apply
Lemma 2. The robust LMI (10) in QMI form is[

In
wIn

]⊤ [
M0 M1

M⊤
1 0

] [
In
wIn

]
≺ 0, ∀w ∈ [−r, r]. (13)
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The constraint w ∈ [−r, r] can be rewritten as[
In
wIn

]⊤ [−In 0
0 1

r2 In

] [
In
wIn

]
⪯ 0.

From the application of the S-procedure, we infer that M0 and
M1 satisfy (10) if there is τ ≥ 0 such that[

M0 M1

M⊤
1 0

]
− τ

[
−In 0
0 1

r2 In

]
≺ 0. (14)

As we show in the following discussion, this is only a
sufficient condition for (10) that can be very conservative.
Suppose that n = 2, and that

M0 = −
[
1 0
0 1

]
, M1 =

[
0 −1
1 0

]
.

In this case, M0 +wM1 +wM⊤
1 = M0 = −I2 ≺ 0, ∀w ∈ R.

Thus, in this case, the robust LMI is satisfied for every r > 0.
We now show that for this particular choice of matrices M0

and M1, (14) provides a bounded value for r. We observe that
(14) is equivalent to[

−M0 − τIn −M1

−M⊤
1

τ
r2 In

]
≻ 0.

Using the Schur complement [1], we rewrite the previous
inequality as −M0 − τIn − r2

τ M1M
⊤
1 ≻ 0. Taking into

consideration the values for M0 and M1 we obtain

I2 − τI2 −
r2

τ
I2 ≻ 0.

Thus, we conclude that an equivalent condition for (14) is

1− τ − r2

τ
> 0. (15)

Given r, the optimal value for τ (e.g. maximizing the left term
of the previous inequality) is the one for which the derivative is
zero. That is, −1+ r2

τ2 = 0. This means that the optimal value
is τ = r. Substituting this optimal value in (15) we obtain
the constraint r < 1

2 . This proves that for this example, the
standard S-procedure fails to properly characterize the range
of values of r for which the robust LMI (10) is satisfied.

In view of Theorem 1, we have that given F = −F⊤ and
H ≻ 0, the quadratic constraint w2 ≤ r2 can be rewritten as[

In
wIn

]⊤ [−H F
F⊤ 1

r2H

] [
In
wIn

]
⪯ 0.

From this and Theorem 2, we deduce that M0 and M1 satisfy
(10) if there exists F = −F⊤ and H ≻ 0 such that[

M0 +H M1 − F
M⊤

1 − F⊤ − 1
r2H

]
≺ 0.

The following lemma shows that this characterization of the
robust pairs M0 and M1 is exact.

Lemma 3: Matrices M0 and M1 satisfy

M0 + wM1 + wMT
1 ≺ 0, ∀w ∈ [−r, r], (16)

if and only if there exists F = −F⊤ and H ≻ 0 such that[
M0 +H M1 − F
M⊤

1 − F⊤ − 1
r2H

]
≺ 0. (17)

Proof: The implication (17) ⇒ (16) has been already discussed
(it follows from Theorem 2). We now prove (16) ⇒ (17). As
commented before (see (11), (12)), (16) is equivalent to

M0 − rM1 − rM⊤
1 ≺ 0,

M0 + rM1 + rM⊤
1 ≺ 0.

This can be rewritten as[
M0 − rM1 − rM⊤

1 0
0 M0 + rM1 + rM⊤

1

]
≺ 0.

Denote T =

[
In −In
In In

]
. Pre-multiplying the LMI by T⊤ and

post-multiplying by T we obtain the equivalent LMI[
2M0 2r(M1 +M⊤

1 )
2r(M1 +M⊤

1 ) 2M0

]
≺ 0.

Pre and post-multiplying by 1
2

[
In 0
0 1

r In

]
, we obtain[

M0

2
M1+M⊤

1

2
M1+M⊤

1

2
1

2r2M0

]
≺ 0.

Denote now H = − 1
2M0, and F =

M1−M⊤
1

2 . With this choice,
we can rewrite the LMI as[

M0 +H M1 − F
M⊤

1 − F⊤ − 1
r2H

]
≺ 0.

We notice that F is anti-symmetric by construction. Also,
H = − 1

2M0 is positive definite because of the evaluation of
LMI (16) at w = 0.

VII. NUMERICAL EXAMPLE

A. Case A

Let us consider the uncertain system

x+ = (A0 + w1A1 + w2A2)x = A(w)x,

A0 =

[
0.1 0
0 0.1

]
, A1 =

[
1 0.2

−0.2 1

]

A2 =

[
0 0.0075

−0.14 0.1

]
,

with w ∈ W = {w =

[
w1

w2

]
: w⊤

[
10 0
0 10

]
w ≤ 1}.

Given S =

[
0.5833 0

0 1.2372

]
, we aim at minimizing the

size of P subject to A(w)⊤PA(w)− P ≺ −S, ∀w ∈ W, to
obtain a sharper bound on

J∞ =

∞∑
k=0

x⊤
k Sxk ≤ x⊤

0 Px0,∀x0,∀w ∈ W.

It is easy to observe that this can be obtained by maximizing
the trace of P−1, i.e., minimizing Tr (P ).

Let us denote by NMSL and NISL the matrices required
for the QMI representation of the uncertainty set W for the
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standard matrix S-lemma (Lemma 1) and for the improved
version proposed in this paper (Theorem 2), respectively, i.e.,

NMSL =

 −I2 0 0
0 Q11Inx

Q12Inx

0 Q12Inx Q22Inx

 ,

NISL =

 −H F1 F2

F⊤
1 Q11H Q12H

F⊤
2 Q12H Q22H

 .

Let us define X = P−1. The corresponding optimization
problems are

X⋆
MLS

.
= max

X,τ≥0
tr(X)

s.t. M(X)− τNMSL ≺ 0
(18)

X⋆
ILS

.
= max

X,H,F1,F2

tr(X)

s.t. M(X)−NISL ≺ 0

H ≻ 0, F1 = −F⊤
1 , F2 = −F⊤

2 .

(19)

where the expression for M(X) can be found in (3). We
remark that these problems are in LMI form and, thus, they
can be solved by standard SDP tools. Comparing the results
obtained with the two methods, we obtain that for the case
under analysis, the trace of X⋆ achieved applying the proposed
approach is equal to tr(X⋆

ILS) = 1.0793 and it is almost 60%
larger than the one obtained with the approach proposed in
[11], i.e., tr(X⋆

MLS) = 0.6346. Moreover, in Figure 1, we show
how the corresponding feasible sets reflect that the relaxed
matrix S-lemma is able to reduce some conservativeness of
the standard approach thanks to the over-parametrization of
the matrix NISL.

Fig. 1. Feasible sets obtained applying the standard matrix S-lemma
(blue) and the improved matrix S-lemma (green).

B. Case B
In this second case study, we evaluate how the ratio ρ

between tr(X⋆
ILS) and tr(X⋆

MLS) scales with respect to the
problem dimension. In particular, we select five case studies
with nx ranging from 2 to 6 and m = nx − 1. For each
case study, we run 1000 simulations, where the matrices Ai,
i = 0, . . . ,m, are obtained as sparse random matrices with a
sparsity density of 0.4, and with Q = 104Inx

.

Figure 2 shows how increasing the size of the problem
implies an improvement in terms of reducing the conserva-
tiveness of the standard matrix S-lemma, with the median of
the ratio ρ increasing from 1.68 to 2.06.

Fig. 2. Evolution of ρ over 1000 runs for nx = [2, 6] and m = [1, 5].

VIII. CONCLUSIONS

We presented a novel approach to design tractable approxi-
mations of robust feasible sets of LMIs affected by ellipsoidal
uncertainty. These are obtained reformulating the problem in
an specifically designed QMI form, and subsequently applying
a generalized matrix S-procedure. The result is shown to
be significantly less conservative than the classical approach.
Future work will be devoted to further reducing conservatism
by designing specific versions of our recent approach based
on probabilistic scaling [13].
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