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Abstract

Time between event (TBE) charts are SPC tools for monitoring the occurrence of unwanted

events, such as the appearance of a defective item or a failure of a piece of equipment. In

some cases, a magnitude, indicating the severity of the event, is also measured. Time and

magnitude charts, which are based on the assumption that the stochastic process underlying

the occurrence of events is the marked Poisson process, are the preferred option. However,

these charts are not suitable to deal with damage events caused by repeatedly occurring

shocks or stress conditions. To bridge this gap, we introduce a new control chart based on the

assumption of a renewal process with rewards, where the reward represents magnitude, and a

magnitude-over-threshold condition represents the occurrence of an event. In particular, we

consider two cases for magnitude: (i) magnitude is cumulative over time and (ii) magnitude

is non-cumulative or independent over time. We use known results in renewal theory to

provide expressions of the probability distributions needed to compute the control limits

and perform a simulation analysis of the control chart performance.
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1. Introduction

Statistical quality control is a collection of statistical methods, which are used to monitor

and improve the quality of a process. Currently, statistical quality control is not limited
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to the manufacturing industry, but is also used in environmental science, biology, genetics,

epidemiology, medicine, finance, law enforcement and athletics. Among the SPC tools,5

control charts are probably the most technically sophisticated. One of the main purposes of

control charts is to distinguish between the variation due to chance causes and the variation

due to assignable causes in order to prevent overreaction and under-reaction to the process

(cf. Montgomery [1]).

There are different types of control charts in the literature to handle different situations10

(Woodall and Montgomery [2]). A special type of control chart called time-between-events

(TBE) is used to monitor rare events or the so-called high-quality processes. Traditional

TBE charts considered the time interval X between the occurrences of an event by com-

pletely ignoring the magnitude M associated with it, representing the size of the event itself.

However, there are many real applications where both time and magnitude are important15

and ignoring one of them leads to misleading conclusions. If the magnitude is also avail-

able, it has been recognised that a joint monitoring of time and magnitude improves the

performance of the control chart. For example, Wu et al. [3] proposed control charts for

the combined monitoring of TBE and magnitude, providing a decision rule based on both

individual X and M charts. Later, Wu et al. [4] introduced the rate chart to monitor mag-20

nitude and TBE data by considering their ratio, finding that it is more effective than the

individual X or M charts and also than the combined monitoring chart. The rate chart

with an integer magnitude was proposed by Liu et al. [5]. Liu et al. [6] proposed a joint

control chart by considering a truncated Poisson distribution for the magnitude, finding that

the new chart outperforms the individual charts. Recently, Qu et al. [7] also introduced a25

time and magnitude chart by assuming an exponential distribution for time and a normal

distribution for magnitude. The authors compared the proposed chart with the existing

ones, i.e., time, magnitude, time and magnitude, and rate charts, and showed that the new

chart is more efficient. Some works related to CUSUM charts are Wu et al. [8], Qu et al.

[9], Qu et al. [10]. We refer to Ali et al. [11] for a detailed review about time and magnitude30

control charts.

The importance of control charts for reliability data has been highlighted by Xie et al.

[12]. More recently, Vining et al. [13] observed that there is a need to develop process

control techniques for reliability data to ensure that a product or a process maintains the

expected reliability standard. In this paper we are concerned with damage events caused35

by randomly occurring shocks or stress conditions, which eventually lead to a failure event

or require repair when the magnitude of the damage has crossed an appropriate threshold.

This event can be categorized into two failure modes: catastrophic failure, in which the

failure occurs by some sudden shock, and cumulative shock failure, in which the failure
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occurs by physical deterioration due to age or cumulative wear. The two cases will be called40

independent damage process and cumulative damage process, respectively. The renewal pro-

cess with rewards is suitable to describe both, by considering as the time for the occurrence

of an event the first passage time above the threshold either by a single reward or by the

accumulated rewards. When a magnitude-over-threshold event happens, the product or

process are renewed and the next TBE is the next first passage time, so that this chart can45

be called an FPT-chart. By monitoring this TBE, a reliability engineer can assess whether

a product is being used according to its design limits or a process is being run according

to specifications. A too frequent occurrence of magnitude-over-threshold events could also

indicate deficiencies in the material used for the product or for the equipment involved in

the process. A simple example of an independent damage process and of cumulative damage50

process is provided by Gut and Hüsler [14]: a material, such as a rope or a wire, can break

due to fatigue because of the cumulative effect of loads within design limits after a long

period of time or because a sudden big load exceeding its capacity; capacity could as well

be lower than expected due to faulty material.

The existing time and magnitude control charts are based on the marked Poisson process,55

although this is not always explicitly stated. The renewal reward assumption is a generalisa-

tion in the direction of any lifetime distribution for the occurrence of shocks. However, time

and magnitude charts monitor every single magnitude and TBE, not first passage times,

therefore the FPT-chart cannot be viewed as a direct generalisation, rather as a complement

to these. For example, if the magnitude is not directly observable and a shock process is60

in effect (be it independent or cumulative), then the failure time is a first passage time and

it has a non-exponential distribution even in the simplest settings. In this case time and

magnitude charts cannot be applied, while the FPT-chart is still usable because it is not

necessary to establish a threshold to observe failures. If the magnitude is observable, both

charts can be applied, but they are expected to react differently to the same changes in the65

underlying process. In case of a zero threshold the FPT-chart is a simple TBE chart.

This study is organized as follows. In Section 2 we define the renewal reward process

formally and provide expressions for the first passage time distributions. The compound

Poisson process is also mentioned as a special case of the renewal reward process. The FPT-

chart construction and a numerical study of performance measures are given in Section 3.70

Also, a comparison of FTP charts with rate charts is presented in Section 3. An implemen-

tation of the FPT-chart is the subject of Section 4. Section 5 contains a brief summary of

the outcomes, conclusions and suggestion for future studies.
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2. Cumulative and Independent Processes

In this section, we shall introduce the necessary definitions and formulas that are required75

for the development of FPT-charts, obtained from Nakagawa [15] and Nakagawa [16].

We denote by N(t) a counting process, by Xi the TBE and by Mi the magnitude

associated with Xi for i ≥ 1.

Definition 2.1. A counting process {N(t), t ≥ 0, t ∈ T} with independent and identically

distributed (iid) inter-arrival times X1, X2, · · · with a common distribution F is called a80

renewal process.

Definition 2.2. Let N(t) be a renewal process and let Mi denote the reward (such as dam-

age, wear, fatigue, or cost) that is attached to each inter-arrival time Xi. If the pairs

(Xi,Mi) for i = 1, 2, . . . are independent and identically distributed, then the stochastic

process Y (t) =
∑N(t)
i=1 Mi is called a renewal reward process.85

Therefore, the renewal reward assumption is a generalization of the marked Poisson process.

Let F (x) = Pr{Xi ≤ x} and G(m) = Pr{Mi ≤ m} be the cumulative distribution

functions of Xi and Mi, respectively, with finite means. In addition, suppose K is a fixed

threshold for the damage. In the cumulative damage scenario, the FPT-chart is based on the

distribution of Z, the first passage time: Pr{Z ≤ t} where Z = mint{Y (t) > K}. For the90

independent damage scenario, the first passage time can be defined as Z =
∑i∗

j=1Xj , where

i∗ = mini{1, 2, 3, . . . |Mj > K}, for j = 1, 2, 3, · · · . We remark that K can be only implied

if the damage due to shocks is not observable and Z represents the time of an observable

failure.

In the following subsections we provide expressions for the distribution of Z, including95

also the homogeneous compound Poisson process, as a special case of the renewal reward

process.

2.1. Cumulative Damage Process

Definition 2.1.1. Let (Xi,Mi) denote a sequence of times between shocks (Xi) with an

associated damage (Mi) undergone by a unit or system. Suppose that each damage is additive100

and the system or unit fails when the total damage has exceeded a failure threshold K where

0 < K < ∞, for the first time (cf. Figure-1). A process with such a behavior is called a

cumulative damage process.

If Y (t) is a renewal reward process, then the distribution of the first passage time Z is

φ(t) = Pr{Z ≤ t} =

∞∑
n=0

[G(n)(K)−G(n+1)(K)]F (n+1)(t) . (1)
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Figure 1: Process for a standard cumulative damage model

2.2. Independent Damage Process

Definition 2.2.1. Let (Xi,Mi) denote a sequence of times between shocks (Xi) with an105

associated damage (Mi) undergone by a unit or system. Suppose that the damage is not

additive and the system or unit fails the first time the amount of damage a threshold level

K. This type of process is called an independent damage model (cf. Figure-2).

Figure 2: An illustration of an independent damage model

The first passage time distribution is

Pr{Z ≤ t} =

∞∑
n=0

[Gn(K)−Gn+1(K)]F (n+1)(t) . (2)

Notice that Equation-2 does not have the convolution (.) for the magnitude distribution as

compared to Equation-1.110
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2.3. Poisson Process

The cumulative and independent damage concepts can also be modelled through a Pois-

son process assumption for the process driving the TBE, which is a special case of a renewal

process.

For the cumulative damage process, a compound Poisson process plays an important115

role. More specifically, if N(t) is a Poisson process with rate λ, then the counting process

Y (t) =
∑N(t)
i=1 Mi, where the Mi’s are IID random variables independent of N(t) for N(t) =

0, 1, 2, · · · and Y (t) = 0 when N(t) = 0, is called a compound Poisson process. The general

formulas for the distribution of the first passage time are special cases of (1) and of (2) where

F is an exponential distribution with rate λ. Closed-form expressions can be obtained in120

this case, as shown in the following examples.

Example#1: Suppose that the time and the damage both have the exponential dis-

tribution with mean 1/λ and 1/θ, respectively, i.e., F (x) = 1 − exp(−λx) and G(m) =

1− exp(−θm). Then, to derive the first passage distribution for the cumulative process we

have to solve
∫∞
0

exp(−sm)dPr{Y ≤ m} = exp(−λt[s/(s + θ)]), and its inversion can be

written as follows (cf. Barlow and Proschan [17], and Graf [18]):

Pr{Y (t) ≤ t} = exp(−λt)
[
1 +
√
λθt

∫ x

0

exp(−θw)w−0.5I1(2
√
λθtw)dw

]
(3)

where Ii is the Bessel function of order i for the imaginary argument defined as Ii(x) =∑∞
k=0

(x/2)2k+1

k!(k+i)! . Thus, we have

Pr{Z ≤ t} = 1− exp(−λt)
[
1 +
√
λθt

∫ K

0

exp(−θw)w−0.5I1(2
√
λθtw)dw

]
(4)

and E{Y (t)} = λt
θ , E{Z} = θK+1

λ , V ar{Y (t)} = 2λt
θ2 and V ar{Z} = 2θK+1

λ2 , respectively.

It is to be noted that E{Y (t)} is increasing linearly with time t and therefore, we have

E{Y (t)}
K+θ−1 = t

E(Z) .

Example#2: The first passage time distribution of the independent damage scenario

for the exponentially distributed time and magnitude is:

Pr{Z ≤ t} = 1− exp(−λt exp(−θK)) (5)

which is again an exponential distribution with parameter λ exp(−θK). Therefore, we have125

E(Z) = exp(θK)
λ and V ar(Z) = exp(2θK)

λ2 .

In equation (5), we have considered the exponential distribution for the magnitude. If we

assume a gamma distribution, the real task is to solve the Laplace integral
∫∞
0

exp(−sx)dPr{Y ≤

x} = exp(−λt[1−(θ/(s+θ))β ]) = exp(−λt) exp(λt(θ/(s+θ))β). One can write exp(λt(θ/(s+
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θ))β) as
∑∞
n=0

(λt)n

n!

(
θ
s+θ

)nβ
. Now its Laplace-Stieltjes inversion is

∑∞
n=0

(λt)n

n!

(
−nβλ ×1130

F1[1+nβ, 2,−tλ]
)
, where 1F1 denotes the Kummer Confluent Hypergeometric function. By

comparing this expression with Equation-5, one can notice that the first passage distribution

has become very complicated after replacing the exponential distribution with a gamma.

3. Control Chart Construction

As illustrated in the preceding sections, the FPT-chart is built using the distribution of135

the first passage time Z (which is now the TBE for this chart) either with the cumulative

damage or the independent damage assumption, as displayed in Figure-1 or 2. The damage

is zeroed after a threshold crossing, so that in-control Zi+1 has the same distribution of Zi.

Let α denote the false alarm probability and let FZ be the cumulative distribution

function of Z. To construct a two-sided control chart the lower control limit (LCL) and140

the upper control limit (UCL) are calculated as percentiles of FZ : LCL = F−1Z (α/2) and

UCL = F−1Z (1 − α/2), for the two-sided control chart. For the detection of a process

deterioration or of a process improvement only LCL = F−1Z (α) or UCL = F−1Z (1 − α),

respectively, are required. To detect process deterioration the TBE is monitored and if it

falls below the LCL, the process is declared out of control and an inspection takes place to145

determine assignable causes. Then monitoring resumes after the causes have been identified

and removed or the out-of-control signal is deemed to be due to chance causes. A similar

procedure is followed for the other cases.

To assess the performance of the control chart, we shall use the average run length

(ARL) and the average length of inspection (ALI). The ARL is the number of points that,150

on average, will be plotted on the control chart until an out-of-control signal appears, i.e.,

for in-control situation ARL = 1/α while for out-of-control situation, it is ARL = 1/(1− ζ)

where ζ denotes the type-II error. The ALI is defined as the average time (or length) of

inspection which one has to wait before getting an out-of-control signal and can be written

as ALI = ARL× E(Z).155

Because getting an explicit expression of the first passage time distribution and finding its

quantiles is extremely difficult in non-exponential cases, we propose Algorithm-1 to compute

control limits in general cases. Similarly, Algorithm-2 computes ARL.

The design of a control chart is often based on ARL, a large in-control ARL is ensured by

design, but the variance of the run length distribution can be large. Thus, in such scenario,160

the coefficient of variation (CV) provides good insights beyond ARL. An advantage of the

CV is that different control charts with close ARL can be compared. Moreover, it is a

scale-free measure. As noticed by Ali and Pievatolo [19], ALI is not a scale-free measure;

therefore, we shall report only the CV values of the length of inspection (called CVLI).
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Algorithm 1 Control Limits Computation for the First Passage Distribution to a fixed
Critical Threshold

1: Select p = 1 or p = 2 for the Process . where p = 1 - Cumulative, p = 2 - Independent
2: Choose parameters values to generate X and M from FX and GM
3: Fix K
4: for i = 1 to S do . where S is large, e.g., 106

5: do
6: Sample Xj and Mj , j ≥ 1
7: if p == 1 then
8: Rj =

∑j
l=1Ml

9: else
10: Rj = Mj

11: end if
12: while Rj < K

13: Zi =
∑j
l=1Xl

14: end for
15: Compute the sample quantiles of Zi to find the LCL and UCL, respectively.

Algorithm 2 ARL Computation for the Two-Sided Chart based on the Renewal Reward
Process with a fixed Critical Threshold

1: Select p = 1 or p = 2 for the Process . where p = 1 - Cumulative, p = 2 - Independent
2: Choose shifted parameters values to generate X and M from FX and GM
3: Fix K
4: for h = 1 to S do . where S is large, e.g., 106

5: i=0
6: do
7: i = i+1
8: do
9: Sample Xj and Mj , j ≥ 1

10: if p == 1 then
11: Rj =

∑j
l=1Ml

12: else
13: Rj = Mj

14: end if
15: while Rj < K

16: Zi =
∑j
l=1Xl

17: while Zi ≥ LCL||Zi ≤ UCL
18: RLh = i, break
19: end for
20: Compute Mean of RLh.
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In addition to these performance measures of the control charts, the quartiles of the run165

length distribution are also studied in detail. We discuss the detection of process deteri-

oration and improvement using the one and the two sided control charts, in the following

subsections.

3.1. Adjusted values of parameters

Before presenting the simulation study of the ARL, is worthwhile to remark that a similar170

change in the ARL could be determined by a shift in either the time or the magnitude

distribution. To demonstrate it for the cumulative process, let us suppose that θ0 and λ0

are the in-control rate parameters of a compound Poisson process and let us denote the

mean of the first passage distribution by z(θ0, λ0) = (θ0K + 1)/λ0 (see Example #1). Now

consider a shift to θ1, while λ stays at λ0 and let us look for the corresponding shifted λ1175

while θ stays at θ0. This is obtained by equating z(θ1, λ0) to z(θ0, λ1) which would result

into λ1 = θ0K+1
z(θ1,λ0)

= λ0(θ0K+1)
θ1K+1 . For example, take in-control rate parameters of the time

and magnitude λ0 = 0.0005 and θ0 = 0.001, respectively. If θ1 = 0.003 for K = 300,

λ1 = 0.000342. Similarly, θ1 is found from λ1 as θ1 = λ0z(θ0,λ1)−1
K = λ0(θ0K+1)−λ1

λ1K
.

To find the shifted/adjusted parameter value in the independent process, we have θ1 =180

ln(λ0)+θ0K−ln(λ1)
K , i.e., by using the λ1, and λ1 = λ0 exp{K(θ0 − θ1)} for θ1.

3.2. Discussion of an ARL Study (Cumulative Process)

The performance of the charts has been evaluated for shifts in a wide range. This is

because in practice the actual shift size is unknown. We considered shifts for the following

two cases in the framework of the compound Poisson process of Section 2.3:185

A λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} while θ increases from

θ0 = 0.001 to θ1 ∈ {0.005, 0.002, 0.01}.

B λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} and θ decreases from θ0 = 0.001

to θ1 ∈ {0.00001, 0.0005, 0.0001}.

When the process is in-control, the ARL values of the one and the two sided charts are190

equal to the specified in-control ARL value, i.e., 370.

Case A: an increase in θ (or decrease in λ): In this case, to detect process improve-

ment, the Upper-sided control chart has been employed and further it has been compared

with the two-sided chart. We have computed the ARL and the CV of the run-length dis-

tribution and the length of inspection, for the two-sided and the upper-sided charts in195

Table-1. The standard deviation of the ARL can easily be recovered using the ARL and the

CV values.
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Table-1 shows some interesting results. By examining the ARL values, it is evident

that the one-sided chart detects the shifts more effectively than the two-sided control chart,

because the latter is more conservative by construction. This effectiveness is confirmed200

by the value of the CVs. The ARL values show a decreasing pattern as the shift in the

rate parameter of the magnitude distribution occurs, therefore the charts are unbiased.

The CV of the run length distribution is smaller and it decreases faster than the CV of

the length of inspection as the process improves, confirming that the distribution of the

length of inspection is more dispersed than distribution of the run length. The quartiles of205

the run-length distribution have also been computed (see Table-A.1 in the appendix), and

we noticed that as the shift in the rate parameter gets larger, the run length distribution

becomes highly skewed and mean of the run length gets greater than Q3. However, for small

to moderate shifts, either in the rate parameter of the magnitude or time distribution, the

ARL is between Q2 and Q3. Thus, runs rules to study the ARL performance may not be210

effective in such highly skewed distribution.

Case B: a decrease in θ (or an increase in λ): This is the most important case for a

reliability engineer, because the parameter shifts are in the direction of process deterioration,

for which the lower-sided control chart is well suited. Therefore, we compare the ARL and

the CV values of the lower and the two sided control charts in Table-2.215

Table-2 shows that the lower-sided chart is more efficient in the detection of process

deterioration than the two-sided chart (again, the two-sided chart is more conservative). As

the shift in the rate parameter of the time distribution occurs, the ARL and the CV get

smaller. A shift of large size (either in the magnitude or time distribution) can be detected

quickly as compared to a small shift. When the time distribution is in-control, i.e., λ = λ0,220

but have a shift in the magnitude, i.e., θ < θ0, then for the two-sided chart, we observe

a reverse behavior of the ARL as compared to the process improvement case. Here, the

ARL is clearly biased. However, the lower-sided chart is free from such shortcomings, and

we advocate its superiority over the two-sided chart. Again, in this case, the CV values of

the run length are smaller than the CV of the length of inspection, and both CVs support225

the superiority of the one-sided chart over the two-sided chart. We have also computed the

quartiles in the appendix (cf. Table-A.2), and observed that ARL value was smaller than

Q3. Therefore, the run length distribution is not as highly skewed as we observed in the

case of process improvement.

10



Table 1: Process improvement with upper and two-sided charts for the cumulative damage process. The ARL is based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and
λ1 ∈ {0.0003, 0.0001, 0.00005}, θ1 ∈ {0.002, 0.005, 0.01}

θ λ
Upper-Sided Two-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.001
ARL 370.37 32.0474 3.05326 1.73591 370.37 46.1792 3.46456 1.84701
CV 0.998649 0.984274 0.820049 0.651102 0.998649 0.989113 0.843424 0.67719

CVLI 0.999928 0.999169 0.991241 0.984541 0.999928 0.999423 0.992285 0.985478

0.002
ARL 160.761 17.9681 2.40352 1.52591 231.902 25.2764 2.66728 1.60262
CV 0.996885 0.971775 0.764162 0.587072 0.997842 0.980019 0.790624 0.613205

CVLI 0.999563 0.996079 0.970305 0.952807 0.999697 0.997214 0.973282 0.955119

0.005
ARL 35.3429 6.41082 1.58941 1.22365 57.4729 8.37106 1.69522 1.25651
CV 0.985751 0.918702 0.608964 0.42752 0.991262 0.938371 0.640394 0.451823

CVLI 0.994894 0.971517 0.879489 0.840118 0.996863 0.978261 0.88749 0.844684

0.01
ARL 8.95931 2.69559 1.19192 1.06527 13.0939 3.2243 1.22946 1.07618
CV 0.942541 0.79311 0.401274 0.247524 0.961056 0.830575 0.432009 0.266064

CVLI 0.968099 0.889565 0.726687 0.686996 0.978285 0.908594 0.736533 0.690883

Table 2: Process deterioration with lower and two-sided charts for the cumulative damage process. The ARL is based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and
λ1 ∈ {0.005, 0.01, 0.1}, θ1 ∈ {0.00001, 0.0001, 0.0005} for lower and two-sided cumulative process charts.

θ λ
Lower-Sided Two-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.00001
ARL 275.351 27.9881 14.2486 1.93436 474.139 55.5067 28.0056 3.28049
CV 0.998182 0.981973 0.96427 0.695006 0.998945 0.990951 0.981984 0.833767

CVLI 1.0000 1.0000 1.0000 0.999998 1.0000 1.0000 1.0000 0.999999

0.0001
ARL 282.872 28.74 14.6243 1.97018 470.16 57.0118 28.758 3.35473
CV 0.998231 0.982449 0.965205 0.701735 0.998936 0.991191 0.98246 0.837803

CVLI 0.999999 0.999985 0.999971 0.999785 0.999999 0.999993 0.999985 0.999874

0.0005
ARL 318.868 32.3338 16.4177 2.13813 436.744 64.2106 32.3542 3.70586
CV 0.998431 0.984415 0.969067 0.72959 0.998855 0.992183 0.984425 0.854492

CVLI 0.999973 0.999737 0.999482 0.996014 0.999981 0.999868 0.999737 0.997702

0.001
ARL 370.37 37.4646 18.9721 2.36971 370.37 74.5005 37.4882 4.19766
CV 0.998649 0.986564 0.973289 0.760268 0.998649 0.993266 0.986572 0.872795

CVLI 0.999928 0.999289 0.998596 0.9887 0.999928 0.999643 0.999289 0.993636

11



3.3. Discussion of an ARL Study (Independent Process)230

Still using the model of Section 2.3, we consider shifts for the following two cases:

A λ decreases from λ0 = 0.0005 to λ1 ∈ {0.0003, 0.0001, 0.00005} while θ increases from

θ0 = 0.001 to θ1 ∈ {0.005, 0.002, 0.01}.

B λ increases from λ0 = 0.0005 to λ1 ∈ {0.005, 0.01, 0.1} and θ decreases from θ0 = 0.001

to θ1 ∈ {0.00001, 0.0005, 0.0001}.235

When the process is in-control, the ARL is equal to the specified in-control ARL value, i.e.,

370.

Case A: an increase in θ (or decrease in λ): As in the Case A for the cumulative

damage process, we consider the upper sided and the two sided charts for the detection of

process improvement. From Table-3, it is clear that the one-sided chart is more efficient in240

the detection of shifts than the two-sided chart. The CV of the run-length also supports the

superiority of the upper-sided control chart. The large-size shifts either in the rate parameter

of the time or of the magnitude can be detected quickly as compared to the small shifts.

The ARL gradually decreases with the shift in the parameters, so the charts are unbiased.

The CV of the length of inspection distribution is constant so it is not useful. However,245

the CV of the run of length distribution supports the superiority of the upper-sided chart.

It is observed from the quartiles table (cf. Table-A.3), given in the appendix, that a very

large shift either in a damage or time will result into a highly skewed distribution of the

run-length, i.e., ARL will be greater than Q3. However, for small to moderate shifts, the

ARL lies between Q2 and Q3.250

Case B: a decrease in θ (or an increase in λ): This case is more important because

shifts in the parameters are in the direction of a process deterioration. As in the previous

Case B we compare the lower-sided and the two-sided control chart in Table-4.

By examining Table-4 we noticed that the lower-sided chart is more efficient in the

detection of process deterioration than the two-sided chart. We observe that the ARL of255

the two-sided chart is biased as compared to the lower-sided chart, especially when a shift

is only in the rate parameter of the magnitude distribution. However, if we fix the damage

distribution and introduce a shift in the rate parameter of the time distribution, then the

ARL values get small, i.e., the control chart detection ability improves. A shift of large size

either in time or damage will be detected quickly as compared to the small shift. The CV of260

the run length distribution supports the effectiveness of the lower-sided chart whereas the

CV of the length of inspection distribution is not too informative. We also computed the

quartiles of the run-length distribution in the appendix (cf. Table-A.4) and found that the

12



ARL values lie between the median and Q3, which means that the run-length distribution

is not highly skewed as we have observed in the case of process improvement.265

13



Table 3: Process improvement with upper and two-sided charts for the independent damage process. The ARL is based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and
λ1 ∈ {0.0003, 0.0001 , 0.00005}, θ1 ∈ {0.002, 0.005, 0.01}

θ λ
Upper-Sided Two-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.001
ARL 370.37 34.7682 3.26383 1.80661 370.37 50.5407 3.74536 1.93577
CV 0.998649 0.985514 0.832833 0.668189 0.998649 0.990058 0.856156 0.695276

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.002
ARL 79.9636 13.8591 2.40203 1.54985 117.873 18.6488 2.66041 1.63125
CV 0.993727 0.963247 0.763993 0.59563 0.995749 0.972819 0.790012 0.62207

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.005
ARL 5.93825 2.91202 1.42801 1.19499 7.29518 3.29797 1.48872 1.22014
CV 0.911921 0.810306 0.547472 0.40395 0.928937 0.834735 0.572959 0.424764

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.01
ARL 1.48808 1.26933 1.08274 1.04055 1.55882 1.30522 1.09286 1.0454
CV 0.572707 0.460636 0.276441 0.197406 0.59874 0.483576 0.29149 0.20839

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4: Process deterioration with lower and two-sided charts for the independent damage process. ARL based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.005, 0.01,
0.1}, θ1 ∈ {0.00001, 0.0005, 0.0001}.

θ λ
Lower-Sided Two-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.00001
ARL 275.33 27.986 14.2476 1.93426 511.818 55.5047 28.0046 3.28039
CV 0.998182 0.981971 0.964268 0.694987 0.999023 0.990951 0.981983 0.833762

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.0001
ARL 282.852 28.7381 14.6235 1.9703 514.881 57.0099 28.7572 3.35486
CV 0.998231 0.982447 0.965203 0.701757 0.999028 0.991191 0.982459 0.837809

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.0005
ARL 318.85 32.3376 16.4227 2.14376 492.206 64.2144 32.3592 3.71177
CV 0.998431 0.984417 0.969076 0.730432 0.998984 0.992183 0.984427 0.854744

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.001
ARL 370.37 37.4893 18.998 2.39419 370.37 74.5252 37.5143 4.22369
CV 0.998649 0.986573 0.973326 0.763101 0.998649 0.993268 0.986582 0.873636

CVLI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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3.4. A comparison between FPT and Rate Charts

In this section, we compare the FPT-charts to the rate charts on the basis of the ARL.

In Figure-3, we have depicted the level curves of the ARL of one and two-sided charts

using thresholds K = 300 or K = 4000 for the cumulative damage process under the

compound Poisson process assumption. For process deterioration, the lower sided FPT-chart270

is compared to the upper-sided rate chart, whereas for process improvement the reverse is

done. The rate charts are built from pairs (Xi,Mi) and they monitor Mi/Xi (cf. Appendix

B), so, for every monitored point on the FPT-chart, the number of arrivals needed to cross

the threshold are monitored on the rate chart. Therefore, to make the comparison valid,

the ARL of the rate chart was divided by the expected number of these arrivals, (θ1K + 1)275

(derived from E(Z) in Example #1 and Wald’s equation). When K is smaller, the FPT-

chart is better at detecting process improvement; as K gets larger then it can outperform

the rate chart also at detecting process deterioration. The reason why the rate chart does

better in Figure-3a is that it is insensitive to θ1 in the selected range, because for K in

the hundreds the threshold is very often crossed at the first arrival and so the stopping280

time depends mainly on the inter-arrival times (governed by λ1) and the information on the

magnitude is unused, whereas the rate chart uses it effectively. However, as K gets larger

(representing a system with a longer lifetime), the FPT-chart starts to use the information

on magnitude and the performance improves.

In Figure-4, the same analysis is presented for the independent damage process, but285

dividing the ARL of the rate process by exp(θ1K) (see Example #2), and we reach similar

conclusions forK = 300. Instead, forK = 4000, Figure-4b indicates that no chart dominates

the other on the selected range, but the FPT-chart is more sensitive to larger deteriorations

(large λ1 and in particular small θ1). Finally, in Figure-4c the rate chart is slightly more

effective, but the ARL is very small for both charts.290

4. Real life examples

In this section, we discuss some illustrative real-life examples with simulated data sets

for the implementation of the proposed control charts. We have used α = 0.0027 as false

alarm probability.

4.1. Wire rope strength Monitoring-Cumulative Process295

Wire ropes of a properly designed and maintained crane will deteriorate throughout

their entire service life by two principal deterioration mechanisms, which are: external

and internal fatigue, caused by bending over sheaves or winding on drums, and crushing

caused by spooling on multilayered drums (cf. Weischedel [20]). An experiment is designed
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(a) Upper-sided rate chart and Lower-sided
FPT-chart, K = 300

(b) Upper-sided rate chart and Lower-sided
FPT-chart, K = 4000

(c) Lower-sided rate chart and Upper-sided
FPT-chart, K=300

(d) Lower-sided rate chart and Upper-sided
FPT-chart, K = 4000

Figure 3: Comparison of the ARL of the FPT and rate control charts for the cumulative damage process.
Panels (a) and (b): process deterioration; panels (c) and (d): process improvement. The ARL of the rate

chart has been scaled.

to test the compatibility of wire rope with two different sheaves/winding on drums. A300

dataset of the damage of a wire rope is collected and given in Table-5. The dataset was

built by assuming that every time a weight is lifted, the damage to wires is measured by

electromagnetic inspection and weights continue to be lifted until the cumulative damage

crosses a specified threshold. The first 20 in-control observations as given in Table-5 were

generated using λ = 0.0005, θ = 0.001, and the next 10 (i.e., a new model of the sheave was305

introduced for testing the wire compatibility) from λ = 0.0001, θ = 0.001. Similarly, the

last 10 (that is, a second model of the sheave was introduced for testing wire compatibility)

from λ = 0.01, θ = 0.001. Boldface numbers denote the occurrence of the shift, while values

marked with ? represent the detection of the shift, i.e., a signal of the compatibility of the

sheave with wire rope, by the control chart. Using the first 20 observations, the control limits310

are LCL = ln(3.64695) = 1.293891 and UCL = ln(16321.1) = 9.700214. In Figure-5, the

natural logarithm of the data and of the control limits are shown for a better presentation of

the chart. From Table-5 or Figure-5, clearly, the first model of the sheave is more compatible

with the wire rope than the second one. Moreover, this conclusion is in accordance with the
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(a) Upper-sided rate chart and Lower-sided
FPT-chart, K = 300

(b) Upper-sided rate chart and Lower-sided
FPT-chart, K = 4000

(c) Lower-sided rate chart and Upper-sided
FPT-chart, K = 300

(d) Upper-sided rate chart and Lower-sided
FPT-chart, K = 4000

Figure 4: Comparison of the ARL of FPT and rate control charts for the independent damage process.
Panels (a) and (b): process deterioration; panels (c) and (d): process improvement. The ARL of the rate

chart has been scaled.

simulation study (cf Section-3).315

4.2. Water Quality Monitoring-Independent Process

There are environmental protocols which must be followed and ensured by each factory

before releasing wastage. If a factory leaks poisonous waste products into a river, the

vegetation and the fish in the river may die due to the effect of a cumulative or of an

accidental massive poison pouring. To differentiate between an accidental and intentional320

poisoning of a river, we propose an independent process to monitor water quality.

Conductivity of the water can be used to check water quality, because it depends on the

concentration of dissolved electrolyte ions in the water. Every creek will have a baseline

conductivity depending on the local geology and soils. Higher conductivity will result from

the presence of various ions, including nitrate, phosphate, and sodium. Conductivity can325

be measured in Siemens per centimeter (S/cm). Distilled water has a conductivity ranging

from 0.5 to 3 µS/cm, while most streams range between 50 to 1500 µS/cm. Freshwater

streams ideally should have a conductivity between 150 to 500 µS/cm to support diverse

17



Table 5: Simulated failure time data of the Cumulative Process

Failure Inter-failure ln(X) Cumulative Failure Inter-failure ln(X) Cumulative
# time (X) Probability # time (X) Probability
1 924.377 6.8291 0.2921 21 18283.98 9.8138? 0.9994
2 2601.66 7.8639 0.6270 22 4082.99 8.3146 0.7908
3 2895.77 7.9710 0.6671 23 695.201 6.5442 0.2284
4 268.329 5.5922 0.0949 24 819.318 6.7085 0.2636
5 1672.99 7.4224 0.4671 25 7070.88 8.8637 0.9366
6 2024.72 7.6132 0.6342 26 2716.55 7.9071 0.6432
7 1002.97 6.9107 0.3128 27 6546.95 8.7868 0.9216
8 999.332 6.9071 0.3118 28 1478.42 7.2987 0.4261
9 650.125 6.4772 0.2152 29 2421.04 7.7919 0.6001
10 526.436 6.2661 0.1780 30 10508.8 9.2599 0.9845
11 4926.25 8.5023 0.8501 31 29.3991 3.3809 0.0108
12 1372.49 7.2244 0.4025 32 118.681 4.7764 0.0431
13 892.819 6.7944 0.2836 33 54.1987 3.9927 0.0199
14 854.872 6.7509 0.2733 34 22.09 3.0951 0.0082
15 496.659 6.2079 0.1687 35 1.3452 0.2965? 0.0004
16 10943.1 9.3005 0.9870 36 101.146 4.6166 0.0368
17 1759.06 7.4725 0.4843 37 39.7277 3.6821 0.0146
18 2409.34 7.7871 0.5982 38 34.1069 3.5295 0.0126
19 1972.39 7.5870 0.5248 39 26.2636 3.2682 0.0097
20 29.2355 3.3754 0.0108 40 220.035 5.3938 0.0784

aquatic life.

Let us suppose that conductivity should be at most 300 µS/cm for a particular river or330

stream which is near a factory. Forty observations have been generated in Table-6 to check

the stream water quality where data are the hours between crossings of the conductivity

threshold. The first 20 in-control observations (cf. Table-6) were generated using K =

300, λ = 0.0005, θ = 0.001, the next 10, to represent process deterioration, from λ = 0.1, θ =

0.0001 and the last 10, i.e., process improvement, from λ = 0.0001, θ = 0.001. The bold335

values in Table-6 denote the occurrence of a shift while values with a ? represent the detection

of the shift by the FPT-chart. Using the first 20 observations, the control limits are LCL =

ln(3.64708) = 1.293927 and UCL = ln(17838.8) = 9.789131. Note that process improvement

means that conductivity is decreasing, while process deterioration means that conductivity

is increasing. In Figure-6, the natural logarithm of the data and of the control limits are340

taken for a better presentation of the chart. From Figure-6, clearly, the process is in-control

for the first 20 observations. A shift of the process deterioration occurred at sample number

21, and it was immediately detected by the chart. Similarly, another shift occurred at sample

number 31 which was detected at sample number 36.
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Figure 5: Control Chart for the Cumulative Process Monitoring

5. Conclusion345

In this article we have proposed the FPT-chart, a control chart based on the monitoring

of first passage times above a threshold. This chart is useful to monitor sequences of times

between substitutions of a product or of a piece of equipment due to failure or damage

(regarded as first passage times) . A change in the distribution of first passage times may

signal usage beyond design limits or other permanent deficiencies that were inadvertently350

introduced in the product or process, degrading its reliability. The FPT-chart assumes that

the underlying damage process is a shock process, where shocks occur following a renewal

process with rewards, representing the magnitude of the shocks.

There is a relationship with the existing literature on the joint monitoring of time and

magnitude, in which the marked Poisson process is commonly used. The FPT-charts are355

not a direct generalisation of the time and magnitude charts, however they constitute an

advancement in several respect: they are built under the assumption of a more general

underlying stochastic process; they can be a substitute for the rate charts, by which pro-

portional changes of time and magnitude would go undetected; they can be used when the

magnitude of the damage is not observable, which is not possible for the time and magnitude360

charts; like the time and magnitude charts, they are en extension, in another direction, of

the simple TBE charts; they can be more effective than the time and magnitude charts in

the detection of out-of-control situations, as shown by a numerical study on the ARL in the

case of a compound Poisson process.

An advantage of the renewal reward process is that it allows for any distribution of the365

TBE and of the magnitude. A drawback is that there are not general closed form expressions
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Table 6: Simulated failure time data of the Independent Process

Failure Inter-failure ln(X) CP Failure Inter-failure ln(X) CP
# time (X) # time (X)
1 28.1469 3.3374 0.0104 21 1.6689 0.5122? 0.0006?

2 5375.9799 8.5897 0.8635 22 38.7736 3.6577 0.0143
3 4899.0753 8.4968 0.8371 23 30.4048 3.4146 0.0112
4 326.0282 5.7869 0.1138 24 6.0719 1.8037 0.0023
5 3792.8213 8.2409 0.7546 25 7.2365 1.9791 0.0027
6 468.8966 6.1504 0.1594 26 1.6809 0.5193? 0.0006?

7 7043.6737 8.8599 0.9264 27 9.3069 2.2308 0.0034
8 8111.0884 9.0009 0.9504 28 14.0128 2.6399 0.0052
9 1824.1795 7.5089 0.4912 29 8.7200 2.1656 0.0032
10 524.2249 6.2619 0.1765 30 4.8538 1.5798 0.0018
11 5259.7901 8.5679 0.8575 31 2710.1264 7.9048 0.6335
12 1500.3225 7.3134 0.4264 32 4673.8559 8.4497 0.8229
13 2280.1749 7.7320 0.5703 33 834.6655 6.7270 0.2659
14 1772.6952 7.4803 0.4814 34 91.5559 4.5169 0.0334
15 2828.1483 7.9474 0.6492 35 13853.8589 9.5363 0.9941
16 2570.5627 7.8519 0.6141 36 33313.4361 10.4137? 0.9999?

17 498.3389 6.2113 0.1686 37 1697.9908 7.4372 0.4669
18 3595.0558 8.1873 0.7359 38 418.0323 6.0356 0.1435
19 2743.4973 7.9169 0.6380 39 33.6614 3.5164 0.0124
20 1489.9068 7.3065 0.4241 40 2546.4320 7.8425 0.6106

for the calculation of control limits. We have proposed simple Monte Carlo algorithms to

compute the control limits and the ARL, however, when reliability is very high, the simula-

tion of first passage times can be very time consuming and very long runs may be required

to reduce the Monte Carlo variance to acceptable values. So, while we have used Monte370

Carlo simulation effectively in this study, there is the need for developing specialised nu-

merical method for the computation of quantiles of first passage time distributions available

from renewal theory, with a view to actual applications of the FPT-charts. Other possible

developments are the study of the effect of parameter estimation on FPT-charts (and, more

generally, on charts for the monitoring of time and magnitude) and the relaxation of the375

assumption of independence of magnitude from time.
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Appendix

A Quartiles of the run-length distribution for the cumulative and independent processes

are given in Tables A.1, A.2, A.3, and A.4.

B To compare the FPT-chart and the rate chart, we derived the cumulative probability390

function of the random variable R = M/X as follows: Fr(R) = P (R ≤ r) = P
(
M
X ≤

r
)

=
∫∞
0
P
(
X ≥ M

r |M
)
f(M)dM =

∫∞
0

exp
(−λM

r

)
θ exp(−θM)dM = rθ

λ+rθ . Then LCL =

F−1(α) and UCL = F−1(1−α). To detect deterioration we used the upper-sided rate chart

and the lower-sided FPT-chart. Similarly, to detect improvement we used the lower-sided

rate chart and the upper-sided FPT-chart.395
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Table A.1: Quartiles of the run-length distribution based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.0003, 0.0001, 0.00005}, θ1 ∈ {0.005, 0.002, 0.01} for the upper and
two-sided Cumulative process charts.

θ λ
Upper-Sided Two-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.001
Q1 106.405 9.07486 0.725039 0.335224 106.405 13.1406 0.844703 0.369009
Q2 256.374 21.8652 1.74692 0.807696 256.374 31.6612 2.03525 0.889097
Q3 512.749 43.7303 3.49385 1.61539 512.749 63.3223 4.07049 1.77819

0.002
Q1 46.1041 5.02389 0.534773 0.27007 66.57 7.12675 0.612266 0.29412
Q2 111.084 12.1047 1.28849 0.650711 160.395 17.1713 1.47521 0.708659
Q3 222.169 24.2093 2.57699 1.30142 320.79 34.3427 2.95041 1.41732

0.005
Q1 10.023 1.69637 0.290004 0.169273 16.3897 2.26131 0.322751 0.181054
Q2 24.1496 4.08728 0.698742 0.407851 39.4896 5.44845 0.777643 0.436235
Q3 48.2992 8.17455 1.39748 0.815702 78.9791 10.8969 1.55529 0.87247

0.01
Q1 2.43076 0.620557 0.157529 0.10302 3.62113 0.774853 0.17138 0.10864
Q2 5.85671 1.49518 0.379553 0.248218 8.72482 1.86695 0.412928 0.261759
Q3 11.7134 2.99037 0.759106 0.496436 17.4496 3.73389 0.825855 0.523518

Table A.2: Quartiles of the run-length distribution based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1}, θ1 ∈ {0.00001, 0.0001, 0.0005} for the lower and
two-sided Cumulative process charts.

θ λ
Lower-Sided Two-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.00001
Q1 79.0695 7.90695 3.95347 0.395347 136.257 15.824 7.912 0.7912
Q2 190.512 19.0512 9.52558 0.952557 328.301 38.1267 19.0633 1.90633
Q3 381.023 38.1023 19.0512 1.90511 656.602 76.2534 38.1267 3.81267

0.0001
Q1 81.2334 8.12328 4.06161 0.406102 135.113 16.257 8.12847 0.812788
Q2 195.725 19.5724 9.78612 0.97847 325.543 39.17 19.5849 1.95835
Q3 391.451 39.1448 19.5722 1.95694 651.086 78.34 39.1698 3.9167

0.0005
Q1 91.5887 9.15726 4.57774 0.456243 125.499 18.328 9.16312 0.914742
Q2 220.676 22.0637 11.0297 1.09928 302.381 44.1599 22.0778 2.204
Q3 441.351 44.1274 22.0594 2.19857 604.762 88.3198 44.1556 4.408

0.001
Q1 106.405 10.6334 5.31279 0.524807 106.405 21.2883 10.6402 1.05723
Q2 256.374 25.6203 12.8008 1.26448 256.374 51.2924 25.6367 2.54732
Q3 512.749 51.2407 25.6015 2.52896 512.749 102.585 51.2735 5.09464
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Table A.3: Quartiles of the run-length distribution based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.0003, 0.0001, 0.00005}, θ1 ∈ {0.002, 0.005, 0.01} for the upper and
two-sided Independent process charts.

θ λ
Upper-Sided Two-Sided

0.0005 0.0003 0.0001 0.00005 0.0005 0.0003 0.0001 0.00005

0.001
Q1 106.405 9.85764 0.786353 0.356762 106.405 14.3953 0.926198 0.39577
Q2 256.374 23.7512 1.89465 0.85959 256.374 34.6844 2.2316 0.953576
Q3 512.749 47.5024 3.78931 1.71918 512.749 69.3689 4.4632 1.90715

0.002
Q1 22.86 3.84138 0.534335 0.277613 33.766 5.21977 0.610252 0.303013
Q2 55.0793 9.25551 1.28744 0.668887 81.3565 12.5766 1.47035 0.730086
Q3 110.159 18.511 2.57487 1.33777 162.713 25.1532 2.94071 1.46017

0.005
Q1 1.56007 0.683841 0.238762 0.158684 1.95132 0.796283 0.258269 0.167995
Q2 3.75886 1.64766 0.575279 0.382336 4.70155 1.91858 0.62228 0.404771
Q3 7.51772 3.29532 1.15056 0.764672 9.4031 3.83716 1.24456 0.809542

0.01
Q1 0.258066 0.185566 0.111873 0.088654 0.280431 0.197979 0.116683 0.091715
Q2 0.62179 0.447107 0.269548 0.213606 0.675676 0.477014 0.281138 0.220981
Q3 1.24358 0.894213 0.539096 0.427211 1.35135 0.954029 0.562277 0.441961

Table A.4: Quartiles of the run-length distribution based on α = 0.0027, λ0 = 0.0005, θ0 = 0.001 and λ1 ∈ {0.005, 0.01, 0.1}, θ1 ∈ {0.00001, 0.0001, 0.0005} for the lower and
two-sided Independent process charts.

θ λ
Lower-Sided Two-Sided

0.0005 0.005 0.01 0.1 0.0005 0.005 0.01 0.1

0.00001
Q1 79.0636 7.90636 3.95318 0.395318 147.097 15.8234 7.91171 0.791171
Q2 190.497 19.0497 9.52487 0.952487 354.419 38.1253 19.0626 1.90626
Q3 380.995 38.0995 19.0497 1.90497 708.838 76.2505 38.1253 3.81253

0.0001
Q1 81.2274 8.12274 4.06137 0.406137 147.978 16.2565 8.12823 0.812823
Q2 195.711 19.5711 9.78555 0.978555 356.541 39.1687 19.5843 1.95843
Q3 391.422 39.1422 19.5711 1.95711 713.083 78.3373 39.1687 3.91687

0.0005
Q1 91.5836 9.15836 4.57918 0.457918 141.455 18.3291 9.16456 0.916456
Q2 220.664 22.0664 11.0332 1.10332 340.824 44.1626 22.0813 2.20813
Q3 441.327 44.1327 22.0664 2.20664 681.649 88.3251 44.1626 4.41626

0.001
Q1 106.405 10.6405 5.32025 0.532025 106.405 21.2954 10.6477 1.06477
Q2 256.374 25.6374 12.8187 1.28187 256.374 51.3096 25.6548 2.56548
Q3 512.749 51.2749 25.6374 2.56374 512.749 102.619 51.3096 5.13096
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