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4. CONCLUSION 

In this research, we have introduced a workflow, encompassing 
two steps, designed for mapping crop residue coverage (CRC), 
exploiting spaceborne imaging spectroscopy from PRISMA data. 
Our workflow has yielded very satisfactory findings. First, we 
have demonstrated the fitness for purpose of the Exponential 
Gaussian Optimization (EGO) model. This approach has 
significantly enhanced the information content of the spectral 
intervals of interest, as related to plant pigments, canopy water, 
lignin-cellulose and clay minerals, while reducing the feature 
space from 230 bands to 16 metrics layers. Besides, the use of 
machine learning played a pivotal role to find a non-linear 
regression between this reduced space and Crop Residue Cover 
information. The use of a spectral library to train the Random 
Forest (RF) regressive model overcomes the issue of finding a 
large training sample, without the use of simulated data, whereas 
reaching very good levels of predictive capabilities. This is 
proved by applying the RF to independent field datasets and 
satellite images. In this regard, our mapping demonstration has 
yielded results that align with ground observations, underscoring 
the robustness of our approach. Moreover, the application of the 
model on datasets from two different crop seasons, shows similar 
performance, proving the model robustness and its temporal 
transferability. 
In summary, our discoveries proved the substantial potential of 
PRISMA data in monitoring and quantify NPV, spanning from 
individual fields to farm scales. Our overarching objective is to 
further advance and refine this comprehensive model, ensuring 
its continued effectiveness over time and expanding its 
adaptability to a wide range of spatial contexts. In our future 
works, we will focus on rigorously assessing the model 
performance. This assessment will involve the use of ground-
level Crop Residue Cover (CRC) data at the PRISMA scale, 
encompassing data from 2022 and 2023. These ground-level 
observations will serve as a valuable benchmark to evaluate the 
model performance under real-world conditions. Additionally, 
we plan to leverage PRISMA time series data to continuously 
monitor CRC dynamics. This approach will provide insights into 
how CRC changes over time and how well our model adapts to 
these variations. Furthermore, we intend to enhance the model 
capabilities by incorporating Radiative Transfer Model (RTM) 
simulations. This will expand the training dataset and account for 
a broader range of factors that influence reflectance, including 
soil moisture, different mixture of target presence and sensors 
viewing geometry. This refinement process aims to bolster the 
model accuracy and broaden its applicability to various 
environmental conditions. In summary, our future work 
encompasses three key objectives: 1) Testing the robustness of 
the CR model against field-collected ground data from 2022 and 
2023, at the PRISMA scale; 2) Leveraging RTM simulations to 
augment the training dataset and to consider different factors 
influencing reflectance, such as moisture; 3) Continuously 
monitoring CRC dynamics using PRISMA time series data to 
assess changes in time due to agro-management and target 
decomposition. These efforts collectively aim to advance our 
understanding and application of NPV mapping, contributing to 
more accurate and versatile environmental assessments. 
 
 

ACKNOWLEDGEMENTS  

This study was co-funded by the Italian Space Agency (ASI) in 
the framework of the PRIS4VEG – ASI SCIENZA project  

[2022-5-U.0]. The Authors would like to thank Patrizia Sacco 
(ASI) for her support for satellite data procurement. 
 

REFERENCES 

Berger, K., Hank, T., Halabuk, A., Rivera-Caicedo, J.P., 
Wocher, M., Mojses, M., Gerhátová, K., Tagliabue, G., Dolz, 
M.M., Venteo, A.B.P., & Verrelst, J. , 2021. Assessing Non-
Photosynthetic Cropland Biomass from Spaceborne 
Hyperspectral Imagery. Remote Sensing, 13(22), 4711. 

Daughtry C.S.T., 2001. Discriminating crop residues from soil 
by shortwave infrared reflectance. Agronomy Journal, 93, pp. 
125-131. 

Hively, W.D., Lamb, B.T., Daughtry, C.S., Serbin, G., 
Dennison, P., Kokaly, R.F., Wu, Z. & Masek, J.G., 2021. 
Evaluation of SWIR Crop Residue Bands for the Landsat Next 
Mission. Remote Sensing, 13(18), 3718. 

Pepe, M., Pompilio, L., Gioli, B., Busetto, L. & Boschetti, M., 
2020. Detection and classification of Non-Photosynthetic 
Vegetation from PRISMA hyperspectral data in croplands. 
Remote Sensing, 12(23), 3903. 

Pepe, M., Pompilio, L., Ranghetti L., Nutini F. & Boschetti, M., 
2022. Mapping spatial distribution of crop residues using 
PRISMA satellite imaging spectroscopy. European Journal of 
Remote Sensing, 1-16. 

Verrelst, J., Halabuk, A., Atzberger, C., Hank, T., Steinhauser, 
S., & Berger, K., 2023. A comprehensive survey on quantifying 
non-photosynthetic vegetation cover and biomass from imaging 
spectroscopy. Ecological Indicators, 155, 110911. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This work is licensed under a Creative Commons Attribution-No 
Derivatives 4.0 International License. 

M. Pepe et al.

123



LEAF AREA INDEX AND CANOPY CHLOROPHYLL CONTENT ESTIMATION OF 
ARABLE CROPS FROM SENTINEL-2 WITH GAUSSIAN PROCESS REGRESSION: A 

MULTI-SITE, YEAR AND CROP VALIDATION

A. Crema1*, M. De Peppo1, F. Nutini1, G. Candiani1, G.A. Re2, F. Sanna2, C. Cesaraccio3, B. Gioli3, M. Boschetti1

1 Institute for Electromagnetic Sensing of the Environment, Italian National Research Council, Italy - 
depeppo.margherita@gmail.com (crema,a, candiani.g, nutini.f, boschetti.m)@irea.cnr.it 

2 Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), Italian National Research Council, Italy 
federico.sanna@cnr.it, gianni.re@ispaam.cnr.it

3 Institute of BioEconomy, Italian National Research Council, Italy - beniamino.gioli@cnr.it, 
(carla.cesaraccio, pierpaolo.duce)@ibe.cnr.it

KEY WORDS: Machine Learning; Gaussian Processes Regression; BioPar; Sentinel-2 

ABSTRACT: 

Spatio-temporal estimation of crop bio-parameters (BioPar) is required for agroecosystem management and monitoring. BioPar 

such as Canopy Chlorophyll Content (CCC) and Leaf Area Index (LAI) contribute to assess plant physiological status and health at 

leaf and canopy level. Remote sensing techniques are instrumental in spatially explicit CCC and LAI retrieval of arable crops across 

different scales. Machine Learning (ML) techniques, especially Gaussian processes regression (GPR), has outperformed traditional 

approaches based on Vegetation Index in BioPar estimation. However, being ML model based on data driven approach it is necessary 

to thoroughly evaluate the performance of GPR across different sites, seasons, and crop types to assess the exportability of the 

models. This study aimed to develop a transferable GPR algorithm using a large dataset collected over several years (2018-2022), 

on different locations (5 sites) and with different canopy conditions by sampling 10 different arable crops. The study objectives 

included developing a robust GPR algorithm for LAI and CCC estimation from Sentinel-2 data, validating GPR against independent 

datasets, and comparing results with other methods and available products. The study utilized 301 (209 crop + 92 soil spectral) 

CCC and 301 LAI observations for GPR model training. Validation on independent datasets (698 LAI and 364 CCC) revealed the 

reliability of GPR estimation, compared to Sentinel-2 Level 2 Prototype Processor (SL2P) estimates. LAI and CCC estimation metrics 

varied across datasets achieving coherent and similar performance between the two method (GPR and SL2P). In general, SL2P 

model better fits the overall data with slightly higher R2 values with respect to GPR especially for LAI parameter. GRP estimates 

provided better results when accuracy analysis is performed by crops showing lower RMSE (Root Mean Square Error) and MAE 

(Mean Absolute Error). GPR outperforms SL2P for mais and wheat in particular for CCC parameter. These results showed the 

potential of GPR in BioPar estimation, especially when a robust training set was used. BioPar estimation using Sentinel 2 data 

provided high-quality quasi-weekly information, essential for smart crop management and early warnings in decision support 

systems.  

1. INTRODUCTION

Remote sensing, with its capacity to provide near real-time and 

comprehensive information, has emerged as an indispensable 

tool for monitoring crop health and growth 

(Defourny et al., 2019; Weiss et al., 2020). In the context of 

precision farming, the accurate estimation of vegetation 

biophysical parameters through remote sensing techniques 

(Verrelst et al., 2019) plays a key role in the effective 

management of agricultural crops. 

Two of the most critical biophysical parameters in this context 

are Leaf Area Index (LAI) and Canopy Chlorophyll Content 

(CCC). LAI represents the extent of foliage cover, aiding in the 

assessment of crop density and growth, while CCC is an indicator 

of photosynthetic activity. These parameters are central in 

decision-making processes because offering insights into crop 

health and vigor. The incorporation of LAI and CCC estimates 

into operational workflows enables farmers to make informed 

decisions about fertilization, thereby optimizing crop 

management and reducing environmental impact. However, 

achieving accurate parameter estimations is no simple task and a 

variety of retrieval methods for BioPar extraction (Verrelst et al., 

2019) have been applied to optical data (multi and hyperspectral). 

The theoretical framework of the multitude of retrieval methods 

was accurately given by Verrelst et al., 2015 with four main 

methodological categories: i) Parametric regression methods 

(Clevers et al., 2017; Crema et al., 2020); ii) Nonparametric 

regression methods (Campos-Taberner et al., 2016; De Peppo et 

al., 2021; Upreti et al., 2019); iii) Physically based model 

inversion methods (Berger et al., 2018; Sehgal et al., 2016) and 

iv) Hybrid regression methods (Candiani et al., 2022; Ranghetti

et al., 2022; Rossi et al., 2022). All these categories are not rigid 

and definitive and we are witnessing new development together 

with improvements in the computational capacity and the 

progress in new imaging sensors. 

In order to meet the increasing demand for tools to support the 

site-specific management of crops, we need to improve 

estimation accuracy but also systems operations. For this reason, 

the data provided by Sentinel-2 represent an optimal solution due 

to the spatial (10-20m) and temporal resolution of the sensor that 

allow to have BioPar maps at a suitable scale for operational 

practices (Bontemps et al., 2015; Defourny et al., 2019; Segarra 

et al., 2020) .  

In this study, we evaluated the potential of non-parametric 

approaches and robustness of ML methods for multi-temporal 

BioPar retrieval by Sentinel-2 multispectral data. The specific 

objectives were: (i) develop a transferable GPR algorithm for 

LAI and CCC estimation by exploiting a robust multi-crop, 

multi-year and multi-site dataset; (ii) assess GPR BioPar retrieval 

performance against ground measurements acquired over 

independent dataset; (iii) compare result with the product freely 

available from Sentinel Application Platform (SNAP) using 

SL2P. 

2. MATERIALS AND METHODS

2.1 Study area and Dataset 

Data collection aimed to assess the robustness of non-parametric 

methods concerning diverse sources of variability of BioPar, 

including specific conditions related to crop species, agronomic 
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practices (density) growth stages, farms, and years. With the 

objectives of effectively capture the site-specific differences in 

BioPar variability, LAI and CCC ground-measurements were 

collected during several field campaigns. The measures, 

performed contemporary to S2 data acquisition, were collected 

on an Elementary Sampling Units (ESU) of 20x20 m according 

to the Validation of Land European Remote Sensing Instruments 

(VALERI) sampling strategy (Baret et al. 2005).  

Figure 1:Study areas of ground measurements: S1 (Arborea); S2 

(Ferrara); S3 (Grosseto); S4 (Milano); S5 (Pisa) 

Different study areas located in central and northern part of Italy 

(Figure 1) were investigated collecting data of ten different crops: 

alfalfa, maize, wheat, emmer, pea, sugarbeet, barley, rice, 

sorghum and soybean. In particular, to achieve a robust multi-

crop, multi-year and multi-site dataset, the ground BioPar 

measurements were conducted over different growing seasons 

from 2018 and 2022 (Table 1) characterized by different growing 

periods and canopy structures and considering different 

agronomic conditions. A total of 907 (573) LAI (CCC) 

observations were collected with standard instrumentation like 

LAI2200 (MC100) (Tagliabue et al., 2022), hemispherical 

photography (Dualex) (Crema et al., 2020) and SunScan (De 

Peppo et al., 2021) during the campaigns. Grubbs’ test for data 

anomalies was performed to identify potential outliers. 

Table 1: Multicrop, multiyear and multisite database with 

ground measurements cardinality. T indicates training dataset; 

V indicates validation dataset 

The S2 Level 2A (L2A) images over the growing seasons were 

acquired using sen2r R package (Ranghetti et al., 2020) providing 

seasonal time-series of Bottom of Atmosphere (BOA) 

reflectance. All cloud-free images, collected in correspondence 

with the in situ monitoring period (±5 days from ground data 

collection), were used to analyse the relationship between 

measured ground BioPar and S2 data. A zonal statistic was 

performed to extract S2 pixels values using the centroid of each 

ESU as reference. S2 bands at10 m (B02, B03, B04, and B08) 

and 20 m (B05, B06, B07, B08A, B11, and B12) were selected 

for the analysis, resampling all bands to 20 m spatial resolution. 

2.2 Machine learning model 

Among the different available MLR algorithms, GPR is 

considered promising for LAI and CCC mapping (Campos-

Taberner et al., 2016; Verrelst et al., 2013, 2012) and in general 

this is also the algorithm more exploited in hybrid approaches 

(Candiani et al., 2022; Tagliabue et al., 2022). GPR is a non-

linear non-parametric regression algorithm that learn the 

relationship between the input (e.g. reflectance) and output (e.g. 

LAI or CCC) fitting a flexible model directly from the data and 

providing both a predictive mean and a predictive variance 

(uncertainty). The theoretical aspects of GPR are deeply 

described in Rasmussen, 2004 and in Verrelst et al., 2019 and in 

studies that applied this approach with hyperspectral (Caicedo et 

al., 2014; Verrelst et al., 2012) and multispectral data (Estévez et 

al., 2020).. In addition, the model is trained and validated 
relatively fast Following De Peppo et al., 2021, GPR was 

selected as the best-performing algorithm for LAI prediction for 

arable crops. Few studies have examined the performance of 

GPR in predicting crop parameters when applied to different site, 

season and crop typology (i.e. validation using independent 

dataset).Moreover, the retrieved BioPar were also compared 

against LAI and CCC generated by the Neural Network (NN) 

model implemented into the S2LP of the Sentinel Application 

Platform (SNAP) (Weiss and Baret, 2016) for all the S2 images. 

2.2.1 Training and cross validation performance 
We first generated 301 (209 from vegetation + 92 soil) data pairs 

(reflectances-BioPar values) from valuable multiyear data set 

(S2_1, S2_3, S2_4) with the simultaneous presence of LAI and 

CCC data (Crema et al., 2020; Tagliabue et al., 2022) for model 

training, and then evaluated model performance with the 

remaining 698 (364) LAI (CCC) samples (Table 1). The accuracy 

of the model in cross validation was assessed using K-fold 

approach (Kohavi, 1995), where the dataset was randomly split 

into k = 10 subsets of equal size repeated 5 times. The coefficient 

of determination (R2), the mean absolute error (MAE) and root 

mean square error (RMSE) were calculated to assess the 

prediction accuracy. 

2.2.2 Independent validation to assess model exportability 

A robust model validation was performed using nine independent 

datasets (Table 1). BioPars estimated using the GPR model were 

compared with LAI and CCC values collected in different 

sampling areas and years to test the transferability of the 

developed model. 

3. RESULTS AND DISCUSSION

The GPR model assessment was performed considering the 

average of coefficient of determination estimated between 

ground-and predicted BioPar and the average value of RMSE and 

MAE from the cross-validation. Overall estimation metrics in 

cross validation ranges from R2=0.89 (MAE=0.49; RMSE=0.74) 

for LAI variable to R2=0.83 (MAE=0.28; RMSE=0.43) for CCC 

(Figure 2). 
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Figure 2: Cross-validation results of LAI (m2 m-2) and CCC (g 

m-2 estimation from GPR. (p-values < 0.05) 

 

In order to evaluate and compare the accuracy of predictions at 

pixel level (i.e. for available ESU) both for data driven GPR and 

NN of S2LP, validation results on independent data were 

evaluated considering the single crops (Table 1).  

 

Table 2: CCC GPR and CCC SL2P metrics derived from 

independent validation (p-values < 0.05) 

Crop Methods R2 MAE RMSE 

alfalfa CCC GPR 0.07 0.65 0.76 

alfalfa CCC SL2P 0.12 0.65 0.78 

barley CCC GPR 0.58 0.57 0.64 

barley CCC SL2P 0.62 0.73 0.86 

maize CCC GPR 0.59 0.43 0.56 

maize CCC SL2P 0.5 0.78 1.21 

soybean CCC GPR 0.85 0.28 0.41 

soybean CCC SL2P 0.87 0.36 0.63 

wheat CCC GPR 0.78 0.53 0.64 

wheat CCC SL2P 0.84 1.07 1.31 

 

Table 3: LAI GPR and LAI SL2P metrics derived from 

independent validation (p-values < 0.05) 

Crop Methods R2 MAE RMSE 

alfalfa LAI GPR 0.08 1.03 1.3 

alfalfa LAI SL2P 0.08 1.44 1.77 

barley LAI GPR 0.53 1.3 1.59 

barley LAI SL2P 0.56 1.12 1.51 

maize LAI GPR 0.51 0.94 1.16 

maize LAI SL2P 0.46 0.96 1.39 

rice LAI GPR 0.47 1.1 1.3 

rice LAI SL2P 0.73 1.2 1.36 

sorghum LAI GPR 0.8 0.45 0.52 

sorghum LAI SL2P 0.9 0.39 0.45 

soybean LAI GPR 0.69 0.98 1.37 

soybean LAI SL2P 0.89 0.68 1 

wheat LAI GPR 0.49 0.93 1.18 

wheat LAI SL2P 0.4 1.05 1.38 

 

LAI and CCC estimation metrics varies across datasets (Table 

2;Table 3) . The results showed that for both LAI and CCC, GPR 

retrieval is reliable and comparable with SL2P estimates for all 

crops and in some cases better. The estimates of vegetation 

biophysical variables given by the toolbox S2LP embedded in 

SNAP represented the reference product. NNs are the most 

widely-used tools and SNAP Biopar have been evaluated in 

previous studies with diverse results (Estévez et al., 2020; 

Kganyago et al., 2020; Xie et al., 2019).  

The estimates showed an agreement between the GPR and S2LP 

results on single crops/dataset. In general, the two models 

showed no partialities for individual crops and were consistent in 

performance except for lower errors in GPR_CCC retrieval. 

Regarding CCC, GPR showed a higher coefficient of 

determination only for maize (CCC_GPR R2=0.59; CCC_S2LP 

R2=0.50) but MAE and RSME (i.e., ~0.4 to ~0.75) were always 

better than S2LP (RMSE ~0.6 to ~1.3) for all the crops. S2LP 

estimates for wheat and maize resulted significantly 

overestimated (data not shown) when compared to ground data 

showing MAE and RMSE value almost double than GPR (see 

table 2).  

With regard to LAI, GPR presented a better coefficient of 

determination for maize (LAI_GPR R2=0.51; LAI_S2LP 

R2=0.46) and wheat (LAI_GPR R2=0.49; LAI_S2LP R2=0.4) 

together with MAE and RSME while for the remaining crops 

S2LP performs better. Also on rice, the LAI estimated by GPR 

has lower R2 but better MAE and RMSE than S2LP. These results 

confirmed the tendency of SNAP-derived products to have higher 

errors as found by Kganyago et al., 2020 with MAE and RMSE 

> 2 and Fernandes et al., 2014 with reasonably unbiased LAI 

estimates with acceptable error (<;1 unit) and validation sites 

with larger (>1 unit) error. 

The satisfactory error metrics confirm the substantial robustness 

of the GPR prediction and its consistency with existing products 

as found in other validation studies (Brown et al., 2021; Campos-

Taberner et al., 2018). The GPR model performed well for most 

crops despite the diversity of species and locations and alfalfa 

was the only crop to have unsatisfactory results for both retrieval 

approaches (R2=0.08), probably due to the law quality of ground 

data (LAI) with LAI max data higher respect to the literature 

(Verger et al., 2009). 

Applying the GPR model to an independent data we highlighted 

the prediction robustness over different areas both globally and 

by single crop. In general, we noted that the performance was less 

influenced by the training data set as usually observed (Mao et 

al., 2019; Verrelst et al., 2019). Estévez et al., 2020 demonstrated 

the feasibility of LAI retrieval from S2 in a hybrid machine 

learning framework using GPR with higher accuracies and lower 

uncertainties (R2=0.78, RMSE= 0.60) compared to the SNAP 

toolbox. However, as mentioned by Upreti et al., 2019, the 

accuracies found by most of the studies using GPR with ML or 

hybrid were not validated against independent ground data, such 

as in the present work. 

However, despite an overestimation of low-LAI values with 

GPR, the positive linear relationship between the measured and 

predicted values was confirmed by the slope values close to 1as 

found also by (De Peppo et al., 2021). This finding is in 

agreement with the outcomes of Verrelst et al., 2015 that 

indicated how GPR was the most effective algorithm for LAI 

retrieval.  

 

 

 
Figure 3: LAI maps of winter wheat of S2 farm in 2023. Black 

lines represent the boundaries of management zones derived 

from a soil map. above 23rd of april; below 23th of may. 
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The BioPar maps generated by the prediction allowed to 
highlight the spatial patterns present within the field during the 
season as shown for LAI in Figure 3. Spatial and temporal 
variability correctly pointed out crop (wheat) growth differences 
according to a soil map of the farm situated in S2 farm. This 
study allowed us to leverage all available information from a 
multi-year multisite and multicrop dataset, thus providing 
greater accuracy in BioPar prediction than ML model trained 
with local training datasets.  

4. CONCLUSION  

Overall the results demonstrated the potentiality of a data driven 
GPR machine learning approach in LAI and CCC estimations of 
arable crops when a robust training set is exploited, such 
condition guarantee a spatial-temporal transferability. The 
results of cross-validation confirm the theoretical GPR retrieval 
performance of this ML method. In addition, this work verified 
the model stability when applied to an independent data set and 
compared the performance with existing products as generated 
by the SNAP toolbox, which is framed in an hybrid approach 
using radiative transfer model simulation and neural network as 
retrieval algorithm. This analysis allowed for a full assessment 
of the robustness and exportability of the developed model and 
the results were in line with other studies with independent 
model simulations. It is important to remark that, despite 
medium high R2, S2LP shows overestimation for CCC in 
particular for wheat and corn as highlighted by high MAE and 
RMSE values. Being LAI and CCC quantitative crops Biopar, 
the lower values of errors of the GPR model can lead to prefer 
this model even for R2 slightly lower than the S2LP model. In 
addition, this ML technique is faster and more easily applied 
than NNs that are closed balck-box that require a relatively long 
time for training. Such maps (decametric quasi-weekly) are a 
fundamental input for decision support systems devoted to 
smart crop management and early warning indication. Many 
precision agriculture techniques could thus benefit from 
information generated with ideal quality and frequency for site-
specific practices aimed at reducing inputs and improving the 
use-efficiency of fertilizers.  
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