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Abstract. Patchy particles is the name given to a large class of systems of mesoscopic particles charac-
terized by a repulsive core and a discrete number of short-range and highly directional interaction sites.
Numerical simulations have contributed significantly to our understanding of the behaviour of patchy par-
ticles, but, although simple in principle, advanced simulation techniques are often required to sample the
low temperatures and long time-scales associated with their self-assembly behaviour. In this work we re-
view the most popular simulation techniques that have been used to study patchy particles, with a special
focus on Monte Carlo methods. We cover many of the tools required to simulate patchy systems, from in-
teraction potentials to biased moves, cluster moves, and free-energy methods. The review is complemented
by an educationally oriented Monte Carlo computer code that implements all the techniques described in
the text to simulate a well-known tetrahedral patchy particle model.

1 Introduction

The expression “patchy particle” has become more and
more inclusive over the course of the years [1]. The most
basic definition, “a colloid with attractive spots decorating
its surface” is now outdated as patchy particles, or con-
cepts developed in the field of patchy particles, are being
used to model proteins [2-4], viral capsids [5], hard faceted
bodies [6], double-stranded DNA [7] and even atoms and
molecules [8,9].

On the experimental side, tremendous progress is cur-
rently being made in the realization of such systems [10—
15], and patchy particles have already been adopted by
theorists as an ideal model to study the self-assembly
properties of a variety of soft-matter systems [1,16-19].
The number of examples of the impressive agreement be-
tween theory and simulations is rapidly increasing [20-24],
establishing patchy particles as one of the most active and
successful ideas in nanotechnology.

Molecular simulations played an important role in the
development of the field, providing early predictions for
many interesting new phenomena [25-30], which sparked
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the interest of the experimental community [10, 31-34].
Since the early days, many of the numerical and theoret-
ical predictions, such as the shrinking of the gas-liquid
phase separation region [22,27], the existence of reentrant
gas-liquid phase separations and reentrant gels [23,35,36],
or the lack of crystallisation in highly flexible patchy sys-
tems [37-39], have been observed in experiment. Even
though it is becoming more and more common to con-
sider patchy particles of increasing complexity [1], the
majority of the theoretical breakthroughs have been ob-
tained with toy models. Such simple models usually fea-
ture hard spherical particles and short-range patch-patch
attractions. Notwithstanding the raise in popularity of
systems composed of or inspired by patchy models, to the
best of our knowledge a comprehensive resource to help
choose and implement the right state-of-the-art algorithm
to tackle the investigation of these systems is still lacking.
This review aims at filling such a gap.

In the following we give an overview of the more com-
monly used models and simulation methods that have
been developed or adapted to patchy particles. We put
special emphasis on Monte Carlo (MC) simulations, but
we also mention models and algorithms pertaining to
molecular dynamics (MD) simulations. In order to help
the interested reader, we have implemented the most im-
portant MC algorithms described below in an open-source
code, freely accessible on the web [40]. This PatchyParti-
cles code (from here on referred to as the PP code) has
been developed with the idea of providing a simple and
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clear implementation rather than a fast and optimised one,
and hence should be considered as an educational tool that
complements this review rather than a production-ready
code.

2 Patch-patch interaction potentials

The inter-particle interaction in patchy systems is
anisotropic and short-ranged. This fundamental aspect,
which may or may not be complemented by a non-
spherical shape [6,7], is at the core of the complex be-
haviour of these systems. Here we review some of the most
common potentials used to simulate toy models of patchy
particles.

In what follows we will consider systems composed of
spherical particles of diameter o. Generalisations to sys-
tems that are polydisperse in size are straightforward, al-
though uncommon [35]. By contrast, even though it is
typical to simulate systems composed of identical parti-
cles, sometimes binary mixtures or even variability in the
patch position, size or strength need to be taken into ac-
count [41-43]. Therefore, for the sake of generality, we con-
sider the surface of each particle 7 to be decorated with
M; patches. The position of patch « relative to the centre
of mass of particle 7, r;, is specified by the vector r, ;. Let
r;; = r; —r; be the distance between particle 7 and parti-
cle j and r;; o3 = 1 + 13 ; —Iq,; be the distance between
patch a on ¢ and patch 8 on j. Furthermore, let {rq ;}
be the set of vectors identifying all M; patches of particle
1. It is common to consider patchy particles that interact
through an isotropic repulsive potential, that accounts for
the mutually excluded volume, plus an attractive patch-
patch term that depends on the relative orientations. By
using the notation introduced above, the total interaction
energy between particles ¢ and j can thus be written as

V(risrj,{ra,it, {rs,}) = Vex(1i))
+Vpateh (Tijs {Ta,i}, {Ts,5 1), (1)

where non-bold symbols indicate the moduli of the re-
spective vectors. The excluded-volume term is, most of
the times, a hard-sphere interaction for MC simula-
tions or a differentiable hard-sphere-like potential (e.g.,
Weeks-Chandler-Anderson, inverse power) for MD simu-
lations. However, sometimes screened electrostatic repul-
sions, modelled through Yukawa-like interactions, are also
considered [18,44].

The Vpatch term is a sum of the contributions of all
pair of patches, viz:

M; M;
Voateh = D Y Vop(Tijs Tais Tp.5)-
a=1g8=1

(2)

It is common to employ attractive potentials that are,
or resemble, square-well potentials (discontinuous or con-
tinuous, depending on the chosen simulation technique)
and hence are functions of the patch-patch separation
only, e.g., Vop = Vpp(rij.ap). This family of potentials,
usually called sticky-spot or point-patch potentials, have
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Fig. 1. A cartoon showing particles decorated with single
patches, depicted in light grey. (a) In the sticky-spot model
two patches interact only if their mutual distance (in violet) is
smaller than two times the patch radius, §/2 (in orange). (b)
In the Kern-Frenkel model patches are modelled as spherical
cones of angular width 2™ and length (o + 0)/2, where
o is the particle diameter. Any two patches interact if they
intersect with each other and if the vector connecting the
centres of mass of the two particles (in violet) pass through
both of them. (c) Thanks to the bond-swapping algorithm
(see text and ref. [45]), a free patch (here attached to the blue
particle) can establish a bond with an already bonded patch
whose original partner is free to move away at the end of the
process. The attractive contribution due to the additional
patch-patch bond present in (ii) is (partially or totally) coun-
terbalanced by a three-body repulsion. Indeed, the energetic
cost of the bond-swapping process, that is, its activation
energy, is controlled by a parameter of the model and can be
set to 0 thus making the reaction temperature independent.

(i)

essentially two parameters: the range of the interaction ¢
and its strength, e. An example of a continuous square-
well-like attraction is [46]

1 (7 Jé; 10
Vop(Tij,ap) = —€ap exp [—2 <W> ] . (3)

0ap

A simple potential like the one of eq. (3) contains the
basic physics of patchy interactions: it confers a strong
anisotropy and a well-defined valence to the particles. It
has been used to look at the thermodynamics and dynam-
ics of self-assembled disordered phases [18,46-48]. How-
ever, as shown in fig. 1(a), patch-patch radial potentials
have a spherical shape whose size is fixed by the single
parameter &, which therefore fully controls the bonding
volume (or extent) of the patches. Consequently, the ra-
dial and angular flexibilities of a bonded pair cannot be
tuned independently. As it turns out, these two quantities
contribute differently to the entropy of disordered and or-
dered phases, going as far as determining their relative
thermodynamic stability [37,49]. Hence, in some cases it
is important to be able to separately control the angular
and radial flexibilities.

A well-known potential that provides control on the
patch shape is the so-called Kern-Frenkel (KF) interac-
tion [25]. It features two independent geometrical param-
eters, 0 and #™?*, that set the radial and angular width,
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respectively. In the KF model patches can be visualized
as spherical cones (see fig. 1(b)), with the patch-patch in-
teraction being given by

Vop(Tijstais Bp,5) = Vaw (rij) f(rijs Pais Bp5),  (4)

where Vgw is an isotropic square-well term of range 04,3
and depth €3, the hat symbol “*” indicates unit vectors
and f is an orientation-dependent modulation term that
takes the form

o o max
T;; - Tq; > COS Oaﬁ ,

max (5)

o 1, if
f(rij,Pai, Tp5) = iji-tg; > cos

0, otherwise.

During the course of the years, this potential has been
used to investigate the phase behaviour of many types of
patchy and patchy-like systems [25,26,37,42,44].

We must note that having two independent parameters
that model the extent of a patch-patch interaction arises
naturally when dealing with hydrophobic surfaces, and
indeed the KF model has been used to reproduce quan-
titatively the phase diagram and crystallization process
of a quasi-2D system of hard particles with hydrophobic
patches [50]. The reason is that two very short-ranged hy-
drophobic curved surfaces always have one contact point,
which provides some negative energy. Where this contact
happens on the two surfaces does not matter, and the
KF model describes this kind of interaction. On the other
hand, the point-patch model might seem more natural
when dealing with particles that can experience a binding
interaction depending on the position of the centre of the
patch: one example is if the patches are realised through
a single DNA strand that has some maximum length that
it can reach given its attachment point. A key difference
between the two models, that must be taken into account
when considering the binding properties of two particles,
is the fact that point-like models do not allow to freely
rotate a particle around the vectors joining two bound
particles, while the KF model does.

In order to exploit the advantages of the KF poten-
tial in MD simulations, continuous versions of the KF in-
teraction have been developed. These are built by tak-
ing a differentiable isotropic (often square-well-like) func-
tion and by modulating it with functions that, akin to
f(rij,Ta,i,ta, ) in eq. (5), depend on the scalar product
between the particle-particle distance and the unit vec-
tors that identify each patch. These functions are often
Gaussians or generalised Gaussians, similar to the one of
eq. (3). These continuous potentials have been used to
look at self-assembled ordered structures in patchy sys-
tems [29, 51-54], but they have been employed also in
modelling patchy polymers [55] and even amino acids in
proteins [2].

We note on passing that some of the behaviour dis-
played by patchy systems is also shared by other models
that, in one way or another, fix the maximum number of
bonds that each particle can form (the so-called valence).
For instance, common potentials developed for water and
silicon employ rigid bodies complemented by charges or
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spheres interacting through three-body interactions that
limit the ideal number of favourably interacting neigh-
bours [56-58].

3 The single-bond-per-patch condition

The single-bond-per-patch condition (SBPPC) is essential
to control the valence. The valence, in turn, is the most
important property in determining the phase behaviour of
patchy particles. Most models enforce the SBPPC through
a judicious choice of the model geometry and parame-
ters. For rather simple, and thus computationally effi-
cient, models (such as spheres decorated with patches)
the SBPPC requires quite small patches, and hence very
small bonding volumes. For instance, the single geomet-
rical parameter of the point-patch potential, the patch-
patch attraction range, has to be smaller than 0.1190 (o
being the particle diameter) to enforce the SBPPC. By
contrast, the two parameters of the Kern-Frenkel poten-
tial, the range ¢ and the angular width 0,,.x, have to fulfil
the inequality sin(fmax) < (2(1 +6)) L. Under these con-
straints, the largest bonding volumes attainable are of the
order of ~ 10~3¢3. Such small values are problematic from
a technical and a fundamental point of view. Indeed, from
a computational standpoint small bonding volumes make
it very hard to equilibrate at low T". From a modelling per-
spective, instead, some very interesting phenomena (such
as the appearance of disordered ground states [37] or
of reentrant gas-liquid phase separations [59]) require or
are accessible with large bonding volumes only. Further-
more, some “soft” building blocks, such as telechelic star
polymers or DNA nanostars, possess an intrinsically large
bonding volume due to their inner flexibility [1]. The ques-
tion that arises is whether it is possible to take into ac-
count such a high degree of internal flexibility in a straight-
forward way by devising models that are nearly as simple
as the ones described above.

The issue regarding the precise value of the bonding
volume can be worked around in Monte Carlo or event-
driven simulations, where non-continuous constraints are
easy to implement, by putting an explicit limit to the num-
ber of bonds per particle [60,61]. Operatively, this is done
by adding an attractive term to the interaction between
two particles only if both have fewer than the maximum
number of allowed bonds. A drawback of this approach is
that the resulting model can be hardly seen as realistic
and, importantly, is not amenable to be investigated via
MD simulations.

A more sophisticated approach has been introduced
in ref. [45] and employed to readily generate fully-bonded
disordered configurations to model microgel particles [62],
and to investigate the dynamics of a simple model of vit-
rimers at large length- and time-scales [63]. The idea be-
hind the method is to add a short-ranged three-body re-
pulsive term to triplets of close patches in order to com-
pensate the additional (negative) energy contribution due
to the formation of extra bonds. The approach is com-
patible with continuous potentials, meaning that it can
be used in molecular dynamics simulations. The model
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has a parameter, A\, that controls the energetic penalty
that non-bonded patches have to pay in order to get close
to a bonded pair. The model thus not only enforces the
SBPPC but also introduces a bond-swapping mechanism
that facilitates the dynamics at any 7'

A cartoon depicting a bond-swapping process is pre-
sented in fig. 1(c). Taking three patches A, B, and C as
an example, if A = 1, then the energy of configurations
where A is bonded to both B and C' (panel (ii)) or just
to one of them (panels (i) and (iii)) is the same. Under
this condition, the process through which the A-B bond
breaks and the A-C bond forms is carried out at constant
energy: temperature plays no role and the system can re-
arrange its bonding pattern even in the limit 7' — 0. By
contrast, if A > 1, the bond swapping process becomes
energetically expensive and hence thermally activated.

4 Monte Carlo moves

Rototranslations and particle insertions/deletions, which
are briefly introduced in the paragraphs below, are the
simplest moves that allow to sample the canonical and
grand-canonical ensembles, respectively, for any system.
However, self-assembly processes in patchy systems often
occur when the bonding energy e is substantially larger
than the thermal energy kgT (see, e.g., refs. [23,26,29]).
For instance, it is common to simulate patchy systems
with €/kgT = 5. Under these conditions, most of the
patches are involved in bonds, and the Metropolis accep-
tance of unbiased rototranslations that attempt to break a
single bond, exp(—3AE), plummets from ~ 7x 1073 down
to ~ 4.5 x 107° as the bonding strength relative to the
thermal energy increases from €/kgT =5 to ¢/kgT = 10.
As aresult, the great majority of the moves will very likely
be rejected, thereby greatly reducing the efficiency of the
simulation. This issue can be overcome, or at least im-
proved upon, by employing biased Monte Carlo moves [64].
After a brief introduction of the most basic MC moves,
we will discuss two biased MC moves that are not system-
specific and can greatly enhance the effective exploration
of the phase space.

4.1 Rototranslations

When dealing with anisotropic particles, a good sampling
of the phase space requires a correct handling of both ro-
tations and translations. In Monte Carlo simulations, the
simplest moves that ensure equilibrium are pure transla-
tions and pure rotations or, as done in the PP code, roto-
translations, which are combinations of the two. For both
translations and rotations it is common to set the maxi-
mum (radial or angular) displacement so as to have an ac-
ceptance ratio of about 0.2-0.4, with the optimal value be-
ing dependent on the specific system investigated [64,65].
Note that, in force of the short-range nature of the interac-
tion potentials (see sect. 2), these maximum displacements
will necessarily be small.

A rototranslation is carried out by choosing a ran-
dom particle ¢, random angular and radial displacements
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and a random axis of rotation. Particle ¢ is then moved
and rotated according to the values extracted. The dif-
ference in energy due to the move is then used to com-
pute the Boltzmann factor which, in turn, is connected to
the acceptance probability, as per the standard Metropo-
lis Monte Carlo [64]. The only choice that needs to be
made is how to handle the rotational degrees of freedom.
Quaternions and explicit orientation matrices are both
common choices [66,67]. Note that floating-point arith-
metic tends to disrupt the orthonormality of the data
structures that store the orientational degrees of freedom.
Care has to be taken to ensure that the quality of the or-
thonormality does not degrade too much over the course
of the simulation. The MC_move_rototranslate function
of the MC.c file shows how rototranslations are imple-
mented in the PP code, which employs rotation matri-
ces that are re-orthonormalised through a Gram-Schmidt
procedure every time that the energy is printed (see the
MC_check_energy function).

Compared to MC, rotations are a more delicate matter
in MD simulations. Indeed, when dealing with rigid bod-
ies one has to consider that particle-particle interactions
exert not only central forces but also torques. In many
cases these torques have complicated expressions. How-
ever, there exist guidelines that, depending on the specific
type of interaction, can greatly simplify the deriving pro-
cedure [68]. The algorithm used to integrate the equations
of motion can be also carried out in different fashions,
depending on whether quaternions, rotation matrices or
constraint algorithms are employed [66,69-72] and on the
type of dynamics [73-75]. A drawback of the most com-
mon patchy interactions (see sect. 2) is their steepness,
which negatively affects numerical stability and makes it
hard (or even impossible) to use single-precision floating
point arithmetic (which some GPU-powered packages of-
fer to improve performance [76,77]). For the same reason,
extra care has to be taken when choosing the integration
time step.

4.2 Grand-canonical ensemble

In the grand-canonical ensemble (GCE) the system is in
equilibrium not only with a thermal bath but also with a
reservoir of particles [64]. Therefore, the three thermody-
namic quantities that are kept fixed are volume V', temper-
ature T and chemical potential p. As a result, the overall
number of particles N fluctuates. The GCE is commonly
used in Monte Carlo simulations to investigate the phase
behaviour of disordered systems [78], and can be readily
extended to many-component mixtures [79, 80]. In addi-
tion, GCE simulations can be combined with more sophis-
ticated techniques, such as successive umbrella sampling
(see sect. 5.2) or Wang-Landau sampling [81] to overcome
free-energy barriers.

In GC simulations there are two additional trial moves
that attempt to either add or remove a particle. Note that
for the particle addition move, the new particle must be
added in a random position with a randomly distributed
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orientation. The two MC acceptance probabilities read

Vz
— mi —BAE
acc(N — N + 1) = min (1, BN+ 1)6 >, (6)

3
acc(N — N — 1) = min (1, /i/]zve_ﬂAE> , (7)

where A is the thermal wavelength, 3 = 1/kpT, z = ef*
is the activity and AE = FEyew — Eolq is the energy dif-
ference between the final and initial configurations. The
implementation of the main core of the GCMC algorithm
can be found in the PP code in the MC_add_remove func-
tion of the MC. c file.

4.3 Aggregation-volume-bias moves

Self-assembly processes often require low density and tem-
perature, specially in patchy systems. The sampling of
the phase space under these conditions can be dramati-
cally improved with the so-called aggregation-volume-bias
(AVB) Monte Carlo moves [82,83].

The AVB scheme provides two different basic moves.
Detailed balance requires that both types of moves are
used during the course of the simulation. The first one
(hereafter referred to as the AVB-B move) attempts to
form a bond between two previously unbonded particles,
while the second one (the AVB-U move) attempts to break
an existing bond by separating a bonded pair. Here the
notion of two particles being “bonded” or “unbonded”
should fulfil a criterion that need not be necessarily re-
lated to the specific model employed. However, it is often
convenient to use an operative definition for the bonding
between two particles that coincides with a state of low
pair energy. For instance, an optimal criterion for the KF
interaction is to regard two particles as bonded when they
share a patch-patch bond. Once the bonding criterion has
been set, the bonding (phase-space) volume is defined as
the number of microscopic configurations for which two
particles are bonded, Vayp. According to this definition,
Vave depends only on the bonding criterion and not on
the macroscopic thermodynamic variables (such as T, p,
N, V, etc.). For instance, the expressions for the bonding
volume of a KF «af bond in 3D and 2D are

Vave = g(l — cos ;“5")2 [(U + 5aﬁ)3 - 03] (3D),
;nax)Q
Vave = j [(0 4 8up)? — 0°] (2D).

We then define the “outer” (phase-space) volume Vo
as the number of configurations for which two particles
are not bonded. It follows from its definition that Vo =
47V — Vays, where V is the volume of the simulation
box and 47 comes from the rotational degrees of freedom.
These two volumes will be used in the following to bias
the acceptance of the two moves.

Finally, let N; be the number of particles that are
bonded to particle i. The recipe for the AVB-B move is
then:
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1) Randomly select a particle i.

2) Randomly select a particle j which is neither ¢ nor one
of its bonded neighbours.

3) Move particle j inside the bonding volume of particle
i.

4) Accept the move with probability

min (1 (N = Ni — Vv
’ (NZ =+ 1)Vo

exp(—ﬂAE)) .

Note that the insertion of particle j in the bonding
volume of particle i must be carried out uniformly. In other
words, the probability that, at the end of a trial move, @
and j are in a specific mutual arrangement must be the
same for every microscopic configuration that fulfils the
bonding criterion. The PP code shows how to perform this
operation for KF patches in the place_inside_vbonding
function of the utils.c file.

In order to perform an AVB-U move one has to

1) Randomly select a particle 1.

2) Randomly select a particle j that is bonded with 4. If
¢ has no neighbours (that is, if N; = 0) then outright
reject the move.

3) Move particle j outside of the bonding volume of i,
so that at the end of this step ¢ and j are no longer
bonded.

4) Accept the move with probability

. NiVo
min <1, m exp(ﬂAE)) .

Note that step 3) can be performed by randomly in-
serting j in the box with a random orientation till 7 and
j are no longer bonded.

The ratio between the two volumes defined above,
r = Vave/Vo, is what biases the acceptance of the AVB-B
move. Since the particle bonding volume is always (much)
smaller than the overall volume, the bias lowers the ac-
ceptance probability of the move. However, at low tem-
perature this is rendered unimportant by the very large
value of the Boltzmann factors associated to the creation
of additional bonds. By contrast, 1/r, which is much larger
than 1, biases the acceptance of the AVB-U move. There-
fore, the larger the value of r, the better AVB will per-
form compared to a standard MC algorithm. As a result,
the AVB algorithm shines when used in conjunction with
short-ranged potentials (small Vayg) and low-density sys-
tems (large Vo). There is an additional reason why AVB
moves perform better at low density: it dramatically in-
creases the speed with which particles move around the
simulation volume, which is a common efficiency bottle-
neck for low-density systems when only single-particle ro-
totranslations are employed.

We note on passing that there exists a third type of
AVB move which takes a particle i bonded with particle j
and insert it in the bonding volume of a third particle [83].
It can greatly enhance the sampling in specific cases such
as chain-forming systems [59].

In order to benchmark the performance of the AVB
scheme we simulate several systems made of N = 500
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Fig. 2. The ratio between the autocorrelation time of the en-
ergy of systems simulated without and with AVB moves as a
function of density for different 7. Assuming that the compu-
tational cost of the two procedures is the same (see text), this
ratio represents the gain achieved when using AVB.

tetravalent patchy particles at different p and T'. For each
one we compute the autocorrelation function of the energy.
We then estimate the time 7 at which the autocorrelation
function takes the value 1/e and use it as a proxy for the
simulation efficiency. Figure 2 shows the ratio between the
autocorrelation time for systems where AVB moves were
not attempted, 7rr, and attempted 50% of the time, TavB.
As mentioned above, the AVB scheme performs better at
low density. For very small values of the density (p < 0.1),
which are nonetheless still relevant to many self-assembly
processes [46], AVB enhances the efficiency of the simula-
tion by more than two orders of magnitude. By contrast,
the dependence on temperature is less dramatic, albeit
non-monotonic, and more system dependent.

A basic implementation of the AVB algorithm is con-
tained in the avb.c and avb.h files of the PP code. We
note that the PP code runs roughly 20%-40% slower when
AVB moves are enabled. This is merely an implementa-
tion issue and is mostly due to the lack of optimisation
that stems from the educational nature of the PP code.
With a properly optimised code the AVB scheme is only
marginally slower than a regular Monte Carlo simulation.

We conclude this section by mentioning that AVB
moves and GCMC simulations complement each other
very well. Indeed, when simulating low-temperature sys-
tems the most probable GC deletions are those attempted
on monomers (i.e., unbonded particles). Unfortunately,
under normal conditions it is most likely to attempt to
remove a monomer generated by a previous GC addition
rather than a monomer that spontaneously broke off all
of its bonds. As a result, many GC moves are essentially
wasted. However, when the AVB scheme is applied the
rate of monomer formation/depletion is greatly enhanced
by the AVB-U and AVB-B moves, respectively, and thus
the number of effective GC moves increases.

4.4 Virtual move Monte Carlo

The virtual move Monte Carlo (VMMC) is a Monte Carlo
cluster-move algorithm proposed originally by Whitelam
and Geissler [84] and designed to improve relaxation times
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in strongly-interacting, low-density systems and to better
approximate diffusive dynamics in these systems. As often
happens, the algorithm has proved to be useful in many
other contexts, such as polymeric systems [85, 86]. The
VMMC cluster move, quite complicated to implement in
its original version, has been presented in a more simple
way by the same authors [87], and more recently an eas-
ier version to program has been published by Ruzicka and
Allen [88]. The idea behind the algorithm is to avoid one of
the shortcomings of standard cluster algorithms, whereby
the clusters are built based upon the system microstate
before the move, and any move that attempts to merge or
break clusters has to be rejected in order to satisfy detailed
balance. This means that cluster moves need to be mixed
with standard single-particle moves, and although they do
speed up the diffusion of clusters, the pattern of the inter-
actions is changed mostly by single-particle moves. In the
context of patchy particles, where patch-patch bonds are
the natural criterion to define clusters, cluster moves based
only on the system microstate before the move will never
change the bonding pattern by construction. To overcome
this limitation, Whitelam and Geissler have designed the
VMMC cluster move, a “virtual move” that builds a clus-
ter based upon the mowve as well as the starting microstate:
particles are recruited into the cluster depending on how
much their energy changes with the move, rather than
how strongly they interact with their neighbours. Essen-
tially, the cluster is chosen on the fly by starting to move
a particle and then recruiting all those neighbouring par-
ticles that would rather move than remain still and pay
an energetic cost.

Here we describe the most recent iteration of the algo-
rithm proposed in ref. [88], implemented in the function
VMMC_dynamics of the VMMC. c file of the PP code.

1) Choose a move (a random displacement for transla-
tions, an axis and an angle for rotations).

2) Choose a seed particle for the move, and add it to the
cluster. The cluster will contain all those particles that
will be moved.

3) Build or update a list £ of particle pairs that will have
their pair energy changed if the cluster is moved. Note
that, by construction, one and only one particle in each
pair belongs to the cluster, since the cluster moves as a
single object and hence the pair interaction energy of
particles that belong to the cluster will not be affected
by the move. Also note that £ will contain particle
pairs that are affected from the cluster moving both
away and towards them.

4) Choose a random pair [ = (7,7) in £. Call ¢ the parti-
cle in the pair [ that belongs to the cluster and j the
particle that does not. Remove this pair from the list.

5) Compute (or recover from bookkeeping) u (4, j), the en-
ergy of the pair in the starting microstate.

6) Compute u(i, j), the energy of the pair after i has been
moved and j has not.

7) Compute u(i,j’), the energy of the pair after j has
been moved and ¢ has not.



Eur. Phys. J. E (2018) 41: 59

8) Extract a random number r € [0,1]. If exp{—0(u(?,
J) —u(i, 7))} > r, insert j in a list € of particles that
are candidates for recruitment in the cluster.

9) Extract a new random number ¢ € [0, 1]. If exp{—/5(u

(i,5") — u(i,j4))} > g, recruit j into the cluster and

remove it from €.

If £ is not empty, go to step 3). If £ is empty, the

cluster has been built. Please note that the cluster may

contain just the seed particle.

If € is not empty, reject the move. This step is nec-

essary to enforce balance [84]. Otherwise, accept the

cluster move.

10)

11)

We point the reader to ref. [84] and ref. [88] for a de-
tailed discussion of how this algorithm is derived. Here we
will just elaborate on some of the less obvious points of the
algorithm. For example, the random choice of an element
in £, rather than processing the pairs as the algorithm
finds them, is needed to ensure super-detailed balance,
i.e., that the algorithm is in principle able to perform
the exact reverse move immediately. Also, the fact that
¢ needs to be empty for the move to be accepted is done
for the same reason. The quantities in steps 8) and 9) are
chosen in such a way to build a cluster move that will be
automatically accepted in step 11) if € is empty.

Although significantly more difficult to implement
than a standard single particle or cluster move, this algo-
rithm has a number of benefits that make its use very ben-
eficial in a variety of situations. The fact that it is the move
that dictates the cluster allows for internal relaxation of
strongly interacting regions: particles are recruited into
the cluster only if not doing so would increase the energy
(on average). Strongly interacting pairs are not necessar-
ily recruited together: in the extreme case of u(i,j) very
negative, if u(i’, 7) is also very negative (the relative move
does not affect the energy) particle j is not recruited into
the cluster (see step 8)). This allows, for example, for rel-
ative rotation of clusters or for naturally arising pivot and
crankshaft moves in polymeric systems.

In our experience, we have found that VMMC is a good
algorithm for self-assembling and polymeric systems due
precisely to its ability of finding the natural moves that
help relaxing the system. On the other hand, the algorithm
has a few drawbacks. Firstly, care must be taken in the
choice of the move at point 1) above: a large move will
easily recruit the whole system into the cluster, essentially
wasting computer time by building a large cluster for a
move that, even if accepted, is effectively useless. This
would not happen frequently in the low-density scenario
for which the algorithm was designed, but nevertheless it
should be taken into account. Secondly, the algorithm is
not straightforward to program in an efficient way.

In terms of performances, the original paper [84] high-
lights that the VMMC algorithm is best suited for low-
density, low-temperature systems, where the system is
largely composed of clusters of particles. In particular,
VMMC greatly speeds up the equilibration of inter-cluster
interactions essentially by promoting a much faster dif-
fusion of clusters than single-particle MC moves. Impor-
tantly, clusters can merge and break while moving, which

Page 7 of 12

is forbidden in standard cluster moves. Since each vir-
tual move is much more computationally expensive than
a standard single-particle move, the benefits of VMMC are
worth the extra effort only when the diffusion of clusters
is the bottleneck of the simulation.

5 Free-energy methods

The level of control and tunability of patchy models has
opened the way to a deeper understanding of the phase
behaviour of complex systems with directional interac-
tions [1,89-91]. For the disordered phases (liquid and
gas), patchy models were developed to study both theo-
retically and computationally the process of self-assembly,
with particular emphasis on the polymerization [92] and
gel transitions [46]. For ordered (crystal) phases, patchy
particles have been shown to be able to describe the crys-
tallization of open crystalline structures [20,93,94], most
notably the diamond crystal for tetravalent patchy mod-
els [29,43,49]. Self-assembly can have a deep impact on the
phase behaviour of the system, and patchy particles were
the ideal platform where new transitions and new types of
phase diagrams were discovered. Empty liquids [27], reen-
trant and topological phase transitions [59], amorphous
ground states [37], are all examples where new types of
phase behaviour were discovered in the context of patchy
particles.

Most notably these discoveries were made possible by
the use of highly efficient free-energy methods. We should
note that free-energy methods can be divided into two
broad categories: i) the ones that attempt to recover the
free energy of a thermodynamic phase, and ii) the ones
that aim at finding the potential of mean force, i.e. the
projection of the free energy along a reaction coordinate
or order parameter. In the next sections we will briefly
discuss the former and then describe more in depth one of
the latter.

5.1 Direct evaluation

A phase diagram of a substance shows under which ther-
modynamic conditions a phase (or a set of phases) is
in equilibrium. From a simulation standpoint, there exist
several methods to straightforwardly estimate the phase
boundaries between disordered phases (one of which will
be thoroughly discussed in the next section) [95,96]. By
contrast, the presence of ordered phases greatly compli-
cates the numerical evaluation of the phase behaviour.
Quite remarkably, the main challenge is not posed by
the actual calculation of the relative free energy between
the phases (which, in turn, dictates their relative stabil-
ity), but by the fact that, in general, it is not possible
to know a priori what these phases are in terms of sym-
metry, unit cells, etc. Indeed, while for simple particles
such as hard spheres an educated guess does often suffice,
more complicated building blocks such as patchy or non-
spherical particles might require approaches that go be-
yond “hand”-based or brute-force procedures. An efficient
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way of searching the vast space of possible lattice can-
didates is provided by the so-called floppy box method.
The basic idea is to simulate a small number of parti-
cles in a box of variable shape in the isothermal-isobaric
ensemble [97], and collect the most stable structures in
the range of temperatures and pressures of interest. This
method has been applied to, among others, non-convex
objects [98,99] and one-patch particles [100]. In parallel,
the idea of leveraging genetic algorithms to efficiently com-
pile a list of candidate structures has surfaced, and it has
been employed in patchy systems to find those ordered
arrangements that are most favourable from an energetic
standpoint [101,102]. The two methods tend to perform
similarly, and the best choice depends on the system under
investigation [103].

Once the most promising candidate structures have
been singled out, their relative stability is evaluated by
computing the free-energy difference with respect to a
system of known free energy. This is usually done by em-
ploying a combination of Hamiltonian and thermodynamic
integration techniques. Well-known methods that build
upon this idea are the Frenkel-Ladd [104] and Einstein
molecule [105] methods. A more thorough discussion on
this topic falls out of the scope of the present review, and
we refer the interested reader to ref. [106].

5.2 Potential of mean force

Another approach is to reconstruct the free-energy land-
scape by sampling rare fluctuations of one or more relevant
order parameters. The last decade has seen a flourishing of
such methods, as for example Wang-Landau sampling [95]
and Metadynamics [107,108]. Here we focus on methods
based instead on the Umbrella Sampling technique, which
have had the biggest impact on the literature on Patchy
Particles. In this section we first briefly review the basics
of the Umbrella Sampling method, and then focus on a
variant (Successive Umbrella Sampling) which has found
widespread adoption.

Umbrella sampling

Umbrella sampling (US) [109,110] is a method for enhanc-
ing the sampling of regions of configurational space which
have a small weight (as measured by the Boltzmann dis-
tribution) under equilibrium conditions. By enabling the
sampling of rare fluctuations, umbrella sampling allows
one to reconstruct the free-energy profile even in regions
of low statistical weight, such as on top of free-energy bar-
riers. This is achieved by modifying the Markov chain with
an external potential term which depends on the relevant
order parameter for the transition of interest. The most
immediate advantage of US over its competitors is that
simulations of a system with a biased potential run in
equilibrium, and the bias can be removed to recover the
unbiased (true) probability distribution of the order pa-
rameter.
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In umbrella sampling, a biasing potential 7(x) is added
to the Hamiltonian of the system

H =H+n(x),

where H is the base Hamiltonian (e.g., the patchy po-
tential), and x is the order parameter whose distribution
P(x) we wish to measure. By running a simulation with
the new Hamiltonian H’, and measuring its order parame-
ter distribution, P’(x), we can readily recover the original
distribution as

P(x) = P'(x) exp(fBn(z)). (8)

By choosing an appropriate n(z) it is thus possible to
sample the order parameter for arbitrary values of x,
and then recover the original unbiased distribution with
eq. (8). A standard choice is to use an harmonic poten-
tial, n(x) = k(z — x¢)?, that forces the system to sam-
ple regions around x = ¢ with fluctuations that depend
on the coefficient k. A typical use of umbrella sampling
to estimate the free-energy landscape is to perform sev-
eral biased simulations centered around adjacent values of
T, such that the fluctuations of the order parameter x
of two consecutive simulations have a significant overlap.
The full distribution P(x) is then obtained by combining
the order parameter histograms of different simulations
together. A statistically self-consistent way to do this is
via the weighted histogram analysis method [111]. From
the knowledge of the distribution function P(x) we can
then obtain the free energy (or potential of mean force) as

F(z) = —kpTlog P(x). (9)

Umbrella sampling is an equilibrium method that
should give the correct free energy independently of the
choice of the biasing potential. However, in practice, care
has to be taken to ensure appropriate sampling of the
configurational space. When dividing the order parameter
domain in several intervals (each centered at a different
value of xy), ensuring a proper sampling within each win-
dow often requires choosing different potentials for each
window. In the case of harmonic potentials, for example,
different intervals often require different values of the elas-
tic constant k depending on the slope of the free energy
around xp. The higher the slope of the free energy, the
higher the value of k one needs to set in order to sam-
ple correctly the configurations around xzy. But since the
slope of the free energy is not known a priori, one of-
ten has to tune the values of k during the course of the
simulation. To minimize this problem, two diametrically
opposite strategies have been adopted.

One possibility is to sample the free-energy landscape
in as few intervals as possible. A way to do this is to use
specific forms of the biasing potential based on theoreti-
cal expectations for the barrier. We give here an example
for crystal nucleation processes. A good order parame-
ter for crystallization processes is the size of the largest
crystalline cluster [112,113], which we denote here as x.
Starting from the metastable liquid phase (x = 0), we
want to use umbrella sampling to access rare fluctuations,
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corresponding to the appearance of a crystalline nucleus
of size x. Classical nucleation theory [114] predicts the
free-energy barrier for nucleation as

BAF(z) = —| Apla®/3 (zl/S —15 x;/ff) . (10
where Ay is the chemical potential difference between the
two phases and z. is the critical nucleus size. In order to

explore states on top of the barrier, we modify the Hamil-
tonian with a biasing potential that exactly cancels the

barrier
n(x) = —BAF(x). (11)

This variant, called Classical Nucleation Theory Um-
brella Sampling (CNT-US) scheme, has been introduced
in ref. [114]. The only parameter needed is an estimate of
Ap. This can be obtained for example with the following
relation: Ay = Hy(1 —T/T,,) (where Hy is the enthalpy
of fusion, while T, is the melting temperature), or by
computing the absolute free energies of the bulk phases,
as described in sect. 5.1. Once a reasonable approxima-
tion of Ap is obtained, several independent simulations
at different values of z. are run. When z. is close to the
true critical size, the corresponding simulations will ex-
hibit large fluctuations, as the bias in eq. (11) is effec-
tively cancelling the nucleation barrier. All other simula-
tions (which exhibit small fluctuations in x) are quickly
discarded. Instead, the simulation which maximizes the
fluctuations is used to reconstruct the whole barrier by
using egs. (8) and (9).

The second approach to free-energy calculations is em-
bodied by a technique called Successive Umbrella Sam-
pling (SUS). Here, instead of targeting a uniform sampling
of a large portion of the order parameter space, the aim
is to divide it in as many small intervals as possible.

Successive umbrella sampling

In successive umbrella sampling [96] simulations, the order
parameter space is divided in many small intervals that are
sampled consecutively. While the approach is general, we
will present it here for the choice x = N, i.e. when the or-
der parameter is simply the number N of particles in the
simulation. This choice is appropriate for those transitions
in which the density p = N/V is a good order parameter.
To sample fluctuations in the number of particles IV, each
SUS simulation is performed in the grand-canonical en-
semble. In the context of patchy particles, the method
has been used to study liquid-gas transitions, for exam-
ple in reentrant fluids [59], mixtures [42], dipolar interac-
tions [115], and isotropic-nematic phase boundaries [116].

In SUS, the order parameter N is divided in many
intervals (also called windows) of size k, such that the
number of particles allowed in each interval i is

Nivk-1}.

For each interval, a simulation is run where its number
of particles is constrained by reflecting boundary condi-
tions at N;_; and N;yg. In other words, grand-canonical

N e {Ni,Niy1,---
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moves that would bring the number of particles outside
the allowed range are rejected. The size of each interval
k is often set equal to k = 2 to maximize the number of
intervals, and minimizing the overlap between them

{031}7{172}7"' 7{N_2aN_1}7{N_17N}'

During a simulation sampling the interval ¢, the num-
ber of times N was visited is used to construct the his-
togram H;(N). If a move is rejected due to reflective
boundary conditions, the histogram is still updated for
the value of N. In the simplest implementation, all win-
dows are simulated independently and without the use of
biasing potentials.

In each interval (assuming without loss of generality
that k& = 2) the free-energy difference between N, and
N1 is given by

H;(Niy1)

F(Nit1) = F(N;) = —kpT log ()

The total free energy is obtained by combining the differ-
ent intervals
P(N)

F(N)—-F(0)= —kBTlogW,

where P (V) is the unnormalised probability distribution

P(N) _ Hy(N) Hya(N-1) Hi(1)
P(0)  Hn(N—1)Hy-a(N-2) Hi(0)

(12)

The SUS technique provides some definitive advan-
tages over traditional umbrella sampling simulations. The
first one is that, since the windows are very small, even un-
biased simulations are able to sample all the states within
the window, without the use of auxiliary potentials. If
needed, umbrella potentials can still be used, and it is
often possible to extrapolate the potential in one window
from the measured free-energy difference in the previous
window. The second big advantage is that SUS allows to
trivially (and massively) parallelize the computation of
free energies, as the calculation is divided in a large num-
ber of independent windows. All this while retaining the
advantage of the traditional umbrella sampling scheme,
which is the use of equilibrium simulations that can run
without any prior knowledge of the free-energy barrier.

An example of the output of a SUS simulation per-
formed with the PP code is shown in fig. 3. Here the sys-
tem under study is composed of tetravalent patchy parti-
cles interacting through a KF potential with parameters
6 = 0.26 and cos0™?* = 0.92, simulated at T = 0.160,
V = 66703 and activity z = 0.3. Since the simulation has
been run at a sub-critical temperature, there exist some
values of z for which the P(N) is double-peaked. In gen-
eral, SUS simulations allow for an accurate sampling over
many orders of magnitude (see inset of fig. 3), which makes
it possible to evaluate the probability distribution at dif-
ferent z by histogram reweighting techniques [111]. Here
we have changed z until the area below the peaks associ-
ated to the gas and liquid phases is equal (see the green
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Fig. 3. The probability distribution of having N particles,
P(N), for a system of KF tetravalent patchy particles with
0 = 0.26 and cos0™** = 0.92 simulated at z = 0.300 and
T = 0.160, below the critical temperature (violet curve). Here
we also show the P(N) reweighted so that the area below the
peaks of the two coexisting phases is equal (green curve). The
inset shows the same data on a log-lin scale to show the tens
of orders of magnitude accessed.

curve in fig. 3), a condition which is commonly associated
to phase coexistence.

In the PP code, the histogram is updated in the do_SUS
function of the MC. c file, while the GC moves, and the logic
for the rejection of the moves that attempt to break out of
the window’s boundaries, are implemented in the function
MC_add_remove of the same file.

6 Conclusions

In this paper we have reviewed some of the most com-
mon models and most useful techniques that have been
used to simulate systems of patchy particles, with a special
focus on Monte Carlo methods. In contrast with atomic
and molecular systems, when simulating patchy particles
the computationally intensive part is not the evaluation
of the pair interactions or of the forces, since the poten-
tial is usually simple and very short ranged. On the other
hand, the short-range nature of the interaction sets the
smallest length-scale that needs to be sampled, forcing
very small single-particle moves in Monte Carlo simula-
tions and small values of the time integration steps in
molecular dynamics.

A further challenge resides in the fact that the interest-
ing behaviour in this class of systems is almost inevitably
found at very low temperature, i.e., when a bond between
two particles is of the order of 5-10 times (or more) the
thermal energy. This contributes to make it challenging
to achieve equilibrium without the use of advanced Monte
Carlo techniques such as the ones described here.

Since it is impossible to devise a Monte Carlo move
that will speed up sampling for any system and state
point, we have focussed on techniques that are general
enough to be useful in many use cases and showed how
they perform on a typical and well-known patchy parti-
cle system. Since some of the techniques treated are not
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straightforward to implement, we also provide an (as sim-
ple as possible) implementation in a tutorial code freely
available online [40]. We believe such educational tool to
be a useful starting point to build up bespoke codes tai-
lored to study systems that would not be treatable other-
wise.
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