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Abstract The numerical prediction of the acoustic
pressure field induced by cavitating marine propellers is
addressed. A hydrodynamic model for transient sheet
cavitation on propellers in non–uniform inviscid flow is
coupled with a hydroacoustic model based on the Ffowcs
Williams–Hawkings equation. The proposed hydroacou-
stic approach, novel to marine applications, allows to split
the noise signature into thickness and loading term con-
tributions. Both hydrodynamic and hydroacoustic model
equations are solved via boundary integral formulations.
Numerical predictions of the propeller noise by using the
Ffowcs Williams–Hawkings equation are compared to
those obtained by a classical Bernoulli equation approach.
The influence of cavitation on the noise waveforms is
discussed by comparing non–cavitating and cavitating
propeller flow results.

Keywords Marine propellers, Boundary Integral Methods,
Ffowcs Williams–Hawkings Equation, Cavitation, Acoustic
analogy

1
Introduction
Cavitation is one of the major constraints in marine pro-
peller design. Among cavitation detrimental effects,
vibrations and noise generated by transient blade cavities
on propellers in the wake of a ship hull are of primary
importance. Experimental observations show that un-
steady cavitation–induced pressure pulses may be largely
higher than those measured under non–cavitating flow
conditions, whereas noise spectra exhibit significant har-
monics at multiples of the blade frequency. Theoretical
investigations of the hydroacoustics of cavitating propel-
lers are typically performed under inviscid–flow assump-
tions by determining the pressure from the potential
velocity field by means of the Bernoulli theorem (here
referred to as the Bernoulli equation model, e.g., [1]).

The aim of the present paper is the theoretical predic-
tion of the acoustic pressure field induced by marine
propellers by using a coupled hydrodynamics/hydro-
acoustics analysis based on a boundary element method-
ology. The hydroacoustic model is based on the Ffowcs
Williams–Hawkings (FWH) equation [3]. This may be
considered as an extension of the early Lighthill equa-
tion [8], accounting for the basic mechanisms of noise
generation related to the shape of the body and the loads it
experiences along its motion through the fluid. The FHW
equation represents a standard solving approach for
aeroacoustics problems, whereas, to the authors’ knowl-
edge, no application to the analysis of marine propellers is
documented in the literature.

A characterizing feature of the FWH equation is that the
noise signature is split into three different components:
thickness, loading and quadrupole noise. The last term is
important only for high tip speed blades and has been
extensively treated by the second author for the analysis of
helicopter rotors at high transonic regime [4, 5]. For
incompressible flow analyses, only thickness and loading
terms are considered. In particular, the influence of the
cavity on both thickness and loading noise components
may be investigated.

The FWH equation model requires as input the pressure
distribution over the propeller surface and the cavity
thickness distribution during a revolution. Numerical pre-
dictions are obtained through the so-called Formulation 1A
developed by Farassat [2], a procedure widely used for linear
aeroacoustic analyses of helicopter rotors. The thickness
noise is assumed to be originated by step-by-step shape
variations of a virtual blade, i.e., a blade whose shape is
modified to include the transient cavity, while the loading
noise component is related to blade load fluctuations.

The hydroacoustic model above is coupled with a
hydrodynamic model based on a boundary integral for-
mulation for the analysis of incompressible inviscid flows
around lifting bodies [10]. The approach is applied here to
the analysis of an isolated propeller in a prescribed non
uniform inflow (behind–hull operating conditions). Un-
steady propeller cavitation is studied by using a nonlinear
sheet cavity model derived from [7] and [6]. The resulting
approach is valid for leading edge cavitation attached to
the blade suction side (partial sheet cavitation). The cavity
trailing edge region is modelled via a closed–cavity scheme
and the cavity shape is determined by a free–cavity length
iterative approach.

For the sake of completeness, only a brief outline of
both hydrodynamics and hydroacoustics models is given
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in the following sections, whereas the reader is referred
to cited references for details. A preliminary validation of
the proposed coupled hydrodynamic/hydroacoustic
methodology is presented and numerical results are
compared to those obtained by using the Bernoulli
equation model.

2
Hydrodynamic analysis
Basic assumptions in the present hydrodynamics formu-
lation are that the unperturbed flow is incompressible and
inviscid. In addition, the perturbation velocity field v in-
duced by the propeller is assumed to be irrotational and
hence it can be expressed in terms of a scalar potential as
v ¼ ru. In a frame of reference ðOxyzÞ fixed to the pro-
peller, with the x-axis aligned to the propeller axis and
downstream pointing, the unperturbed flow velocity is
vI ¼ vA þX� x, where vA is the incoming flow velocity in
the propeller disk plane (prescribed, in the present anal-
ysis), and X ¼ 2pnex is the propeller angular velocity.
Thus, the total velocity field in the rotating frame is

q ¼ vI þru : ð1Þ
The pressure p is given by the Bernoulli equation that, in
the rotating frame, reads

ou
ot
þ 1

2
q2 þ p

q0

þ gz0 ¼
1

2
v2

I þ
p0

q0

; ð2Þ

where q ¼ kqk; vI ¼ kvIk; p0 is the ambient pressure, q0 is
the fluid density, g is the gravity acceleration and z0

denotes depth.
By incompressible flow assumptions, the potential u

satisfies the Laplace equation r2u ¼ 0 in the fluid region
VP limited by the propeller surface, by the trailing wake
and by the cavity surface. In the framework of potential
flow modelling of lifting bodies, the trailing wake denotes a
zero thickness layer where the vorticity generated on the
body is shed, and represents a discontinuity surface for the
potential. The cavity denotes the fluid region where high–
speed vaporization occurs. In the present approach the
cavity is assumed to be a confined in a thin layer attached
to the blade suction side.

The Laplace equation for u is solved by imposing
boundary conditions on oVP. On the wetted (i.e., cavita-
tion–free) portion SWB of the propeller surface SB, the
impermeability condition yields q � n ¼ 0, or, recalling
Eq. (1)

ou
on
¼ �vI � n on SWB ; ð3Þ

where n is the outward unit normal to the surface.
Across the wake surface SW the pressure is continuous.

By applying mass and momentum conservation laws un-
der non cavitating flow conditions, yields D ou=onð Þ ¼ 0,
where D denotes discontinuity across the two sides of the
wake surface. Combining these wake conditions and the
Bernoulli equation (2), one obtains that the potential dis-
continuity Du is convected along wake streamlines, and
the convection velocity is the averaged flow velocity on
both sides of SW ,

Du x; tð Þ ¼ Du xTE; t � sWð Þ on SW ; ð4Þ
where xTE is the trailing edge wake point lying on the same
streamline as x, and sW is the convection time from xTE to
x. A further condition on u is required in order to assure
that no finite pressure jump may exist at the body trailing
edge (Kutta condition). Following [10], this is equivalent to
impose Du xTEð Þ ¼ uu

TE � ul
TE, where uu

TE and ul
TE denote,

respectively, suction and pressure side blade trailing edge
potentials. In order to take into proper account crossflow
effects, the Kutta condition is enforced by means of a
pressure–based iterative approach.

Boundary conditions on the cavity surface SC are im-
posed by assuming that the cavity is a fluid region where
the pressure is constant and equal to the vapor pressure pv.
By imposing p ¼ pv on SC , and by using the Bernoulli
equation (2), results

q ¼ ðnDÞ2rn � 2
ou
ot
þ gz0

� �
þ v2

I

� �1
2

; on SC ;

ð5Þ
where rn ¼ ðp0 � pvÞ= 1

2 q0ðnDÞ2 denotes the cavitation
number referred to the propeller rotational speed n and
diameter D. Equation (5) is used to obtain a Dirichlet–type
condition for u on SC in terms of rn. By introducing on
SC a curvilinear coordinate system with s; u, archlengths
in, respectively, chordwise and spanwise directions, and by
recalling Eq. (1), one obtains a non linear condition for u
of the type

u s; uð Þ ¼ u sCLE; uð Þþ
Z s

sCLE

F q;
ou
ou
;
ou
on
; vI

� �
d~ss

on SC ; ð6Þ
where sCLE is the cavity leading edge abscissa. A detailed
derivation of Eq. (6) and the expression of function F
may be found, e.g., in [6].

The condition p ¼ pv and hence Eqs. (5) and(6) are not
valid in the aft portion of the cavity where pressure tends
to wetted flow conditions through complex two–phase
flow phenomena. In the present approach, a cavity–closure
region is introduced in which pressure is forced to vary
smoothly from p ¼ pv to wetted flow values behind the
cavity trailing edge.

An expression of the cavity thickness hc is obtained by
imposing a non–penetration condition on SC . By com-
bining the constant–pressure and the impermeability
conditions, yields that SC is a material surface. Denoting
by SCB the cavitating portion of SB, and by g the
normal distance to SCB, the above condition corresponds
to ðo=ot þ q � rÞ g� hcð Þ, or

ohc

ot
þ q � rShc ¼

ou
on
þ vI � n on SCB ; ð7Þ

where rS denotes the surface gradient on SCB. Equa-
tion (7) represents a partial differential equation for hc that
may be solved once u; ou=on and ou=ot on SCB are known.

The Laplace equation for the velocity potential is solved
here by means of a boundary integral formulation. By
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assuming that the perturbation vanishes at infinity, the
third Green identity yields at any point x 2VP

EðxÞuðxÞ ¼
I

ŜSB

ou
on

G� u
oG

on

� �
dSðyÞ

�
Z
SW

Du
oG

on
dSðyÞ ; ð8Þ

where ŜSB ¼ SWB [SC, G ¼ �1=4pkx� yk is the Green’s
function of the Laplace equation in an unbounded three-
dimensional domain, and E equals 0; 1=2; 1, respectively,
inside, on, or outside oVP.

In the case x 2 ŜSB, the numerical solution of Eq. (8)
determines u on SWB and ou=on on SC once ou=on on
SWB is given by Eq. (3), Du on the wake is given by
Eq. (4) combined with the Kutta condition, whereas u on
SC is given by Eq. (6). Equation (8) is solved by using a
boundary element approach. The potential–flow boundary
surfaces are divided into hyperboloidal quadrilateral ele-
ments. Equation (8) in discretized form is enforced at each
surface element centroid on SB. Flow quantities are as-
sumed to be constant on each element. Influence coeffi-
cients in the discretized form of Eq. (8) are computed by
using analytical integration as proposed in [10].

In the present analysis, the wake surface SW is
assumed to be an helical surface with a prescribed pitch
distribution. At the trailing edge, SW is tangent to the
blade suction side, whereas downstream the propeller, the
wake pitch is determined as an average between the
hydrodynamic pitch of the unperturbed inflow and the
blade pitch angle.

The shape of the cavity is unknown a priori and is
determined via an iterative procedure. First, in solving
Eq. (8), the surface SC is replaced by the cavitating
portion of the blade surface SCB. This approximation is
justified by experimental evidences that a sheet cavity
thickness is usually very thin as compared to propeller
dimensions, and prevents additional computational effort
required by surface re–gridding and influence coefficients
re–computing during the cavity shape updating process.
At each time step, SCB is guessed and Eq. (8) is solved.
Once the potential field on SCB is known, Eq. (7) is used
to determine the cavity thickness. By this, a new estimate
of SCB is obtained by using a free–cavity length
approach, as described in [12]. This process is repeated
until convergence of predicted cavity planform and
volume.

3
Hydroacoustic analysis

3.1
Ffowcs Williams–Hawkings equation model
The theoretical basis for the analysis of sound generated
by a body moving in a fluid is represented by the Ffowcs
Williams–Hawkings equation, which can be derived from
the basic conservation laws of mass and momentum
written in terms of generalized functions. This way, a
discontinuity in the flow variables is allowed, representing

the jump of flow quantities across the moving body sur-
face. By neglecting viscosity effects (the fluid-body dy-
namic interaction is described by the scalar pressure field
on the body surface) and by assuming that the fluid is
compressible and undergoes transformations with negli-
gible entropy changes (the pressure–density relationship
can be approximated by the linear term of its series
expansion, i:e: p0 ¼ c2

0~qq, where c0 is the sound speed, ~qq the
density perturbation field and p0 denotes the acoustic
pressure disturbance), the FWH equation reads

c2
0

�((2 ~qq ¼ �((2p0 ¼
�oo

ot
q0vndðf Þ½ � � r � pdðf Þn½ �

þ r : Hðf ÞT½ � ; ð9Þ
where vn ¼ �vI � n, an overbar denotes a generalized
derivative, the D’Alambert operator has been defined as

�((2 ¼ 1

c2
0

�oo2

ot2
� �rr2 ; ð10Þ

and the Lighthill stress tensor is expressed by
T ¼ qv � v þ ðp� c2

0 ~qqÞI. In equation (9) the body surface
is described by f ðx; tÞ ¼ 0, with f > 0 outside the body;
inside the body (f < 0) the following assumptions hold,
concerning field density, pressure and velocity, respec-
tively: q ¼ q0; p ¼ p0, v ¼ 0. Moreover, f ðx; tÞ is defined so
as to make jrf j ¼ 1 on f ¼ 0, and hence rf ¼ n.

The three source terms appearing in Eq. (9) are known
as thickness (monopole), loading (dipole) and quadrupole
terms. Thickness contribution is related to the body
geometry and kinematics, while the loading noise concerns
the load distribution upon the blade, and hence implicitly
includes the effect of the propeller wake. Noise contribu-
tion from the flow field surrounding the body is included
in the quadrupole source term: it accounts for turbulence,
mutual interactions between the hull wake and the pro-
peller, and high speed flow effects as in the case of shock
waves occurrence.

The numerical solution of the FWH equation can be
achieved through the use of the Green’s function tech-
nique, which turns equation (9) into an integral form.
The linear terms are represented by some surface inte-
grals and are generally computed with an integration
upon the blade surface, exploiting the knowledge of the
body shape and motion and the pressure distribution
during the revolution period. On the contrary, the
evaluation of the quadrupole source term requires the
knowledge of the fluid velocity field around the body
and can be very complex to achieve because of the shock
delocalization phenomena and the non-compactness of
the supersonic sources [4]. In this context we will avoid
to treat the numerical solution of the nonlinear terms,
since the usual operating condition of a marine propeller
definitely removes any problem concerning the shock
waves and the nonlinearities of interest are only related
to the turbulence and the mutual interactions between
the propeller and the hull wake.

Following a standard Green function approach, Eq. (9)
may be suitably managed in order to obtain the following
integral expressions for thickness and loading acoustic
pressure terms, respectively:
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4ppTðx; tÞ ¼
I
S

q0 _vvn

rj1�Mrj2

" #
s�

dSðyÞ

þ
I
S

q0vn r _MM � r̂rþ c0Mr � c0M2
� �

r2j1�Mrj3

" #
s�

dSðyÞ ; ð11Þ

4ppLðx;tÞ¼
1

c0

I
S

_ppcoshþp _nn � r̂rð Þ
rj1�Mrj2

" #
s�

dS

þ
I
S

p
cosh�Mn

r2j1�Mrj2

" #
s�

dSðyÞ

þ 1

c0

I
S

pcosh

r2j1�Mrj3
r _MM � r̂rþc0Mr�c0M2
� �" #

s�

dSðyÞ ; ð12Þ
where the symbol ð�Þ denotes time derivation. The overall
acoustic pressure is then obtained as

p0 ¼ pT þ pL ð13Þ
Within Eqs. (11) and (12), the integration domain S
denotes the surface of the source, which in the present
analysis corresponds to the propeller blade under non
cavitating conditions, and to the blade plus the bubble
when cavitation occurs (S ¼ ŜSB, see Eq. (8)). The
quantity r denotes the source–observer distance, whereas h
is the angle between r̂r (the unit vector along the source-
observer direction) and the unit vector normal to S. In
addition, a Mach vector M ¼ �vI=c0 is introduced,
whereas M ¼ kMk;Mr ¼ M � r̂r, and Mn ¼ M � n.

This particular representation of the FWH linear terms
is known as the Farassat Formulation 1A [2], and is widely
used in the aeronautical context. The subscript s� indicates
that for each source point all of the kernel quantities must
be evaluated at the emission time, which represents, given
the observer time t and location x, the instant when the
contribution to the noise signature was released. The
determination of s� represents the core of the numerical
algorithm and is achieved with an iterative procedure,
solving the equation:

s ¼ t � r

c0
¼ t � jx� yðg; sÞj

c0
¼ UðsÞ ; ð14Þ

where x and y represent the present and the retarted
observer and source point positions, respectively, and g
is the coordinate-vector of source point in the body
frame of reference. Starting from the initial time s ¼ t
and the corresponding positive value f ðsÞ ¼ r=c0, the
research for the root of the function f ðsÞ ¼ s� UðsÞ½ �
proceeds backwards, with a prescribed time step Ds, up
to the first sign inversion; then, the emission time s� is
captured by subsequent iterations through the typical
bisection method until a specified error condition is
satisfied. Nevertheless, the occurrence of a cavitation
bubble upon the blade corresponds to a change of the
body geometry during the revolution period and the

location of each source point cannot be determined
analitically. Then the algorithm requires a set of angular
positions of the actual source (blade plus cavity) in input
to evaluate the retarded quantities through a suitable
interpolation procedure.

It is worthwhile to mention that for marine propeller
applications, the velocity v is very small as compared to
the sound speed c0, and hence the Mach number M is close
to zero; in addition, the emission time delay in Eq. (14) is
also close to zero because of the c0 value in water. Thus,
results by the present approach are fully comparable with
those obtained by a classical approach based on potential
velocity equation (8) and the Bernoulli equation (2)
combined (see next section), where the incompressible
flow assumption is explicit. The accuracy of numerical
solutions by Eqs. (11) and (12) is not affected by the order
of magnitude of both c0 and M.

3.2
Bernoulli equation model
For comparison purposes, a conventional hydroacoustic
approach based on the Bernoulli equation (2) to deter-
mine the pressure from the velocity potential is also
described. Equation (8) is used to evaluate the potential
at an arbitrary location xa immersed into the fluid do-
main (i.e., acoustic observer location). Specifically, once
u and ou=on on ŜSB are known, Eq. (8) with EðxaÞ ¼ 1
provides an explicit representation of ua ¼ uðxaÞ. In the
case of an observer that translates with the propeller
advance speed v0 ¼ v0ex, Eq. (2) with term gz0 neglected,
yields

p ¼ p0 � q0

oua

ot
þ v0

oua

ox
þ 1

2
jruaj2

� �
: ð15Þ

The perturbation velocity rua in the right hand side of
Eq. (15) is evaluated here through a boundary integral
representation by taking the gradient of Eq. (8).

By the present approach, it is not possible to separate
loading and thickness contributions to the pressure.
Nevertheless, the effect of the unsteady cavitation may be
isolated by means of an approximated derivation. To this
purpose, compare Eqs. (3) and (7). A cavity sheet over the
blade surface affects the potential field through an addi-
tional source distribution (hereafter referred to as the
cavity source sheet) having intensity
vcss ¼ ohc=ot þ q � rShc, on SCB and vcss ¼ 0 on the cav-
itation–free propeller surface. The perturbation potential
induced by the monopole distribution vcss is

ucssðxÞ ¼
I
SB

ohc

ot
þ q � rhc

� �
G dSðyÞ : ð16Þ

Next, the pressure field pcss is obtained by Eq. (15), with ua

replaced by ucss from Eq. (16).
By comparing Eqs. (8) and(16), follows that ucss pro-

vides an approximation of the difference between velocity
potential values under cavitating and non cavitating flow
conditions. Moreover, pcss has the physical meaning of the
acoustic perturbation associated to a cavity–induced
equivalent source distribution on SB.

294



4
Numerical results
A preliminary validation of the proposed hydroacoustic
methodology is presented here by considering an isolated
propeller in non uniform inflow. The selected test case is
derived from flowfield measurements performed at the
MIT cavitation water tunnel [9]. The DTRC 4148
three–bladed model propeller in a screen generated non

axisymmetric inflow is considered. Propeller diameter,
advance speed and rotational speed are, respectively,
D ¼ 0:305 m, v0 ¼ 4:775m/s, n ¼ 17:17 rps, and hence the
corresponding advance coefficient is J ¼ v0=nD ¼ 0:91.1

The nominal inflow to the propeller, modified to include
both inflow/propeller and tunnel/propeller interactions, is
considered here as an input to the numerical analysis. Both
non–cavitating flow conditions and cavitating flow
conditions at rn ¼ 2:757 are considered here.

First, the hydrodynamic analysis is briefly addressed.
Numerical investigations have been performed by dis-
cretizing each blade surface into 36 elements in chordwise
direction (from leading edge to trailing edge) and 12 ele-
ments in spanwise direction, whereas 60 elements are used
in the streamwise direction on each wake turn, and 816
elements are used on the hub surface. As shown in[12], a
spatial discretization of this type allows to obtain negli-
gible discretization errors. The unsteady flow under non
uniform inflow conditions is analysed by discretizing each
propeller revolution into 60 time steps.

Left Fig. 1 shows predicted propeller thrust coefficient
KT ¼ T=q0n2D4 and torque coefficient KQ ¼ Q=q0n2D5

during a revolution. The abscissa b represents the angular
position of the reference blade, with b ¼ 0� corresponding
to the blade in the twelve o’clock position. The comparison
between non–cavitating and cavitating flow conditions
highlights the increase of both thrust and torque due to a
blade thickening effect related to sheet cavitation. Right

Fig. 1. Left: predicted thrust
and torque coefficients KT ;KQ

during a revolution under non–
cavitating and cavitating flow
conditions. Right: time history
of the cavity volume Vc

Fig. 2. Cavity patterns on the blade at
three angular positions. Cavity sectional
profiles predicted by the present hydro-
dynamic model and observed cavity trail-
ing edge line from [9]

Table 1. Location of the considered acoustic pressure measure-
ment points (hydrophones)

Hydroph. x=D y=D z=D

1 0.00 0.66 0.00
2 0.00 2.00 0.00
3 2.00 1.50 0.00
4 )2.00 1.50 0.00

Fig. 3. Computational grid on the DTRC 4148 propeller and
hydrophones location

1 Numerical analysis flow conditions differ from those by
experiments in order to take into account for tunnel wall effects,
as discussed in[11].
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Fig. 1 depicts the time hystory of the cavity volume VC on a
single blade during a revolution. Inception and increase of
the cavity is related to low velocity inflow regions that
determine a strong blade loading and hence low pressure
vaporization in the leading edge suction side region. Test
conditions considered in the experiment determine a
two–peaks cavity volume pattern, with inception at about
b ¼ �70� and collapse at b ¼ þ60�. Unfortunately,
measured data for quantities in Fig. 1 are not available,
whereas photographs of the cavity shape at several blade

positions are presented in [9]. Predicted cavity shapes and
observed cavity trailing edge lines are compared in Fig. 2,
where three representative angular positions of the blade
are considered. It may be noted that the extension of the
cavity is satisfactorily captured by the present hydrody-
namic model.

The hydrodynamic solution described above provides
the input for the hydroacoustic analysis discussed here-
after. Four selected hydrophones are considered in and out
of the propeller plane, to qualitatively appreciate some

Fig. 4. Acoustic pressure sig-
natures at hydrophone 1 (top)
and 2 (bottom) by FWH equa-
tion model. Comparison be-
tween cavitating and non
cavitating conditions for thick-
ness (left), loading (center) and
overall (right) noise predictions

Fig. 5. Acoustic pressure sig-
natures at hydrophone 3 (top)
and 4 (bottom) by FWH equa-
tion model. Comparison be-
tween cavitating and non
cavitating conditions for thick-
ness (left), loading (center) and
overall (right) noise predictions
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basic features of noise predictions by the FWH model. In
fact, hydrophones 1 and 2 are located in the propeller
plane where the thickness noise should be predominant,
whereas hydrophones 3 and 4 are positioned downstream
and upstream, respectively, the propeller disk plane: at
these locations a significant contribution from the loading
term is expected. Coordinates of the four hydrophone
locations are given in Table 1. Figure 3 depicts the
computational grid on the DTRC 4148 propeller and the
hydrophone locations.

The present hydrodynamic solution is determined on
the actual three-bladed model (thus accounting for the
mutual inteference between the blades), whereas, the
acoustic pressure signatures determined by considering
only single blade perturbation are presented and discussed
hereafter. This allows to better appreciate the influence of
sheet cavitation on the resulting noise waveform and to
compare the numerical results at different operating con-
ditions. By flow periodicity, the overall acoustic pressure

may be simply obtained by superimposing shifted signa-
tures from each blade.

Figure 4 shows noise time hystories predicted by the
FWH approach at the two in plane locations: hydrophones
1 (top pictures) and 2 (bottom pictures). Noise amplitude
is plotted as a function of the time t=T, where T ¼ 1=n
denotes the propeller revolution period, and t ¼ 0 corre-
sponds to the reference blade at b ¼ �180�. At each
location the comparison between cavitating and non
cavitating flow conditions is presented.

Specifically, thickness noise components pT from
Eq. (11) are shown in the left Fig. 4, loading term compo-
nents pL from Eq. (12) are shown in center Fig. 4, and the
overall noise signature pT þ pL is reported in the right Fig. 4.
Looking at the non cavitating results at hydrophone 1 (very
close to the blade tip) the noise signatures are exactly the
expected ones: at in plane locations the thickness noise
exhibits a symmetrical shape and the highest (negative)
peak value of the acoustic pressure, while the loading term

Fig. 6. Acoustic pressure spec-
tra by the FWH equation model
as a function of blade passing
frequency (BPF) multiples.
Comparison between cavitating
and non cavitating conditions

Fig. 7. Pure cavity–induced
noise at hydrophones 1 to 4.
Comparison between predic-
tions by FWH equation, Ber-
noulli equation and by cavity
source sheet (CSS) models
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has a typical waveform with some slightly smaller peak
values: in practice, the resulting signatures are very similar
to those of an aeronautical propeller rotating at subsonic
speed. The most relevant differences at cavitating condi-
tions arise from the monopole term: the occurrence of sheet
cavitation corresponds to a more impulsive character of the
noise waveform and some higher frequency components
appear. On the contrary, the dipole contribution seems to be
not altered by vaporization, but a little increase in the
pressure at the angular positions affected by the cavity.
Moving far from the blade tip (hydrophone 2) the thickness
contribution is still comparable with the loading term (as
order of magnitude) but rapidly decreases and the per-
centage difference between cavitating and non cavitating
flow has a remarkable increase. The cavitation influence on
the loading noise is still negligible, but the effect on the

monopole term becomes really notable and heavily affect the
overall noise signature.

These features become even more evident by moving far
from the propeller disk plane, as shown in Fig. 5 where re-
sults at hydrophones 3 and 4 are reported. Out of plane the
loading term is predominant with respect to the thickness
noise contribution generated by the (non cavitating) blade,
but the occurrence of the sheet bubble deeply changes the
resulting noise waveform. Due to the symmetrical location
of these hydrophones with respect to the propeller plane, the
thickness component at non cavitating condition is practi-
cally the same, while the loading term rightly exhibits the
sign inversion due to pressure values on face and back sides
of the blade. Nonetheless, a very similar thickness noise
waveform arises at the two different positions also at cavi-
tating condition, eventhough the presence of the vapour

Fig. 8. Comparison between
overall noise by FWH equation
model and by Bernoulli equa-
tion model in non–cavitating
(left) and in cavitating (right)
flow conditions. Observers 1 to
4 are shown from top to bottom
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sheet is limited to the upper surface of the blade; this result
points out the actual monopole behaviour of the bubble,
which acts as a pulsating sphere with a 3D homogeneous
influence around the body.

Noise predictions via the FWH equation confirm the
monopole character of sheet cavity–generated sound. The
negligible influence on the loading noise component is
reasonable, since the pressure time histories of each source
point is not heavily affected by the occurrence of cavita-
tion. On the contrary, source-body (blade plus vapour
sheet) geometry and the corresponding normal velocity to
the body surface rapidly change during the revolution
period, thus explaining the higher frequency content and
the impulsive character of the resulting noise signatures.

The above considerations are confirmed by considering
non cavitating and cavitating overall acoustic pressure
spectra, as shown by Fig. 6, where tonal components are
plotted as a function of multiples of blade passing fre-
quency. The intensity of tonal components is given here as
Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

i þ s2
i

p
, where ci; si are, respectively, cosine and

sine terms of the Fourier series. At hydrophone 1, the
noise spectrum is not heavily affected by the occurrence of
cavitation due to the small distance of the hydrophone
with respect to the propeller; by increasing the distance
from the propeller (locations 2 to 4) a relevant

higher–frequency content is observed as a consequence of
sheet cavitation as the dominating noise generation
mechanism.

The monopole character of cavitating propeller noise
may be further observed by comparing Fig. 7 the pure
cavitation effects on the overall noise signature as deter-
mined by the FWH solver, the Bernoulli equation model
and the cavity source sheet (CSS) model (see subsect. 3.2).
Specifically, curves labelled as ‘FWH’ and ‘Bernoulli’ rep-
resent the difference between non cavitating and cavitating
acoustic pressure, whereas the CSS acoustic pressure is
obtained by combining Eq. (16) and Eq. (15) with ua re-
placed by ucss. It may be observed a good agreement among
the three different prediction approaches. Moreover, all of
them highlight the impressive similarities of the cavity
(monopole) effect all around the propeller. This is partic-
ularly evident looking at hydrophone 1 results: close to the
blade tip the shape of the noise signature is primarily
determined by the body thickness and loading terms (top
Fig. 4), but the cavity contribution is substantially the same.

Finally, Fig. 8 focus on the comparison between non
cavitating and cavitating overall acoustic pressure time
histories by the FWH equation and the Bernoulli equation
models. From a qualitative point of view the agreement
between the two hydroacoustic models is very satisfactory:

Fig. 9. Acoustic pressure
spectra as a function of blade
passing frequency (BPF)
multiples. Comparison between
FWH equation model and
Bernoulli equation model
results at non–cavitating (left)
and at cavitating (right) flow
conditions. Observers 1 to 4 are
shown from top to bottom
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the resulting noise signatures are very similar in shape and
order of magnitude both at cavitating and non cavitating
condition, thus providing substantially the same evalua-
tion of the sheet cavitation influence on the overall noise.

The above considerations are confirmed by Fig. 9,
where noise tonal components are plotted as a function of
multiples of blade passing frequency.

5
Conclusions
A boundary element methodology for a coupled hydro-
dynamic/hydroacoustic analysis of cavitating marine
propellers in non uniform flow has been presented. The
hydrodynamic analysis is based on a standard inviscid–
flow sheet cavitation model. The hydroacoustic model is
based on the Ffowcs Williams–Hawkings equation, a well
known methodology for aeronautical applications that is
totally neglected in marine propeller problems.

Work described in the present paper represents the first
step towards a thorough investigation of FWH equation
capability to predict cavitating propellers noise. Some
basic features of the cavitating flow noise radiation are
highlighted. The vapour sheet behaves as a monopole
term, with a homogeneous, three dimensional sound
radiation around the propeller. The thickness noise con-
tribution assumes an impulsive waveform with high fre-
quency components, whereas the loading term is just
slightly affected by the transient cavity and the overall
noise signature exhibits a notable increase in the far field.

Noise predictions by the FWH equation are in satis-
factorily agreement with those obtained by using the
Bernoulli equation: the waveform of signatures are fully
comparable and both the two models point out the major
features of cavitation induced noise generation. However,
some discrepancies between numerical results by the two
approaches are present even at non cavitating flow
conditions and require further investigations.
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