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Abstract: The rise of the Internet of Things (IoT) has enabled the development of smart cities,
intelligent buildings, and advanced industrial ecosystems. When the IoT is matched with machine
learning (ML), the advantages of the resulting enhanced environments can span, for example, from
energy optimization to security improvement and comfort enhancement. Together, IoT and ML
technologies are widely used in smart buildings, in particular, to reduce energy consumption and
create Intelligent Energy-Efficient Buildings (IEEBs). In IEEBs, ML models are typically used to
analyze and predict various factors such as temperature, humidity, light, occupancy, and human
behavior with the aim of optimizing building systems. In the literature, many review papers have
been presented so far in the field of IEEBs. Such papers mostly focus on specific subfields of ML
or on a limited number of papers. This paper presents a systematic meta-survey, i.e., a review of
review articles, that compares the state of the art in the field of IEEBs using the Prisma approach.
In more detail, our meta-survey aims to give a broader view, with respect to the already published
surveys, of the state-of-the-art in the IEEB field, investigating the use of supervised, unsupervised,
semi-supervised, and self-supervised models in a variety of IEEB-based scenarios. Moreover, our
paper aims to compare the already published surveys by answering five important research questions
about IEEB definitions, architectures, methods/models used, datasets and real implementations
utilized, and main challenges/research directions defined. This meta-survey provides insights that
are useful both for newcomers to the field and for researchers who want to learn more about the
methodologies and technologies used for IEEBs’ design and implementation.

Keywords: Internet of Things (IoT); smart building; energy efficiency; intelligent energy-efficient
building; machine learning; deep learning; reinforcement learning; meta-survey

1. Introduction

The Internet of Things (IoT) [1] consists of smart interacting devices collecting vast
amounts of data in several fields, such as smart cities, smart buildings, and so on. The
adoption of machine learning (ML) algorithms can greatly improve how IoT-enabled
environments operate and are managed [2]. ML significantly impacts data analysis and
enables quick decision-making in smart buildings, where it analyzes vast volumes of data
from various sensors and devices. ML algorithms can monitor environmental factors to
improve the indoor environment and optimize the energy spent in buildings [3].

In the literature, ML is widely used to analyze a variety of sensor data, including
temperature, humidity, occupancy, air quality, energy meters, thermostats, and so on [3].
Through the analysis of data from such sensors, ML is able to regulate lighting and Heating,
Ventilation, and Air Conditioning (HVAC) systems so as to reduce consumption while still
keeping a high comfort level within the buildings. Furthermore, ML is employed to detect
equipment problems early, allowing for timely actions. As a result, there is a reduction in
repair times, maintenance expenses, and energy consumption [4,5]. ML is also engaged in
detecting and predicting occupancy in buildings [6] to automatically adjust lighting and
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HVAC systems, among other things. Moreover, it is also exploited to control the actual
energy usage of buildings and provide suggestions to reduce it [3].

In summary, ML is fundamental in the creation of so-called Intelligent Energy-Efficient
Buildings (IEEBs) [3]. IEEBs can be defined as smart building environments in which
artificial intelligence/machine learning algorithms are widely used to make specific actions
to the environment itself. Such actions aim to reach, among other things, energy efficiency,
inhabitants’ comfort, maintenance prediction, and people security in the IEEB’s systems [2].
IEEBs can play a vital role in reducing greenhouse gas emissions, which has a positive
effect on climate change mitigation. Buildings are the places in which human beings spend
most of their time. The Global Alliance for Buildings and Construction shows that 36%
of global energy consumption is spent in buildings (UN Environment Programme, 2021
Global Status Report for Buildings and Construction. https://globalabc.org/sites/default/
files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf accessed on 29 July 2024). In this
context, the realization of IEEBs can lower costs, improve thermal comfort, and ensure
regulatory compliance. It can ensure user satisfaction at home or in the office, also boosting
work efficiency [7]. In addition, the demand for IEEB solutions is rapidly expanding due to
enthusiastic building owners and government initiatives [4].

In the literature, there is an abundance of surveys and review papers on the topic of
IEEB [3–23], but none of them provides a complete picture of the current state-of-the-art
research. This meta-survey aims to present an in-depth and comprehensive analysis of
the IEEB research domain, offering an abundance of information and insights into IEEBs.
Our work aims to assist both new learners and researchers in gaining a comprehensive
understanding of the domain by covering various topics related to IEEBs. In this meta-
survey, we will compare and evaluate the results of various studies, review the most
commonly used machine learning methods in IEEBs, examine real-world implementations,
and discuss the challenges and future research directions in the field of IEEBs.

This meta-survey paper is structured as follows: Section 2 introduces the main Sensors
and ML techniques used in IEEBs, Section 3 highlights the strategy followed in implement-
ing the survey, and Section 4 compares the reviewed work by also answering some research
questions. Finally, the paper presents some conclusions.

2. A Brief Background Discussion
2.1. Sensors in IEEBs

Smart buildings, in general, and IEEBs, in particular, produce a very large amount
of data. Such data mainly depend on the quantity and type of the deployed sensors
around an IEEB [24]. Among all the sensors, the most commonly used in buildings are the
following [25]:

• Temperature sensors, which can measure the temperature levels in IEEBs;
• Humidity sensors, that track the moisture level in the air;
• Occupancy sensors, which help in detecting the presence of people in IEEBs;
• Light sensors, which measure the intensity of light in IEEBs;
• Switch contact sensors, which detect if windows/doors are opened in an IEEB;
• CO2 and air quality sensors, which monitor the air quality in an IEEB.
• Smart meters, which measure electricity, water, and gas consumption in an IEEB.
• Smoke and fire sensors, which are used for security purposes in IEEBs.

Such sensors can be deployed as standalone devices or as part of more complex Smart
Objects and can be connected through specific protocols. Such protocols are of various
kinds, and several new protocols are emerging in the literature. However, currently, the
most commonly used for short-range communication include the Internet Protocol Version
6 (IPv6), over Low-power Wireless Personal Area Networks (6LoWPAN), ZigBee, Bluetooth
Low Energy (BLE), Z-Wave, Near Field Communication (NFC), and WiFi with MQTT and
COAP [26–28]. Regarding longer-range communications, SigFox and Cellular are also
frequently used [26].

https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf
https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf
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All the sensors described in IEEBs can produce a dramatic amount of data that can be
treated in several ways, with different instruments, and in different places. In this direction,
several architectures have been defined in these works [29–31] for data collection and
elaboration. Such works also clearly define where AI/ML can be applied to the collected
data. We will detail this last aspect better in Section 4.3.

2.2. Overview of Supervised, Unsupervised, Semi-Supervised, and Self-Supervised Learning

In the literature, many algorithms have been used to manage this data and enhance
buildings in order to reach the so-called IEEBs. These algorithms mainly belong to machine
learning techniques and can be classified into supervised, unsupervised, semi-supervised,
and self-supervised learning, as summarized in Figure 1.

Semi Supervised
Labelled and Non Labelled Input Data,

 Less UsedM
ac

hi
ne

 L
ea

rn
in

g 
(M

L)
 

Unsupervised Learning 
(Clustering, Association)

Non-Labelled Data Discovery of Hidden Patterns of
Results the Algorithm Can Process Data in an

Independent Way

Supervised Learning
Classification/Regression
Labeled Data Prediction 

Classification
Logistic Regression, Decision Trees, Naive Bayes Random Forest, K-

nearest Neighbors, Multiple-Label Random Forest, Multiple-label Gradient
Boosting, Support Vector Machines, Neural Networks, and Discriminant

Analysis
Regressions

Simple Linear Regression, Support Vector Machines, and Neural Networks

Classification, Regression, and Clustering
Mixer Module, Graph-Based Algorithm (Graph Neural Network), Generative

Learning

Clustering
K-means clustering, Gaussian Mixture Models,  Fuzzy C-Means, Hidden

Markov Model, Hierarchical etc. 

Self Supervised
Decision Process, Reward Function to Maximize

Learning Through Choices and Errors

Reinforcement Learning
Q-Learning, Deep Q- Network (DQN), Probal Policy Optimization (PPO),

and Trust Region Policy Optimization (TRPO).

Figure 1. An overview of various applications in IEEBs.

Supervised learning involves creating a model based on labeled training data, which
consist of information about the features, to enable predictions on data that are not currently
available or are from the future [32]. This type of learning deals with two main problem
types: classification and regression. In contrast to supervised learning, unsupervised
learning deals with unlabeled or unstructured data. This approach is commonly employed
to cluster data with similar characteristics or to uncover patterns and trends within a
raw dataset. Unsupervised learning primarily involves two techniques: clustering and
association [32]. Semi-supervised learning is a field within ML that focuses on utilizing
both labeled and unlabeled data for conducting specific learning tasks. Mixer modules,
graph-based algorithms (graph neural networks), generative learning, etc., are examples
of semi-supervised algorithms [33]. Self-supervised learning aims to develop a system
that enhances its performance through engagement with the environment. It employs an
agent that strives to maximize its cumulative reward by learning through experimentation.
This entails grasping its present condition’s immediate advantages (reward signal) and
adapting its behaviors to optimize future gains. The system’s actions are assessed based on
reinforcements that gauge the effectiveness of these actions, distinguishing this learning
approach from conventional supervised learning [34].

2.3. Description of Specific ML Algorithms Used in IEEBs

This section will briefly explain some of the most used algorithms for implementing
IEEBs to help the reader understand the rest of the paper. The aim is to provide a general
knowledge of various algorithms rather than to provide a comprehensive discussion
of them.

Among the supervised learning techniques, support vector machines (SVMs) are one
of the most powerful and robust classification and regression algorithms. It is a method
used in ML to sort items into categories. It does this by finding a dividing line (or boundary)
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that best separates different groups of items in a dataset. They are prominently used for
solving binary classification problems, which require the classification of elements in a set
of data into two different groups [35]. In the literature, SVMs are used in IEEBs mainly for
occupancy prediction and energy consumption prediction [36–38]. Additionally, support
vector regression (SVR) utilizes the concepts of support vector machines in the context of
regression tasks. Its objective is to identify a function that stays within a specified margin of
error from the observed values, aiming to minimize the error within a predefined tolerance
while also seeking to maintain a flat shape as much as possible. The utilization of the SVR
algorithm was examined in [39]. It also discusses how it can forecast continuous energy
usage [39].

Two other supervised ML techniques frequently used in the literature for IEEBs’ de-
velopment are decision tree (DT) and the random forest (RF). DT is a tree-based algorithm
that helps make decisions by breaking down a problem into smaller, simpler questions,
leading step by step to the final answer or goal. It is utilized for both classification and
regression tasks. On the other hand, an RF is a group of many DTs that work together to
make better predictions or decisions than just one tree could on its own [40]. In the litera-
ture, DTs have been employed, among other things, for analyzing sensor data (e.g., CO2
levels, temperature, sound, etc.) to perform binary classification, determining occupancy
status [41]. On the contrary, a random forest aggregates predictions from multiple decision
trees, with each tree trained on a subset of sensor data, with the aim of improving accuracy
and robustness in predicting occupancy levels in smart buildings [42].

Naive Bayes serves as a classification algorithm in IEEBs. It determines the likelihood
of each label being assigned to a specific object based on its features [43]. Subsequently,
it selects the label with the highest likelihood. The Naive Bayes approach finds various
uses in the field of IEEBs, including the prediction of electricity consumption [44] and the
enhancement of the comfort for occupants in two non-residential buildings in Norway [45].

The ML technique called artificial neural network (ANN) is generally applied to solve
regression and classification problems [46]. An ANN is like a computer brain that learns
and makes decisions by finding patterns in various types of data. It is made up of digital
“neurons” that are linked together and can be trained to recognize things like images and
sounds or solve complex problem scenarios [47]. In the literature, ANNs are often used to
assess thermal comfort in IEEBs. Forecasting the indoor temperature or air quality provides
advice for maximum savings on indoor energy usage [48,49]. The ANN approach also
enables real-time monitoring. One of the advantages of this method is its capacity to detect
non-linearity between the input and output datasets [50]. The papers [51,52] also discuss
ANN for the building’s energy efficiency.

2.4. Description of Specific DL Algorithms Used in IEEBs

Deep learning (DL) techniques excel at extracting features and learning from large
datasets, which is critical for IEEBs. These methods, which include deep neural networks
(DNNs), recurrent neural networks (RNNs), convolutional neural networks (CNNs), Long
Short-Term Memory (LSTM), gated recurrent unit (GRU), deep reinforcement learning
(DRL) and others, outperform classical ML, allowing for rapid adaptation and efficient
resource utilization for improved sensory and analytic intelligence [48–50].

DNNs share many similarities with neural networks in terms of their structures.
Like ANNs, deep learning networks consist of three types of layers: input, hidden, and
output layers. However, in deep learning networks, there are typically more hidden layers
involved than in ANNs. The depth of the architecture in these networks is determined
by the number of hidden layers, as highlighted in [52]. The complexity of a layer is
determined by the number of hyperparameters, also known as weights, which are utilized
to characterize it [52].

Among the introduced DL techniques, CNNs, which contain three main layer
types—convolutional layers (also called filters), pooling layers, and fully connected
layers—are frequently employed in object/image identification and classification [34].
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The convolutional layer, fundamental to CNNs, performs the majority of computations
during training by using convolutional filters to process input data. It identifies spatial
features by moving the filter across the input, creating a feature map. This hierarchical
structure allows CNNs to efficiently recognize complex patterns and improve classification
and prediction capabilities by analyzing subcomponents at multiple levels [53]. Some
applications of CNNs in IEEBs are presented below. The paper [54] shows how CNNs can
be applied to forecast energy loads for a single-story building using a historical dataset. The
paper in [55] emphasizes the significance of smarter management and planning operations
in renewable energy predictions. Additionally, the paper in [56] introduces a hybrid DL
(DNN and CNN) approach to predict residential energy consumption.

Also, a neural network (NN) with multiple hidden layers is represented by the Multi-
Layer Perceptron (MLP), which is useful for complex data modeling in smart buildings
and was covered in the study of [57].

RNNs are a form of ANNs that find extensive use in tasks involving text processing,
audio or speech recognition, and forecasting sequential data or time series. They are
particularly beneficial in scenarios where retaining previous data is crucial for anticipating
future trends [53,58]. RNNs are extensively used in literature to realize IEEBs. As an
example, the authors of [59] presented an RNN model for examining sequential data in
which they focus on time-series sensors to forecast energy usage patterns and occupancy
trends, thereby enhancing the efficiency of building management. Classical RNNs have
limitations in maintaining long-term temporal memory efficiently. Two specific types of
RNNs are commonly employed to tackle issues related to training and memory retention:
LSTM and GRUs. Typically, LSTM is utilized in various tasks such as data prediction,
processing, and classification, including applications like language translation, speech
recognition, time series forecasting, video analysis, and anomaly detection. The LSTM
has some layers, such as the input gate, the output gate, and the forget gate. These gates
regulate the flow of information, allowing the network to retain important information
over long sequences and discard irrelevant data. Some examples in which LSTM is used for
the realization of IEEBs are reported below. In [52], LSTMs were implemented in 201 case
studies for making predictions on heating and cooling energy. Karijadi et al. in [60]
explored a hybrid approach combining random forest and LSTM to enhance the accuracy
of building energy consumption forecasts. Additionally, Peng et al. in [61] leveraged the
LSTM technique for forecasting monthly energy consumption.

GRUs are a type of recurrent neural network architecture that simplifies the LSTM
model while retaining its ability to capture dependencies in sequence data. GRUs achieve
this through two main gates, the Update Gate and the Reset Gate. The Update Gate in a
GRU acts as a knob to regulate the amount of previously stored data that is retained vs. the
amount of newly acquired information. The Reset Gate works like a filter, determining how
much of the past we should forget. These gates work together to help the GRU select what
to remember and what to forget, allowing it to handle information sequences effectively.
As examples, in the context of IEEBs, the work in [62] proposed the multi-directional GRU
and CNN methods for load and energy forecasting, while the paper [63] discussed energy
consumption prediction strategies based on random forest and CNN-GRU.

Ensemble learning is a ML/DL method where multiple models are combined to
improve the overall performance of the aggregated model [64]. This approach helps
to capture more details from the data and reduce errors. By leveraging the strengths
of different models, ensemble learning creates a more accurate and reliable prediction
system [64,65]. In the context of IEEBs, ensemble learning has been used to predict energy
consumption patterns and optimize HVAC systems [66]. This leads to more efficient
energy usage, reducing waste and costs. Additionally, ensemble learning can help in
predicting equipment maintenance needs, preventing unexpected failures, and ensuring
consistent thermal comfort for occupants [67,68]. Overall, it enables smart buildings to
adapt better to changing conditions, improve sustainability, and maintain a comfortable
indoor environment [64,65]. In the literature, some papers have used ensemble models. For
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example, the paper [69] used SVR and RF algorithms for predicting energy consumption
values in smart buildings. The paper [70] proposes an ensemble learning approach using the
extreme gradient boosting (XGBoost) algorithm to predict building energy loads accurately.
The paper [71] proposes BiGTA-net, which combines bidirectional gated recurrent unit
(Bi-GRU) with Temporal Convolutional Network (TCN) for short-term load forecasting
(STLF) in urban buildings. The authors of [72] used hybrid DL (Auto Regression Integrating
Moving Average and LSTM models) for occupancy prediction.

2.5. Description of Reinforcement Learning Algorithms Used in IEEBs

Reinforcement learning (RL) [73] is a type of ML in which an agent learns to make de-
cisions by interacting with an environment to achieve a goal. The learning process involves
the agent taking actions and receiving feedback in the form of rewards or penalties, which
guide it in learning the best strategy or policy, to accumulate the highest possible reward
over time [73]. Q-learning, deep Q-network (DQN), probal policy optimization (PPO),
and trust region policy optimization (TRPO) are some of the most popular models [73].
RL models are used to design optimal control strategies for IEEBs. As an example, in
the literature, the application of RL for the intelligent control of HVAC systems is shown
in [74–76].

Deep reinforcement learning (DRL) combines deep learning and reinforcement learn-
ing principles to enable agents to learn optimal policies for complex decision-making
tasks. It utilizes deep neural networks to approximate value functions, policies, or models
of the environment, allowing the agent to interpret high-dimensional sensory input and
make informed decisions. DRL extends the capabilities of traditional RL to environments
with rich, complex inputs, making it suitable for applications like robotics, game playing,
autonomous vehicles, and sophisticated control systems [73]. Some existing works on DRL
can be found addressing energy subsystem management in Office [77–80] and home [81].

2.6. Federated and Transfer Learning

In recent years, two prominent techniques that have gained traction in the realm of
IEEBs are Federated Learning (FL) [82] and transfer learning (TL) [83]. FL and TL are
particularly noteworthy for their ability to work alongside existing models, enhancing their
capabilities without necessitating fundamental changes. FL offers a robust data privacy
and security solution by enabling machine learning models’ training locally on devices,
thus avoiding the transfer of sensitive data to a central server. Only models are exchanged
and typically merged in the cloud. This decentralized approach ensures that the personal
information of IEEB inhabitants remains secure on local devices. Similarly, TL facilitates
the transfer of knowledge from one model to another, making it possible to apply learned
features to new tasks, thereby improving efficiency and performance.

3. Survey Strategies: Intelligent Energy-Efficient Buildings

The objective of this study is a review of review papers, namely a “Meta-Survey”, in
the domain of smart buildings realized through the use of ML for reaching energy efficiency,
namely in the domain of IEEBs. We have pursued an informal and individual search to
accomplish our objective. It is important to note that we have specifically sought surveys,
systematic surveys, reviews, or overviews in the considered domain. Consequently, we
conducted a 5-year survey of articles, ranging from 2019 to April 2024, according to the
guidelines of the PRISMA statement [84].

After screening records and selecting reports, we analyzed over 50 works and finally
chose 21 surveys or review papers for our investigation. In particular, attention was drawn
to specific survey articles related to ML, DL, and RL [3–23] with their specific contributions
(such as algorithms or model comparisons) in the smart buildings field and to more general
survey papers outlining definitions, objectives, and roadmaps for IEEB. More details about
the paper selection will be given below.
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3.1. The Goal of the Investigation

In order to compare the selected works to determine the most recent developments in
IEEBs, we raised some research questions that can help readers understand some important
details of the reviewed surveys. In particular, the research questions (RQs) are highlighted
as follows.

RQ1 How is the field related to IEEBs specified or defined?
RQ2 What architectures are most commonly used for IEEBs?
RQ3 Which ML methods are most commonly used in IEEBs?
RQ4 What sort of dataset or real implementation is utilized to realize IEEBs?
RQ5 What are the main challenges and research directions in the field of IEEB?

3.2. Inquiry Search Techniques

All authors conducted a thorough search for references in the digital libraries of
Google Scholar, IEEE Xplore, Elsevier, ACM Digital Library, MDPI, Scopus, and Web of
Science. The paper’s references related to IEEBs were thoroughly searched, and the research
was focused on locating scientific articles that proposed answers (i.e., models, strategies,
approaches, use-cases, and architectures). The phrase “keyword search” was formed using
the concepts regarding smart or intelligent buildings enhanced with machine learning
algorithms to reach energy efficiency or reduce energy consumption.

Starting from this concept, we elaborated and used the following search phrase:

(“Smart Buildings′′ OR “Smart Environments′′ OR

“Sustainable Buildings′′) AND (“Energy E f f iciency′′ OR

“Reducing Energy Cost′′ OR “Energy Optimization′′) AND

(“Machine Learning′′ OR “Deep Learning′′ OR

“Rein f orcement Learning′′ OR “Arti f icial Intelligence′′)

We used the search string to find the appropriate results. The survey inquiry search
techniques or search plan, including database identification, keyword search, and the
selection and rejection of papers in our study, are detailed in Figure 2.
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Figure 2. Detail of our meta-survey search plan.

3.3. Eligibility Criteria

The purpose of this study was to conduct a comprehensive analysis of surveys, reviews,
or systematic reviews of the existing literature in the field of IEEBs. In particular, we
searched for manuscripts in which Intelligent Energy-Efficient Buildings are described and
machine learning is used to realize them.

If an article had one of the following in the screening, it was not included in the selection.
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• Only the title, abstract, or keywords of the article contain the phrases “Machine
Learning” [85,86] or “Energy Efficiency” or “Smart Buildings” [87,88] or one of their
equivalents, but they are absent from the article in the main content.

• The term “ML” or one of its equivalents is either misused or poorly defined.
• The work has already been extended or is a pre-print.

3.4. Survey Preference

We can observe the flowchart of the approach taken to pick the articles in accordance
with the PRISMA guidelines [84] in Figure 3. The search in the digital libraries, using the
search phrase above, provided a total of 121 articles. In order to discard studies not relevant
to our review, we removed the papers due to the following technical criteria, based on (i) the
type of publication, by eliminating materials such as editorials, short papers, posters, theses,
dissertations, brief communications, commentaries, and unpublished works; (ii) articles
partially or entirely not written in English; (iii) papers with text unavailable in full. In these
steps, a total of 71 papers were removed, resulting in 50 publications obtained. In order to
choose the relevant studies for this review, the authors analyzed only the records of each
article, including the title, abstract, and keywords, during the initial screening task. Each
researcher evaluated the title and the abstract according to the eligibility criteria to decide
if that paper should be included in the next screening phase.
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Figure 3. A Prisma-based flowchart of the selection procedure for our meta-survey.

During the second step of our screening process, we focused on the content of the
papers and assessed whether the articles discussed the concept of smart buildings. This
screening helped us shortlist 20 papers that met this criterion while rejecting 30 others that
did not fully address this aspect.
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Moving forward, we shifted our focus to the subsequent screening stage. We had a
more detailed discussion about whether the IEEBs were fulfilled or not. This thorough
evaluation resulted in the identification of 14 papers that not only addressed the broader
concept of smart buildings but also provided significant insights into energy efficiency
using ML techniques. Through this systematic screening and identification process, we’ve
refined our selection to 14 papers that offer comprehensive perspectives on ML and its
relationship with energy efficiency, specifically within the context of IEEB applications.

In the end, each author individually checked the chosen databases again, and seven
more papers to be incorporated into our research went out, which met all the criteria for
inclusion. The total number of papers included in our study is therefore 21.

Numerous papers were excluded during the screening phase as they merely referenced
ML as a buzzword term in the title or abstract without integrating it as a core component
in the research. In addition, papers written in languages other than English, short articles,
and ongoing projects were excluded.

4. Literature Review: Intelligent Energy-Efficient Buildings

This section analyzes, first of all, the papers selected for this meta-survey. Then, it
discusses the research questions introduced in Section 3.1. In particular, we will give
answers to all of them one by one.

4.1. Overview of the Selected Surveys

All the selected survey papers taken into account for this meta-survey are summarized
in Table 1, where, for each work, we also highlight (i) the year of publication, (ii) the citations
on Scopus, (iii) the technologies used, (iv) if it uses the Prisma methodology, (v) the objective
of the survey, (vi) the use cases used in the reviewed work, and (vii) some remarks.

In more detail, the paper in [3] compares and discusses several experiments involving
ML and DL models applied to IEEBs. The study focuses on maintaining occupant comfort,
health, and safety within IEEBs. Commonly used models are analyzed, including kernel-
based methods such as SVM and PCA, as well as neural networks like feed-forward
networks, autoregressive models, and LSTM networks. However, this work does not
address data security considerations during the model training phase.

The survey paper in [8] compares various ML algorithms used for controlling lighting
in buildings since 2014. It discusses classical learning methods, RL, and ensemble learning
approaches. The paper provides a review of smart lighting applications within IEEBs.
However, the focus on smart lighting alone can be somewhat limiting.

The paper in [5] reviews ML models, specifically supervised models, for daylighting
design and control. It highlights advanced ML methods to improve daylight modeling
and proposes solutions to address scalability and generalization issues in ML models. The
authors emphasize the importance of optimizing daylighting performance in building
design, focusing exclusively on ML, particularly ANNs, for daylighting optimization. They
suggest that incorporating more features could lead to a deeper analysis and a better
general understanding.

The paper in [4] reviews the role of ML and IoT technologies in enhancing smart
buildings for energy efficiency. It discusses how IoT devices improve human security,
monitoring, and control operations. The paper covers various algorithms, including
regression models for predicting the electrical load in commercial buildings and genetic
algorithms for optimizing energy consumption and predicting user comfort. However, it
does not specifically identify which ML algorithms are most effective for IEEBs.
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Table 1. Details about the selected paper list.

Title Year Citations * Technology Used in
the Reviewed Papers Prisma Objective of the Review Use Cases

Highlighted Comments/Remark

1. Machine Learning for Smart
and Energy-Efficient Buildings [3] 2022 10 ML No

Comparison of several
works involving IEEBs for

maintaining occupant
comfort, health, and safety.

Smart Home

Several experiments are
compared and discussed, but no
discussion is presented on the

data security during
model training.

2. Machine learning methods in
smart lighting towards achieving

user comfort [8]
2022 44 ML No

Comparison of the ML
algorithms used to control
the lighting in buildings.

Smart Home

This paper reviews smart
lighting applications in IEEBs.

However, focusing only on
smart lighting can be limiting.

3. A review on the current usage
of machine learning tools for

daylighting design and control [5]
2022 19 ML (Supervised) No

Comparison of works
optimizing daylighting for
reaching Energy Efficiency.

Smart Building
The paper exclusively focuses
on ML (particularly ANNs) in

daylighting optimization.

4. The role of machine learning
and the internet of things in smart
buildings for energy efficiency [4]

2022 29 ML No

Exploring ML methods with
IoT technologies to enhance

the effectiveness of smart
buildings for

energy efficiency.

Smart Building

The paper discusses various
perspectives on IEEB and IoT.
However, the paper did not

specifically mention which ML
algorithms technologies are

most effective for IEEBs.

5. A review of deep reinforcement
learning for smart building

energy management [9]
2021 141 DRL No

Comparison of papers that
used DRL for

energy management.
Various Buildings

The work reviews DRL
algorithms applied to energy

management in Smart Buildings.
However, the review misses

papers introducing long
learning time for DRL agents.

6. A review of reinforcement
learning for autonomous building

energy management [10]
2019 169 RL No

Analysis of works that
employed RL for

energy management.
Various Buildings

The paper mainly reviews
studies on simulated building
energy management with RL,

emphasizing the need for
precise simulators and

realistic data.
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Table 1. Cont.

Title Year Citations * Technology Used in
the Reviewed Papers Prisma Objective of the Review Use Cases

Highlighted Comments/Remark

7. Reinforcement learning in
sustainable energy and electric

systems: a survey [11]
2020 148 RL Yes

Overview of RL in
sustainable energy systems,

and discussion of
applications, future

challenges,
and opportunities.

Smart Building

The paper acknowledges the
potential of RL in sustainable

energy. The paper also
highlights its limited

practical implementation.

8. Machine learning and deep
learning in energy systems: A

review [12]
2022 80 ML/DL No

Review of work on energy
efficiency, management

and analysis.
Smart Buildings

The paper studies the methods
and applications of ML and DL
in energy systems. However, the
authors do not cover how these
systems work when things are

uncertain (outcomes or
conditions are not known

or predictable).

9. A Review on Deep Learning
Techniques for IoT Data [13] 2022 87 DL Yes

Analysis of articles in which
DL is used for IoT
data processing.

Various Buildings

The article provides valuable
perspectives on utilizing DL for
handling IoT data, but it does

not discuss the
research limitations.

10. Federated learning for smart
cities: A comprehensive

survey [14]
2023 54 ML/DL (FL) No

Analysis of works using ML,
DL, and FL in Smart
Cities applications.

Smart Cities
and Buildings

The paper reviews works
regarding FL integration with
smart city/grid/healthcare/

governance/disaster
management/industries

monitoring, that also consider
energy efficiency. It lacks a
detailed discussion on FL
challenges in smart cities,
including scalability, data

complexity, and heterogeneity.
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Table 1. Cont.

Title Year Citations * Technology Used in
the Reviewed Papers Prisma Objective of the Review Use Cases

Highlighted Comments/Remark

11. A Review of Federated
Learning in Energy Systems [15] 2021 16 ML/DL (FL) No

Review of works using ML,
DL, and FL in various fields

for energy efficiency.
Various Buildings

This article discusses energy
demand response, identification,

prediction, and optimizations.
However, the authors do not

discuss potential drawbacks or
risks associated with FL in

energy systems.

12. Forecasting energy use in
buildings using artificial neural

networks: A review [7]
2019 199 ANN No

Analysis of works about the
forecasting of energy spent

in buildings by using ANNs.
Smart Building

The paper highlights the
importance of ANNs in energy

forecasting. However, it
acknowledges the limitations of

the works in literature in
adapting to seasonal variations
and extrapolating beyond the

range of the trained data.

13. Application of machine
learning in thermal comfort

studies: A review of methods,
performance and challenges [16]

2022 64 ML No

Review and comparison of
works focused on energy

efficiency and
thermal comfort.

Smart Building

In the IEEB domain, authors
considered thermal comfort and
energy efficiency. However, the

authors do not provide a
comprehensive comparison of

different ML algorithms.

14. Review of occupant-centric
thermal comfort sensing,

predicting and controlling [6]
2020 97 ML No

Review and comparison of
works focused on energy

efficiency and
thermal comfort.

Smart Building

The research investigates
data-driven approaches to

enhance thermal comfort and
energy efficiency. Yet, this study

does not provide in-depth
information on control strategies

and the efficacy of
non-invasive sensors.
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Table 1. Cont.

Title Year Citations * Technology Used in
the Reviewed Papers Prisma Objective of the Review Use Cases

Highlighted Comments/Remark

15. A review of the applications of
artificial intelligence and big data
to buildings for energy-efficiency
and a comfortable indoor living

environment [17]

2019 117 AI, ML and DL No Review on AI and Big data
applications for IEEBs. Smart Building

This work analyzes AI
techniques to design

energy-efficient buildings.
However, this paper suggests

exploring data mining and
optimal weather data for better

energy efficiency.

16. An overview of machine
learning applications for smart

buildings [18]
2021 141 ML No Focuses on energy

management in IEEBs. Smart Building

The paper provides an overview
of IEEBs focusing on the
learning ability from a

system-level perspective. There
is a lack of discussion on

implementing autonomous AI
agents and training

environments in real-world
building scenarios.

17. Artificial intelligence evolution
in smart buildings for energy

efficiency [19]
2021 79 AI and ML No

AI technologies applied to
IEEBs with a focus on
Building Management
Systems and demand
response programs.

Smart Building

The study explores the latest
advancements in AI-based
modeling techniques for

predicting building energy
consumption, encompassing

various areas like energy
efficiency, occupant comfort,

architectural design, and facility
upkeep. However, it does not

delve into aspects such as
security, analysis of occupant

behavior, or
predictive maintenance.
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Table 1. Cont.

Title Year Citations * Technology Used in
the Reviewed Papers Prisma Objective of the Review Use Cases

Highlighted Comments/Remark

18. Intelligent deep learning
techniques for energy

consumption forecasting in smart
buildings: a review [21]

2024 0 ML and DL No

Review of forecasting
methodologies for energy

consumption in
smart buildings.

Smart Building

This study examines the dataset,
types of load, prediction,

precision, and assessment
criteria in IEEBs. For additional
exploration, hybrid models that

merge various DL structures
could enhance accuracy with

extensive datasets.

19. Digital twin technology for
thermal comfort and energy

efficiency in buildings: A
state-of-the-art and future

directions [20]

2023 07 ML and
Digital Twins No

Review of digital twin
technology for thermal

comfort and energy
management in smart
buildings by using DL.

Smart Building

Digital twins can help occupants,
increase human-centered

solutions, and boost energy
prediction levels. However, the

paper does not cover the
challenges and benefits of digital
twins in IEEBs that take care of

thermal comfort.

20. A review of building digital
twins to improve energy efficiency

in the building operational
stage [22]

2024 0 ML and
Digital Twins No

It focuses on digital twins for
energy efficiency operations

in buildings.
Various Building

The paper examines the use of
digital twin technology in IEEBs

for building operations. It
outlines five primary

applications, which include
monitoring components,
detecting anomalies, and

optimizing operations.
However, a significant obstacle

lies in effectively integrating
data acquisition systems with

Building Management Systems.
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Table 1. Cont.

Title Year Citations * Technology Used in
the Reviewed Papers Prisma Objective of the Review Use Cases

Highlighted Comments/Remark

21. Machine Learning
Applications for Smart Building

Energy Utilization: A Survey [23]
2024 0 ML No

Systematic review of
applications and ML

methods for optimizing
energy utilization.

Smart Building

The paper offers a unique
classification system (taxonomy)
for energy applications in IEEBs.
It proposes further research in

decentralized, diverse real
building structures, but it does

not discuss the potential
challenges involved in

this endeavor.

* The Citation Number Has Been Taken from Scopus and Updated on 28 March 2024.
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The papers [9–11] discuss various agent-based RL methods in IEEBs. The paper in [9]
focuses on DRL for smart building energy subsystems such as HVAC and reviews DRL
methods for residential and commercial building energy systems. While it provides an
excellent overview of DRL algorithms applied to energy management in smart buildings, it
fails to address the long learning times required for DRL agents. Mason et al. [10] explore
the application of RL models, such as actor–critic learning, DQN, and A3C, for HVAC,
water heater, and lighting control. The paper emphasizes how RL can learn the best control
policies to minimize energy consumption effectively. It also discusses factors that increase
complexity in applying RL to building energy management, mainly reviewing studies on
simulated building energy management with RL and highlighting the need for precise sim-
ulators and realistic data. In [9], the authors focus on RL applications in sustainable energy
and electric systems, along with smart buildings. The paper acknowledges the potential of
RL in sustainable energy while also pointing out its limited practical implementation.

The paper [12] provides a detailed study of ML and DL applications in energy systems,
covering common uses such as optimization, forecasting, and fault detection. It examines
the methods and applications of ML and DL in energy systems. However, the authors do
not address how these systems perform under uncertainty, where outcomes or conditions
are unpredictable.

The paper [13] reviews DNN architectures and DL algorithms in IoT applications,
along with their challenges in IEEBs. It also explains LSTM data storage, error reduction,
and BPTT training for various IoT data. While the paper provides valuable insights into
using DL for handling IoT data, it does not discuss the research limitations.

The papers [14,15] discuss FL approaches in various applications with a focus on
privacy concerns. More specifically, the paper [14] highlights the importance of FL for
smart cities and smart buildings in various applications, showcasing smart city projects
that integrate FL for transportation, healthcare, and more. It reviews FL integration with
smart city grids, healthcare, governance, disaster management, and industry monitoring,
also considering energy efficiency. However, it lacks a detailed discussion of FL challenges
in smart cities, including scalability, data complexity, and heterogeneity. The paper in [15]
provides an overview of the FL paradigm, and global model generation methods in energy
systems and discusses challenges, opportunities, and limitations. It covers energy demand
response, identification, prediction, and optimization. However, the authors do not address
the potential drawbacks or risks associated with FL in energy systems.

The paper [7] reviews the use of ANNs for building energy forecasting since 2000. It
identifies research gaps and future directions in ANNs for energy forecasting and provides
heuristics for selecting ANN architecture parameters. The paper highlights the importance
of ANNs in energy forecasting but acknowledges the limitations in the literature regarding
adaptation to seasonal variations and extrapolation beyond the range of the trained data.

The paper [16] provides an overview of ML algorithms, including supervised learning,
unsupervised learning (such as SVM, ANN, KNN, and RNN, RL), and RL in thermal
comfort studies for IEEBs. It explores the high prediction accuracy of personal comfort
models using ML and recommends further investigation into personal comfort models
and sample sizes. In the IEEB domain, the authors consider both thermal comfort and
energy efficiency. However, they do not provide a comprehensive comparison of different
ML algorithms.

The paper [17] discusses applications of AI and big data for energy-efficient buildings,
highlighting how these technologies enhance energy efficiency and cost-effectiveness in
smart buildings. It also examines how AI and big data improve indoor environment quality
in both commercial and residential buildings. The paper analyzes various AI techniques
for designing energy-efficient buildings and suggests further exploration of data mining
and optimal weather data for achieving better energy efficiency.

The works [18,19] review papers about IEEBs in which the thermal comfort is also
taken into consideration. In particular, the paper [18] explores an overview of autonomous
ML applications for building energy management. It discusses autonomous AI agents and
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offers an overview of IEEBs from a system-level perspective. However, it lacks a discussion
on implementing autonomous AI agents and training environments in real-world building
scenarios. The paper in [19] reviews recent work on smart buildings using AI for energy
efficiency through sensors and big data. It highlights how AI technologies reduce energy
consumption and improve control, reliability, and automation. It also discusses open
challenges and future research directions for AI in buildings. The study explores the
latest advancements in AI-based modeling techniques for predicting building energy
consumption, covering areas such as energy efficiency, occupant comfort, architectural
design, and facility upkeep. However, it does not delve into security, analysis of occupant
behavior, or predictive maintenance.

The paper [21] reviews ML and DL models for forecasting in IEEBs. It identifies
research gaps and suitable prediction methodologies to address current issues. The pa-
per explores contributions and inferences from previous research in energy forecasting,
examining datasets, types of loads, prediction accuracy, and assessment criteria in IEEBs.
For further exploration, the study suggests that hybrid models combining various DL
structures could enhance accuracy with extensive datasets.

The papers [20,22] review recent work on IEEBs, including the digital twins paradigm.
The paper [20] reviews digital twin technology for thermal comfort in IEEBs. It focuses
on methods, technologies, algorithms, and approaches in digital twins. This work also
emphasizes limitations such as sensor adoption, occupant perception, and algorithm
comparison. Digital twins can help occupants, increase human-centered solutions, and
boost energy-prediction levels. However, the paper does not cover the challenges and
benefits of digital twins in IEEBs concerning thermal comfort. The paper [22] identifies
the main applications of digital twins in IEEBs. It highlights challenges like reliance
on Building Information Modeling and emphasizes future research directions for digital
twin development. The paper examines the use of digital twin technology in IEEBs for
building operations, outlining five primary applications, including monitoring components,
detecting anomalies, and optimizing operations. However, a significant obstacle lies in
effectively integrating data acquisition systems with Building Management Systems.

Finally, the paper [23] presents a systematic review of applications and ML methods
for optimized energy utilization. It provides a detailed analysis of solutions and techniques
for electric grids, maintenance, and security. The paper offers a unique classification system
(taxonomy) for energy applications in IEEBs. It proposes further research in decentralized,
diverse real building structures but does not discuss the potential challenges involved in
this endeavor.

4.2. Research Question 1

Referring to RQ1, in the field of IEEB, there is no common definition due to the
research focus on individual aspects. The field of IEEB is complex and constantly evolving,
which makes it difficult to establish a consensus on a universal definition. This is because
stakeholders and research scientists have different perspectives on what constitutes an
IEEB based on their specific objectives and technologies. The following are some ways we
could define IEEBs.

According to the review works in [9–11,18,23], we could identify IEEBs as the smart
buildings in which some energy management techniques are applied. These IEEBs en-
compass the application of ML models to optimize building energy consumption and
enhance energy efficiency. It involves leveraging data from various IEEB systems, such as
HVAC, lighting, and occupancy sensors, to develop predictive models and make informed
decisions about energy usage.

According to the surveys in [8,11,12], we may define an IEEB as a machine-learning-
driven smart building capable of making specific actions on the environment. In particular,
an IEEB can control and automate HVAC and lighting (day and night) based on occupancy,
weather conditions, and energy consumption patterns. It can also collect and analyze data
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from various sensors, such as accelerometers, temperature, and current consumption, to
identify anomalies that may indicate potential equipment issues.

Moreover, as reported in [6,16,20], thermal comfort is essential for IEEB indoor envi-
ronmental quality, significantly affecting human well-being, productivity, and health. It
involves creating a satisfying indoor climate, considering factors such as air temperature,
humidity, air movement, and radiant temperature. Much of the literature tries to consider
thermal comfort by focusing on the energy efficiency of buildings. Researchers try to
achieve these two aims by integrating ML into their works. This involves the use of algo-
rithms to analyze sensor data, user preferences, and environmental factors. This analysis
enables predictive modeling of occupant thermal comfort, allowing, for example, proactive
adjustments to HVAC systems to maintain comfort and prevent overuse. Additionally,
ML optimizes HVAC operations by learning energy consumption patterns and occupancy
schedules, leading to more efficient energy use and reduced costs.

In addition, the studies [20,22] describe a collaborative method in which ML algorithms
utilize information from different sensors in a building to instantly forecast and enhance
energy usage and thermal comfort levels. Concurrently, a digital twin functions as a digital
copy of the building, mimicking its physical and operational attributes. This allows for
analyzing, visualizing, and testing energy efficiency measures and comfort strategies in a
virtual environment before implementing them in the real world, leading to more informed
decision-making and improved building performance.

Last but not least, several works in the literature consider predictive maintenance
in IEEBs [12,13,15]. This is achieved by using ML to analyze sensor data and predict
equipment failures. This technique enables proactive maintenance scheduling, reducing
unexpected downtime and maintenance costs, and enhancing IEEB systems’ overall relia-
bility and efficiency. By leveraging data-driven insights, traditional maintenance practices
can be transformed into more efficient, cost-effective, and reliable processes.

4.3. Research Question 2

Referring to RQ2, in this section, we will discuss the various architectures used in the
literature for the implementation of IEEBs. In this context, architectures typically involve
edge [89], fog [90], cloud [91], and distributed computing [92], with each playing a distinct
role in the overall system. In the review in [8], for example, cloud computing offers several
advantages for smart lighting. Also, the papers [19–21] discuss cloud computing in their
study. However, cloud computing can introduce some limitations, such as delay and
privacy. The concept of fog computing is applicable to overcoming these limitations [8,9]
by keeping data closer to the producers. In several scenarios, edge computing architecture
enables data processing at the data collection site, like within the building, rather than being
sent to the cloud for processing [93]. This approach is particularly useful for real-time data
processing and immediate actions, such as adjusting HVAC systems or lighting based on
current conditions [9,13]. Edge computing reduces the latency in decision-making, thereby
minimizing the need for continuous data transmission to the cloud, saving bandwidth, and
reducing response times. It is ideal for applications that require quick, localized decisions
and for situations where continuous cloud connectivity might not be guaranteed [9,13].

As another architecture, distributed computing [14] is a model that uses computing
resources across different locations, including edge devices, local servers, and the cloud.
This approach creates a more robust system that can continue processing even if a segment
of the network fails unexpectedly.

According to the reviewed work, in the context of IEEBs, architecture discussions
mainly revolve around edge and cloud computing [8,19–21,93] . These two architectures
play a critical role in managing the enormous amount of data and complex processing
requirements of interconnected devices, systems, and services that are inherent in IEEB
environments. In Table 2, we report the architectures that have been predominantly used
in the works reviewed by the surveys we have analyzed in this meta-survey. Moreover, the
table shows the pros and cons of each architecture type.
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Table 2. The Architectures most commonly used for IEEB implementation.

Architecture Pros Cons

Edge Minimal latency,
real-time control

Limited
computational resources

Fog Localized handling,
reduced latency

Limited scalability
compared to cloud computing

Cloud Scalable, robust
computing resources

High latency,
data transfer expenses

Hybrid Low latency for latency-sensitive
tasks, access to cloud resources

Needs more complex
management and orchestration

Distributed Scalable,
high performance

Can be complex
to maintain and deploy

4.4. Research Question 3

Regarding RQ3, various ML techniques have been employed in IEEBs. The analyzed
review papers highlight that the most common ML methods used for IEEB are the ones
reported in the following. In particular, SVM has proven to be effective in energy efficiency
applications [37]. In fact, it performs very well in predicting future energy consumption
patterns and identifying abnormal energy usage by using historical energy data and
associated parameters, enabling proactive energy management strategies [3,21]. DT and
RF [19] are also popular ML methods that are frequently used in IEEBs. DT delivers a
rule-based framework to classify and predict occupant behavior, allowing for personalized
energy management techniques. RF, which consists of multiple DTs, offers improved
accuracy and robustness in energy-related predictions [3,19,21]. ANNs have also gained
significant traction in the optimization of energy efficiency in buildings. According to
the literature, they are particularly useful in projects like load forecasting [21], energy
optimization [23], and adaptive control [18], as they excel in modeling complex nonlinear
relationships. By training ANNs with collected energy data and taking into account outside
factors, such as weather conditions, these models can forecast future energy demand and
optimize energy use according to [5,17,19,23]. Clustering algorithms are frequently used
to recognize patterns in energy use and classify households according to their energy
consumption profiles. By identifying particular groups of users with comparable energy
usage patterns and customizing interventions accordingly, these algorithms enable targeted
energy management strategies [4].

In general, ML techniques such as SVM, DT, RF, ANNs, and clustering algorithms
have demonstrated significant promise for improving energy efficiency in buildings. These
techniques allow IEEBs to achieve data-driven decision-making, adaptive energy man-
agement, and personalized control strategies, leading to significant energy savings and
increased sustainability.

Various papers have explored the use of DL models in IEEBs. Specifically, the review
articles [12–15,17,21] highlight the use of DL methods (ANN, DNN, Deep Belief Network
(DBN), RNN, CNN, LSTM, GRU, and hybrid models) in IEEBs. The paper [21] discussed all
popular DL algorithms (ANN, DNN, DBN, RNN, CNN, LSTM, and GRU) for forecasting
energy consumption in smart buildings. Furthermore, this paper analyzes the dataset,
load types, prediction accuracy, and evaluation of various metrics. The review paper [17]
emphasizes the potential of combining AI with big data to significantly boost IEEBs and
ensure a comfortable indoor living environment using DL models such as NN, ANN, RNN,
DBN, and so on. The paper [13] has given importance to DL (RNN, CNN, LSTM, GRU,
DBN, auto-encoder, transformer, and many more) models to improve IoT applications
from various perspectives in IEEBs. The paper [12] provides a comprehensive study on the
methods and applications of ML and DL in energy systems, highlighting their importance
in addressing the increasing energy demand in various energy systems. The papers [14,15]
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explore the DL models combined with the Federated Learning approach to limit privacy
issues in many areas, such as smart cities, smart buildings, and diverse energy systems.

Other promising strategies for energy management in IEEBs regard RL and DRL
techniques. DRL enables IEEBs to autonomously learn the best control policies by focusing
on DNN with RL methods. DRL models can dynamically adapt energy usage patterns to
minimize consumption while ensuring occupant comfort through ongoing feedback and
rewards based on energy efficiency objectives [9,18,23]. Several DRL models have been used
for a variety of energy management tasks in IEEBs, including Deep Q-Networks (DQN),
Proximal Policy Optimization (PPO), Double DQN, Dueling DQN, Trust Region Policy
Optimization (TRPO), and Deep Deterministic Policy Gradient (DDPG). demand response
optimization, HVAC control, energy load forecasting, and building energy scheduling
[9–11,18,21,23].

Mason and Grijalva in [10] focus solely on RL techniques, particularly for autonomous
building energy management, emphasizing the use of RL algorithms like Q-learning and
SARSA to optimize energy consumption through intelligent control and decision-making.
Yang et al. [11] showcases a survey on RL applications in sustainable energy and electric sys-
tems, including IEEBs, emphasizing RL’s use for load control, efficient HVAC systems, and
renewable energy integration. Forootan et al. [12] provide a review of ML and DL in energy
systems, including RL, discussing its application in energy management and optimization
goals such as load scheduling and demand response. These papers demonstrate how RL
or RL-based models can be used to maximize energy savings, enhance energy efficiency,
and enable intelligent decision-making in various aspects of IEEB energy management. RL
allows IEEBs to learn optimal control policies, adapt to changing conditions, and optimize
energy usage in real time, resulting in improved energy efficiency and reduced energy costs.

In today’s world, the pursuit of IEEBs has driven the creative merging of ML and digi-
tal twin technologies [20,22]. Smart buildings, which are equipped with these sophisticated
tools, signify a notable advancement in the management and enhancement of living and
working spaces. In the context of smart buildings, digital twin technology offers a dynamic
virtual representation of the physical building, enabling real-time monitoring, simulation,
and predictive analysis. This collaboration between ML and digital twins sets the stage
for unparalleled levels of control and effectiveness, leading to a substantial decrease in
energy consumption and an enhancement in occupant comfort. The papers [20,22] seek to
investigate the methodologies utilized in leveraging these technologies to develop smarter,
more efficient, and more comfortable buildings.

In the last few years, other common techniques used for IEEBs regard decentralized
approaches such as FL [82] and TL [83]. FL and TL offer a data privacy and security
solution, as they enable training ML models without transferring sensed data to a central
server. By only sharing the models computed at the edge, such techniques are becoming
increasingly popular in the context of the IEEBs [14]. Regarding this, the authors of [14]
and [15] discussed how FL plays a vital role in energy efficiency and data privacy. In
particular, in these papers, the authors discussed communication efficiency, data security,
data partitioning, non-identical distribution problems, learning efficiency, multitasking
learning, and personalized learning. In terms of robustness, FL is decentralized, so it is
more resistant to attacks and system failures.

4.5. Research Question 4

Referring to RQ4, in the context of IEEBs, various types of datasets have been used
to develop and train predictive models. These datasets commonly include information
about building operations, energy usage, environmental conditions, and other relevant
parameters. Below, we will first discuss the datasets used in the literature and, later,
introduce some real-world experimentations from the reviewed work.

The survey in [9] is focused on papers considering datasets that include records of
the building’s historical energy consumption, providing information about its electricity,
heating, cooling, and lighting usage. These data are crucial for training models to recognize
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patterns and correlations in energy usage. The work in [21] highlights the importance of
a dataset based on smart meter data. Smart meters collect data at intervals of seconds,
minutes, or hours and can help to analyze usage patterns and trends. In some works [94,95],
researchers and analysts also use publicly available smart meter datasets to develop and test
energy consumption forecasting models, identify anomalies [96], and create smart building
and energy management applications. Other reviews [7,10,23] devote their attention to
datasets comprehending a plethora of sensor data gathered in IEEBs equipped with various
sensors that measure parameters such as temperature, humidity, occupancy, light levels,
and more. The papers [3,6,13,16] acknowledge the challenge of class imbalance in thermal
comfort datasets, where there is an unequal distribution of data among different thermal
preference classes. Some works also focus on weather data [97] since these data can
heavily impact the IEEBs. To create models that adjust building operations in response to
environmental conditions, weather data, including temperature, humidity, solar radiation,
and wind speed, are frequently integrated [98]. Also, occupancy data [99], knowing when
and where occupants are present in the building, helps optimize heating, cooling, and
lighting systems. Occupancy data can come from sensors, badge swipes, Wi-Fi networks,
UWB radars, and so on. Moreover, information about a building structure, insulation,
windows, HVAC systems, and other components is sometimes used to create a holistic
understanding of the IEEB’s energy dynamics [36].

In the reviewed works, several real-world experiments [9–11,18,21,23] involving IEEBs
were conducted and were shown to validate the effectiveness of the proposed approaches.
Several of them deploy various sensors throughout an IEEB to monitor parameters such as
occupancy, temperature, lighting levels, and HVAC operation [75] with the aim, among
others, of predicting occupancy patterns, adjusting HVAC settings based on real-time
occupancy, optimizing lighting schedules, and so on. All the experiments demonstrated
substantial reductions in energy consumption while maintaining occupant thermal comfort.

Regarding adaptive thermal comfort, ML algorithms have been used to learn the
comfort preferences of building occupants and adjust HVAC settings accordingly [6,16,100].
This approach helps prevent excessive heating or cooling, leading to energy savings. Several
aspects regarding comfort within IEEBs are discussed in [101,102]. Also, the works in [6,16]
take into consideration occupant behavior and analyze solutions for having personalized
energy conservation tips, which can help foster energy-conscious habits among occupants.
Again, regarding the pursuit of comfort, adaptive ventilation control is a key element in
IEEBs. In the literature, ML is used to analyze real-time indoor air quality and adjust
ventilation rates dynamically based on occupancy [103], pollutant levels, and outdoor air
conditions. This ensures optimal indoor air quality while minimizing unnecessary energy
use [11]. Regarding visual comfort, smart lighting control is also frequently considered
in IEEBs. By adjusting brightness and turning lights on and off based on occupancy and
ambient lighting levels, comfort has been reached, together with energy optimization [5,8].

Other experiments often documented in the reviewed works focused on anomaly
detection using historical sensor data to identify irregular energy consumption patterns
indicative of equipment malfunction or inefficiency [104,105]. By training ML models to
recognize these anomalies, maintenance teams could proactively address specific issues by
also reaching energy efficiency and reducing downtime. All these experiments collectively
underline the potential of ML in IEEBs to achieve significant energy savings, operational
enhancements, and sustainability goals [76,106,107]. Regarding predictive maintenance, the
works in [10,11] show how electric appliances, such as boilers, refrigerators, and pumps,
can have their performance continuously monitored by ML models relying on sensor
data and previous maintenance logs. These models can predict when equipment may
break down or require maintenance. With prompt maintenance, equipment efficiency is
improved, energy waste is reduced, and unexpected breakdowns can be avoided [10,11].

The reviewed works also describe applications regarding appliance scheduling. In
particular, the papers in [10,11] describe how smart appliances are integrated to use energy
during off-peak hours, taking advantage of lower energy costs [108]. This task is closely
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related to renewable energy generation prediction using weather forecasts and historical
data [7]. Such prediction helps optimize the use of renewable energy sources and supply
electricity when conditions are favorable. Also, ML can be used for the demand response
market [109] by analyzing energy demand patterns and identifying peak demand times.
By participating in demand response programs, IEEBs can reduce costs during peak hours
[10,75]. Finally, in the reviewed work, several efforts have been made in the IEEB context
to use FL to reduce costs in the training phases of ML models by collaboratively calculating
the ML model itself in energy-constrained devices [14,15].

4.6. Research Question 5

Regarding RQ5, below, we discuss the challenges and research directions in the context
of IEEBs.

Data Collection and Big Data Handling [3,8,12,17,19,23] is one of the biggest challenges
for IEEBs. Sensing technologies generate large amounts of personal data in these environ-
ments, requiring efficient pre-processing and long-term storage methods. Current research
efforts also address the challenges and opportunities relating to handling the streaming
of personal big data in IEEBs, including storage and processing using high-performance
platforms and stream processing tools [110–112]. Moreover, new research is presenting
frameworks providing flexibility to accommodate different data sources and the integration
of ontologies with the data sets, enabling data fusion techniques and a higher degree of
flexibility for data manipulation [113].

Another relevant challenge regards the ML Model Selection [6,7,13,18,21] for realizing
IEEBs. The right model to be used should be chosen based on the goals of the specific
study, with white-box models (e.g., NB, DT, and KNN), which provide explicit expressions
that, anyway, may not capture all the subjective elements, or black-box models (e.g., SVM,
ANN, and ensemble learning), which are suitable for complex situations but are difficult to
comprehend and time-consuming. Additionally, the right ML model should be evaluated
based on its predictive ability, complexity, and computational cost for practical applications
in specific places [3–23].

Sometimes, the right ML model has to be chosen based on contrasting goals. An
example is the balancing of energy efficiency and occupant thermal comfort [6,16,20]. In
this case, the pursuit of energy savings often involves adjusting heating, cooling, and
lighting systems to minimize energy consumption. However, these adjustments must
not compromise the well-being of the building occupants. Creating sophisticated models
that consider both environmental parameters and human factors is necessary to achieve a
balance between energy efficiency and thermal comfort. The algorithms actually used in
the literature for this aim include RL, DRL [74,114], and other ML/DL models [115–117].
Lastly, in the literature, some researchers are trying to propose solutions in which ML
models are selected among a set of ML models based on some parameters [118].

In IEEB, Real-time Responsiveness [9,10,12] can be another important challenge due to
the fact that some controls and actuation, especially regarding safety and security [9,14],
need to be processed in real time or nearly real time. Achieving real-time responsiveness
requires algorithms that can process data quickly and make prompt decisions while also
integrating advanced ML methodologies and efficient computational architectures. In
the current literature, this type of responsiveness is obtained by processing data at the
edge, close to the point at which data are produced [14,119]. It involves deploying fast
algorithms directly within the building’s infrastructure. Also, using lightweight/tiny ML
models ensures quick processing without sacrificing accuracy. Techniques like FL, where
models learn on-site and share only necessary information centrally, maintain privacy
and speed up response times. Finally, using specialized processors for AI tasks boosts
speed further. By combining these methods—edge computing, lightweight models, and
optimized hardware—IEEB systems can achieve fast, effective responses for managing
energy efficiently while keeping buildings safe and secure [120,121].
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In the field of IEEBs, researchers are trying to pursue the realization of digital twins
of such buildings or, at least, of some systems within them [20,22,122]. This is a very
challenging task due to the complexity of the actual buildings and the limited information
available for some of them (typically part of Building Information Modeling [20]). A digital
twin of an IEEB can allow designers and operators to emulate politics and algorithms
within a building without using the real one for experimentation. This can speed up the
deployment of already tested intelligent systems without spending time testing them in
real environments. In fact, researchers are developing digital twins for IEEBs by integrating
data from sources like Building Information Modeling and real-time sensors. They use
advanced modeling techniques and ML to predict building behavior, optimize energy
usage, and enable the real-time monitoring and adjustment of building operations [123].
Robust cybersecurity measures ensure data integrity for confident decision-making in
building management and optimization, aiming to accelerate smart building technology
deployment while minimizing costs and risks [123,124].

In the realm of IEEBs, ML models have shown great promise in enhancing energy
efficiency. However, a significant challenge remains: the effective management of the
uncertainties associated with external factors such as weather fluctuations or the variation in
the occupants’ behaviors. Addressing these uncertainties is crucial for the development
of robust and adaptive energy management strategies. Therefore, several works in the
literature focus on exploring and devising methods that can anticipate and mitigate these
variables, thereby ensuring the reliability and effectiveness of energy management in
IEEBs under a range of unpredictable conditions. This approach will not only improve
the resilience of energy systems but also maximize their efficiency and adaptability in
real-world environments [6,16,18,20,21,23].

Many ML algorithms require a significant amount of data to be trained effectively.
However, this can be a challenge for new smart buildings with limited historical data.
Researchers are exploring ways to make ML models available for new smart buildings
by using transfer learning [18] to address this issue. This involves transferring knowledge
from one task to another. While some previous works have attempted to apply transfer
learning [18], they have mainly focused on simple scenarios where the similarity gap
between source and target smart buildings is small. When the similarity gap is large,
such as when the state and action spaces differ significantly between two smart buildings,
designing an efficient intertask mapping function and selecting the appropriate form of
transferred knowledge becomes much more challenging [18].

In the context of IEEBs, the aspects of privacy and security in data sharing are also of
paramount importance. IEEBs generate a large amount of personal data that must be
protected from unauthorized sharing. For this reason, much work in the literature is
addressing this topic in several ways. One method used is the introduction of decentralized
approaches that ensure limited data sharing while preserving the privacy of IEEB users.
Among these, Federated Learning [82] is gaining much attention due to its capacity to
elaborate models where data are gathered and share only these models with external
entities. Another emerging technology increasingly utilized in the literature for achieving
integrity, transparency, traceability, and enabling secure data exchange and storage is the
blockchain [125]. These advancements aim to enhance the reliability of energy management
systems while safeguarding personal information in IEEBs.

Finally, recent trends in the literature are increasingly emphasizing the optimization of
building energy utilization within IEEBs while also addressing the effective management of
the Smart Grid [126]. This integration represents a promising avenue for adapting control
systems to fluctuating environmental conditions and enhancing real-time operational
efficiency. These advancements are critical for ensuring the reliability and effectiveness
of energy management systems in smart buildings [23]. In recent years, there has been
an increasing interest in the merging of the IEEBs with Smart Grids to create so-called
Zero-Energy Buildings, since these two systems together can work for the optimization of
energy usage inside energy communities [127].
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5. Conclusions

In this meta-survey, we comprehensively analyzed 21 survey papers in the field of
Intelligent Energy-Efficient Buildings, aiming to provide a holistic overview of the current
state-of-the-art research in this domain. Through our investigation, we identified key
trends, challenges, and research directions within the field of IEEBs. Our findings revealed
a broad spectrum of methods used in IEEBs. These include various machine learning
algorithms for energy optimization, as well as the use of IoT-based systems combined with
edge-cloud computing solutions. In this direction, we have reviewed the most frequently
used algorithms in literature for the realization of IEEBs, and we have categorized them.

In this paper, we have also proposed and answered five important research questions
regarding IEEBs. In more detail, we have highlighted how the field related to IEEBs
is specified or defined in literature; the most commonly used architectures for IEEBs;
which ML methods are most used for IEEB implementation; what type of datasets or real
implementations are utilized to realize IEEBs; and what challenges and research directions
are presented in the literature in the field of IEEB.

By analyzing the reviewed work, we observed a growing emphasis on real-world
implementations and the validation of proposed solutions using both simulated and real-
world datasets. We also found very important challenges in the field of IEEBs, such as big
data management, model selection, and the real-time responsiveness of the used models
alongside promising research directions, including digital twins realization, data privacy,
and Smart Grid integration.

This meta-survey synthesizes existing research findings and provides insights into
the surveyed literature, aiming to facilitate advancements in the development of more
intelligent, energy-efficient, and sustainable IEEBs. Indeed, readers of our meta-survey
who wish to develop IEEBs will gain a competitive advantage by acquiring knowledge
about the most commonly used methodologies in the literature for IEEBs. Additionally,
they will be familiar with the most common architectures, case studies, and technologies.
Finally, by being aware in advance of the most common challenges from the literature, they
can take proactive measures to address them.
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