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Abstract – The aim of this focus article is to present a comprehensive classification of the main
entropic forms introduced in the last fifty years in the framework of statistical physics and infor-
mation theory. Most of them can be grouped into three families, characterized by two-deformation
parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree (α, β)),
by Sharma and Mittal (entropies of order (α, β)), and by Hanel and Thurner (entropies of class
(c, d)). Many entropic forms examined will be characterized systematically by means of important
concepts such as their axiomatic foundations à la Shannon-Khinchin and the consequent compos-
ability rule for statistically independent systems. Other critical aspects related to the Lesche
stability of information measures and their consistency with the Shore-Johnson axioms will be
briefly discussed on a general ground.

focus  article Copyright c© 2021 EPLA

Historical introduction. – The history of entropy be-
gins around the nineteenth century in the then-emerging
thermodynamics theory following the studies of Carnot
aimed at the attempt to optimize the efficiency of the
conversion of heat into mechanical work. This concept
was formalized by Clausius [1] which introduces the word
entropy, whose meaning derives from “transformation pro-
duced from within”, a physical quantity whose variation
is defined as

dS =

∫

δQrev

T
,

for any reversible thermodynamic transformation. The
function S, implicitly introduced in this way, is named
thermodynamic entropy and the validity of this relation
has never been questioned.

(a)Contribution to the Focus Issue Progress on Statistical Physics

and Complexity edited by Roberta Citro, Giorgio Kaniadakis,

Claudio Guarcello, Antonio Maria Scarfone and Davide Valenti.

In the same period, Boltzmann began the development
of the kinetic theory of gas by introducing the idea of
monads in a modern key and by highlighting in this way
the necessity of employing statistical methods in physics.
Boltzmann studies on the approach to equilibrium of a
system deal with the introduction of the so-called H-
functional

H[f ] = −

∫

f(v, t) ln
(

f(v, t)
)

dv,

for a single-particle probability distribution function
f(v, t) that, together with the relation dH/dt ≥ 0, con-
stitutes the celebrated H-theorem [2].
Boltzmann results have then been generalized by

Gibbs [3] to the case of a canonical ensemble, i.e., a
collection of W microstates with a discrete set of en-
ergy levels Ei belonging to the same macrostate E =
∑

i Ei pi, where pi is the probability that occurs during
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the system’s fluctuations. In this context, he introduced
the well-known expression

S[p] = −kB

W
∑

i=1

pi ln(pi), (1)

with kB the Boltzmann constant, today known as
Boltzmann-Gibbs entropy, recognized in statistical me-
chanics to measure the microscopic disorder or random-
ness of a system with a large number of constituents. The
legitimacy of this last statement finds validity in the ex-
pression

S = kB lnW,

written explicitly in this form by Planck [4] during
his studies on the black-body radiation. Nowadays,
this last relation is known as the Boltzmann-Plank for-
mula of entropy and it is a pillar in the framework of
thermostatistics.
Roughly half-century after Boltzmann-Gibbs devel-

opments, entropy has been further conceptualized by
Shannon [5] who, to quantify the information carried by a
message, introduced the functional

H[p] = −K

W
∑

i=1

pi ln(pi), (2)

where the constant K is fixed by the choice of the mea-
sure unity, being pi the probability that the i-th symbol
of W symbols alphabet has to occur. The functional (2) is
named entropy information in analogy with expression (1)
and is recognized in information theory as a quantity
that measures the uncertainty contained in an encoded
message.
Shannon entropy has been systematically character-

ized by Shannon himself and successively by Khinchin [6]
through the introduction of four basic requirements, nowa-
days known as the Shannon-Khinchin axioms, which fix
univocally the expression of the information functional.
About ten years after the appearance of the Shannon

entropy, by replacing the standard linear average with
the nonlinear (o quasi-linear) average introduced by Kol-
mogorov and Nagumo [7,8], Rényi [9] proposed the α-order
entropic form

Sα[p] =
1

1− α
ln

W
∑

i=1

pαi , (3)

a generalization of (2) which is recovered in the α → 1
limit.
After Rényi, a galore of different generalizations of en-

tropy has been proposed in the framework of informa-
tion theory. Among the many, the Havrda-Charvát and
Daroczy [10,11] entropy information

Sβ [p] =
1

1− β

(

W
∑

i=1

pβi − 1

)

, (4)

for a real deformation parameter β > 0, has been intro-
duced in the late sixties of the twentieth century.
Nearly twenty years later, this entropic form has been

employed in statistical physics [12] to obtain an alterna-
tive formulation of classical statistical mechanics, a new
border-line research field in statistical physics named non-
extensive statistical mechanics. One of the main reasons
to replace the Shannon-Boltzmann-Gibbs entropy (in the
following, Shannon entropy) with its generalized version,
although not fully accepted by the statistical physics com-
munity, is motivated by the loss of ergodicity observed in
complex systems, often not at the thermodynamical limit,
governed by strong interactions and correlations, which
show statistical properties that are hardly captured by
the orthodox statistical mechanics theory.
Today, entropy is undoubtedly one of the most general

and important concepts in statistical physics and informa-
tion theory. It appears with different meanings in different
fields. Many of the generalized expressions found interest-
ing applications in coding theory, cryptography, statistical
inference theory, non-ergodic systems, fractal dynamics,
stochastic thermodynamics, complex systems, and others.
As for its importance, entropy is the protagonist of the
second law of thermodynamics associated with the arrow
of time while the related entropic force may be at the ori-
gin of emergent phenomena like gravity and the space-time
structure, as conjectured in the holographic theories.

A galore of generalized entropic forms. – As
known, the Shannon entropy is characterized by a set
of four axioms that univocally define its form [5,6]. The
Shannon-Khinchin (SK) axioms read as follows:

– A1: Entropy must be an analytically continue func-
tion depending only on the probability [p] =
(p1, p2, . . . , pW ).

– A2: Entropy must be maximal for uniform distribu-
tion [p] = (1/W, 1/W, . . . , 1/W ).

– A3: Entropy must be invariant under the inclusion of
null events with zero probability.

– A4: Entropy must be strongly additive under the com-
position of subsystems, that is

S(A ∩B) = S(A) + S(B/A).

Among these, the last one is the most relevant to fix the
entropy form. In fact, let pij be the joint probability dis-
tribution of the composed system A ∩ B, pi =

∑

j pij
the marginal probability distribution of the system A and
pj =

∑

i pij that of the system B, then, for a trace-form
entropy S =

∑

i s(pi), axiom A4 becomes

S(A ∩B) = S(A) +

W
∑

i=1

pi S
(

B/Ai

)

, (5)

where S(A∩B) =
∑

ij s(pij) and S(B/Ai) =
∑

j s(pij/pi).

50005-p2
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Together with the other axioms, (5) has the unique so-
lution given by s(x) = x ln(1/x), modulo a multiplicative
constant. In this way, Shannon entropy (2) (or (1)) is
obtained.
In particular, for statistically independent (SI) systems,

axiom A4 simplifies to

S(A ∩B) = S(A) + S(B), (6)

which states the additivity property of the Boltzmann-
Gibbs entropy (and in a certain sense its extensivity).

Havrda-Charvát-Daroczy-Tsallis entropy. In the pres-
ence of correlations, (5) can be relaxed in a way that allows
the introduction of other possible expressions for the en-
tropic functional. In [13] the following relation has been
proposed in place of (5):

S(A ∩B) = S(A) +

W
∑

i=1

pβi S
(

B/Ai

)

, (7)

that, together with the other axioms, has the unique so-
lution s(x) = x lnβ(1/x), where

lnβ(x) =
x1−β − 1

1− β
(8)

is a generalized version of logarithm controlled by the de-
formation parameter β, such that it reduces to the stan-
dard logarithm in the β → 1 limit: ln1(x) ≡ ln(x). The
corresponding entropic form coincides with (4).
For SI systems (7) becomes

S(A ∩B) = S(A) + S(B) + (1− β)S(A)S(B), (9)

stating, in this case, the nonadditivity of entropy (4) and
it has been one of the main reasons that led to calling non-
extensive statistical mechanics the physical theory based
on the entropic form (4).

Sharma-Taneja-Mittal entropy. A step further in gen-
eralizing axiom A4 has been proposed in [14] and reads

S(A ∩B) =

W
∑

i=1

s(pi)

Wi
∑

j=1

(

pij
pi

)β

+

W
∑

i=1

pαi S(B/Ai),

(10)
that, together with the other axioms has the unique solu-
tion s(x) = x lnα,β(1/x), where

lnα,β(x) =
x1−β − x1−α

α− β

is another generalized version of logarithm by means of
two deformation parameters α and β. It reduces to the
deformed logarithm (8) in the α → 1 limit: ln1,β(x) ≡
lnβ(x) and to the standard logarithm in the (α, β) →
(1, 1) limit: ln1,1(x) ≡ ln(x). The resulting entropic form

Sα, β [p] =
W
∑

i=1

pβi − pαi
α− β

(11)

Table 1: Entropic forms of degree (α, β).

Parameters Entropy Ref.

α=1, β=1 −∑

i pi ln(pi) [5]

α=1
∑

i

p
β
i
−1

1−β [10–12]

α=1+κ, β=1−κ −∑

i

p
1+κ
i

−p
1−κ
i

2κ [15]

α=β −∑

i p
α
i ln(pi) [16]

α=q, β=1/q −∑

i

p
q
i
−p

1/q
i

q−1/q
[17]

has been introduced independently by Sharma and
Taneja [18], and Mittal [19], as the unique solution of re-
lation

S(A ∩B) = S(A)

W ′

∑

j=1

pβj +

W
∑

i=1

pαi S(B),

which follows from (10) for SI systems. In this case it
dictates the composition law of entropy (11).
Sharma-Taneja-Mittal entropy, also named entropy of

degree (α, β), captures some interesting one-parameter
entropic forms obtained by fixing opportunely the param-
eters α and β, as reported in table 1.

Rényi entropy. In general, trace-form entropies like
the ones introduced above can be viewed as linear average
of an appropriate Hartley function I(x) representing the
elementary information gained, according to

S[p] = �lin

(

I[p]
)

, (12)

with �lin(x) =
∑

i xi pi. In particular, the family
of Sharma-Taneja-Mital entropies follows from I(x) =
lnα,β(1/x).
A different approach to derive generalized entropies can

be obtained following Rényi. In the seminal work [9],
searching for the most general expression of a functional
that satisfies axioms A1–A3 and the more soft compos-
ability condition given by (6), he replaced (12) with the
quasi-linear average

S[p] = �KN

(

I[p]
)

, (13)

introduced by Kolmogorov and Nagumo, where �KN(x) =
f−1(�lin(f(x))) for an arbitrary strictly monotonic and
continuous function f(x).
Rényi entropy follows for f(x) = lnα(e

x) with I(x) =
ln(1/x), which gives the entropy of order α given in (3).
Actually, Rényi entropy can be derived from SK axioms

by posing in A4

S(B/A) = f−1

(

∑W
i=1 p

α
i f

(

S(B/Ai)
)

∑W
i=1 p

α
i

)

,

as shown in [20], and (6) is a direct consequence for SI
systems.

50005-p3
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Table 2: Entropic forms of order (α, β).

Parameters Entropy Ref.

α=1, β=1 −∑

i pi ln(pi) [5]

β=1 1
1−α ln

∑

i p
α
i [9]

α=β
∑

i

p
β
i
−1

1−β [10–12]

α=1 1
1−β [e

(β−1)
∑

i pi ln(pi)−1] [21]

α=r−m+1, β=1 1
m−r ln(

∑

i p
r−m+1
i ) [22]

α=1/t, β=2−t 1
t−1

[(

∑

i p
1/t
i

)t
−1

]

[23]

α=1/β 1
1−β

[

(

∑

i p
1/β
i

)

−β
−1

]

[24]

α=2−β 1
1−α

(

1− 1
∑

i pα
i

)

[25]

Sharma-Mittal entropy. By following the same path,
we can introduce more general expressions for a different
choice of f(x) and/or I(x), and by replacing the linear
composability condition (6) with the nonlinear one given
in (9).

A possibility follows by posing f(x) = lnα
(

expβ(x)
)

and I(x) = lnβ(1/x), where

expβ(x) = [1 + (1− β)x]
1

1−β

is the inverse function of lnβ(x). In this way we obtain
the two-parameters entropy

Sα,β [p] =
1

1− β

⎡

⎢

⎣

(

W
∑

i=1

pαi

)

1−β
1−α

− 1

⎤

⎥

⎦
, (14)

originally introduced by Sharma and Mittal [21], also
named entropy of order (α, β).
Quite interesting, (14) follows from the SK axioms by

replacing (A4) with the relation

S(A ∩B) = S(A) +

(

W
∑

i=1

pαi

)

1−β
1−α

S(B/A),

where the conditional entropy S(B/A) is now defined as

S(B/A) = f−1

(

∑W
i=1 p

α
i f

(

S(B/Ai)
)

∑W
i=1 p

α
i

)

,

so that (9) is recovered in the case of SI systems.

Again, several entropic forms introduced in the liter-
ature in different contexts belong to the Sharma-Mittal
family as shown in table 2.

Entropic forms as averages of information. By using
the so-called escort average instead of other average pre-
scriptions we can obtain new families of entropic forms

Table 3: Entropic forms as averages of information.

Parameters Entropy Ref.

α=2−1/β, q=1/β 1
1−β

[

(

∑

i p
1/β
i

)

−β
−1

]

[24]

α=2−q, β=2−q 1
1−q

(

1− 1
∑

i p
q
i

)

[25]

α=1, β=1 −
∑

i pq ln(pi)
∑

i p
q
i

[26]

α=r−q+1, β=1 1
q−r ln

(

∑

i pr
∑

i p
q
i

)

[26]

α=1, β=q 1
1−q

⎛

⎜

⎝
e
(q−1)

∑

i p
q
i

ln(pi)
∑

i p
q
i −1

⎞

⎟

⎠
[27]

β=1, q=si
1

1−α ln

(

∑

i pα+si−1

∑

i p
si
i

)

[28]

defined as certain average of a given information function.
They can formally be written in

S[p] = �ϕ (I[p]) , (15)

or also

S[p] = �ϕ
KN (I[p]) , (16)

where

�
ϕ (x) =

∑W
i=1 xi ϕ(pi)

∑W
i=1 ϕ(pi)

,

and
�

ϕ
KN(x) = f−1

(

�
ϕ
(

f(x)
))

,

for a given function ϕ(x).
Clearly definition (15) is a special case of (16) obtained

for f(x) = x and, more in general, (12) and (13) follow
from (15) and (16) for ϕ(x) = x, respectively.
Putting ϕ(x) = xq, a choice often employed in certain

versions of the non-extensive statistical mechanics, and us-
ing I(x) = x lnα,β(1/x) in (15) or I(x) = lnβ(1/x) and
f(x) = lnβ (expα(x)) in (16), we obtain several known en-
tropies reported in table 3, some of them belong also to
the family of order (α, β).

In addition, if I(x) = h(− ln
(

x)
)

and f
(

h(x)
)

=
expα(x), for an increasing, continuous function such that
h(0) = 0, (16) reduces to the class of strongly pseudo-
additive entropies h

(

Sα[p]
)

introduced from generalized
Shannon-Khinchin axioms in [29] and considered latter
in [30] under the name of Z-entropies.

Furthermore, if entropy and information content in (16)
decompose according to the same pseudoadditivity rule

S(A ∩B) = h(h−1(S(A)) + h−1(S(B)),
I(x y) = h(h−1(x) + h−1(y)),

(17)

then we obtain the class of weakly pseudo-additive en-
tropies introduced in [31] which contains a number of pre-
viously listed entropic forms (see table 1 in [31]).
It is worthy to cite a more general approach proposed

in [32], where it is suggested to replace axiom A4 with

50005-p4
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Table 4: Entropic forms of class (c, d).

Parameters Entropy Ref.

c=1, d=1 −∑

i pi ln(pi) [5]

c=β, d=0 −∑

i

p
β
i
−1

1−β [10–12]

c=1−κ, d=0 −∑

i

p
1+κ
i

−p
1−κ
i

2κ [15]

c=α, d=1 −∑

i p
α
i ln(pi) [16]

c=1, d=β
∑

i pi (− ln(pi))
β [33]

c=α, d=β
∑

i p
α
i (− ln(pi))

β [34]

c=1, d=1 ±∑

i

(

1−p
±pi
i

)

[35]

c=1, d=0
∑

i pi (1−e1−1/pi) [36]

c=1, d=0
∑

i(1−e−b pi)+e−b−1 [37]

c=r, d=0 1
r−1

[

1−∑

i e
r W (ppii −1)

]

[38]

c=1, d=1/η
∑

i Γ(1+ 1
η ,− ln(pi))−Γ(1+ 1

η ) [39]

the only composability rule S(A ∩ B) = Φ(S(A), S(B))
for a given function Φ(x, y) that is symmetric Φ(x, y) =
Φ(y, x), associative Φ(x, Φ(y, z)) = Φ(Φ(x, y), z) and ad-
mits a null element Φ(x, 0) = Φ(0, x) = x. In this way,
for opportunely choosen functions Φ(x, y) a wide class of
generalized entropic forms can be obtained. Clearly, rela-
tion (17) implies the existence of an underlying algebraic
structure that, under certain assumptions, can be derived
starting from the expression of the entropy itself [40].

Hanel-Thurner entropy. In [41], by relaxing com-
pletely axiom A4 and following scaling argumentations
for the asymptotic behavior of the entropy summarized
in S(λW )/S(W ) ∼ λc and W a(c−1) S(W 1+a)/S(W ) ∼
(1 + a)d, for W → ∞, a new family of two-parameters
entropies has been proposed,

Sc,d[p] =
e
∑W

i=1 Γ(1 + d, 1− c ln(pi))− c

1− c+ c d
. (18)

The pair of numbers (c, d), that characterizes the asymp-
totic scaling behavior of entropy, univocally defines an
equivalent class of entropy in the thermodynamic limit.

Once more, several generalized entropies, obtained in-
dependently in other contexts of statistical physics, have
asymptotical scaling that can be found inside the Sc,d fam-
ily for a particular value of the scaling parameters, as re-
ported in table 4.

Entropic forms of class (c, d), as well as those of degree
(α, β), take into account a sub-exponential asymptotic be-
haviour of the system where the number of possible con-
figurations W grows according to a certain power law of
the system size N . However, complex systems may also
be characterized by a super-exponential asymptotic trend.
In this case, a statistical description based on entropic
forms (11) or (18) fails to make a correct prediction. To
overcome this lack, in [42,43] a generalization of (18) has

Table 5: Trace-form entropies.

Entropy Ref.

−∑

i pi ln(pi) [5]

−∑

i

pαi −p
β
i

α−β [18,19]
1

1−c+c d (
∑

i eΓ(1+d, 1−c ln(pi))−c) [34]
4
q

∑

i pi arctan(p
q/2
i )−π

q [38]
∑

i

∫ pi
0 r

[

μl(x)
c(1+ 1−c r

d r ln(μl(x)))
d−1

]

dx [42,43]

−∑

i pi Lnq(pi) [44]

− 1
sin(s)

∑

i p
r
i sin(s ln(pi)) [45]

−
∑

i pi ln
(

sin(s pi)

2 sin(s/2)

)

[46]

−∑

i
sin(s pi)

2 sin(s/2)
ln
(

sin(s pi)

2 sin(s/2)

)

[46]
∑

i
sin(s pi)

2 sin(s/2)
[46]

− 1
λ

∑

i(1+λ pi) ln(1+λ pi)+(1+ 1
λ ) ln(1+λ) [47]

−∑

i(pi ln(pi)+( 1
λ+pi) ln(1+λ pi))+(1+ 1

λ ) ln(1+λ) [48]
∑

i(pi+ln(2−p
pi
i )) [49]

−
∑

i ln
(

Γ(1+pi)
)

[50]

1
1−q′

∑

i pi

[

e
1−q′

1−q
(p

q−1
i

−1)−1

]

[51]
∑

i pi(− lnβ pi)
δ [52]

∑

i

2 pi (pri −1)

−a (pr
i
−1)±

√
a2+4 b (pr

i
+1)

[53]

been advanced,

S[p] =

W
∑

i=1

pi
∫

0

lnc,d(μl(x)) dx,

where

lnc,d(x) = r

[

xc

(

1 +
1− c r

d r
ln(x)

)d

− 1

]

,

and μl(x) is the nested logarithm defined as μl(x) = [1 +
ln](l)(x). The l = 0 case reproduces the entropic forms of
class (c, d).

Final comments. – On the basis of the previous anal-
ysis, it emerges that most of the entropic forms introduced
in the literature can be grouped into two large groups.
The first group is formed by the trace-form entropies.

This group includes the entropies of degree (α, β) and the
entropies of class (c, d), obtained starting from certain
considerations on the decomposition rule or on the asymp-
totic behavior of entropy in the thermodynamics limit.
Clearly, the (α, β) or (c, d) families are not exhaustive in
this group and many other trace-form entropies, not yet
characterized at all, can be found inside the literature rel-
evant to physics or statistics. For instance, in [44], in the
framework of the basic algebra the following entropy has
been proposed: Sq[p] = −

∑W
i=1 pi Lnq(pi), where Lnq(x)

is the inverse function of the well-known basic exponential,
which does not find collocation in the two main families
discussed in this review.
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Table 6: Kernel-like entropic forms.

Entropy Ref.

1
1−s

[

(
∑

i p
r
i )

1−s
1−r −1

]

[21]

1
s arctan

⎛

⎝

∑

i pri sin

(

s ln(pi)

)

∑

i pr
i

cos

(

s ln(pi)

)

⎞

⎠ [26]

exp(
∑

i ln(2−p
pi
i )) [49]

1
1−s

{

[1+ 1−r
1−s ln(

∑

i p
s
i )]

1−s
1−r −1

}

[54]

exp
(

L
(

ln
∑

i pri
γ (1−r)

)

−1
)

[55]

1
r−s log

⎛

⎝

(

∑

i psi

)r

(

∑

i pr
i

)s

⎞

⎠ [56]

1
r−s

⎡

⎣

(

∑

i psi

)r

(

∑

i pr
i

)s −1

⎤

⎦ [56]

For sake of completeness, trace-form entropies includ-
ing several examples not listed in the previous tables are
reported in table 5.
The second group is given by the kernels-form entropies,

which is obtained starting from certain considerations on
the average prescription of the information content. This
group includes the entropies of order (α, β) as well as the
strongly- and weakly-pseudo additive entropies.
In general, kernel-entropies are expressed by a given an-

alytical composition of different kernel-blocks, each one
formed by a certain function of the information content.
The easiest case is given by the (h, Φ)-entropies [57] de-
fined in

S[p] = h

(

W
∑

i=1

Φ(pi)

)

, (19)

with a single kernel-block given by the quantity
∑

i Φ(pi).
Clearly, (19) is completely equivalent, in form, to (13)

which follows for h(x) = f−1(x) and Φ(x) ≡ x f
(

I(x)
)

.
However, while for certain “exotic” entropies the pair of
functions (h, Φ) is readily determinable, deriving the cor-
responding pair of functions (f, I) is not so immediate.

More general is the class of entropies proposed in [58],

S[p] = h

(

∑W
i=1 Φ1(pi)

∑W
i=1 Φ2(pi)

)

,

which is a generalized kernel-entropy with two kernel-
blocks. It includes entropic forms (15) and (16), as par-
ticular cases.
Examples of kernel-like entropies are showed in table 6.
In conclusion, it is worthy to observe that, in general,

entropy must necessarily respect further additional crite-
ria that may pose several restrictions to the form of the
functional S[p].
For instance, the Lesche inequality [59], a necessary re-

quirement that an entropic functional must satisfy to make

physical sense. Shortly, it requires that a small perturba-
tion of the set of probabilities to a new set [p] → [p′]
should have only a small effect on the value of entropy
reported to the thermodynamic state of the uniform dis-

tribution, i.e.,
∑

i |pi − p′j | ≤ δ ⇒ |S[p]−S[p′]|
Smax ≤ ε.

This should, in particular, be true in the thermodynam-
ical limit W → ∞.
It is known that trace-form entropies like the Sharma-

Taneja-Mittal family or the Hanel-Turner family satisfy
the Lesche inequality [41,60] while the question turns out
to be more problematic for the Sharma-Mittal family since
some of its members, like Rényi entropy and others, seem
not to be Lesche stable [61], although this problem has
still to be fully clarified [62,63].
A further relationship can be related to the Shore-

Johnson axioms [64] that, differently from the SK axioms,
routed to the information theory, concern the statistical
estimation theory and seem to pose stringent limitations
to the form that entropy may have.
The question is strictly related to the maximal entropy

principle introduced in [65], which is the main bridge be-
tween information theory, statistical physics and statisti-
cal inference. It is a powerful method widely employed in
statistical sciences to derive the probability distribution of
a system described by a given entropy, subjected to certain
constraints given by the prior information on the system
itself.
With the introduction of new entropic forms, it has been

natural to extend the maximal entropy principle in these
cases, to obtain distributions different from Boltzmann-
Gibbs ones. However, several criticisms on the consistency
of the maximal entropy principle with generalized entropic
forms have been recently advanced [66] since, in the origi-
nal paper, Shore and Johnson conclude that their axioms
yield only one admissible measure, namely the Shannon
entropy.
It has been shown in [67] that the Shore-Johnson axiom-

atization of the inference rule actually does account for a
substantially wider class of entropic functionals than just
the Shannon entropy. In particular, at least the Uffink
class of entropies [68]

S[p] = f−1

⎛

⎝

(

W
∑

i=1

pαi

)1/(1−α)
⎞

⎠ ,

which corresponds to the strong pseudoadditive entropy
presented above, is compatible with the conditions stated
in the Shore-Johnson axioms. In [69] the Uffink class of
entropic functionals has been characterized by means of a
suitable generalization of the SK axioms, re-establishing,
in this way, in part, the “broken” entropic parallelism be-
tween information theory and statistical inference.
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