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Abstract—Open Radio Access Network (O-RAN) is an

emerging paradigm, whereby virtualized network infras-

tructure elements from different vendors communicate

via open, standardized interfaces. A key element therein

is the RAN Intelligent Controller (RIC), an Artificial

Intelligence (AI)-based controller. Traditionally, all data

available in the network has been used to train a single

AI model to be used at the RIC. This paper introduces,

discusses, and evaluates the creation of multiple AI model

instances at different RICs, leveraging information from

some (or all) locations for their training. This brings about

a flexible relationship between gNBs, the AI models used

to control them, and the data such models are trained

with. Experiments with real-world traces show how using

multiple AI model instances that choose training data from

specific locations improve the performance of traditional

approaches following the hoarding strategy.

I. INTRODUCTION

Virtual Radio Access Network (vRAN) is ar-
guably one of the most exciting recent innovations
of the networking ecosystem. It is enabled by the
Software-Defined Networking (SDN) approach, and
allows the functions traditionally performed by base
stations (currently gNBs) to be virtualized and split
across multiple network nodes, including newly-
introduced entities called Central Units (CUs), Dis-
tributed Units (DUs), and Radio Units (RUs). Such
a functional split allows different decisions to be
made at different nodes and with different time
scales. For example, RUs can perform real-time ra-
dio management, while CUs can adjust higher-level
resource allocation at longer time scales. The dif-
ferent CU, DU, RU units corresponding to different
gNBs can now be hosted in edge or cloud servers,
sharing location in some cases and reducing costs
for the operators through the remote management
of the components thanks to its virtualized nature.

§corresponding author: numolsiu@iteam.upv.es

The promising results of vRAN gave rise to
initiatives, such as Open Radio Access Network (O-
RAN) or Cisco’s Open vRAN Ecosystem Group,
aiming at creating an open and interoperable RAN
ecosystem where open APIs and interfaces can be
integrated connecting different vendors components.
O-RAN [1] has been so far the vRAN initiative
receiving more attention, also thanks to the open-
source community created around it.

In addition to the vRAN components, O-RAN
introduces a new element called RAN Intelligent
Controller (RIC), implementing arbitrary resource
allocation and management policies via closed-
control loops. Different RICs can run at different
time scales, e.g., near-real-time (with latencies of
less than 10 ms) and non-real-time (with latencies of
several seconds). Owing to their (relatively) relaxed
time requirements, non-real-time RICs can leverage
Artificial Intelligence (AI) and Machine Learning
(ML) for their decisions. RICs can collect from DUs
information about the current state of the network,
process such data, and instruct RUs accordingly [2].
The importance of AI in O-RAN is such that a
dedicated working group [3] has been created to
define use cases and specify which components
should host the AI/ML-based intelligence.

AI/ML techniques currently tailored to O-RAN
scenarios are the subject of a vast body of research,
as detailed in Sec. II, with the majority of works
being predicated on the notion that effective AI
training requires hoarding all existing data from
all the sources (black brain in Fig. 1). However,
there are several reasons why this may not always
be the best approach. First, transferring data from
all RUs to the RIC may incur long delays, hence,
decisions may be based upon outdated information.
Furthermore, more data might result in a minor
improvement in learning accuracy, at the price of
significant longer training times. Finally, training an
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Fig. 1. Choosing (solid lines) vs hoarding (dashed lines) data in
a scenario with urban (blue), residential (purple) and rural (green)
locations. Choosing results in specific model instances for ur-
ban+residential (blue/purple brain) and rural (green brain) locations.
Hording results in a global model instance (black brain).

AI with data from unrelated locations (e.g., rural and
urban areas) may even hurt the performance, unless
extremely long training times are accepted [4].

In this paper, we introduce, discuss, and evaluate
the benefits of choosing which data is used to train
an AI model in O-RAN. Specifically, we propose to
create multiple model instances running at different
RICs, and to train them by choosing the most appro-
priate data, even if it does not come from locations
under their control, as exemplified in Fig. 1. By
doing so, we reap the twofold benefit of (i) getting
better learning, as only relevant information is used,
and (ii) get faster learning, as having to move less
information across the network results in shorter
network delays and, usually, in cost savings.

The reminder of this paper is organized as fol-
lows. In Sec. II, we discuss state-of-the-art AI/ML
in O-RAN scenarios, highlighting how most ap-
proaches seek to leverage all existing data to train a
single AI model. Sec. III uses a real-world scenario
to compare the choosing and hoarding approaches in
AI training. Motivated by our experimental findings,
in Sec. IV we discuss in detail how the choosing
approach tackles many of the major issues of AI in
O-RAN scenarios. Finally, Sec. V discusses open
research issues, and Sec. VI concludes the paper.

II. EXISTING AI/ML SOLUTIONS FOR O-RAN

As mentioned in Sec. I, one of the core prin-
ciples of O-RAN is to make networks intelligent
and self-manageable [1], [5]. AI/ML is one of the
key enabling technologies, with popular approaches
including Reinforcement Learning (RL) [6], Deep
Learning (DL) [7], and Federated Learning (FL) [8].

One common application of AI in vRAN net-
works is to improve the usage of computational and
networking resources, as done in [9] and [10], which
relies for this purpose on unsupervised and su-
pervised DL techniques, respectively. Other works,
use intelligence-powered optimization techniques
for the semi-automated management of cellular net-
works integrated in real testbed environments [11].

In the O-RAN WG2 [3], AI is leveraged for traffic
steering to trigger handovers to neighboring cells
that are predicted to provide better performance
to the terminal. Bounded processing latency is a
significant problem when deciding how and where
to apply intelligence. Swift decision making by
RICs received significant attention; for example,
[2] trains and validates models offline in the non
real-time RIC, to then deploy them in the near real-
time RIC to perform online decisions. The choice of
the network node where the training and inference
happen has a significant impact on training times
and network delays, hence, this decision is critical.

A related problem concerns how to learn from
data located in different nodes, for which there are
two different approaches, namely, centralized and
distributed. Centralized learning requires to train
one single model at one single server, that can be
either in the edge or in the cloud. In this case, all
the data is gathered at the server where the model is
trained. This approach is considered in works such
as [10], [12], [13] and [14], which use AI to make
network management decisions aimed at reducing
end-to-end latency. The opposite approach is to train
one model in a distributed fashion, at multiple cloud
and edge servers. In this case, each server performs
one epoch of the learning process with local data
and exchanges the partial results with the rest of
the training servers to include this information in
the subsequent individual epochs, as in FL [8]. FL
aims at creating a single, global model by averaging
the local models of the different learning nodes. The
advantage of this training is that, network latency
tends to be lower as data is collected from close-by
sources; furthermore, distributed approaches tend to
preserve the privacy of the data. Works such as [15]
and [4] follow this distributed approach.

Considering all the analyzed literature, we can
observe a strong tendency to use all available data
to obtain one single generic model – trained in either
a centralized or a distributed manner. The option of
creating multiple instances of the model, that can



3

fit data of different nature, is as of yet unexplored.
Accordingly, Sec. III leverages real-world cellular
traces to verify our intuition that creating multiple
model instances and choosing the data they are
trained upon may beat the traditional approach of
hoarding all data to train a single model instance.

III. CHOOSING AND HOARDING
IN A REAL-WORLD SCENARIO

This section evaluates the effect of creating mul-
tiple AI models flexibly choosing their training data.
Specifically, we compare the extreme approaches of
(i) training multiple model instances, each control-
ling one RU, and training them by choosing data
from a single RU (e.g., green brain in Fig. 1),
and (ii) hoarding training data from all RUs (e.g.,
black brain in Fig. 1) and training a single model
instance. More balanced approaches combining the
two strategies may work better in practice; however,
our main objective in this work is to establish
if the choosing approach can yield a performance
comparable to hoarding.

In order to draw realistic conclusions, we lever-
age two different real-world datasets. The first
dataset [2] describes a 5G network of 4 RUs at an
urban scenario in Rome; with each RU exchang-
ing a fixed amount of traffic with 40 UEs that
belong to enhanced Mobile Broadband (eMBB),
Machine Type Communication (MTC), and Ultra
Reliable Low Latency Communication (URLLC)
slices. The second dataset1 describes a real-world
LTE deployment of 3 RUs in three residential areas
of Barcelona: Les Corts, El Born, and Poble Sec.

It is important to highlight that the Rome and
Barcelona datasets have very different levels of
heterogeneity. The Rome one considers every RU
receiving the same amount of traffic at every
slice, while traffic levels are vastly different in the
Barcelona one, as the traffic exchanged by each RU
depends on how crowded their coverage area is.

For the Rome dataset [2], the RIC’s goal is
to predict the performance, more specifically, the
downlink (DL) bitrate experienced by each user. In
line with [2], we use a feed-forward (FF) neural net-
work (NN) with 2 hidden layers of 30 neurons with
sigmoid activations, inferring the DL bitrate of each
user equipment (UE) using as input: the network

1https://challenge.aiforgood.itu.int/

slice, Modulation Coding Scheme (MCS), granted
Physical Resource Blocks (PRBs), and buffer size.

For the Barcelona dataset, the RIC’s goal is
to predict the aggregated DL bitrate at each RU.
Following the lead of [7], to better adapt to the
features of the trace, we implement an encoder-
decoder NN with 4 hidden layers having 16, 64,
32, and 32 neurons with tanh activations. To infer
the aggregated DL, the NN is fed with information
about the MCS, PRBs, and number of Radio Net-
work Temporary Identifier (RNTIs).

For the sake of simplicity, in all our experiments
we train the NNs from scratch, i.e., with randomly-
initialized weights. In practical scenarios, it is more
common to start from partially-trained networks,
e.g., under the active learning paradigm. In both
cases the qualitative behavior is the same.

We train the FF and encoder-decoder NNs using
the Adam optimizer with learning rates of 10�6 and
10�5, respectively. Data is transformed using L2

normalization for the FF NN, and MinMax([�1, 1])
normalization for the encoder-decoder NN. The goal
of both trainings is to minimize the Mean Absolute
Percentage Error (MAPE) for the validation set
(20% of the data). Both NNs are implemented using
PyTorch 1.10.0+cu102 on an Intel Xeon CPU E5-
2670 @2.60GHz.

Within each scenario, we select one RU as our
target; specifically, RU4 in the Rome dataset, and
Poble Sec RU in the Barcelona dataset. We compare
the performance of different setups: a hoarding
setup, leveraging data from all RUs, and multi-
ple choose setups, each exploiting data coming
from a single RU. In all setups, we are chiefly
interested in the trade-off betwen learning quality
and the main factors limiting it, that is, time and
data availability. Specifically, we assess the per-
formance resulting from changing the quantity of
training data (Sec. III-A) and maximum training
time (Sec. III-B). We further check how learning
quality translates into the performance of a specific
application, a quality predictor xApp (Sec. III-C).

A. Impact of the quantity of training data
Fig. 2 shows how the DL MAPE (y-axis) is

impacted as we increase the amount of training
data (x-axis). As mentioned above, for the Rome
(blue) and Barcelona (purple) datasets we compare
multiple NN instances (lines) that choose training
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Fig. 2. NN accuracy vs. quantity of training data in Rome/Barcelona
(blue/purple), when the objective is to infer the performance of RU4
(Rome) and Poble Sec (Barcelona). NN instances (lines) choose
training data from a RU (blue/purple lines), or hoard data from all
RUs (black). The best NN instance is also illustrated (orange line).

data from a single RU, and an NN instance that
hoards data from all RUs (black line). Additionally,
Fig. 2 highlights what is the best instance choice
(thick, orange line) as we increase the available data.

Fig. 2 shows that in Barcelona the best MAPE
(as low as 3.14%) is always achieved by the NN
instance choosing data from the target RU at Poble
Sec. Owing to the heterogeneity of the scenario,
when we hoard training data to use at a single NN
instance, the MAPE never goes below 7.87%, even
using all the training data.

In the Rome dataset, the MAPE at RU4 is essen-
tially the same for all NN instances, already using
less than 20% of the data. Specifically, with 20%
of the data, an NN instance achieves 1.85% MAPE
either if it chooses data from a single RU, or hoards
data from all Rome RUs; such an effect is due to the
homogeneity of the Rome scenario. The hoarding
strategy only reduces MAPE by a further 0.10%,
i.e., 1210 bits per second in the URLLC scenario.

Overall, regardless of the amount of training
data and their level of heterogeneity, the benefit
of hoarding data from all RUs over choosing is
always limited – and often there is no benefit at
all. In some cases, the benefit is only evident when
data is extremely rich; nonetheless it comes with an
associated overhead, consistently with our intuition
that not all data is always necessary.

B. Impact of the maximum training time
In Fig. 3 we use all the training data from Rome

(blue) and Barcelona (purple), and study the pre-
diction error (y-axis) as we increase the maximum

Fig. 3. NN accuracy vs. training time in Rome/Barcelona
(blue/purple), when the objective is to infer the performance of RU4
(Rome) and Poble Sec (Barcelona). NN instances (lines) choose
training data from a RU (blue/purple lines), or hoard data from all
RUs (black). The best NN instance is also illustrated (orange line).

training duration (x-axis), normalized to how long it
takes to run 100 epochs under the hoarding strategy.

Fig. 3 shows that the best MAPE in Barcelona
is achieved under the choosing strategy – from El
Born for a normalized training time below 0.12, and
from Poble Sec for longer training times. In the
latter case, a remarkably low MAPE of 3.14% is
achieved. The MAPE of the hoarding strategy, in
such a diverse scenario, cannot go below 7.87%.

For the Rome dataset the MAPE at RU4 is
essentially the same if the NN instance is trained
for no longer than 0.25 time units, for all strategies;
specifically, the MAPE is around 1.85%. In this
more homogeneous scenario, the hoarding strategy
yields a minor 0.10% performance improvement.

In general, independently of the maximum train-
ing time and the diversity of the data, it is again
beneficial to choose training data from the target
RU. Furthermore, Fig. 3 does not report the net-
work transfer delay, which increases with more data
and/or data from faraway locations [4]. Such a delay
is higher for the hoarding strategy, hence, consid-
ering it would further increase the attractiveness of
the choosing strategy.

C. Quality predictor xApp

For concreteness, we focus on a quality predictor
(QP) xApp that checks if an mMTC UE will have
sufficient bandwidth when connecting to RU4. The
QP xApp leverages the NN of Sec. III-B which is
fed with O-RAN data coming from RUs through the
E2 interface, and provides near real-time estimations
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Fig. 4. Accuracy of a QP xApp as a function of the quantity of
training data. NN instances that choose training data from one RU
(blue lines) or hoard training data from all RUs (black line) are used.

of the DL that UEs will experience. These exper-
iments are performed only with the Rome dataset,
as the Barcelona one lacks the bitrate information.

For our QP xApp the performance is expressed
through the classification accuracy in assigning UEs
seeking to connect to RU4 to either the “zero-
bitrate” or “non-zero-bitrate” classes. Fig. 4 illus-
trates the xApp accuracy (y-axis) when the quantity
of training data increases (x-axis) under the choose
and hoard strategies. It shows that it is better to use
an NN instance that hoards training data from all
the RUs. As shown in Fig. 4, the xApp achieves its
best accuracy (namely, 94.81%) under the hoarding
strategy (specifically, when 175K data samples from
all RUs are used). The choosing strategy results in
a marginally smaller accuracy, namely, 93%.

Interestingly, when there are between 250K and
300K samples, the best performance under the
choosing strategy is obtained when the training data
comes from RU3, i.e., not the same RU that will
use the prediction. Such a counter-intuitive behavior
comes from the homogeneity of the dataset [2] and
the large quantity of data available for RU3; in cases
like this, the performance of a RU may indeed be
best predicted through data from a different RU.

As in Sec. III-B, the xApp accuracy does not
increase after a certain amount of training data; in
our specific case, after 200K samples – see Fig. 4.
For example, when the xApp uses the NN instance
that hoards training data from all RUs (black line),
its accuracy drops down to 92.32% with 305K
samples. This highlights the relevance of not only
choosing or hoarding the RUs used in the training
stage, but also deciding the fraction of data used.

The different levels of heterogeneity of the Rome
and Barcelona datasets make them intuitively more
adequate for different data selection strategies. The
hoarding strategy is naturally suited to homoge-
neous conditions like those of the Rome dataset;
conversely, heterogeneous scenarios may benefit
more from choosing RU data, owing to the ability to
create multiple model instances that fit the traffic of
each RU. Interestingly, the choosing strategy results
in consistently good performance in both heteroge-
neous and homogeneous scenarios. Widening our
focus, we now discuss how our findings fit into
a more generic problem of information-to-model
matching for AI in O-RAN.

IV. WHY CHOOSING WORKS:
BETWEEN NETWORKING AND LEARNING

The high-level ambition of this paper is to shift
the focus from how to best combine all available
data within one model instance to finding the best
matching between data, model instances, and gNBs.
Such a shift is motivated by three main factors,
related to networking, ML, or both.

Our numerical results show that deviating from
the standard approach of creating a single model in-
stance using all the available data, can offer signifi-
cant performance advantages; in other words, choos-
ing works better than hoarding. We now switch our
focus towards why choosing works, and remark how
it helps to address three of the main issues affecting
learning in O-RAN scenarios.

The first issue concerns the networking side of O-
RAN and stems from the large cost of ML training.
Whether such training is performed in a centralized
or distributed manner, it always requires moving sig-
nificant quantities of information – data, gradients,
models... – around the network. 3GPP networks
are divided into different planes (i.e., control, user
and synchronization planes) that ensure the proper
communication and management. Transferring large
amounts of data may, thus, have an impact in all
planes. Specifically, network saturation due to ML
data transfers may significantly impact the transport
in the synchronization plane by, e.g., increasing
jitter due to queues full of data. Furthermore, the
ML training process will compete for bandwidth
and computational resources in the user-plane, and
potentially impact the performance of the latter. It
follows that reducing the quantity of data that ML
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models are trained upon, if it can be done without
jeopardizing the quality of the resulting decisions,
is a very appealing prospect.

The second issue is related to the ML side, more
specifically, the relationship between the quantity
of available data, the learning performance, and the
training time. Theoretical and experimental results
concur that the time taken by each training epoch
grows linearly with the quantity of used data, while
the learning quality improves more slowly, typically,
according to a square-root law [4]. It follows that,
while more data does translate into better learning,
prolonged training times may not be worth it in
time-constrained scenarios.

The networking and ML sides combine in the
third issue, namely, the extent to which it is ben-
eficial to learn from heterogeneous data. Indeed,
different RUs may operate in very different con-
ditions, e.g., rural/residential/urban areas, possibly
with different traffic patterns and user mobility,
and even different technologies. Such heterogeneous
conditions may result in heterogeneous data being
fed to the ML model. An ML model instance can
learn from heterogeneous data, but that requires
more complex models, which in turn have longer
training times. The issue is so significant that some
recent works on FL envision dropping nodes with
overly-heterogeneous data from the training process.

Choosing – more accurately, being able to choose
– addresses the concerns above in three main ways:

• multiple model instances are allowed;
• each model instance can leverage information

from some (or all) locations for its training;
• locations can use any model instance for their

decisions, including those not trained using

Fig. 5. Scenario with urban (blue), residential (purple), and rural
(green) locations. The traditional approach (left) hoards all RUs’
data (continuous lines) to a model instance taking decisions (dashed
lines) at all locations. Our proposal (right) flexibly associates model
instances, chosen RUs to gather data, and locations to take decisions.

local information.
Fig. 5(right) represents a possible decision made
where data is chosen and not hoarded: data from
the two urban (blue) RUs is combined in one model
instance, which both RUs then leverage. Data from
the residential (red) and rural (green) RUs is kept
separate and used for two different model instances;
furthermore, the red+green model instance also uses
data from the rural RU. Compared with Fig. 5(left),
summarizing the state-of-the-art approach, we are
creating more model instances, training each of
them with a smaller quantity of data, and choosing
how to match data and model instances.

Importantly, the one in Fig. 5(left) is also a
possible decision. Indeed, being able to choose does
not prevent falling back to creating a single model
instance – leveraging all information – whenever the
scenario and conditions warrant it.

V. OPEN ISSUES

The greater flexibility afforded by being able to
choose model instances and data comes at a cost
in terms of new decisions and additional factors to
consider when making them; this, in turn, opens up
new exciting avenues for future research.

A first, major topic is represented by the re-
lationship between learning quality and network
overhead. Traditionally, it is assumed that achieving
a high learning quality requires more data, which
entails more network overhead. However, our results
suggest that, in many scenarios, it is possible to
achieve both, i.e., to have a high learning quality
with a limited quantity of data – crucially, data that
does not need to travel long distances across the
network –, hence, with a limited network overhead.

This raises the issue of what makes certain
datasets and scenarios more amenable to choosing
or hoarding. Consistently with our experiments, we
can conjecture that hoarding works best in homoge-
neous scenarios, where gathering data from multiple
sources helps training; conversely, heterogeneous
scenarios might be better tackled by creating mul-
tiple model instances and choosing the data to train
them. Being able to assess a priori whether the
scenario at hand is better suited for choosing or
hoarding – e.g., by computing data-related metrics
such as similarity – would greatly help in choosing
the right approach, hence, improve performance.

Finally, our results highlight how ML perfor-
mance, i.e., learning accuracy, does not immediately
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or directly translate into application performance.
This is observed by comparing Fig. 3 and Fig. 4,
where minor differences in the learning quality re-
sult in more significant differences in the application
behavior. This calls for further attention on the
fact that ML accuracy is not necessarily the best
metric to evaluate the possible learning approaches,
as AI/ML in O-RAN is usually a means not an end.
Hence, it raises the need of a better modeling of the
system as to provide a deeper analysis and develop
more efficient solutions.

VI. CONCLUSION

We have proposed and analyzed a new approach
to the integration of AI in O-RAN scenarios, allow-
ing to assign different model instances to each gNB
of the network, and independently choose the data
each instance is trained on. Our approach deviates
from the state of the art in that it does not seek
to train one model instance for the whole network
and to train it using all available data; therefore, it
provides more flexibility than fully-centralized and
fully-distributed approaches.

Our performance evaluation, leveraging real-
world traces, shows how our approach yields very
attractive trade-offs between training time and learn-
ing effectiveness, by combining data from differ-
ent sources in a flexible manner. Future research
directions stemming from our work include char-
acterizing a priori the usefulness of data for AI
training, trade-offs between data transfer delays and
AI training time, and the impact of AI accuracy over
the performance of concrete applications.
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