* p K .
* for Research & Innovation

hlft Ra[ A, {*H} ES:;Z;)oenaﬁ%zrl?on Funding < 4SECURa’I

(4SECURail

Revised Requirements of the 4SECURail Case Study

WP2 Task 2.3 Internal Report

Project acronym: 4SECURail
Starting date: 01/12/2019
Duration (in months): 24
Call (part) identifier: H2020-S2R-0OC-IP2-2019-01
Grant agreement no: 881775
Due date:
Actual submission date:
Responsible/Author: Franco Mazzanti, Dimitri Belli / CNR
Dissemination level: PU
Status: Draft
Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s view — the
Joint Undertaking is not responsible for any use that may be made of the information it contains. The users
use the information at their sole risk and liability. The content of this deliverable does not reflect the official
opinion of the Shift2Rail Joint Undertaking (S2R JU). Responsibility for the information and views expressed
in the deliverable lies entirely with the author(s).

Project Acronym — GA 881775 1|64



hift”Rai L>

Table of Contents

A W N

[ 4
** % : ‘
European Union Funding c a’
*

for Research & Innovation

LY e e 18 Tot o Ty H PSP PRPPPRP 3
Natural Language SPeCifiCatioNs .......cocceceiiiiiiiiiieiiiiee e e e e e e e e e s e e e brareeeeees 6
Graphical semiformal UML state maching designs ........ueeeeeeeeeiieeiiiiiiiieeiciirrreeeeeeee e 23
Executable UML MOGEIS .......cooiiiiiiiieeeee e e e e 26

Project Acronym — GA 881775

2|64



hlft Ral A, ES::)Zpoenar??Jzn?on Funding < 4SECURa’I

for Research & Innovation

1 Introduction

The transit of a train from an area supervised by a Radio Block Centre (RBC) to an adjacent area
supervised by another RBC occurs during the so-called RBC-RBC handover phase and requires
the exchange of information between RBCs according to a specific protocol.

This exchange of information is supported by the communication layer specified within the
UNISIG SUBSET 39 and SUBSET 98. Figure 1 hints the overall structure of the UNIG
standards supporting the handover of a train.

The 4SECURail case study is focused on two subcomponents of the communication layer
underlies the RBC-RBC handover communications. The considered components are the
RBC/RBC Communication Supervision layer (CSL) of the SUBSET 039, and on the SAI
component, of the Safe Functional Module of the SUBSET 098 (SAI). These two components
are those that support the creation/deletion of safe communications lines (over an unreliable OSI
Transport layer) and the protected transmission of messages..

Handing RBC handover protocol Accepting
UNISIG Subset 026 ETCS/ERTMS over RBC B, RBC

Class 1 System Requirements Specification (NRBC messages)

UNISIG Subset 039 FIS for RBC/RBC Handover E |>

Borc'ier balise group
* Support of concurrent RBC/RBC
Handover Transactions

RBC Handover Transaction

* Handli f Creation/Deleti f
RBC/RBC Communication Supervision ans;?eggom,r,fs,;/%zﬁoﬁ,g ° CSL
* Exchange of NRBC messages
4SECURail
RBC-RBC
UNISIG Subset 098 Safe Communication Interface Case Study
Safe pr ctional Module * Protection agains Delay, SAl
! Re-sequencing,
e S_ f‘l_ _S_u_til_a_y_e_r _____________________ Deletion, Repetion

* Protection agains Corruption,
Masquerare, Insertion

ER Safety Layer

... . M I
Communication Functional Module * Interface towards the EuroRadio OSI levels

UNISIG Subset 037 EuroRadio FIS

In particular the CSL is responsible for requesting the activation, and in case of failure the
rehestablishment, of the communication line, and for the forwarding of RBC Handover
Transaction messages on the active line.

Project Acronym — GA 881775 3|64



* ok .
* for Research & Innovation

hlft Ra[ A, {*N:* ES:;ZpoenaEOUZrl?on Funding < 4SECURa’I

The SAI is responsible for ensuring the absence of excessive delays, message repetitions or
message rehordering during the transmission. This is achieved by adding sequence number and
time related information to the RBC messages.

The two sides of the communication line are configured as an "initiator" side and a "called" side.

The 4SECURail case study does not include the rigorous specification and formal modelling of
the ER Safety Layer (responsible to prevent corruption, masquerade and insertion issues during

the communications), not of the lower EuroRadio levers and the interface to it (Communication
Functional Module). All this parts are abstracted an ER environment component which behaves

according to the requested assumptionsa and allows the two SAI side to interact.

On the upper leverl the 4SECURail case study does not include the rigorous specification and
formal modelling of the interactions of the trains with the RBC controlling the zone in which they
are moving, nor the activation of multiple, possible concurrent, RBC-RBC handover sessions
when trains have to move from a zone controlled by an RBC to another. From the point of view of
the CSL only RBC messages are forwarded to/from the upper level, toghether with information on
the current status of the communication line. Again. these upper parts are abstracted an RBC
environment component which behaves according to the requested assumptions.

Section 2 (derived from Appendix B of Deliverable 2.5) presents, in the form of natural language,
the requirements for these CSL and SAI components, distinguishing the initiator (ICSL, ISAI) and
called (CCSL, CSAI) sides. These requirements are a rewriting of the original standard definition
to make the specification more self-contained and understandable.

While performing the formal modelling and analysis, these requirements have been incrementally
generated and kept aligned with the developed formal and semi-formal models when missing parts
or inconsistencies are detected.

It is important to remark that the overall goal of the 4SECURail project is NOT the
validation/verification of some parts of standard documents, but the observation of the impact (in
terms of qualitative and quantitative and costs and benefits) of the use of formal methods during
the requirements definition phase. In our specific case we are interested to observe the
imprevements that can be achived in the natural language specification of the components of
interest, while passing from the initial free-style (subject to ambiguities, incompletenes and
inconsistences) version to a more rigorous style backed by underlying formal models.

Section 3 (derived from Appendix A of Deliverable 2.5) presents a graphical (abstract, semi-
formal) representation of the UML state machines describing the expected behavior of the SAI
and CSL components.

Section 4 presents one complete executable and verifiable version of these components specified
in the syntax accepted by UMC for the specification of UML state machines.

This UMC notation is used as a basis for the mechanical translation of the UMC forml models
into other notations like CADP/LNT and ProB, allowing the use of different formal frameworks
for the analysis of the system properties. All the three different formal models can be proved,
inspite of the the differences in the underlying theories and syntax, to be strongly equivalent.

Project Acronym — GA 881775 4|64



* * .
* for Research & Innovation

hlft Ra[ A, {*”} ES::)Zpoenar%?Jzn?on Funding < 4SECURa’I

In order to perform the analysis of the specified components it is necessary to build closed
scenarios in which the designed CSL and SAI components and composed with a stimulating
environment. Different kind of scenarios can be imagined depending on the kind of system
properties we are interest to analyse.

Since the modelled system is heavily time dependent, but our formalisms are not explicitly
support time, out formal models include an additiona Timer component that allowes the various
system components to synchronously proceed in parallel, but relatively at the same speed.

Also these environent components (Timer, ER and two RBC sides) can be designed as UML state
machines and encoded in UMC syntax so that the full resulting system can be mechanically
translated in the various formalisms and analysed.

Project Acronym — GA 881775 5|64



for Research & Innovation

hlft Ral A, Es:ézp)oenaﬁ%zrl?on Funding < 4SECURa’I

2 Natural Language specifications

Requirements Specification for the Initiator CSL Component

Configuration Parameters
System parameters,

max connection delay;
max delay between send operations:
max delay between receive operations.

External Interactions
The Initiator CSL can receive from the Initiator RBC component the following message:

RBC_User_Data.request(RBC_data_value);

and can send to the RBC component the following messages:

RBC_User_Connect.indication;
RBC_User_Disconnect.indication;
RBC_User_Data.indication(RBC_data_value).

The CSL can receive from the Initiator SAl component the following messages:

SAl_CONNECT.confirm;

SAl_DISCONNECT.indication;
SAl_DATA.indication(message_type?, SAl_data_value);
SAI_ERROR.report;

and can send to the SAl component the following messages:

States

SAl_CONNECT.request;
SAI_DISCONNECT.request;
SAl_DATA.request(message_type, SAl_data_value).

The CSL can be in the following four main states:

Disconnected, when the communication is unactive;

Connecting, when the communication is in the establishment phase;

Connected, when the communication is active;

Waiting, when the communication is between the Connected and Disconnected states.

External Guarantees

CSL sends RBC_User_Data.indication messages only after an RBC_User_Connect.request not
followed by RBC_User_Disconnect.indication;

CSL sends to the RBC component an RBC_User_Disconnect.indication message only after an
RBC_User_Connect.request message not already followed by RBC_User_Disconnect.indication;
CSL sends to the RBC component an RBC_User_Connect.indication message only as first message
or after an RBC_User_Disconnect.indication not already followed by RBC_User_Connect.indication;

! message_type may refer to either life_sign or RBC data.
Project Acronym — GA 881775 6|64



for Research & Innovation

hlft Ral A, ES:;i)oenaﬁ%zrl?on Funding < 4SECURa’I

e the first message (possibly) sent to the RBC component is an RBC_User_Connect.indication
message;

e the initiator CSL periodically sends to the SA/ component either SAl_CONNECT.request or
SAl_DATA.request messages;

e if the initiator CSL, while in Connected (COMMS) state, does not receive any SAl_DATA.indication
message from the SA/ for a certain specified amount of time, a SAI_DISCONNECT.request message
is sent to the SA/;

e the initiator CSL may send a SAl_DISCONNECT.request message only when in Connected (COMMS)
state;

e incoming messages are buffered and served with FIFO policy.

External Assumptions
e The SAl always replies with a SAl_DISCONNECT.indication message to SAl_DISCONNECT.request
messages issued by the CSL.

Behavioral Requirements

R1: At startup, the CSL is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state, the CSL immediately sends a SAl_CONNECT.request to the SAl component,
starts a connTimer, and moves to the Connecting state.

When in Connecting State

R3: When in Connecting state the connTimer expires, the CSL moves to Disconnected state.
R4: When in Connecting state is received a SAI_CONNECT.confirm from the SAl component, the CSL sends

an RBC _User_Connect.indication to the RBC component, starts both the sendTimer and the recTimer, and
moves to Connected state. It is allowed to set the sendTimer so that an initial lifesign is sent without delay.

When in Waiting State

R5: When in Waiting state is received a SAl_DISCONNECT.indication from the SAl component, the CSL
moves to Disconnected state.

When in Connected State

R6: When in Connected state the recTimer expires, the CSL sends a SAl_DISCONNECT.request to the SAl
component, an RBC_User_Disconnect.indication to the RBC and moves to Waiting state.

R7: Each time that in Connected state the sendTimer expires, the CSL sends a SAl_DATA.request with a
life_sign to the SAl component.

R8: When in Connected state is received an RBC_User_Data.request with RBC_data from the RBC
component, the CSL sends a SAl_DATA.request with such RBC_data to the SAl component.

Project Acronym — GA 881775 7|64



for Research & Innovation

hlft Ral A, ES::)Zpoenar??Jzn?on Funding < 4SECURa’I

R9: When in Connected state is received a SAl_DATA.indication with SAl_data from the SAl component, the
CSL sends an RBC_User_Data.indication with such SAl_data to the RBC component and restarts the
recTimer.

R10: When in Connected state is received a SAl_DATA.indication with a life_sign from the SAl component,
the CSL restarts the recTimer.

R11: When in Connected state is received a SAl_DISCONNECT.indication from the SAl component, the CSL
sends an RBC_User_Disconnect.indication to the RBC component and moves to Disconnected state.

Discarding of Messages

RD1: When in Connecting state, the CSL discards any message except for SAI_CONNECT.confirm from the
SAl component.

RD2: When in Waiting state, the CSL discards any message except for SAI_DISCONNECT.indication from the
SAl component.

RD3: When in Connected state, the CSL component discards only SAl_CONNECT.confirm and
SAIl_ERROR.report messages from the SA/ component.

Project Acronym — GA 881775 8|64



for Research & Innovation

hlft Ral A, ES:;i)oenaﬁ%zrl?on Funding < 4SECURa’I

Requirements Specification for the Initiator SAl Component

Configuration Parameters
Initialization kind: Execution Cycle option.
System parameters,
e for Execution Cycle procedure:
o maximum initialization delay
o Mec (limit of the execution cycle counters);
o K (max acceptable transmission delay for a message);
e for ACK procedure:
o ack_request_period;
o ack_response_timeout;
e for sequence number:
o N (limit of acceptable, consecutive message losses, N = 1 means no losses);
o M (limit of the sequence number values, which have range 0..M-1).

External Interactions
The Initiator SAl can receive from the Injtiator CSL component the following messages:
e SAI_CONNECT.request;
e SAI_DISCONNECT.request;
e SAl_DATA.request (message_type?, RBC data_value);
and can send to the CSL component the following messages:
e SAl_CONNECT.confirm;
SAI_DISCONNECT.indication;
e SAl_DATA.indication(message_type, RBC data_value);
e SAI_ERROR.report.
The SAI can receive from the EuroRadio Safety Layer (henceforth ER-SL) the following messages:
e Sa_CONNECT.confirm;
e Sa_DISCONNECT.indication;
e Sa_DATA.indication(message_type, data_value, ack_request, ack_response, sequence_number,
execution_cycle_number);

e Sa_ExecutionCycleStart(sequence_number, execution_cycle_counter);
and can send to the ER-SL the following messages:
e Sa _CONNECT.request;
e Sa _DISCONNECT.request;
e Sa _DATA.request(message_type, data_value, ack request, ack response, sequence_number,
execution_cycle_number);
e Sa_ExecutionCycle(sequence_number, execution_cycle_counter).

Internal Variables
e sequence_number;
e execution_cycle_counter;

2 message_type may refer to either life_sign or RBC data.
Project Acronym — GA 881775 9|64



for Research & Innovation

hlft Ral A, ES:;i)oenaﬁ%zrl?on Funding < 4SECURa’I

o last_received_sequence_number;

o last_received_execution_cycle_counter;

e execution_cycle_OFFSET.
States
The SAl can be in the following four main states:

e Connected, when the communication is active;

e Connecting, when the communication is in the establishment phase;
Initializing, while performing the execution cycle start procedure;
Disconnected, when the communication is unactive.

External Guarantees
e The SAl always replies with a SAl_DISCONNECT.indication message to SAl_DISCONNECT.request
messages issued by the CSL;
e the data messages delivered to the CSL are valid (i.e., arrived with a limited delay), not duplicated,
not reordered messages;
e no more than one data message per execution cycle is sent to the ER-SL;
e incoming messages are buffered and served with FIFO policy.

External Assuptions
e The ER-SL always eventually replies either with a Sa_DISCONNECT.indication or with a
SAl_CONNECT.confirm to Sa_CONNECT.request messages issued by the SAl;
e the initiator CSL, after having sent a SAl_CONNECT.request message to the SAl, does not send a
SAl_DISCONNECT.request message until SAI_CONNECT.indication messages is received.

Behavioral Requirements

R1: At startup, the SAl is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state is received a SAI_CONNECT.request from the CSL component, the SA/ sends
a Sa_CONNECT.request to the ER-SL and moves to Connecting state.

R3: When in Disconnected state is received a SAl_DISCONNECT.request from the CSL component, the SA/
replies with a SAI_DISCONNECT.indication to the CSL component.

When in Connecting State

R4: When in Connecting state is received a Sa_DISCONNECT.indication from the ER-SL, the SAl moves to
Disconnected state.

R6: When in Connecting state is received a Sa_CONNECT.confirm from the ER-SL, the SAI replies with a
Sa_ExecutionCycle(seqnum, ecnum) to the ER-SL and moves to the Initializing state, waiting for a
Sa_ExecutionCycleStart message from the ER-SL within a maximum initialization delay. The management
of the Sa_ExecutionCycleStart parameters is done according to the requirements in the following Sequence
Numbers Management and Execution Cycle Counters Management sections.

Project Acronym — GA 881775 10| 64



for Research & Innovation

hlft Ral A, ES:;ZpoenaEOUZrl?on Funding < 4SECURa’I

When in Initializing State

R7: When in Initializing state the maximum initialization delay expires, the SAl sends an SAl_ERROR.report
to the CSL component, a Sa_DISCONNECT.request to the ER-SL and moves to Disconnected state.

R9: When in Initializing state is received a Sa_DISCONNECT.indication from the ER-SL, the SAl moves to
Disconnected state.

R11: When in Initializing state is received a Sa_ExecutionCycleStart(seqnum, ecnum) from the ER-SL, the
SAl sends a SAI_CONNECT.confirm to the CSL component and moves to Connected state. The received
seqnum is accepted as initial remote sequence number and the ecnum is accepted as initial value of the
remote execution cycle counter. The execution_cycle_ OFFSET variable is set as the difference between the
current execution cycle counter and the received execution cycle counter. While the
last_received_sequence_number variable is set to the received sequence number.

When in Connected State

R12: When in Connected state is received a SAl_DISCONNECT.request from the CSL component, the SA/
replies with a SAI_DISCONNECT.indication to the CSL component, sends a Sa_DISCONNECT.request to the
ER-SL, and moves to Disconnected state.

R13a: When in Connected state is received a SAl_DATA_request(msgtype, data) from the CSL component,
and yet no other data message has been sent in this cycle, the SAl sends a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) to the ER-SL.

The ackreq and ackresp parameters are set according to REQ_ACKs.

The seqnum parameter is set according to SEQ_NUMs and the ecnum parameter is set according to
REQ_ECNUM:s.

R13b: When in Connected state is received a SAl_DATA.request(msgtype, data) from the CSL component,
but another data message has already been sent in this cycle, the SAI_DATA.request is saved in a FIFO
dataout buffer (see also REQ_OUTDATABUFF).

R14: Each time that in Connected state the set_ack_response expires, the SAl sends a SAl_ERROR.report to
the CSL component.

R15: When in Connected state is received a Sa_DISCONNECT.indication from the ER-SL, the SAl sends a
SAl_DISCONNECT.indication to the CSL component and moves to Disconnected state.

R16: When in Connected state is received a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum,
ecnum) from the ER-SL we can have four cases, depending on the received seqnum and ecnum values (see
SEQ_NUMs and REC_ECNUMs Management).

* The segnum is the one EXPECTED and ecnum is VALID: In this case the SAl sends a
SAl_DATA.indication(msgtype, data) to the CSL component.

* The seqnum is ACCEPTABLE and the ecnum is VALID: in this case the SA/ sends
a SAl_DATA.indication(msgtype, data) and a SAl_ERROR.report to the CSL component.

* The seqnum is OLD or (the seqnum is ACCEPTABLE and the ecnum is VALID): In this case the SAl sends a
SAIl_ERROR.report to the CSL component and discards the Sa_DATA.indication message.

* The seqnum is NOT_ACCEPTABLE: In this case the SAl component sends a Sa_DISCONNECT.request to
ER-SL and a SAl_DISCONNECT.indication to the CSL component, and then moves to Disconnected state.

Project Acronym — GA 881775 11|64



for Research & Innovation

hlft Ral A, ES:;ZpoenaEOUZrl?on Funding < 4SECURa’I

OUTDATA Buffer Management

REQ_OUTDATABUFF1: At the beginning of each cycle, if the dataout buffer is not empty, the first
SAl_DATA.request(msgtype, data) in the queue is removed and its data are used to send a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) to the ER-SL.

The ackreq, ackresp, seqnum, ecnum parameters are set according to REQ_ECNUM, REQ_ACK, and REQ
SEQNUM requirements.

REQ_OUTDATABUFF2: When the SAl moves from the Connected state to the Disconnected state, the
dataout buffer is emptied and the possibly waiting messages are discarded.

Execution Cycle Counters Management

REQ_ECNUM1: When entering in the Initializing state, the initial value of the execution cycle counter is set
to 0.

REQ_ECNUM2: While in the Initializing or Connected state, the execution cycle counter is incremented
modulo Mec at every cycle.

REQ_ECNUM3: When sending a Sa_ExecutionCycleStart(seqgnum,ecnum) message or a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) the value of the ecnum parameter is set
to the current value of the execution cycle counter.

REQ_ECNUMA4: When receiving a Sa_ExecutionCycleStart(seqnum,ecnum) message from the ER-SL, the
value of the ecnum parameter is used to compute the EC_OFFSET as difference between the current value
of the execution cycle counter and the received seqnum value.

REQ_ECNUMDS5: When receiving a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum, ecnum)
message from ER-SL, the message in considered VALID if the message delay is less than K, where the
message delay is computed as follows?:

message_delay = (execution_cycle_counter - EC_OFFSET) mod Mec?) - ecnum;
if message_delay < -Mec/2 then
message_delay:= message_delay + Mec;
elsif message_delay > Mec/2 then
message_delay:= message_delay - Mec;
end if

Sequence Numbers Management

SEQ_NUML1: When entering in the state Connected, the sequence_number is set to 0.

SEQ_NUM2: When in Connecting state a Sa_ExecutionCycleStart(seqnum,ecnum) message is sent to the
ER-SL, the seqnum parameter is set to the current value of sequence_number.

3 This is a simplification from what required by UNISIG-098 as we assume that the EC period is 1 cycle for both SA/
sides.
4 Also when applied to negative numbers, (N mod M) is assumed to be equal to ((N+M) mod M).

Project Acronym — GA 881775 12|64



for Research & Innovation

hlft Ral A, ES:;ZpoenaEOUZrl?on Funding < 4SECURa’I

SEQ_NUMS3: When in the Initializing or Connected state a Sa_DATA.request(msgtype, data, ackreq, ackresp,
seqnum, ecnum) message is sent to the ER-SL, the seqnum parameter is set to the current value of
sequence_number, and the sequence_number is incremented by 1 mod M.

SEQ_NUMA4: When in Initializing state is received a Sa_ExecutionCycleStart(seqnum,ecnum) message from
ER-SL, the value of the seqnum parameter is saved as last_received_sequence_number.

SEQ_NUMS5: When in the Initializing or Connected state is received a Sa_DATA.indication (msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the ER-SL, the distance of the current message from the last received
one is computed as follows:

distance := seq_num - last_received_sequence_number;
if (distance < -M/2) then {distance := distance + M},
else if (distance > M/2) then {distance := distance - M};

If the distance value is equal to 1, the seqnum is considered EXPECTED.

If the distance value is lower than 1, the seqnum is considered OLD.

If the distance value is greater than 1 and less or equals to N, the seqnum is considered ACCEPTABLE.
If the distance value is greater than N, the seqnum is considered NOT_ACCEPTABLE.

ACK Management

REQ_ACK1: When in Connected state, the SAl periodically (with a configurable ack_request_period) sets an
ackreq flag to the first Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be
forwarded to the ER-SL and starts an ack_response_timer with a max_response_delay limit.

The ackreq flag is not set and the timer is not started if the SA/ is still waiting for the response to a previous
ack request.

REQ_ACK2: When the ack_response_timeout expires, if a Sa_DATA.indication(msgtype, data, ackreq,
ackresp, seqnum, ecnum) message with an ackresp parameter set has not yet been received from the ER-
SL, the SAl sends a SAI_ERROR.report to the CSL component and restarts the ack request timer.

REQ _ACK3: While in Connected or Initializing state, when it is received a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the CSL component, the SA/l sets the ackresp parameter in next

Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be sent to the ER-SL.

Discarding of Messages

RD1: When in Disconnected state the SA/l discards any message except for,
e SAIl_CONNECT.request and SAl_DISCONNECT.request from the CSL component.

RD2: When in Connecting state, the SAl discards any message except for,
e Sa_DISCONNECT.indication, and Sa_CONNECT.confirm from the ER-SL;

RD3: When in Initializing state, the SA/ discards any message except for,
e Sa_DISCONNECT.indication and Sa_ExecutionCycleStart from the ER-SL;

RD4: When in Connected state, the SAl discards any message except for,

Project Acronym — GA 881775 13|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*:' ESrr(iJZpoenar%OU‘i\(i)on Funding < 4SECURa’I

e Sa_DISCONNECT.indication and Sa_DATA.indication from the ER-SL;
e SAl_DISCONNECT.request, SAl_DATA.request from the CSL component.

Project Acronym — GA 881775 14 | 64



for Research & Innovation

hlft Ral A, ES:;i)oenaﬁ%zrl?on Funding < 4SECURa’I

Requirements Specification for the Called CSL Component

Configuration Parameters
System parameters,
e max delay between send operations:
e max delay between receive operations.

External Interactions
The Called CSL can receive from the Called RBC component the following message:
e RBC User_Data.request(RBC _data_value);
and can send to the RBC component the following messages:
e RBC _User_Connect.indication;
e RBC _User_Disconnect.indication;
e RBC User_Data.indication(RBC_data_value).
The CSL can receive from the Called SAl component the following messages:
e SAl_CONNECT.indication;
SAI_DISCONNECT.indication;
SAl_DATA.indication(message_type°, SAl_data_value);
SAl_ERROR.report;
and can send to the SAl component the following messages:
e SAI_CONNECT.request;
e SAI_DISCONNECT.request;
o SAl_DATA.request(message_type, SAl_data_value).

States

The CSL can be in the following two states:
e Disconnected (NOCOMMS), when the communication is unactive;
e Connected (COMMS), when the communication is active.

External Guarantees
e The frequency of messages being sent by CSL to RBC is limited by an upper bound;
e the frequency of messages being sent by CSL to SAl is limited by an upper bound;

e (SL sends RBC_User_Data.indication messages only after an RBC_User_Connect.request not

followed by RBC_User_Disconnect.indication;

e (SL sends to the RBC component an RBC_User_Disconnect.indication message only after an
RBC_User_Connect.indication message not already followed by RBC_User_Disconnect.indication;
e the first message (possibly) sent to the RBC component is an RBC_User_Connect.indication

message;

e (SL sends to the RBC component an RBC_User_Connect.indication message only as first message
or after an RBC_User_Disconnect.indication not already followed by RBC_User_Connect.indication;
e the called CSL, while in the Connected (COMMS) state periodically sends to the SA/ component

SAl_DATA.request messages;

> message_type may refer to either life_sign or RBC data.

Project Acronym — GA 881775 15|64



for Research & Innovation

hlft Ral A, ES:;i)oenaﬁ%zrl?on Funding < 4SECURa’I

e ifthe called CSL, while in the Connected (COMMS) state, does not receive any SAl_DATA.indication
message from the SAl for a certain specified amount of time, a SAI_DISCONNECT.request message
is sent to the SAI;

e incoming messages are buffered and served with FIFO policy.

Behavioral Requirements

R1: At startup, the CSL is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state is received a SAl_CONNECT.indication from the SAl component, the CSL
sends an RBC_User_Connect_indication to the RBC component, starts both the sendTimer and the recTimer,
and moves to Connected state. It is allowed to set the sendTimer so that an initial lifesign is sent without
delay.

When in Connected State

R4: When in Connected state is received an RBC_User_Data.request(userdata) from the RBC component,
the CSL sends a SAl_DATA.request(RBC_data,userdata) to the SAl component.

R5: Each time that in Connected state the sendTimer expires, the CSL sends a SAl_DATA.request with a
life_sign to the SAl component.

R6: When in Connected state is received a SAl_DATA.indication with a life_sign from the SA/ component,
the CSL restarts the recTimer.

R7: When in Connected state is received a SAl_DATA.indication with SAl_data from the SAl component, the
CSL sends an RBC_User_Data.indication with such SAl_data to the RBC component and restarts the
recTimer.

R8: When in Connected state is received a SAI_DISCONNECT.indication from the SAl component, the CSL
sends an RBC_User_Disconnect.indication to the RBC component and moves to Disconnected state.

R9: When in Connected state the recTimer expires, the CSL sends a SAl_DISCONNECT.request to the SAl
component, an RBC_User_Disconnect.indication to the RBC component and moves to Disconnected state.

Discarding of Messages

RD1: When in Disconnected state the CSL does not accept any kind of message except for
SAl_CONNECT.indication from the SA/ component.

RD2: When in Connected state the CSL discards SAI_CONNECT.indication and SAl_ERROR.report messages
from the SAl component.

Project Acronym — GA 881775 16| 64



for Research & Innovation

hlft Ral A, ES:;i)oenaﬁ%zrl?on Funding < 4SECURa’I

Requirements Specification for the Called SAl Component

Configuration Parameters
Initialization kind: Execution Cycle option.
System parameters,
e for Execution Cycle procedure:
o maximum initialization delay
o Mec (limit of the execution cycle counters);
o K (max acceptable transmission delay for a message);
e for ACK procedure:
o ack_request_period;
o ack_response_timeout;
e for sequence number:
o N (limit of acceptable, consecutive message losses, N = 1 means no losses);
o M (limit of the sequence number values, which have range 0..M-1).

External Interactions
The Called SAI can receive from the Called CSL component the following messages:
e SAI_DISCONNECT.request;
e SAl_DATA.request(message_type®, RBC data_value);
and can send to the CSL the following messages:
e SAl_CONNECT.indication;
e SAl_DISCONNECT.indication;
e SAl_DATA.indication(message_type, RBC data_value);
e SAI_ERROR.report.
The SAI can receive from the EuroRadio Safety Layer (henceforth ER-SL) the following messages:
e Sa_CONNECT.indication;
e Sa_DISCONNECT.indication;
e Sa_DATA.indication(message_type, SAl_data_value, ack_request, ack_response,
sequence_number, execution_cycle_number);
e Sa_ExecutionCycleStart(sequence_number, execution_cycle_counter);
and can send to the ER-SL the following messages:
e Sa _CONNECT.response;
e Sa _DISCONNECT.request;
e Sa_DATA.request(message_type, SAl_data_value, ack_request, ack_response, sequence_number,
execution_cycle_number);
e Sa_ExecutionCycle(sequence_number, execution_cycle_counter).

Internal Variables
e sequence_number;
e execution_cycle_counter;
o last_received_sequence_number;

® message_type may refer to either life_sign or RBC data.
Project Acronym — GA 881775 17|64



for Research & Innovation

hlft Ral A, ES:;i)oenaﬁ%zrl?on Funding < 4SECURa’I

o last_received_execution_cycle_counter;
e execution_cycle_OFFSET.

States
The SAl can be in the following four main states:

e Connected, when the communication is active;

e Connecting, when the communication is in the establishment phase;
Initializing, while performing the execution cycle start procedure;
Disconnected, when the communication is unactive.

External Guarantees
e The data messages delivered to the CSL are valid (i.e., arrived with a limited delay), neither
duplicated nor reordered,;
e no more than one data message per execution cycle is sent to the ER-SL;
e incoming messages are buffered and served with FIFO policy.

Behavioral Requirements

R1: At startup, the SAl is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state is received a Sa_ CONNECT.indication from the ER-SL, the SAl replies with a
Sa_CONNECT.response to the ER-SL and moves to Connecting state.

When in Connecting State

R2b: When in Connecting state is received a Sa_CONNECT.indication from the ER-SL, the SAI replies with a
Sa_CONNECT.response to the ER-SL and remains in the Connecting state.

R3: When in Connecting state is received a Sa_DISCONNECT.indication from the ER-SL, the SAl moves to
Disconnected state.

R5: When in Connecting state is received a Sa_ExecutionCycleStart(seqnum, ecnum) from the ER-SL, the SA/
replies with a Sa_ExecutionCycle(seqnum, ecnum) to the ER-SL, starts an initTimer set to the maximum
initialization delay, and moves to Initializing state. The management of the Sa_ExecutionCycleStart
parameters are done according to the rules in the Sequence Numbers Management and Execution Cycle
Counters Management sections.

When in Initializing State

R2c: When in Initializing state is received a Sa_CONNECT.indication from the ER-SL, the SAI replies with a
Sa_CONNECT.response to the ER-SL and moves to Connecting state.

R6: When in Initializing state the maximum initialization delay expires, the SAl sends a SAl_ERROR.report
to the CSL component and moves to Disconnected state.

R8: When in Initializing state is received a Sa_DISCONNECT.indication from the ER-SL, the SAl moves to
Disconnected state.

Project Acronym — GA 881775 18|64



for Research & Innovation

hlft Ral A, ES:;ZpoenaEOUZrl?on Funding < 4SECURa’I

R9: When in Initializing state is received a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum,
ecnum) from the ER-SL may have four cases, depending on the received seqnum and ecnum values (see
REQ SEQ_NUMs and REC_ECNUMs).

* The segnum is the one EXPECTED and ecnum is VALID: In this case the SAl moves to Connected state and
sends both a SAIl_CONNECT.indication and a SAl_DATA.indication(msgtype, data) to the CSL component.

* The seqnum is ACCEPTABLE and the ecnum is VALID: in this case the SAl moves to Connected state and
sends a SAl_CONNECT.indication, a SAl_DATA.indication(msgtype, data)and a SAl_ERROR.report to
the CSL component.

* The seqnum is NOT_ACCEPTABLE: in this case the SAl component sends a Sa_DISCONNECT.request to ER-
SL and moves to Disconnected state.

* The seqnum is OLD or (the seqnum is ACCEPTABLE and the ecnum is VALID): In this case the SAl sends a
SAIl_ERROR.report to the CSL component and discards the Sa_DATA.indication message.

When in Connected State

R10: When in Connected state is received a SAl_DISCONNECT.request from the CSL component, the SA/
replies with a SAI_DISCONNECT.indication to the CSL component, sends a Sa_DISCONNECT.request to the
ER-SL, and moves to Disconnected state.

R11: When in Connected state is received a Sa_DISCONNECT.indication from the ER-SL, the SAl sends a
SAl_DISCONNECT.indication to the CSL component and moves to Disconnected state.

R12: When in Connected state is received a Sa_CONNECT.indication from the ER-SL, the SAl replies with a
Sa_CONNECT.response to the ER-SL, sends a SAl_DISCONNECT.indication to the CSL component, and moves
to Connecting state.

R13a: When in Connected state is received a SAl_DATA_request(msgtype, data) from the CSL component,
and yet no other data message has been sent in this cycle, the SAl sends a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) to the ER-SL.

The ackreq and ackresp parameters are set according to REQ_ACKs.

The seqnum parameter is set according to SEQ_NUMs and the ecnum parameter is set according to
REQ_ECNUM:s.

R13b: When in Connected state is received a SAl_DATA.request(msgtype, data) from the CSL component,
but another data message has already been sent in this cycle, the SAI_DATA.request is saved in a FIFO
dataout buffer (see also REQ_OUTDATABUFF).

R14: When in Connected state is received a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum,
ecnum) from the ER-SL we can have four cases, depending on the received seqnum and ecnum values (see
SEQ_NUMs and REC_ECNUMs).
* The segnum is the one EXPECTED and ecnum is VALID: In this case the SAl sends a
SAl_DATA.indication(msgtype, data) to the CSL component.
Depending on the received values of the ackreq and ackresp parameters, appropriate actions are
performed (see REQ_ACKSs).
* The seqnum is ACCEPTABLE and the ecnum is VALID: in this case the SA/ sends
a SAl_DATA.indication(msgtype, data) and a SAl_ERROR.report to the CSL component.
Depending on the received values of the ackreq and ackresp parameters, appropriate actions are
performed (see REQ_ACKSs).

Project Acronym — GA 881775 19|64



for Research & Innovation

hlft Ral A, ES:;ZpoenaEOUZrl?on Funding < 4SECURa’I

* The seqnum is OLD or (the seqnum is ACCEPTABLE and the ecnum is VALID): In this case the SAl sends a
SAIl_ERROR.report to the CSL component and discards the Sa_DATA.indication message.

* The seqnum is NOT_ACCEPTABLE: In this case the SAl component sends a Sa_DISCONNECT.request to
ER-SL, a SAl_DISCONNECT.indication to the CSL component, and then moves to Disconnected state.

OUTDATA Buffer Management

REQ_OUTDATABUFF1: At the beginning of each cycle, if the dataout buffer is not empty, the first
SAl_DATA.request(msgtype, data) in the queue is removed and its data are used to send a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) to the ER-SL.

The ackreq, ackresp, seqnum, ecnum parameters are set according to REQ_ECNUM, REQ_ACK, and REQ
SEQNUM requirements.

REQ_OUTDATABUFF2: When the SAl moves from the Connected state to the Disconnected state, the
dataout buffer is emptied and the possibly waiting messages are discarded.

Execution Cycle Counters Management

REQ_ECNUM1: When entering in the Initializing state, the initial value of the execution cycle counter is set
to 0.

REQ_ECNUM2: While in the Initializing or Connected state, the execution cycle counter is incremented
modulo Mec at every cycle.

REQ_ECNUM3: When sending a Sa_ExecutionCycleStart(seqgnum,ecnum) message or a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) the value of the ecnum parameter is set
to the current value of the execution cycle counter.

REQ_ECNUMA4: When receiving a Sa_ExecutionCycleStart(seqnum,ecnum) message from the ER-SL, the
value of the ecnum parameter is used to compute the EC_OFFSET as difference between the current value
of the execution cycle counter and the received seqnum value.

REQ_ECNUMDS5: When receiving a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum, ecnum)
message from ER-SL, the message in considered VALID if the message delay is less than K, where the
message delay is computed as follows’:

message_delay = (execution_cycle_counter - EC_OFFSET) mod Mec?) - ecnum;
if message_delay < -Mec/2 then
message_delay:= message_delay + Mec;
elsif message_delay > Mec/2 then
message_delay:= message_delay - Mec;
end if

Sequence Numbers Management

SEQ_NUML1: When entering in the state Connected, the sequence_number is set to 0.

7 This is a simplification from what required by UNISIG-098 as we assume that the EC period is 1 cycle for both SA/
sides.
8 Also when applied to negative numbers, (N mod M) is assumed to be equal to ((N+M) mod M).

Project Acronym — GA 881775 20| 64



for Research & Innovation

hlft Ral A, ES:;ZpoenaEOUZrl?on Funding < 4SECURa’I

SEQ_NUM2: When in Connecting state a Sa_ExecutionCycleStart(seqnum,ecnum) message is sent to the
ER-SL, the seqnum parameter is set to the current value of sequence_number.

SEQ_NUMS3: When in the Initializing or Connected state a Sa_DATA.request(msgtype, data, ackreq, ackresp,
seqnum, ecnum) message is sent to the ER-SL, the seqnum parameter is set to the current value of
sequence_number, and the sequence_number is incremented by 1 mod M.

SEQ_NUMA4: When in Initializing state is received a Sa_ExecutionCycleStart(seqnum,ecnum) message from
ER-SL, the value of the seqnum parameter is saved as last_received_sequence_number.

SEQ_NUMDS5: When in the Initializing or Connected state is received a Sa_DATA.indication (msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the ER-SL, the distance of the current message from the last received
one is computed as follows:

distance := last_received_sequence_number —seq_num;
if (distance < -M/2) then {distance := distance + M };
else if (distance > M/2) then {distance := distance - M };

If the distance value is equal to 1, the seqnum is considered EXPECTED.

If the distance value is lower than 1, the seqnum is considered OLD.

If the distance value is greater than 1 and less or equals to N, the seqnum is considered ACCEPTABLE.
If the distance value is greater than N, the seqnum is considered NOT_ACCEPTABLE.

ACK Management

REQ_ACK1: When in Connected state, the SAl periodically (with a configurable ack_request_period) sets an
ackreq flag to the first Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be
forwarded to the ER-SL and starts an ack_response_timer with a max_response_delay limit.

The ackreq flag is not set and the timer is not started if the SA/ is still waiting for the response to a previous
ack request.

REQ_ACK2: When the ack_response_timeout expires, if a Sa_DATA.indication(msgtype, data, ackreq,
ackresp, seqnum, ecnum) message with an ackresp parameter set has not yet been received from the ER-
SL, the SAl sends a SAI_ERROR.report to the CSL component and restarts the ack request timer.

REQ _ACK3: While in Connected or Initializing state, when it is received a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the CSL component, the SA/l sets the ackresp parameter in next
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be sent to the ER-SL.

Discarding of Messages

RD1: When in Disconnected state the SAl discards any message except for Sa_ CONNECT.indication from the
ER-SL.

RD2: When in Connecting state, the SAl discards any message except for,
Sa_DISCONNECT.indication and Sa_ExecutionCycleStart from the ER-SL;

RD3: When in Initializing state, the SA/ discards any message except for,
Sa_DISCONNECT.indication and Sa_DATA.indication from the ER-SL;

Project Acronym — GA 881775 21|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*”:' ES:LZpoenar%OU‘i\(i)on Funding < 4SECURa’I

RD4: When in Connected state, the SAl discards any Sa_ExecutionCycleStart message from the ER-SL.

Project Acronym — GA 881775 22|64



BRI Horizon 2020 ( 4SECURaiI

hlft Ral A o x European Union Funding

for Research & Innovation

3 Graphical semiformal UML state machine designs

Initiator CSL R1

- [ connection
timer expired ]/ R3

NOCOMMS R5 SAI_DISCONNECT.indication /‘@;OMMS
Waiting

NOCOMMS
Connecting

> Disconnected) R2

-/
SAIL.SAI_CONNECT.request;
SAI_DISCONNECT.indication / start connection timer; R4

RBC.RBC_User_disconnect_indication

R11 SAI_CONNECT.confirm /

- [receive timer expired ]/ rm7
RBC.RBC_User_Connect_indication;

SAI.SAI_DISCONNECT.request;

RBC.RBC_User_Disconnect_indication R@ CoMMS | Startsend and receive timer;
Connected
RBC_User_Data.request(userdata) / R8 R7 - [send timer expired ] /
SAIL.SAI_DATA_request (Rbadata,userdata) SAI.SAI_DATA request(Life-sign,nodata)
SAI_DATA _indication(msgtype,userdata) R9 R10 SAI_DATA_indication(msgtype,userdata)
[msgtype != lifesign] / [msgtype = lifesign] /
RBC.RBC_User_Data_indication(userdata) ; restart receive timer ;

restart receive timer;

Project Acronym — GA 881775 23|64



hift 2Rai I

* X x

Horizon 2020
European Union Funding
for Research & Innovation

* %%

*
* ek

(4SECURail

Initiator SAl

Sa_DISCONNECT.indication /

NOCONN
Disconnected

»

SAI_CONNECT.request /
ER.Sa_CONNECT.request

R3

SAI_DISCONNECT.request /
CSL.SAI_DISCONNECT.indication

R2

- [initilization timer expired ] /
CSL.SAI_ERROR.report ;
ER.Sa_DISCONNECT.indication R7

SAI_DISCONNECT.request /
CSL.SAI_DISCONNECT.indication ;
ER.Sa_DISCONNECT.request R12

Sa_DISCONNECT.indication/  R9

Connecting

Initializing

R4

NOCONN

R6

Sa_CONNECT.confirm /
ER.Sa_ExecutionCycleStart
(segnum,ecnum) ;

NOCONN start initilization timer,

R11

Sa_DISCONNECT.indication /
CSL.SAI_DISCONNECT.indication
R15

[seqnum not acceptable] |
ER.Sa_DISCONNECT.request
CSL.SAI_DISCONNECT.indication ;

Sa_DATA_indication R16
(msgtype,userdata,
ackreq,ackresp,seqnum,ecnum) /

Connected SAI.LERROR.report;

[seqnum expected and ecnum valid ]/

SAI_DATA.request(msgtype,userdata) /
CSL.SAI_DATA.indication(msgtype,userdata);

[first outgoing msg in this cycle] /
ER.Sa_DATA.request(msgtype,userdata,
ackreq,ackresp,segnum,ecnum) ;
possibly start ack response timer

[seqnum acceptable and ecnum valid ]/
CSL.SAI_DATA.indication(msgtype,userdata);
CSL.SAI_ERROR:.report;

- [ack respnse timer expired ]/

Sa_ExecutionCycleStart
(segnum,ecnum) /
CSL.SAI_CONNECT.confirm;
handle args

[not first outgoing msg in this cycle] /

[ seqnum old or enqueue in FIFO buffer for later sending

(seqnum acceptable and ecnum not valid ) |/

CSL.SAI_ERROR:.report;

Called CSL

NOCOMMS
Disconnected

SAI_DISCONNECT.indication /
RBC.RBC_User_disconnect_indication

receive timer expired /
SAI.SAI_disconnect_request &
RBC.RBC_User_disconnect_indication

R9

COMMS
Connected

Fe

RBC_User_Data_request(userdata) /
SAI.SAI_DATA_request (RBC_data, userdata)

SAI_DATA _indication(saidata)
[saidata != lifesign] /
RBC.RBC_User_Data_indication(saidata) ;
restart receive timer;

[saidata = lifesign]

Project Acronym — GA 881775

SAI_CONNECT.indication /
R2 RBC.RBC_User_Connect_indication
start send and receive timer;

send timer expired /
SAIL.SAI_DATA_request(Life-sign)

SAI_DATA _indication(saidata)

restart receive timer

/

24 | 64



* X x

Horizon 2020

(4SECURail

i [ ‘ PSRN European Union Funding
hlft Ral af for Research & Innovation
Called SAl
R1 R2b

Yy

Sa_DISCONNECT.indication /
CSL.SAI_DISCONNECT.indication
R11

SAI_DISCONNECT.request /
CSL.SAI_DISCONNECT.indicatio
ER.Sa_DISCONNECT.request

[seqnum not acceptable] /
ER.Sa_DISCONNECT.request
CSL.SAI_DISCONNECT.indication ;

>

[seqnum expected and ecnum valid ]/
CSL.SAI_DATA .indication(msgtype,userdata);

C

Sa_DATA_indication R14
(msgtype,userdata,
ackreq,ackresp,seqnum,ecnum) /

[seqnum acceptable and ecnum valid ]/
CSL.SAI_DATA.indication(msgtype,userdata);
CSL.SAI_ERROR:.report;

[ seqnum old or
(seqgnum acceptable and ecnum not valid ) ]/

NOCONN
Disconr@‘
_ R2

R10

Connected

Sa_DISCONNECT.indication / R

Sa_CONNECT.indication /
ER.Sa_CONNECT.response

A

A

>

A

Sa_CONNECT.indication / R2¢
ER.Sa_CONNECT.response

- [initilization timer expired ] /
CSL.SAl_ERROR.report ;
ER.Sa_DISCONNECT.indication

R6

nl:

i

Sa_DISCONNECT.indication/ R8

[seqnum not acceptable] /
ER.Sa_DISCONNECT.request

3
NOCONN T
;( Conn@‘

NOCONN
Initializing

Y

Sa_CONNECT.indication /
ER.Sa_CONNECT.response

R5 Sa_ExecutionCycleStart
(segnum,ecnum) /
ER.Sa_ExecutionCycleStart
(localsegnum,localecnum) ;
start initilization timer,

R9

Sa_DATA _indication
(msgtype,userdata,
ackreq,ackresp,
segnum,ecnum

[ seqnum old or
(seqnum acceptable and
ecnum not valid ) ]/
CSL.SAI_ERROR:.report;

[seqnum expected and ecnum valid ]/
CSL.SAI_CONNECT.indication;
CSL.SAI_DATA.indication(msgtype,userdata);

[seqnum acceptable and ecnum valid ]/
CSL.SAI_CONNECT.indication;
CSL.SAI_DATA.indication(msgtype,userdata);

.

ONN
ACK2

- [ack respnse timer expired ] /
SAI.LERROR.report;

SAl_DATA request
(msgtype,userdata) /

[first outgoing msg in this cycle] /
ER.Sa_DATA.request(msgtype,userdata,
ackreq,ackresp,segnum,ecnum) ;
possibly start ack response timer

[not first outgoing msg in this cycle] |
enqueue in FIFO buffer for later sending

CSL.SAI_ERROR:.report;

Project Acronym — GA 881775

CSL.SAI_ERROR:.report;

R12 Sa_CONNECT.indication /
ER.Sa_CONNECT.response;

CSL.SAI_DISCONNECT.indication

25 | 64




* * .
* for Research & Innovation

hlft Ra[ A’ {*'*:' El?rrciazpoenar%?ﬁ\(i)on Funding < 4SECURa’I

4 Executable UML Model

-- VERSION 53 26-07-2021

Signals
-- from RBC
IRBC_User_Data_request(argl: int);

-- from I_SAI

ISAI_CONNECT_confirm;
ISAI_DISCONNECT_indication;
ISAI_Error_report;

ISAI_DATA_indication(argl: Token, arg2: int);

-- from Timer
icsl_tick;

-- outgoing to RBC

-- IRBC_User_Connect_indication;

-- IRBC_User_Disconnect_indication;
-- IRBC_User_Data_indication(argl);

-- outgoig to SAI

-- ISAI_CONNECT_request;

-- ISAI_DISCONNECT_request;

-- ISAI_DATA_request(argl,arg2);

-- outgoig to Timer

-- ok_icsl

Vars
————————————— PORTS
RBC_User: I_RBC;
SAI: I_SAI;
————————————— CONFIGURATION PARAMS
max_receiveTimer: int; -- CONFIGURATION PARAM
max_sendTimer: int; -- CONFIGURATION PARAM
max_connectTimer: int; -- CONFIGURATION PARAM
————————————— LOCAL VARS
receiveTimer:int := 0;
sendTimer: int := 0;
connectTimer: int := 0;

Behaviour

Project Acronym — GA 881775 26|64



hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

* * .
* for Research & Innovation

-- R1: At startup, the CSL 1is in Disconnected state

R1_ICSL:
initial -> NOCOMMSready

-- R2: When in Disconnected state, the CSL immediately
-- sends a SAI_CONNECT.request to the SAI component,
-- starts a connTimer, and moves to Connecting state

R2_ICSL_connecting:
NOCOMMSready -> NOCOMMSconnecting

{- /
SAI.ISAI_CONNECT_request;
connectTimer := 0;}

-- R3: When in Connecting state the connTimer expires, the
-- CSL moves to Disconnected state

RTa_ICSL_okicsl_incr:
NOCOMMSconnecting -> NOCOMMSconnecting
{icsl_tick [connectTimer < max_connectTimer ] /
Timer.ok_icsl;
connectTimer := connectTimer +1}

-- while connecting in case of timeout become ready to retry
R3_ICSL_okicsl_connect:
NOCOMMSconnecting -> NOCOMMSready
{icsl_tick [connectTimer = max_connectTimer ] /
Timer.ok_icsl}
-- R4: When in Connecting state is received a SAI_CONNECT.confirm from
-- the SAI component, the CSL sends a RBC_User_Connect.indication
-- to the RBC component, starts both the sendTimer and the recTimer,
-- and moves to Connected state

R4_ICSL_userconnind:
NOCOMMSconnecting -> COMMS
{ISAI_CONNECT_confirm /
RBC_User.IRBC_User_Connect_indication;

connectTimer := max_connectTimer;
receiveTimer := 0;
sendTimer := max_sendTimer}

-- R5: When in Waiting state is received a SAI_DISCONNECT.indication
-- from the SAI component, the CSL moves to Disconnected state

RTb_ICSL_okicsl_incr:
NOCOMMSwait -> NOCOMMSwait
{icsl_tick /
Timer.ok_icsl}

R5_ICSL_becomeready:

NOCOMMSwait -> NOCOMMSready
{ISAI_DISCONNECT indication}

Project Acronym — GA 881775 27| 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

-- R6: When in Connected state the recTimer expires, the CSL sends a
-- SAI_DISCONNECT.request to the SAI component, a
-- RBC_User_Disconnect.indication to the RBC and moves to Waiting state

RTc_ICSL_okicsl:
COMMS -> COMMS
{icsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer < max_sendTimer)] /
Timer.ok_icsl;
sendTimer := sendTimer +1;
receiveTimer := receiveTimer+1}

R6_ICSL_okicsl:
COMMS -> tbcré6
{icsl_tick [receiveTimer = max_receiveTimer] /
Timer.ok_icsl}

R6_ICSL_saidisconnreq:
tbcr6 -> tbcrba

-/
SAI.ISAI_DISCONNECT_request;
receiveTimer := 0;

sendTimer := 0}

R6_ICSL_userdisconnind:
tbcr6a -> NOCOMMSwait
{ -/
RBC_User.IRBC_User_Disconnect_indication}

-- R7: Each time that in Connected state the sendTimer expires,
-- the CSL sends a SAI_DATA.request with a life_sign to the
-- SAI component

R7_ICSL_okicst:
COMMS -> tbcr7
{icsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer = max_sendTimer)] /
Timer.ok_icsl;
sendTimer := 0;
receiveTimer := receiveTimer+1}

R7_ICSL_saidatareq:
tbcr7 -> COMMS
{ -7
SAI.ISAI_DATA_request(LifeSign,0)}

-- R8: When in Connected state is received a RBC_User_Data.request
-- with RBC_data from the RBC component, the CSL sends a
-- SAI_DATA.request with such RBC_data to the SAI component

R8_ICSL_saidatareq:
COMMS -> COMMS
{IRBC_User_Data_request(argl) /
SAI.ISAI_DATA request(RBCdata, argl);
sendTimer := 0}

-- R9: When in Connected state is received a SAI_DATA.indication with SAI_data
Project Acronym — GA 881775 28 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

-- from the SAI component, the CSL sends a RBC_User_Data.indication with
-- such SAI_data to the RBC component and restarts the recTimer

R9_ICSL_userdataind:
COMMS -> COMMS
{ISAI_DATA_indication(argl, arg2)
[argl /= LifeSign] /
RBC_User.IRBC_User_Data_indication(arg2);
receiveTimer := 0}

-- R10: When in Connected state is received a SAI_DATA.indication with a
-- life_sign from the SAI component, the CSL restarts the recTimer

R10_ICSL_handlelifesign:
COMMS -> COMMS
{ISAI_DATA_indication(argl, arg2)
[argl = LifeSign] /
receiveTimer := 0}

-- R11: When in Connected state is received a SAI_DISCONNECT.indication from
-- the SAI component, the CSL sends a RBC_User_Disconnect.indication
-- to the RBC component and moves to Disconnected state

R11_ICSL_userdisconnind:
COMMS -> NOCOMMSready
{ISAI_DISCONNECT_indication /
RBC_User .IRBC_User_Disconnect_indication;
receiveTimer := 0;
sendTimer := 0}

-- RD1: When in Disconnected state the CSL does not accept any
-- kind of message

-- RD2: When in Connecting state, the CSL discards any message
-- except for SAI_CONNECT.confirm from the SAI component

-- RD3: When in Waiting state, the CSL discards any message except
-- for SAI_DISCONNECT.indication from the SAI component

-- RD4: When in Connected state, the CSL component discards only
-- SAI_CONNECT.confirm and SAI_ERROR.report messages from
-- the SAI component

RD2a_ICSL_discuserdata:
NOCOMMSconnecting -> NOCOMMSconnecting
{IRBC_User_Data_request(argl)}

RD2b_ICSL_discdisconnind:
NOCOMMSconnecting -> NOCOMMSconnecting
{ISAI_DISCONNECT_indication}

RD2c_ICSL_discerrorreport:
NOCOMMSconnecting -> NOCOMMSconnecting
{ISAI_Error_report}

RD2d_ICSL_discdataind:
NOCOMMSconnecting -> NOCOMMSconnecting

Project Acronym — GA 881775 29|64



for Research & Innovation

* X % :
3 Pl Horizon 2020
hlft Ral A *** *: European Union Funding
*

{ISAI_DATA_indication(argl, arg2)}

RD3a_ICSL_discuserdata:
NOCOMMSwait -> NOCOMMSwait
{IRBC_User_Data_request(argl)}

RD3b_ICSL_discerrorreport:
NOCOMMSwait -> NOCOMMSwait
{ISAI_Error_report}

RD3c_ICSL_discdataind:
NOCOMMSwait -> NOCOMMSwait
{ISAI_DATA_indication(argl, arg2)}

RD3d_ICSL_discconfirm:
NOCOMMSwait -> NOCOMMSwait
{ISAI_CONNECT_confirm}

RD4a_ICSL_disccommconfirm:
COMMS -> COMMS
{ISAI_CONNECT_confirm}
RD4b_ICSL_usererror:
COMMS -> COMMS
{ISAI_Error_report}

end I_CSL;

Project Acronym — GA 881775

(4SECURail

30| 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

Signals

-- from CSL

ISAI_CONNECT_request;
ISAI_DISCONNECT_request;
ISAI_DATA_request(argl:int,arg2:int);

-- argl = message type, arg2 = RBC data value

-- outgoing to CSL
-- ISAI_DISCONNECT_indication;
-- ISAI_CONNECT_confirm;
-- ISAI_DATA_indication(argl:int,arg2:int);
-- argl = message type, arg2 = RBC data value
-- ISAI_Error_report;

-- from ER

ISAI_SA_Connect_confirm;

ISAI_SA_Disconnect_indication;

ISAI_SA Data_indication
(argl:int,arg2:int,arg3:int,argd:int,arg5:int,argb6:int);

-- argl = message type, arg2 = data value,

-- arg3 ack request, argd ack response,

-- args sequence number, arg6 EC number

ISAI_SA Execution_Cycle_Start(argl:int,arg2:int);

-- outgoing to ER
-- ISAI_SA _Connect_request;
-- ISAI_SA Disconnect_request;
-- ISAI_SA Data_request(argl,arg2,arg3,argd,arg5,argb);

-- argl = message type, arg2 = data value,
-- arg3 = ack request, argd = ack response,
-- arg5 = sequence number, argb = EC number

-- ISAI_SA Execution_Cycle(argl:int,arg2:int);

-- argl = sequence number, arg2 = EC counter

-- from Timer
isai_tick;

-- outgoing to Timer
-- ok_isai;

Vars
CSL: I_CSL;

ER: EuroRadio;

————————————— CONFIGURATION PARAMS

K: int; -- ec delay limit
max_initTimer: int; -- init timeout

N: int; -- msg loss limit

M: int; -- seq num limit
max_ack_requestTimer: int; -- ack request period
max_ack_responseTimer: int; -- ack response timeout
Mec: int; -- ec counter limit

Project Acronym — GA 881775 31|64



hift”Rai L>

*
*
*

WA Horizon 2020
*

*

(4SECURail

European Union Funding

s for Research & Innovation
————————————— LOCAL VARS
sargl int := 0;
sarg2 int := 0;
sargd: int := 0;
-- for ECS procedure --
initTimer: int := 0;
OFFSET: int := 0;
EC_expected: int := 0;
DELTA: int := 0;
currentEC: int := 0;

last_in: int := 0;
next_out: int := 0;
dist: int := 0;

ack_requestTimer: int := 0;
ack_responseTimer: int := 0;
ack_reply: int := 0;
ack_request: int := 0;

-- for DATA storing

outdatabuff: int[] := [];
waitnextcycle: bool := False;
Behaviour
-- R1: At startup the SAI is in Disconnected state

R1_ISATI:
initial -> Disconnected

: When in Disconnected state is received a SAI_CONNECT.request
from the CSL component, the SAI sends a Sa_CONNECT.request
to the ER-SL and moves to Connecting state

R2_ISAI_connreq:
Disconnected -> Connecting
{ISAI_CONNECT_request /
ER.ISAI_SA_Connect_request}

-- R3: When 1in Disconnected state is received a SAI_DISCONNECT.request

from the CSL component, the SAI replies with a

SAI_DISCONNECT.indication to the CSL component.

This is necessary to avoid deadlocks in the CSL component, when the CSL is
NOCOMM_waiting state.

R3_ISAI_disconndiscard:
Disconnected -> Disconnected
{ISAI_DISCONNECT request /
CSL.ISAI_DISCONNECT_indication}

Project Acronym — GA 881775

32| 64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

-- R4: When 1in Connecting state is received a Sa_DISCONNECT.indication
-- from the ER-SL, the SAI moves to Disconnected state

RTg_ISAI_okisai:
Connecting -> Connecting
{isai_tick /
Timer.ok_isai}

R4_ISAI_abortconn:
Connecting -> Disconnected
{ISAI_SA_Disconnect_indication}

-- R5: When 1in Connecting state is received a SAI_DISCONNECT.request
-- the message is discarded (it should never happen)

R5_ISAI_CSLdisconnind:
Connecting -> Connecting
{ISAI_DISCONNECT request}

-- R6: When in Connecting state is received a Sa_CONNECT.confirm from the ER-SL,
-- the SAI replies with a Sa_ExecutionCycle(seqnum, ecnum) to the ER-SL and
-- moves to the Initializing state, waiting for a Sa_ExecutionCycleStart

-- message from the ER-SL within a maximum initialization delay.

-- For the management of the Sa_ExecutionCycleStart parameters see the

-- SEQ_NUMs and REQ_ECNUMs Management sections

R6_ISAI_confinitproc:
Connecting -> Initializing
{ISAI_SA_Connect_confirm /
ER.ISAI_SA_Execution_Cycle(next_out,currentkC);
next_out := (next_out + 1) mod M;
initTimer := 0}

-- R7: When in Initializing state the maximum initialization delay expires,
-- the SAI sends an SAI_ERROR.report to the CSL component, a
-- Sa_DISCONNECT.request to the ER-SL and moves to Disconnected state

RTa_ISAI_confinitprocwait:
Initializing -> tbcrt
{isai_tick /
Timer.ok_isai;
initTimer := initTimer + 1;
currentEC (currentEC + 1) mod Mec}

R7_ISAI_confinitprocwaiterrorr:
tbcrt -> tbcr7a
{ - [initTimer = max_initTimer] /
CSL.ISAI_Error_report}

R7_ISAI_confinitprocwaitdisconn:
tbcr7a -> Disconnected
{ - / ER.ISAI_SA_Disconnect_request;
initTimer 0;
currentEC 0}

RTb_ISAI_connreqdiscard:
Project Acronym — GA 881775 33|64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

tbcrt -> Initializing
{ - [initTimer < max_initTimer]}

-- R8: When 1in Initializing state is received a SAI_DISCONNECT.request from the
-- CSL component, the message is discarded (it should never happen).

R8_ISAI_CSLdisconnind:
Initializing -> Initializing
{ISAI_DISCONNECT request / }

-- R9: When in Initializing state is received a Sa_DISCONNECT.indication
-- from the ER-SL the SAI moves to Disconnected state

RO_ISAI_abortconn:
Initializing -> Disconnected
{ISAI_SA_Disconnect_indication /
initTimer 0;
currentEC 0}

-- R10: When in Initializing state is received a SAI_CONNECT.request from
-- the CSL component, the message is discarded

R10_ISAI_connreqdiscard:
Initializing -> Initializing
{ISAI_CONNECT_request}

-- R11: When in Initializing state is received a

-- Sa_ExecutionCycleStart(seqnum, ecnum) from the ER-SL, the SAI sends

-- a SAI_CONNECT.confirm to the CSL component and moves to Connected state.
-- The received segnum is accepted as initial remote sequence number and the
-- ecnum is accepted as initial value of the remote execution cycle counter.
-- The execution_cycle_OFFSET variable is set as the difference between the
-- current execution cycle counter and the received execution cycle counter.
-- While the last_received_sequence_number variable is set to the received
-- sequence number

R11_ISAI_confinitproc:

Initializing -> Connected
{ISAI_SA_Execution_Cycle_Start(argl,arg2) /
CSL.ISAI_CONNECT_confirm;

OFFSET := currentEC - arg2;

initTimer := 0;

ack_requestTimer := 0;

ack_responseTimer := max_ack_responseTimer + 1;
ack_reply := 0;

last_in := argl}

-- R12: When in Connected state is received a SAI_DISCONNECT.request from the
-- CSL component,the SAI replies with a SAI_DISCONNECT.indication to the
-- CSL component, sends a Sa_DISCONNECT.request to the ER-SL, and moves

-- to Disconnected state

R12_ISAI_CSLdisconnind:
Connected -> tbcrl2

Project Acronym — GA 881775 34|64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

{ISAI_DISCONNECT request /
CSL.ISAI_DISCONNECT_indication}

R12_ISAI_CSLdisconnreq:
tbcrl2 -> Disconnected

{ -7

ER.ISAI_SA_Disconnect_request;
ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;

ack_reply := 0;

currentEC := 0;

outdatabuff := [];

ack_request := 0;

waitnextcycle False}

-- R13a: When in Connected state is received a SAI_DATA_request(msgtype, data)
-- from the CSL component, and yet no other data message has been sent in
-- this cycle, the SAI sends a

-- Sa_DATA.request(msgtype, data, ackreq, ackresp, segnum, ecnum)

-- to the ER-SL. The ackreq and ackresp parameters are set according to
-- REQ_ACKs.

-- The segqnum parameter isset according to SEQ_NUMs and the ecnum parameter
-- is set according to REQ_ECNUMs Management

R13a_ISAI_datareqforward:
Connected -> Connected
{ISAI_DATA_request(argl,arg2)
[waitnextcycle = False]/

ER.ISAI_SA Data_request(argl,arg2,ack_request,ack_reply,next_out,currentEC);
next_out := (next_out + 1) mod M;
if (ack_request = 1)
{ack_request := 0;
ack_requestTimer := 0;
ack_responseTimer := 0}
ack_reply := 0;
waitnextcycle := True}

-- R13b: When in Connected state is received a SAI_DATA.request(msgtype, data)
-- from the CSL component,but another data message has already been

-- sent in this cycle, the SAI_DATA.request is saved in a FIFO dataout
-- buffer (see also the REQ_OUTDATABUFFs Management)

R13b_ISAI_datareqgstore:
Connected -> Connected
{ISAI_DATA_request(argl,arg2)
[waitnextcycle = True]/
outdatabuff := outdatabuff + [argl,arg2]}

-- R14: When in Connected state is received a Sa_DISCONNECT.indication from
-- the ER-SL, the SAI sends a SAI_DISCONNECT.indication to the CSL
-- component and moves to Disconnected state

R14_ISAI_abortconn:

Connected -> Disconnected
{ISAI_SA_Disconnect_indication /
CSL.ISAI_DISCONNECT indication;
ack_requestTimer := max_ack_requestTimer;

Project Acronym — GA 881775 35|64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

ack_responseTimer := 0;
ack_reply := 0;
outdatabuff := [];
ack_request := 0;

waitnextcycle False}

-- R15: When in Connected state is received a

-- Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum, ecnum) from
-- the ER-SL we can have four cases, depending on the received seqgnum

-- and ecnum values (see SEQ_NUMs and REC_ECNUMs Management): *

R15_ISAI_datareceive:
Connected -> tbcrl5
{ISAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6) /
dist := arg5 - last_in;
if (dist < -M/2) then {dist dist + M };
if (dist > M/2) then {dist := dist - M };
if ((dist > 0) and (dist <= N)) then
{last_in := arg5};
sargl := argl;
sarg2 .= arg2;
ack_reply := ack_reply + arg3 - ack_reply*arg3;
sargd .= argd;
EC_expected := (currentEC + Mec - OFFSET) mod Mec;
DELTA := EC_expected - argé6;
if (DELTA < -Mec/2) then {DELTA :
if (DELTA > Mec/2) then {DELTA :
EC_expected := 0}

ELTA + Mec };
ELTA - Mec };

vl

-- Case 1
-- * The seqnum is the one EXPECTED and ecnum is VALID: In this case the
-- SAI sends a SAI_DATA.indication(msgtype, data) to the CSL component

R15a_ISAI_dataindforward:
tbcrl5 -> Connected
{ - [dist = 1 and DELTA < K] /
CSL.ISAI_DATA_indication(sargl,sarg2);
if((sargd = 1) and (ack_responseTimer < max_ack_responseTimer))

{ack_responseTimer := max_ack_responseTimer + 1};
sargl := 0;
sarg2 := 0;
sargd := 0;
dist := 0;
DELTA := 0}

-- Case 2

-- * The seqgnum is ACCEPTABLE and the ecnum is VALID: in this case the

-- SAI sends a SAI_DATA.indication(msgtype, data) and a SAI_ERROR.report
-- to the CSL component

R15b_ISAI_dataindforward:
tbcrl5 -> tbcrl5b
{ - [dist > 1 and dist <= N and DELTA < K] /
CSL.ISAI_DATA_indication(sargl,sarg2);
if((sargd = 1) and (ack_responseTimer < max_ack_responseTimer))

{ack_responseTimer := max_ack_responseTimer + 1};
sargl := 0;
sarg2 := 0;

Project Acronym — GA 881775 36|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

sargd := 0;
dist = 0;
DELTA := 0}

R15b_ISAI_datainderror:
tbcrl5b -> Connected

{ -7
CSL.ISAI_Error_report;
sargl := 0;

sarg2 := 0;

sargd := 0;

dist = 0;

DELTA := 0}

-- Case 3

-- * The seqnum is OLD or (the segnum is ACCEPTABLE and the ecnum is VALID):
-- In this case the SAI sends a SAI_ERROR.report to the CSL component and
-- discards the Sa_DATA.indication message

R15c_ISAI_datainvalid_or_old:
tbcrl5 -> Connected
{ - [dist < 1 or (dist <= N and DELTA >= K)] /
CSL.ISAI_Error_report;

sargl := 0;
sarg2 := 0;
sargd := 0;
dist = 0;
DELTA := 0}

-- Case 4

-- * The seqnum is NOT_ACCEPTABLE: In this case the SAI component sends a

-- Sa_DISCONNECT.request to ER-SL and a SAI_DISCONNECT.indication to the CSL
-- component, and then moves to Disconnected state

R15d_ISAI_abortconn:
tbcrl5 -> tbcrl5d
{ - [dist > N] /
ER.ISAI_SA_Disconnect_request}

R15d_ISAI_notifyfatal:
tbcrl5d -> Disconnected

{ -7/
CSL.ISAI_DISCONNECT indication;
ack_responseTimer 0;
sargl 0;
sarg2 0;
sarg4 0;
next_out :=0;
dist := 0;
DELTA := 0;
outdatabuff
ack_request
waitnextcycle

= [I;
=@’
= False}

RTf_ISAI_okisai:
Disconnected -> Disconnected
{ isai_tick /
Timer.ok_isai}

RDla_ISAI_datadiscard:
Project Acronym — GA 881775 37|64



hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

* * .
* for Research & Innovation

Disconnected -> Disconnected
{ISAI_DATA_request(argl,arg2)}

RD1b_ISAI_connconfdiscard:
Disconnected -> Disconnected
{ISAI_SA_Connect_confirm}

RD1c_ISAI_discinddiscard:
Disconnected -> Disconnected
{ISAI_SA_Disconnect_indication}

RD1d_ISAI_datainddiscard:
Disconnected -> Disconnected
{ISAI_SA Data_indication(argl,arg2,arg3,argd,arg5,argé6)}

RDle_ISAI_disconndiscard:
Disconnected -> Disconnected
{ISAI_SA_Execution_Cycle_Start(argl,arg2)}

RD2a_ISAI_datainddiscard:
Connecting -> Connecting
{ISAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6)}

RD2b_ISAI_datareqdiscard:
Connecting -> Connecting
{ISAI_DATA_request(argl,arg2)}

RD2c_ISAI_connreqdiscard:
Connecting -> Connecting
{ISAI_CONNECT_request}

RD2d_ISAI_ecsdiscard:
Connecting -> Connecting
{ISAI_SA_Execution_Cycle_Start(argl,arg2)}

RD3a_ISAI_datainddiscard:
Initializing -> Initializing
{ISAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6)}

RD3b_ISAI_datareqdiscard:
Initializing -> Initializing
{ISAI_DATA_request(argl,arg2)}

RD3c_ISAI_connconfdiscard:
Initializing -> Initializing
{ISAI_SA_Connect_confirm}

RD4a_ISAI_connconfdiscard:
Connected -> Connected
{ISAI_SA_Connect_confirm}

RD4b_ISAI_connreqdiscard:
Connected -> Connected
{ISAI_CONNECT_request}

RD4c_ISAI_ecsdiscard:
Connected -> Connected
{ISAI_SA_Execution_Cycle_Start(argl,arg2)}

-- Each time that in Connected state the set_ack_response expires,
-- the SAI sends a SAI_ERROR.report to the CSL component
-- (for further details see REQ_ACKs)

Project Acronym — GA 881775 38|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

RTc_ISAI_okisai:
Connected -> tbcrta
{isai_tick /
Timer.ok_isai;
—————— ack timing management
if (ack_responseTimer < max_ack_responseTimer)

{ack_responseTimer := ack_responseTimer + 1};
if (ack_requestTimer < max_ack_requestTimer)
{ack_requestTimer := ack_requestTimer + 1};

if (ack_requestTimer = max_ack_requestTimer and
ack_responseTimer >= max_ack_responseTimer)
{ack_request := 1};
—————— ec timing management
currentEC := (currentEC + 1) mod Mec;

waitnextcycle := False}

RACK2_ISAI_ackresponserror:
tbcrta -> tbcrack
{ - [ack_responseTimer = max_ack_responseTimer] /
CSL.ISAI_Error_report;
ack_responseTimer := max_ack_responseTimer + 1}

ROUTDATABUFF_ISAI_sendbuffered:
tbcrack -> Connected
{ - [ outdatabuff /= [1 1 /
ER.ISAI_SA_Data_request(
outdatabuff.head, outdatabuff.tail.head,
ack_request,ack_reply,next_out,currentEC);
outdatabuff := outdatabuff.tail.tail;
waitnextcycle := True;
next_out := (next_out + 1) mod M;
if (ack_request = 1)
{ack_request := 0;
ack_requestTimer := 0;
ack_responseTimer := 0};
ack_reply := 0;

RTd_ISAI_continue:
tbcrta -> tbcrack
{ - [ack_responseTimer /= max_ack_responseTimer] }

RTe_ISAI_okisai:
tbcrack -> Connected
{ - [ outdatabuff = [] 1}

end I_SAT;

Project Acronym — GA 881775 39|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

Signals

-- from ER

CSAI_SA_Connect_indication;

CSAI_SA_Disconnect_indication;
CSAI_SA_Data_indication(argl,arg2,arg3,argd,arg5,argb6:int);

-- argl = message type, arg2 = data value,

-- arg3 = ack request, argd = ack response,
-- arg5 = sequence number, arg6 = EC number
CSAI_SA_Execution_Cycle_Start(argl:int,arg2:int);
-- argl = sequence number, arg2 = EC counter
-- from CSL

CSAI_DISCONNECT_request;
CSAI_DATA _request(argl:int,arg2:int);
-- argl = message type, arg2 = RBC data value

-- from Timer
csai_tick;

-- outgoing to ER

-- CSAI_SA_Connect_response;

-- CSAI_SA_Disconnect_request;

-- CSAI_SA_Data_request(argl,arg2,arg3,argd,arg5,arg6);

-- argl = message type, arg2 = data value,
-- arg3 = ack request, argd = ack response,
-- arg5 = sequence number, arg6 = EC number

-- CSAI_SA_Execution_Cycle(argl,arg2);

-- argl = sequence number, arg2 = EC counter

-- outgoing to CSL
-- CSAI_CONNECT_indication;
-- CSAI_DISCONNECT indication;
-- CSAI_DATA_indication(argl:int,arg2:int);
-- argl = message type, arg2 = RBC data value
-- CSAI_Error_report;

-- outgoing to Timer

-- ok_csai

Vars
_____________ PORTS
CSL: C_CSL;

————————————— CONFIGURATION PARAMS

K: int; -- ec delay limit
max_initTimer: int; -- init timeout

N: int; -- msg loss limit
M: int; -- seq num limit
max_ack_requestTimer: int; -- ack request period
max_ack_responseTimer: int; -- ack response timeout
Mec: int; -- ec counter limit
————————————— LOCAL VARS

sargl: int := 0;

Project Acronym — GA 881775 40| 64



hlft Ra[ A’ {*'*} ES::JZpoenaﬁ(ﬁ\(i)on Funding < 4SECURa’I

* * .
* for Research & Innovation

sarg2: int := 0;
sarg3: int := 0;
sargd: int := 0;
-- for ECS procedure --
initTimer: int := 0;
OFFSET: int := 0;
EC_expected: int := 0;
DELTA: int := 0;
currentEC: int := 0;
-- for sequence number --
last_in: int := 0;
next_out: int := 0;

dist: int := 0;
-- for ACK procedure --
ack_requestTimer: int := 0;
ack_responseTimer: int := 0;
ack_reply: int := 0;
ack_request: int := 0;

-- for DATA storing

outdatabuff: int[] := [1];
waitnextcycle: bool := False;
Behaviour

-- R1: At startup, the SAI 1is in Disconnected state

R1_CSAI_startup:
initial -> Disconnected

-- R2: When 1in Disconnected state is received a Sa_CONNECT.indication from
-- the ER-SL, the SAI replies with a Sa_CONNECT.response to the ER-SL
-- and moves to Connecting state

RTf_CSAI_okcsai:
Disconnected -> Disconnected
{ csai_tick /
Timer.ok_csai}

R2_CSAI_connreq:
Disconnected -> Connecting
{CSAI_SA_Connect_indication /
ER.CSAI_SA_Connect_response}

-- R3: When 1in Connecting state is received a Sa_DISCONNECT.indication from
-- the ER-SL, the SAI moves to Disconnected state

RTg_CSAI_okcsai:
Connecting -> Connecting
{csai_tick /
Timer.ok_csai}

R3_CSAI_abortconn:
Project Acronym — GA 881775 41|64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

Connecting -> Disconnected
{CSAI_SA Disconnect_indication }

-- R4: When in Connecting state is received a SAI_DISCONNECT.request from the
-- CSL component, the message is discarded (it should never happen).

R4_CSAI_CSLdisconnind:
Connecting -> Connecting
{CSAI_DISCONNECT _request}

-- R2b: When in Connecting state is received a SAI_SA_Connect.request from the
-- ER sublayer, the connection process is restarted.
R2b_CSAI_restartconnect:
Connecting -> Connecting
{CSAI_SA_Connect_indication /
ER.CSAI_SA_Connect_response}

-- R5: When in Connecting state is received a

-- Sa_ExecutionCycleStart (segnum, ecnum)

-- from the ER-SL, the SAI replies with a Sa_ExecutionCycle(segnum, ecnum)
-- to the ER-SL, starts an initTimer set to the maximum initialization

-- delay, and moves to Initializing state. For the management of the

-- Sa_ExecutionCycleStart parameters see the following Sequence Numbers

-- Management and Execution Cycle Counters Management sections

R5_CSAI_confinitproc:

Connecting -> Initializing
{CSAI_SA_Execution_Cycle_Start(argl,arg2) /
ER.CSAI_SA Execution_Cycle(next_out,currentEC);
OFFSET := currentEC - arg2;

initTimer := 0;
last_in := argl;
next_out := (next_out +1) mod M}

-- R6: When in Initializing state the maximum initialization delay expires, the
-- SAI sends a SAI_ERROR.report to the CSL component, Sa_Disconnect_request
-- to ER, and moves to Disconnected state

RTa_CSAI_confinitprocwait:
Initializing -> tbcrta
{csai_tick /
Timer.ok_csai;
initTimer := initTimer + 1;
currentEC := (currentEC + 1) mod Mec}

R6_CSAI_confinitfail:
tbcrta -> tbcré
{ - [initTimer = max_initTimer] /
ER.CSAI_SA_Disconnect_request }

R6_CSAI_confinitprocwait:
tbcr6 -> Disconnected

{ -7

CSL.CSAI_Error_report;

ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;

Project Acronym — GA 881775 42 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

ack_reply := 0;
ack_request := 0;
currentEC := 0;
initTimer := 0;
OFFSET := 0;
-- EC_expected := 0;
DELTA := 0;
dist := 0;
last_in := 0;
next_out := 0;
outdatabuff := [];
waitnextcycle := False}
-- when initializing wait first data
RTb_CSAI waitdata:
tbcrta -> Initializing
{ - [initTimer < max_initTimer] }

-- R2c: When in Connecting state is received a SAI_SA_Connect.request from the
-- ER sublayer, the connection process is restarted.
R2c_CSAI_restartconnect:
Initializing -> Connecting
{CSAI_SA_Connect_indication /
ER.CSAI_SA Connect_response;

ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;
ack_reply := 0;
ack_request := 0;
currentEC := 0;
initTimer := 0;

OFFSET := 0;

-- EC_expected := 0;
DELTA := 0;

dist := 0;

last_in := 0;

next_out := 0}

-- R7: When in Initializing state is received a SAI_DISCONNECT.request from the
-- CSL component, the message is discarded (it should never happen)

R7_CSAI_CSLdisconnind:
Initializing -> Initializing
{CSAI_DISCONNECT_request }

-- R8: When 1in Initializing state is received a Sa_DISCONNECT.indication from
-- the ER-SL, the SAI moves to the Disconnected state

R8_CSAI_abortconn:

Initializing -> Disconnected
{CSAI_SA_Disconnect_indication /
ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;
ack_reply := 0;
ack_request :=
currentEC := 0;
initTimer := 0;

0;

Project Acronym — GA 881775 43 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

OFFSET := 0;
-- EC_expected := 0;
DELTA := 0;
dist := 0;
last_in := 0;
next_out := 0;
outdatabuff := [];
waitnextcycle :=

-- R9: When in Initializing state is received a Sa_DATA.indication
-- from the ER-SL may have four cases, depending on the received segnum
-- and ecnum values (see REQ SEQ_NUMs and REC_ECNUMs): *

R9_CSAI_confinitproc:
Initializing -> tbcr9
{CSAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6) /
dist := arg5 - last_in;
if (dist < -M/2) then {dist dist + M };
if (dist > M/2) then {dist := dist - M };
if ((dist > 0) and (dist <= N)) then
{last_in := arg5};

sargl := argl;
sarg2 arg2;
sarg3 arg3;
EC_expected := (currentEC + Mec - OFFSET) mod Mec;
DELTA := EC_expected - arg6;
if (DELTA < -Mec/2) then {DELTA :
if (DELTA > Mec/2) then {DELTA :
EC_expected := 0}

DELTA + Mec };
DELTA - Mec };

-- Case 1

-- The segnum is the one EXPECTED and ecnum is VALID : In this case the SAI
-- moves to Connected state and sends both a SAI_CONNECT.indication and a
-- SAI_DATA.indication(msgtype, data) to the CSL component

R9a_CSAI_connecting:
tbcr9 -> tbcr9a
{ - [dist = 1 and DELTA < K] /
CSL.CSAI_CONNECT_indication;
ack_reply := sarg3;

sarg3 := 0;
initTimer := 0 ;
dist := 0;
DELTA := 0}

R9a_CSAI_forwarding:
tbcr9a -> Connected

{ -7
CSL.CSAI_DATA_indication(sargl,sarg2);
ack_requestTimer := 0;
ack_responseTimer := max_ack_responseTimer + 1;
sargl := 0;
sarg2 := 0}

-- Case 2

-- The segnum is ACCEPTABLE and the ecnum is VALID: in this case the SAI moves
-- to Connected state and sends a SAI_CONNECT.indication, a
-- SAI_DATA.indication

Project Acronym — GA 881775 44 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

-- and a SAI_ERROR.report to the CSL component

R9b_CSAI_connecting:
tbcr9 -> tbcr9b
{ - [dist > 1 and dist <= N and DELTA < K] /
CSL.CSAI_CONNECT_indication;
ack_reply := sarg3;

sarg3 := 0;
initTimer := 0 ;
dist = 0;
DELTA := 0}

R9b_CSAI_forwarding:
tbcr9b -> tbcr9ba

{ -7
CSL.CSAI_DATA_indication(sargl,sarg2);
sargl := 0;

sarg2 := 0}

RO9b_CSAI_reportingding:
tbcr9ba -> Connected

{ -7

CSL.CSAI_Error_report;

ack_requestTimer := 0;

ack_responseTimer := max_ack_responseTimer + 1}
-- Case 3

-- The segnum is OLD or (the seqnum is ACCEPTABLE and the ecnum 1is VALID):
-- In this case the SAI sends a SAI_ERROR.report to the CSL component and
-- discards the Sa_DATA.indication message

R9c_CSAI discarding:
tbcr9 -> Initializing
{ - [dist < 1 or (dist <= N and DELTA >= K)] /
CSL.CSAI_Error_report;

sargl := 0;

sarg2 := 0;

sarg3 := 0;

dist = 0;

DELTA := 0}
-- Case 4

-- * The seqnum is NOT_ACCEPTABLE: in this case the SAI component sends a
-- Sa_DISCONNECT.request to ER-SL and moves to Disconnected state

R9d_CSAI_disconnecting:
tbcr9 -> Disconnected

{ - [dist > N] /
ER.CSAI_SA_Disconnect_request;
sargl 0;
sarg2 0;
sarg3 0;
ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;
ack_reply := 0;
ack_request :=
currentEC := 0;
initTimer := 0;
OFFSET := 0;

Project Acronym — GA 881775 45| 64

0;



hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

* * .
* for Research & Innovation

-- EC_expected := 0;
DELTA := 0;
dist := 0;
last_in := 0;
next_out := 0;
outdatabuff := [];
waitnextcycle :=

-- R10: When in Connected state is received a SAI_DISCONNECT.request from the
-- CSL component, the SAI replies with a SAI_DISCONNECT.indication to the
-- CSL component, sends a Sa_DISCONNECT.request to the ER-SL, and moves to
-- Disconnected state

R10_CSAI_CSLdisconnind:
Connected -> tbcrl0
{CSAI_DISCONNECT request /
CSL.CSAI_DISCONNECT_indication}

R10_CSAI_CSLdisconnreq:
tbcrl® -> Disconnected

{ -7

ER.CSAI_SA_Disconnect_request;
ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;

ack_reply := 0;
ack_request :=
currentEC := 0;
initTimer := 0;
OFFSET := 0;

-- EC_expected := 0;
DELTA := 0;
dist := 0;
last_in := 0;
next_out := 0;
outdatabuff := [];
waitnextcycle :=

0;

-- R11: When in Connected state is received a Sa_DISCONNECT.indication from the
-- ER-SL, the SAI sends a SAI_DISCONNECT.indication to the CSL component
-- and moves to Disconnected state

R11_CSAI_abortconn:

Connected -> Disconnected
{CSAI_SA_Disconnect_indication /
CSL.CSAI_DISCONNECT_indication;
ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;
ack_reply := 0;
ack_request :=
currentEC := 0;
initTimer := 0;

OFFSET := 0;

-- EC_expected := 0;
DELTA := 0;

dist := 0;

last_in := 0;

next_out :=0;
outdatabuff := [];
waitnextcycle := False}

0;

Project Acronym — GA 881775 46 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

-- R12: When in Connected state is received a Sa_CONNECT.indication from the
-- ER-SL, the SAI replies with a Sa_CONNECT.response to the ER-SL, sends a
-- SAI_DISCONNECT.indication to the CSL component, and moves to Connecting
-- state

R12_CSAI_connconfresp:
Connected -> tbcrl2
{CSAI_SA_Connect_indication /
ER.CSAI_SA_Connect_response}

R12_CSAI_connconfdiscard:
tbcrl2 -> Connecting

{ -7

CSL.CSAI_DISCONNECT_indication;
ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;

ack_reply := 0;
ack_request :=
currentEC := 0;
initTimer := 0;

OFFSET := 0;

-- EC_expected := 0;
DELTA := 0;

last_in := 0;

next_out := 0;

dist := 0;

outdatabuff := [];
waitnextcycle := False;}

0;

-- R13a: When in Connected state is received a SAI_DATA_request(msgtype, data)
-- from the CSL component, and yet no other data message has been sent in
-- this cycle, the SAI sends a

-- Sa_DATA.request(msgtype, data, ackreq, ackresp, segnum, ecnum)

-- to the ER-SL.

-- The ackreq and ackresp parameters are set according to REQ_ACKs.

-- The segnum parameter is set according to SEQ_NUMs and the ecnum parameter
-- is set according to REQ_ECNUMs

R13a_CSAI_datareqforward:
Connected -> Connected
{CSAI_DATA_request(argl,arg2)
[waitnextcycle = False]/
ER.CSAI_SA Data_request(argl,arg2,1,ack_reply,next_out,currentEC);
next_out := (next_out + 1) mod M;
if (ack_request = 1)

{ack_request := 0;
ack_requestTimer := 0;
ack_responseTimer := 0 };

ack_reply := 0;
waitnextcycle := True}

-- R13b: When in Connected state is received a SAI_DATA.request(msgtype, data)
-- from the CSL component, but another data message has already been sent in
-- this cycle, the SAI_DATA.request is saved in a FIFO dataout buffer

-- (see also REQ_OUTDATABUFF)

R13b_CSAI_datareqgstore:
Connected -> Connected

Project Acronym — GA 881775 47| 64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

{CSAI_DATA_request(argl,arg2)
[waitnextcycle = True]/
outdatabuff := outdatabuff +[argl,arg2]}

-- R14: When in Connected state is received a Sa_DATA.indication from the ER-SL
-- we can have four cases, depending on the received segnum and ecnum values
-- (see SEQ_NUMs and REC_ECNUMs):

R14_CSAI_datareceive:
Connected -> tbcrl4
{CSAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6) /
dist := arg5 - last_in;
if (dist < -M/2) then {dist := dist + M };
if (dist > M/2) then {dist := dist - M };
if ((dist > 0) and (dist <= N)) then
{last_in := arg5};

sargl := argl;
sarg2 .= arg2;
ack_reply := ack_reply + arg3 - ack_reply*arg3;
sargd .= argd;
EC_expected := (currentEC + Mec - OFFSET) mod Mec;
DELTA := EC_expected - arg6;
if (DELTA < -Mec/2) then {DELTA :
if (DELTA > Mec/2) then {DELTA :
EC_expected := 0}

DELTA + Mec };
DELTA - Mec };

-- Case 1

-- * The segnum 1is the one EXPECTED and ecnum is VALID: In this case the SAI
-- sends a SAI_DATA.indication(msgtype, data) to the CSL component.

-- Depending on the received values of the ackreq and ackresp parameters,
-- appropriate actions are performed (see REQ_ACKs)

R14a_CSAI_dataindforward:
tbcrl4 -> Connected
{ - [dist = 1 and DELTA < K] /
CSL.CSAI_DATA_indication(sargl,sarg2);
if((sargd = 1) and (ack_responseTimer < max_ack_responseTimer))

{ack_responseTimer := max_ack_responseTimer + 1};
sargl := 0;
sarg2 := 0;
sargd := 0;
dist = 0;
DELTA := 0}
-- Case 2

-- * The segnum is ACCEPTABLE and the ecnum is VALID: in this case the SAI

-- sends a SAI_DATA.indication(msgtype, data) and a SAI_ERROR.report to the
-- CSL component.

-- Depending on the received values of the ackreq and ackresp parameters,
-- appropriate actions are performed (see REQ_ACKs)

R14b_CSAI_dataindforward:
tbcrl4 -> tbcrldb
{ - [dist > 1 and dist <= N and DELTA < K] /
CSL.CSAI_DATA_indication(sargl,sarg2);
if((sargd = 1) and (ack_responseTimer < max_ack_responseTimer))
{ack_responseTimer := max_ack_responseTimer + 1};
sargl := 0;

Project Acronym — GA 881775 48 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

sarg?2
sarg4
dist
DELTA :

nnn
[cNoNoNO)

)
)
)

R14b_CSAI_dataindreport:
tbcrl4b -> Connected

{ -7/
CSL.CSAI_Error_report;
sargl := 0;
sarg2 := 0;
sargd := 0;
dist = 0;
DELTA := 0}
-- Case 3

-- * The segnum is OLD or (the seqnum is ACCEPTABLE and the ecnum is VALID):
-- In this case the SAI sends a SAI_ERROR.report to the CSL component and
-- discards the Sa_DATA.indication message

R14c_CSAI_datainvalid_or_old:
tbcrl4 -> Connected
{ - [dist < 1 or (dist <= N and DELTA >= K)] /
CSL.CSAI_Error_report;

sargl := 0;

sarg2 := 0;

sargd := 0;

dist = 0;

DELTA := 0}
-- Case 4

-- * The seqnum is NOT_ACCEPTABLE: In this case the SAI component sends a
-- Sa_DISCONNECT.request to ER-SL, a SAI_DISCONNECT.indication to the CSL
-- component,and then moves to Disconnected state

R14d_CSAI_abortconn:
tbcrl4 -> tbcrlédd
{ - [dist > N] /
ER.CSAI_SA Disconnect_request;}

R14d_CSAI_notifydisconn:
tbcrl4d -> Disconnected

{ -7

CSL.CSAI_DISCONNECT_indication;

sargl := 0;

sarg2 := 0;

sargd := 0;

ack_requestTimer := max_ack_requestTimer;
ack_responseTimer := 0;

ack_reply := 0;
ack_request :=
currentEC := 0;
initTimer := 0;
OFFSET := 0;

-- EC_expected := 0;
DELTA := 0;

last_in := 0;
next_out := 0;

dist := 0;
outdatabuff := [];

Project Acronym — GA 881775 49 | 64

0;



hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

* * .
* for Research & Innovation

waitnextcycle := False}

RDla_CSAI_disconndiscard:
Disconnected -> Disconnected
{CSAI_DISCONNECT request}

RD1b_CSAI_datadiscard:
Disconnected -> Disconnected
{CSAI_DATA_request(argl,arg2)}

RD1c_CSAI_discinddiscard:
Disconnected -> Disconnected
{CSAI_SA_Disconnect_indication}

RD1d_CSAI_datainddiscard:
Disconnected -> Disconnected
{CSAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6)}

RDle_CSAI_disconndiscard:
Disconnected -> Disconnected
{CSAI_SA_Execution_Cycle_Start(argl,arg2)}

RD2a_CSAI_datainddiscard:
Connecting -> Connecting
{CSAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6)}

RD2b_CSAI_datareqdiscard:
Connecting -> Connecting
{CSAI_DATA_request(argl,arg2)}

RD3a_CSAI_datareqdiscard:
Initializing -> Initializing
{CSAI_DATA_request(argl,arg2)}

RD3c_CSAI_execycstardiscard:
Initializing -> Initializing
{CSAI_SA_Execution_Cycle_Start(argl,arg2)}

RD4a_CSAI_ecsdiscard:
Connected -> Connected
{CSAI_SA_Execution_Cycle_Start(argl,arg2)}

-- Each time that in Connected state the set_ack_response expires,
-- the SAI sends a SAI_ERROR.report to the CSL component
-- (for further details see REQ_ACKSs)

RTc_CSAI_okcsai:
Connected -> tbcrtc
{csai_tick /
Timer.ok_csai;
—————— ack timing management
if (ack_responseTimer < max_ack_responseTimer)

{ack_responseTimer := ack_responseTimer + 1};
if (ack_requestTimer < max_ack_requestTimer)
{ack_requestTimer := ack_requestTimer + 1};

if (ack_requestTimer = max_ack_requestTimer and
ack_responseTimer >= max_ack_responseTimer)
{ack_request := 1};
—————— ec timing management
currentEC := (currentEC + 1) mod Mec;

Project Acronym — GA 881775 50| 64



hlft Ra[ A’ {::} ES::JZpoenaﬁ(ﬁ\(i)on Funding < 4SECURa’I

for Research & Innovation

waitnextcycle := False}

RACK2_CSAI_ackresponserror:
tbcrtc -> tbcrack
{ - [ack_responseTimer = max_ack_responseTimer] /
CSL.CSAI_Error_report;

ack_responseTimer := max_ack_responseTimer + 1}

ROUTDATABUFF_CSAI_sendbuffered:
tbcrack -> Connected
{ - [ outdatabuff /= [1 1 /
ER.CSAI_SA Data_request(
outdatabuff.head, outdatabuff.tail.head,
ack_request,ack_reply,next_out,currentEC);

outdatabuff := outdatabuff.tail.tail;

waitnextcycle := True;

next_out := (next_out + 1) mod M;

if (ack_request = 1)

{ack_request := 0;

ack_requestTimer := 0;
ack_responseTimer := 0};

ack_reply := 0;

}

RTd_CSAI_continue:
tbcrtc -> tbcrack

{ - [ack_responseTimer /= max_ack_responseTimer]}

RTe_CSAI_okisai:
tbcrack -> Connected
{ - [ outdatabuff = [] 1}

end C_SAT;

Project Acronym — GA 881775 51|64



for Research & Innovation

* X % :
3 Pl Horizon 2020
hlft Ral A **' *: European Union Funding
*

(4SECURail

Signals

-- from C_RBC
CRBC_User_Data_request(argl: int);

-- from C_SAI
CSAI_CONNECT_indication;
CSAI_DISCONNECT_indication;

CSAI_DATA_ indication(argl: Token, arg2: int);
CSAI_Error_report;
-- from Timer
ccsl_tick;

-- outgoing to RBC

-- RBC_User_Connect_indication;

-- RBC_User_Disconnect_indication;

-- RBC_User_Data_indication(argl);

-- outgoing to C_SAI

-- CSAI_CONNECT_request;

-- CSAI_DISCONNECT_request;

-- CSAI_DATA_request(argl,arg2);

-- outgoing to Timer

-- ok_ccsl1

Vars
————————————— PORTS
RBC_User: C_RBC;
SAI: C_SAI;
————————————— CONFIGURATION PARAMS
max_receiveTimer: int; -- CONFIGURATION PARAM
max_sendTimer: int; -- CONFIGURATION PARAM
————————————— LOCAL VARS
receiveTimer: int := 0;
sendTimer: int := 0;

-- R1: At startup, the CSL 1is in Disconnected state

R1_CCSL:
initial -> NOCOMMS

-- R2: When 1in Disconnected state is received a SAI_CONNECT.indication
-- from the SAI component, the CSL sends a RBC_User_Connect_indication
-- to the RBC component, starts both the sendTimer and the recTimer,

-- and moves to Connected state

Project Acronym — GA 881775

52 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

RTa_CCSL_okccsl:
NOCOMMS -> NOCOMMS
{ccsl_tick /
Timer.ok_ccsl}

R2_CCSL_userconnind:
NOCOMMS -> COMMS
{CSAI_CONNECT_indication /
RBC_User.CRBC_User_Connect_indication;
receiveTimer := 0;
sendTimer :=max_sendTimer}

-- R3: When 1in Connected state is received a SAI_CONNECT.indication from
-- the SAI component (this is not supposed to occur), the message is
-- discarded.

RTb_CCSL_okccsl:
COMMS -> COMMS
{ccsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer < max_sendTimer)] /
Timer.ok_ccsl;
sendTimer := sendTimer +1;
receiveTimer := receiveTimer+l; }

R3_CCSL_userconnind:
COMMS -> COMMS
{CSAI_CONNECT_indication}

-- R4: When 1in Connected state is received a RBC_User_Data.request with
-- RBC_data from the RBC component, the CSL sends a SAI_DATA.request
-- with such RBC_data to the SAI component

R4_CCSL_saidatareq:

COMMS -> COMMS
{CRBC_User_Data_request(argl) /
SAI.CSAI_DATA request(RBCdata,argl);
sendTimer := 0}

-- R5: Each time that in Connected state the sendTimer expires, the CSL
-- sends a SAI_DATA.request with a l1ife_sign to the SAI component

R5_CCSL_okccs1t:
COMMS -> thcr5
{ccsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer = max_sendTimer)] /
Timer.ok_ccsl;
sendTimer := 0;
receiveTimer := receiveTimer+1}

R5_CCSL_saidatareq:
tbcr5 -> COMMS
{-/
SAI.CSAI_DATA request(LifeSign,0)}

-- R6: When in Connected state is received a SAI_DATA.indication with a
-- life_sign from the SAI component, the CSL restarts the recTimer

Project Acronym — GA 881775 53|64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

R6_CCSL_handlelifesign:
COMMS -> COMMS
{CSAI_DATA_indication(argl,arg2)
[argl = LifeSign] /
receiveTimer := 0}

-- R7: When 1in Connected state is received a SAI_DATA.indication with
-- SAI_data from the SAI component, the CSL sends a

-- RBC_User_Data.indication with such SAI_data to the RBC component
-- and restarts the recTimer

R7_CCSL_userdataind:
COMMS -> COMMS
{CSAI_DATA_indication(argl,arg2)
[argl /= LifeSign]l /
RBC_User.CRBC_User_Data_indication(arg2);
receiveTimer := 0}

-- R8: When in Connected state is received a SAI_DISCONNECT.indication
-- from the SAI component, the CSL sends a RBC_User_Disconnect.indication
-- to the RBC component and moves to Disconnected state

R8_CCSL_userdisconnind:
COMMS -> NOCOMMS
{CSAI_DISCONNECT_indication /
RBC_User.CRBC_User_Disconnect_indication;
receiveTimer := 0;
sendTimer := 0}

-- R9: When in Connected state the recTimer expires, the CSL sends a
-- SAI_DISCONNECT.request to the SAI component, a RBC_User_Disconnect.indication
-- to the RBC component and moves to Disconnected state

R9_CCSL_okccst:
COMMS -> tbcr9
{ccsl_tick [receiveTimer = max_receiveTimer] /
Timer.ok_ccsl}

R9_CCSL_saidisconnreq:
tbcr9 -> tbcr9a
{- 7/
SAI.CSAI_DISCONNECT_request;
receiveTimer := 0;
sendTimer := 0}

R9_CCSL_userdisconnind:
tbcr9a -> NOCOMMS
{- 7/
RBC_User.CRBC_User_Disconnect_indication}

-- RD1: When in Disconnected state the CSL does not accept any kind of message
-- except for SAI_CONNECT.indication from the SAI component

-- RD2: When in Connected state the CSL discards only SAI_ERROR.report messages
-- from the SAI component

Project Acronym — GA 881775 54| 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*:' El?rrciazpoenar%?ﬁ\(i)on Funding < 4SECURa’I

RDla_CCSL_discuserdata:
NOCOMMS -> NOCOMMS
{CRBC_User_Data_request(argl) }

RD1b_CCSL_discdisconnind:
NOCOMMS -> NOCOMMS
{CSAI_DISCONNECT_indication }

RD1c_CCSL_discerrorreport:
NOCOMMS -> NOCOMMS
{CSAI_Error_report }

RD1d_CCSL_discdataind:
NOCOMMS -> NOCOMMS
{CSAI_DATA_indication(argl,arg2) }

RD2a_CCSL_usererror:
COMMS -> COMMS
{CSAI_Error_report }

end C_CSL;

Project Acronym — GA 881775 55|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenaﬁ(ﬁ\(i)on Funding < 4SECURa’I

Signals
-- incoming from CSL
IRBC_User_Connect_indication;
IRBC_User_Disconnect_indication;
IRBC_User_Data_indication(argl: int);
-- incoming from Timer
irbc_tick
-- outgoing to CSL
-- IRBC_User_Data_request(argl)
-- outgoing to timer

-- ok_irbc
Vars
CSL:obj; -- CSL port
n: int :=1;
nmax: int; -- initialized at configuration time
Behaviour

Rla_IRBCS_tick:
wait -> wait
{irbc_tick /
Timer.ok_irbc;}

R1d_IRBC:
wait -> connected
{IRBC_User_Connect_indication}

R2a_IRBC:
connected -> sending
{irbc_tick /
Timer.ok_irbc;}

R2b_IRBC:
connected -> connected
{ IRBC_User_Data_indication(argl)}

R2c_IRBC:
sending -> connected
{ - [n <= nmax] /
CSL.IRBC_User_Data_request(n);
n := n+l; }
R2f_IRBC:
sending -> connected
{ - [n > nmax] }
R3_IRBC:

connected -> wait
{IRBC_User_Disconnect_indication }

end I_RBC;

-- Senario SC1
-- CRBC not sending NRBC messages, just receiving indications

Signals
Project Acronym — GA 881775 56| 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenaﬁ(ﬁ\(i)on Funding < 4SECURa’I

-- incoming from CSL
CRBC_User_Connect_indication;
CRBC_User_Disconnect_indication;
CRBC_User_Data_indication(argl: int);
crbc_tick
-- outgoing to CSL
-- CRBC_User_Data_request(argl)

Vars
CSL: C_CSL; -- CSL port
Behaviour

-- increment S counter at every time slop
R1_CRBCS_tick:
wait -> wait
{crbc_tick /
Timer.ok_crbc;}

-- do not handle connect indications
R4_CRBC_discard_CI:
wait -> wait
{CRBC_User_Connect_indication }

-- do not handle disconnect indications
R5_CRBC_discard_DI:
wait -> wait
{CRBC_User_Disconnect_indication }

-- do not handle data indications
R6a_CRBC_discard_uD:
wait -> wait
{CRBC_User_Data_indication(argl)}

-- never triggered , used just for CADP compatibility.
R7_CRBC_justforsync_DR:
sending -> wait
{- 7/
CSL.CRBC_User_Data_request(0); }

end C_RBC;

Signals
ok_irbc, ok_icsl, ok_isai, ok_eur, ok_csai, ok_ccsl, ok_crbc

Vars
-- Priority := 0;

Behaviour

RO_Timer_IRBC:
sO -> sl
{ -7
IRBC.irbc_tick;}

R1_Timer_ICSL:
Project Acronym — GA 881775 57|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenaﬁ(ﬁ\(i)on Funding < 4SECURa’I

sl -> s2
{ ok_irbc /
ICSL.icsl_tick;}

R2_Timer_ISAI:
s2 -> s3
{ok_icsl /
ISAI.isai_tick; }

R3_Timer_EUR:
s3 -> s4
{ ok_isai /
EUR.EUR_tick; }

R4_Timer_ISAI:
s4 -> s5
{ok_eur /
CSAI.csai_tick; }

R5_Timer_ISAI:
s5 -> s6
{ok_csai /
CCSL.ccs1_tick; }

R6_Timer_ISAI:
s6 -> s7
{ok_ccsl /
CRBC.crbc_tick; 1}

R7 _Timer_ISAI:
s7 -> sl
{ok_crbc /
IRBC.irbc_tick; }

end Clock;

Signals

-- incoming from ISAI

ISAI_SA_Connect_request;

ISAI_SA_Disconnect_request;

ISAI_SA Data_request(argl:int,arg2:int,arg3:int,argd4:int,arg5:int,argb6:int);

-- argl = message type, arg2 = data value,
-- arg3 = ack request, argd = ack response,
-- arg5 = sequence number, arg6 = EC number

ISAI_SA Execution_Cycle(argl:int,arg2:int);
-- argl = sequence number, arg2 = EC counter

-- incoming from CSAI
CSAI_SA_Disconnect_request;
CSAI_SA_Data_request(argl:int,arg2:int,arg3:int,argd:int,arg5:int,argb6:int);

-- argl = message type, arg2 = data value,
-- arg3 = ack request, argd = ack response,
-- arg5 = sequence number, arg6 = EC number

Project Acronym — GA 881775 58 | 64



for Research & Innovation

* X % :
3 Pl Horizon 2020
hlft Ral A **' *: European Union Funding
*

CSAI_SA_Connect_response;
CSAI_SA_Execution_Cycle(argl:int,arg2:int);
-- argl = sequence number, arg2 = EC counter

-- incoming from Timer
EUR_tick;

- outgoing to ISAI
- ISAI_SA_Disconnect_indication;
- ISAI_SA_Connect_confirm;

- ISAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6);

- argl = message type, arg2 = data value,

- arg3 ack request, argd ack response,
- args sequence number, arg6 EC number

- ISAI_SA Execution_Cycle_Start(argl,arg2);

- argl = sequence number, arg2 = EC counter

- outgoing to CSAI
- CSAI_SA_Disconnect_indication;
- (CSAI_SA_Connect_indication;

- (CSAI_SA Data_indication(argl,arg2,arg3,argd,arg5,arg6);

- argl = message type, arg2 = data value,

- arg3 = ack request, argd ack response,
- arg5 = sequence number, argé6 EC number

- CSAI_SA Execution_Cycle_Start(argl,arg2);

- argl = sequence number, arg2 = EC counter

- outgoing to Timer
- ok_eur

Vars

- Priority := 0;
Iside: I_SAI;
Cside: C_SAI;

Behaviour

R1_EUR_okier:

sO -> s0O
{ EUR_tick /
Timer.ok_eur}

R2i_EUR_newconnection:

sO -> s0O
{ISAI_SA_Connect_request /
Cside.CSAI_SA_Connect_indication;

}

R3i_EUR_disconnection:

sO-> s0
{ISAI_SA_Disconnect_request /
Cside.CSAI_SA_Disconnect_indication;

}

R4i_EUR_acceptdata:

sO -> s0
Project Acronym — GA 881775

(4SECURail

59 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

{ ISAI_SA Data_request(argl,arg2,arg3,argd,arg5,arg6) /
Cside.CSAI_SA_Data_indication(argl,arg2,arg3,argé4,arg5,argé6);

}
-- R5i_EUR_losedata:
--s0 -> s0O

-- { ISAI_SA Data_request(argl,arg2,arg3,argd,arg5,arg6) }

R2c_EUR_confirm:
sO -> s0O
{CSAI_SA _Connect_response /
Iside.ISAI_SA_Connect_confirm;

}

R3c_EUR_disconnection:
s@-> s0
{CSAI_SA_Disconnect_request /
Iside.ISAI_SA Disconnect_indication;

}

R4c_EUR_acceptdata:
s -> s0
{ CSAI_SA Data_request(argl,arg2,arg3,argd,arg5,arg6) /
Iside.ISAI_SA_Data_indication(argl,arg2,arg3,argé4,arg5,argb6);

}
-- R5c_EUR_losedata:
-- sO -> s0O

-- { CSAI_SA Data_request(argl,arg2,arg3,argd,arg5,arg6) }

-- when ISAI responding with execution cycle start
R6a_EUR_execcycstart_call:
sO -> s0O
{ISAI_SA_Execution_Cycle(argl,arg2) /
Cside.CSAI_SA_Execution_Cycle_Start(argl,arg2)}

-- when CSAI performing execution cycle start
R6b_EUR_execcycstart_response:
s -> s0
{CSAI_SA_Execution_Cycle(argl,arg2) /
Iside.ISAI_SA_Execution_Cycle_Start(argl,arg2)}

end EuroRadio;

Objects:
LifeSign, RBCdata: Token;
Timer: Clock;

IRBC: I_RBC
(CSL -> ICSL, nmax -> 5);

Project Acronym — GA 881775 60 | 64



* * .
* for Research & Innovation

hlft Ra[ A’ {***} ES::)Zpoenar%?Jpl_'l(i)on Funding < 4SECURa’I

ICSL: I_CSL
(RBC_User -> IRBC, SAI -> ISAI,
max_receiveTimer -> 20, -- timeout for receiving data
max_sendTimer -> 10, -- timeout for sending data
max_connectTimer -> 20) -- timeout for connection phase
ISAI: I_SAI

(CSL -> ICSL, ER -> EUR,
-- EC numbers management

max_initTimer -> 20, -- initialiation phase timeout

Mec -> 7, -- 1imit for EC numbers

K -> 3, =-- delay limit for incoming messages

--acks management

max_ack_requestTimer -> 20, -- ack request period

max_ack_responseTimer -> 20, -- max delay before ack response

-- sequence numbers management

N -> 1, -- 1limit for consecutive loss of
messages

M ->3) -- limit for sequence numbers

EUR: EuroRadio
(Iside -> ISAI, Cside -> CSAI);

CCSL: C_CsL
(RBC_User ->CRBC, SAI -> CSAI,
max_receiveTimer -> 20, -- timeout for receiving data
max_sendTimer -> 10); -- timeout for sending data
CSAI: C_SAI

(CSL -> CCSL, ER -> EUR,
-- EC numbers management

max_initTimer -> 10, -- initialiation phase timeout

Mec ->7, -- 1limit for EC numbers

K -> 3, -- delay limit for incoming messages
--acks management

max_ack_requestTimer -> 20, -- ack request period
max_ack_responseTimer -> 20, -- ack response timeout

-- sequence numbers management

N -> 1, -- limit for consecutive loss of messages
M -> 3) -- limit for sequence numbers

CRBC: C_RBC (CSL -> CCSL);

Abstractions {

TLABELS

-- DEBUG

Action lostevent($1) -> lostevent($1)
Action $1($*) -> $1($*)

-- umc -300 -x ERnice_irbcdata_V53_Mec7K3.umc
-- ** REC=20, SEND=10, CONN=20, INIT=20, MEC=7, K=3, AckRg=20, AckRs=20, N=1,

-- A[ {not CRBC_User_Data_indication} U { CRBC_User_Connect_indication}]

-- AF {CRBC_User_Connect_indication}

Project Acronym — GA 881775

M=3 **

61|64



* * .
* for Research & Innovation

hlft Ra[ A’ {*'*} ES::JZpoenar%?Jil(i)on Funding < 4SECURa’I

-- A[ {not CRBC_User_Data_indication} U { CRBC_User_Data_indication(1)}]
(2.473719)

-- A[true {not CSAI_Error_report} U {CRBC_User_Data_indication(l) } truel]
(2.473719)

-- A[true {not CSAI_Error_report} U {CRBC_User_Data_indication(2) } 1]
(7.334053)

-- AF { CRBC_User_Data_indication(1l)}

-- A[ {not CRBC_User_Data_indication} U { CRBC_User_Data_indication(2)}]
(7.334053)

-- A[true {not CRBC_User_Disconnect_indication} U {CRBC_User_Data_indication(3)}]
(11.990690)

-- AF {CRBC_User_Data_indication(2)}

-- A[true {not CRBC_User_Data_indication} U {CRBC_User_Data_indication(3)}]
(11.990690)

-- AF {CRBC_User_Data_indication(3)}

-- A[true {not CRBC_User_Data_indication} U {CRBC_User_Data_indication(4)}]
(15.109362)

-- AF {CRBC_User_Data_indication(4)}

-- A[true {not CRBC_User_Data_indication} U {CRBC_User_Data_indication(5)}]
(16.522994,)

Project Acronym — GA 881775 62| 64



hlft Ral A Egrrci)zpoenarzm%ici]on Funding C4SECURaII

for Research & Innovation

Statechart for Class I_RBC

| Zoom Out || Zoom In |

Top

@R1a@ irbc_tick/
Timer.ok_irbc

@R1d@ IRBC_User_Connect_indication

connected

@R2a@ irbc_tick/
Timer.ok_irbc

@R2b@ IRBC_User_Data_indication(argl) @R3@ IRBC_User_Disconnect_indication

@R2c@ -
L @R2f@ -
/
CSL.IRBC_User_Data_request(n); [n>nmax]
n:=n+1

Statechart for Class C_RBC

| Zoom Out || Zoom In |

Top
@%rln@;z:(bc;:&k/ @R4@ CRBC_User_Connect_indication @R5@ CRBC_User_Disconnect_indication @R6a@ CRBC_User_Data_indication(argl)
—
—
—
— @R7@ -/
CSL.CRBC_User_Data_request(0)

Statechart for Class EuroRadio

| Zoom Out || Zoom In

@RIG EUR sk
Timeeok_sur

Project Acronym — GA 881775 63|64



for Research & Innovation

hlft Ral A’ Es:ti)zpoenar%%i(i]on Funding ( 4SECURaiI

Statechart for Class Clock

| Zoom Out || Zoom In |

o)

@ROGH -/
IRBC irbe_tick

@R1@ ok_irbe/
ICSLcsl_tick

@R2E ok_icsl’
ISALisai_tick

w
w

@RI ok _isai/
EUREUR _tick

s4

(1}

@RAE ok_cur/
CSAlcsai_tick

S.

a

@R5@ ok_csaif
CCSL.cesl_tick

O

@RO6@ ok_cesl
CRBC .crbe_tick

s7

@R7G ok_crbe/
IRBC.irbe_tick

Project Acronym — GA 881775 64|64



